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Energy-preserving integrators and the

structure of B-series

Elena Celledoni§, Robert I McLachlan¶, Brynjulf Owren,∗ and GRW Quispel‖

June 16, 2009

B-series are a powerful tool in the analysis of Runge�Kutta numerical integrators
and some of their generalizations (�B-series methods�). A general goal is to un-
derstand what structure-preservation can be achieved with B-series and to design
practical numerical methods that preserve such structures. B-series of Hamilto-
nian vector �elds have a rich algebraic structure that arises naturally in the study
of symplectic or energy-preserving B-series methods and is developed in detail
here. We study the linear subspaces of energy-preserving and Hamiltonian modi-
�ed vector �elds which admit a B-series, their �nite-dimensional truncations, and
their annihilators. We characterize the manifolds of B-series conjugate to Hamilto-
nian and conjugate to energy-preserving and describe the relationships of all these
spaces.

1 Introduction: the Average Vector Field integrator

The study of the behaviour of �rst integrals under numerical integration has a long history. In
the most general setting their error grows linearly with time, but for special methods or special
di�erential equations the error can grow sublinearly, can be bounded, or can be zero (apart
from round-o� error; see [12] for a discussion of these cases for energy behaviour.) Amongst
methods that preserve �rst integrals, we can distinguish between cases in which the integral
lies in a class whose structure ensures that the integral is preserved automatically and cases
in which the preservation is enforced. Examples of the former include automatic preservation
of linear integrals by all Runge�Kutta methods [21], and automatic preservation of quadratic
integrals by some (the symplectic) Runge�Kutta methods [7]. The user does not even need
to know of the existence of the integral for it to be preserved! Lie group integrators, which
preserve a homogeneous space as a submanifold, can also be put in this class, although the user
does need to know the group actions that generate motion on the submanifold. An example
of the latter is the projection method: �rst generate any approximation to the desired point,
and then project it on to the desired level set of the integral. While this approach is still
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widely used when preservation of the integral is absolutely critical, it has some drawbacks:
the projection can destroy other properties of the integrator, and the domain in which the
projected point exists can shrink to zero as critical points of the integral are approached.
Where possible, `automatic' preservation is preferred.
A very large class of one-step methods are those that have B-series, i.e., Taylor series

in the time step in which each term is a sum of elementary di�erentials of the vector �eld.
Runge�Kutta, multiderivative Runge�Kutta, some exponential integrators, some linearization-
preserving integrators [15], and some generating function methods have B-series. B-series
methods preserve linear invariants and a�ne symmetries automatically. If it can be shown
that no B-series apart from the exact solution have a certain property, then a very large class of
methods is ruled out and one will have to look elsewhere. Volume-preservation is one example
[1, 6], and preservation of arbitrary �rst integrals of arbitrary vector �elds is another [5]. If, on
the other hand, there are B-series with a desired property, this does not ensure the existence
of B-series methods, for a numerical method has to be �nitely described and computable.
With this background it came as a great surprise that there are B-series methods that

conserve energy in Hamiltonian systems. The �rst to be discovered was the Average Vector
Field (AVF) method �rst written down in [14] and identi�ed as energy-preserving and as a
B-series method in [19]: for the di�erential equation

ẋ = f(x), x ∈ Rn, (1)

the AVF method is the map x 7→ x′ de�ned by

x′ − x

h
=
∫ 1

0
f(ξx′ + (1− ξ)x) dξ. (2)

Note that the conserved quantity is arbitrary, and does not appear explicitly in the de�nition
of the method (or in its B-series), cf. Theorem 1 below. This is possible because of the special
relationship between the energy integral and the vector �eld that exists just for Hamiltonian
systems. Energy preservation is `automatic': the user does not even need to know that the
speci�ed vector �eld f is Hamiltonian, but if it is, its energy will be preserved.

Theorem 1. The AVF method is a B-series method, is a�ne-covariant [16], self-adjoint,
and of order 2. When f is Hamiltonian with respect to a constant symplectic structure, i.e.,
when f = Ω−1∇H with Ω a nonsingular, antisymmetric matrix, the AVF method preserves
the Hamiltonian H : Rn → R. It is pseudo-symplectic of order 2 (but not 3) and conjugate-
pseudo-symplectic of order 4 (but not 5).

We refer to [4] for the proof, although the demonstration of energy-preservation bears re-
peating as it illustrates how constancy of Ω plays a crucial role. Let y = ξx′ + (1− ξ)x:

H(x′)−H(x) =
∫ 1

0
∇H(y)>(x′ − x) dξ

= h

(∫ 1

0
∇H(y) dξ

)>(∫ 1

0
f(y) dξ

)
= h

(∫ 1

0
∇H(y) dξ

)>
Ω−1

(∫ 1

0
∇H(y) dξ

)
= 0.

(3)



Also note that the exact solution can be written in a form similar to (2), but with the integral
being along the orbit connecting x and x′ instead of along a straight line.
In contrast to projection methods, the equations de�ning the (implicit) AVF method always

have a solution. We show this by casting it as a continuous-stage Runge�Kutta method with
a(ξ, η) = ξ and b(ξ) = 1.

De�nition 1. Let a and b be such that the linear maps L∞([0, 1]) → L∞([0, 1]), k 7→∫ 1
0 a(ξ, η)k(η)dη and L∞([0, 1]) → R, k 7→

∫ 1
0 b(η)k(η) are bounded. The method x 7→ x′

de�ned by

k(ξ) = f

(
x + h

∫ 1

0
a(ξ, η)k(η) dη

)
, ξ ∈ [0, 1]

x′ = x + h

∫ 1

0
b(ξ)k(ξ) dξ

(4)

is called a continuous-stage Runge�Kutta method.

The following theorem is an instance of a more general theorem of Butcher [2] covering
convergence of a very wide class of Runge�Kutta-like methods, and which ensures the existence
of unique solutions to the equations of the AVF method for su�ciently small step sizes.

Theorem 2. Let f : Rn → Rn be continuous and satisfy a Lipschitz condition with constant
L. If

h <
1

L supξ∈[0,1]

∫ 1
0 |a(ξ, η)|dη

(5)

then there exists a unique solution of (4).

For ordinary di�erential equations
ẏ = f(y),

where y lies in a vector space, we consider numerical integrators y 7→ Φh(y) that have B-series

Φh(y) =
[
id + hf + h2a( )f ′(f) + h3

(
1
2
a( )f ′′(f, f) + a( )f ′(f ′(f))

)
+ . . .

]
(y)

=
∑

τ∈T∪∅

h|τ |
a(τ)
σ(τ)

F (τ)(y)

where T is the set of rooted trees. We write Tn for the set of rooted trees with n vertices, and
|t| = n if t ∈ Tn (thus T = ∪∞n=1T

n) and let

T n = span(Tn),

T = span(T ) =
∞⊕

n=1

T n.

The integrator has a modi�ed vector �eld f̃(y) that also has a B-series, but one with leading
coe�cient 0:

Φh(y) = exp(hf̃(y)), f̃ =
∑
τ∈T

h|τ |−1 b(τ)
σ(τ)

F (τ)(y). (6)
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We principally work with B-series of modi�ed vector �elds; in contrast to B-series of maps,
they are linear objects which can largely be understood order-by-order.
The rest of the paper is organized as follows: In Section 2 we present the linear subspaces

of B-series of Hamiltonian and energy-preserving vector �elds. We characterize the graded
components of these subspaces in terms of dimensions, bases and annihilators. In Section 3
we prove several new results for B-series of vector �elds which are conjugate to Hamiltonian
or energy-preserving vector �elds. We shall in particular discuss how all the subspaces are
related to each other and we shall present results related to the dimensions of the various
graded components and their intersections.

2 Energy-preserving and Hamiltonian B-series

Let Ω be an antisymmetric, invertible n× n matrix. It de�nes a symplectic inner product on
Rn by (u, v) := u>Ωv. The Hamiltonian vector �eld with Hamiltonian function H is de�ned
by XH := Ω−1∇H. These have two key properties: their �ow is energy-preserving (because
Ḣ = XH(H) = (∇H)>Ω−1∇H = 0) and symplectic, i.e., tangent vectors to solutions, that
obey the linearized di�erential equation u̇ = X ′

H(x(t))u, preserve the symplectic inner product,
d
dt(u(t), v(t)) = 0. (The entire theory presented in this paper also applies to the case of Poisson
systems with constant Poisson structure, i.e., to the systems ẋ = J∇H with J a constant, not
necessarily invertible matrix.)
When f is a Hamiltonian vector �eld, its elementary di�erentials have certain special prop-

erties: certain linear combinations of them are Hamiltonian, or have �rst integral H, for
example. These de�ne linear subspaces of the vector space over rooted trees. These subspaces
inherit the linear- and Lie-algebraic structure induced by that of the elementary di�erentials
that remains even when the original vector �eld f is `forgotten' and one works only with trees.
Here we explore that structure.
We extend the elementary di�erential F to T by linearity, e.g. F (a + b ) = aF ( ) + bF ( ).

De�nition 2. The energy-preserving subspace (of order n) is de�ned by

T n
H := {t ∈ T n : F (t) has �rst integral H when f = Ω−1∇H}

The Hamiltonian subspace (of order n) is de�ned by

T n
Ω := {t ∈ T n : F (t) is Hamiltonian w.r.t. Ω when f = Ω−1∇H}

We have

TH =
∞⊕

n=1

T n
H

TΩ =
∞⊕

n=1

T n
Ω

and we let Fn
(H,Ω) := F (T n

(H,Ω)). That is, an element of F is a B-series of a modi�ed vector
�eld.
We brie�y recall some well known de�nitions to be used in the sequel. A forest is an

unordered, possible empty, collection of trees, where each tree can appear an arbitrary number
of times. Let T̄ be the set of forests. A recursive representation of trees is given as follows:



t ∈ T is either the one node tree t = = [∅] or t = [t1, . . . , tn] obtained by joining the roots
of each tree ti to a new common root. Thus |t| = 1 +

∑
i |ti|. We shall also make use of the

map B− : T → T̄ de�ned as B−( ) = ∅ and B−([t1, . . . , tn]) = t1 . . . tn. The Butcher product
between two trees u = [u1, . . . , un] and v is de�ned as u ◦ v = [u1, . . . , un, v]. Note that ◦
is non-commutative. In fact, this product induces an equivalence relation on T , the smallest
equivalence relation satisfying u ◦ v ∼ v ◦ u for every u, v ∈ T [10, 11]. Two equivalent trees
have the same graph, and di�er only in the position of the root; thus they also have the same
order. For two equivalent trees, θ and τ , κ(θ, τ) is the number of times the root must be
shifted in order to obtain θ from τ . Each equivalence class is called a free tree, and we denote
by FTn the set of all free trees of order n. Let π(τ) be the free tree (equivalence class) to
which τ ∈ T belongs. A free tree is called super�uous if it contains an element of the form
u ◦ u for some u ∈ T . All other free trees are called nonsuper�uous.
T n

H and T n
Ω are linear subspaces of T n. We seek to understand these subspaces, their

annihilators, their dimensions, and their relationships. Let |V | be the dimension of the vector
space V . One subspace, T n

Ω , is already well understood; see for example Hairer et al. [11] and
Calvo and Sanz-Serna [3] for the analogue for maps.

Theorem 3. A basis of Fn
Ω is given by the Hamiltonian vector �elds of the elementary Hamil-

tonians associated with the nonsuper�uous free trees of order n. A basis of the annihilator
Ann(T n

Ω ) of T n
Ω is given by1

{(u ◦ v)∗ + (v ◦ u)∗ : u, v ∈ T, |u|+ |v| = n},

so that Hamiltonian B-series of the form
∑

|t|=n
b(t)
σ(t) t ∈ T

n, satisfy

b(u ◦ v) + b(v ◦ u) = 0, u, v ∈ T, |u|+ |v| = n.

The dimension of T n
Ω is given by

|T n
Ω | =

{
|FTn| − |Tn/2|, n even
|FTn|, n odd

Example 1. There are 4 trees of order 4, for which the standard basis is: 1
6 , , 1

2 ,

. There is 1 nonsuper�uous free tree of order 4, namely π( ). The combination of trees

associated with its Hamiltonian vector �eld is 3 − , (6(1
2 ) − 6(1

6 ) in the standard
basis), which is a basis for T 4

Ω . A basis for the annihilator of this subspace is obtained by

taking (u, v) = ( , ), ( , ), and ( , ), thus the conditions for the B-series of a modi�ed vector
�eld to be Hamiltonian at order 4 are

{b( ) + b( ) = 0, b( ) + b( ) = 0, b( ) = 0}.

The conditions to be energy-preserving�i.e., the annihilator of T n
H�were �rst given in [10],

and a spanning set of T n
H is given in [19]. The analogue for maps is studied in [5].

A set of energy-preserving trees was given in [19].

1here we denote by t∗ the element of the dual space such that 〈t∗, t′

σ(t′) 〉 = δt,t′ for any t ∈ T .
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Theorem 4. Let

S :=
{
[t1, [t2, . . . , [tm, ] · · · ] + (−1)m[tm, [. . . , [t2, [t1, ] · · · ] : tj ∈ T̄

}
, (7)

then S ⊆ TH .

Proof. Any element of S is of the form t + (−1)m t̂ with

t =

�
�

�
�
�

@@
@@

@@
@@

t1

..
.

tm

and t̂ =

�
�

�
�
�

@@
@@

@@
@@

tm

..
.

t1

.

It follows from the chain rule that H is preserved by the �ow of a vector �eld g if and only
if H ′(g(y)) = 0 along integral curves y. In particular, we must prove that this is true for the
vector �eld F (t) + (−1)m F (t̂). From the de�nition of the elementary Hamiltonian associated
to a tree [11, sec. IX.9.2], we see that H ′(F (t)) = H([t]). Using the root-shifting property
H(u ◦ v) = −H(v ◦ u) for all trees u and v, the root of [t] can be moved to an adjacent vertex
incurring a change of sign. We shift the root up m + 1 places until it reaches the designated
in [t] = [[t1, [t2, . . . , [tm, ] · · · ]]. The resulting tree is [t̂], thus κ(t, t̂) = m + 1, and we �nd

that H([t̂]) = (−1)m+1 H([t]). So, again using the de�nition of the elementary Hamiltonian we
conclude that H ′(F (t)+(−1)m F (t̂)) = 0, thus proving that the vector �eld F (t)+(−1)m F (t̂)
preserves H.

�

Example 2. The B-series of the modi�ed vector �eld of the AVF method (2) can be written
as follows, where we have replaced each elementary di�erential by its tree and grouped terms
into energy-preserving pairs:

+
1
12

h2 +
1

720
h4

9 −
(

+
)

+ 2

(
+

)
− 4 + 4

(
−

)+ . . .

This can be calculated by using the explicit formula the B-series of the map (2) found in [4]
and recursively calculating the B-series of the modi�ed vector �eld as in [11, ch. IX.9.1].

Theorem 5. (i) A basis for the annihilator Ann(T n
H ) of T n

H can be indexed over the non-
super�uous elements of FTn+1 as follows:

∑
τ∈π−1(φ)

τ=[τ̄ ]

(−1)κ(τ0,τ) 1
σ(τ)

τ̄∗ : φ ∈ FTn+1, φ nonsuper�uous

 (8)

where τ0 is a designated element of π−1(φ).2 The sum is taken over all trees τ ∈ π−1(φ)
having precisely one subtree.

2In Murua [17] a canonical representative for π−1(φ) is constructed. Note also that apart from a change of
sign, the annihilator element is independent of the choice of τ0.



(ii) The dimension of T n
H is given by

|T n
H | = |T n| − |T n+1

Ω |. (9)

(iii) The set S contains a basis of T n
H .

Proof. (i) and (ii) are special cases of [11, Ch IX], Lemma 9.11 and Corollary 9.12. (iii) For a
nonsuper�uous free tree φ ∈ FTn+1 the condition to be satis�ed by∑

τ̄∈T n

b(τ̄)
σ(τ̄)

τ̄ is
∑

τ∈π−1(φ)
τ=[τ̄ ]

(−1)κ(τ0,τ) b(τ̄)
σ(τ)

= 0. (10)

Note that the same tree cannot appear in two di�erent energy preserving conditions, because
for any tree τ ∈ Tn, there is at most one nonsuper�uous free tree φ ∈ FTn+1 such that
[τ ] ∈ π−1(φ). T n is thus a direct sum of subspaces, each corresponding to at most one free
tree in FTn+1. Therefore we can construct a basis for T n

H by taking a basis for the solutions of
each energy-preserving condition independently. If the nonsuper�uous free tree has m leaves
up to symmetries, the condition involves m trees. If m = 1, there are no energy-preserving
elements in the subspace spanned by that tree. If m > 1, a basis for this condition can be
obtained by choosing any m − 1 pairs of trees, spanning independent subspaces, and solving
the condition (10) in the 2-dimensional space of that pair. This yields basis elements expressed
as linear combinations of distinct pairs of trees. To see that these take the form of (7), grasp
the two leaves whose deletion yielded the selected trees and pull them apart. The taut part is
the backbone of (7). Placing one leaf on the ground and cutting it o� de�nes the �rst term in
(7), while turning the whole tree upside down to put the other leaf on the ground and cutting
if o� yields the second term in (7) To check the coe�cients, recall that the conditions (8) are
de�ned using (6) that involves symmetry factors in the coe�cients.
The basis built thus far involves all trees except those t for which [t] is super�uous. All such

t are energy-preserving and can be included in the basis and, following the construction of the
previous paragraph, take the form (7) with n even and ti = tn+1−i so that the two trees in (7)
coincide. �

Note that the �rst term in (7) is just a representation of an arbitrary tree, with the spine
being the path from the root to any leaf. The second tree is identical to the �rst i� [t]
is super�uous. Put another way, each super�uous free tree generates a singleton energy-
preserving tree.
Conversely, the second tree will cancel the �rst i� the free tree [t] is symmetric, that is, a

root can be chosen so that all the vertices at the same distance from the root have the same
number of edges; equivalently, taking any leaf of [t] to be the root yields the same rooted
tree. Symmetric trees are given by (. . . ( n1)n2 . . . )nk where tn := [t, . . . , t] (n t's). The bushy
tree is n, the tall tree is ttall = (. . . ( 1)1 . . . )1, and the n-legged star�sh is tntall. Trees with
[t] symmetric can never appear in an energy-preserving B-series unless they are super�uous,
for this is precisely the annihilation condition (8) associated with [t]. The only super�uous
symmetric trees are the tall trees with an even number of vertices. For the bushy trees,
this is another way of showing that energy-preserving B-series integrators must satisfy all the
quadrature order conditions [4] and hence that no Runge�Kutta method is energy-preserving
for arbitrary Hamiltonians.
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It is a curious fact that the elements of any basis of the Hamiltonian B-series contain many
terms, while their annihilator has a basis in which each element consists of 2 terms, while
for the energy-preserving B-series the situation is reversed: they have a basis in which each
element contains ≤ 2 terms, while the elements of their annihilator contain many terms.
Because the only Hamiltonian B-series that preserves the energy is the exact �ow of the dif-

ferential equation ([5],[11], IX.9.15), the energy-preserving and the Hamiltonian trees scarcely
intersect:

TΩ ∩ TH = .

3 Conjugate-to-energy preserving and conjugate-to-Hamiltonian

B-series

We now consider B-series that are conjugate (by a B-series) to an energy-preserving or a
Hamiltonian B-series. Such B-series do not form linear spaces, but some of their properties�
e.g., their dimension�can be described using two new linear spaces that we call T neH and T neΩ .
See the Appendix for a geometric description of these spaces.
Recall that the integrator Φ is said to be conjugate-symplectic if there exists a map Ψ

such that ΨΦΨ−1 is symplectic. Equivalently, Φ preserves not the original symplectic form
Ω but a modi�ed symplectic form (Ψ−1)∗Ω. If Φ has a B-series then it is natural to require
that Ψ also has a B-series. The conditions on Φ (or its modi�ed vector �eld) that ensure
conjugate-symplecticity have been derived up to order 5 in [11, 20].
We would like to describe the modi�ed vector �elds that are conjugate by B-series to Hamil-

tonian ones, i.e., to eliminate the conjugacy from the description. It turns out to be most
convenient to do this by considering the conjugacy to be �xed up to some order and variable
thereafter. We will see that this is reasonable because, given a modi�ed vector �eld that is
conjugate to Hamiltonian, the conjugacy is determined, essentially uniquely, order by order.
We now need to use Lie brackets of vector �elds. We write these as [[f, g]] to distinguish them

from the root-grafting operation [t]. The Lie bracket of vector �elds induces a Lie bracket on
T : [[t1, t2]] is given the sum of the grafts of t1 onto each vertex of t2, minus the sum of the grafts
of t2 onto each vertex of t1. Because the Hamiltonian and energy-preserving vector �elds form
Lie algebras, FH and FΩ (resp. TH and TΩ) form graded Lie subalgebras of F (resp. T ). For
the following lemmas we provide proofs using vector �elds and purely combinatorial proofs in
terms of trees.
Let c be the B-series whose �ow conjugates the �ow of f̃ , i.e.,

ecef̃e−c = ef̂

where f̂ is Hamiltonian. We call c the conjugacy. Rearranging,

ef̃ = e−cef̂ec.

Thus, the conjugate-Hamiltonian B-series are given by{
log(e−cef̂ec) : c ∈ T , f̂ ∈ TΩ

}
.

This is equal to {
f̂ − [[c, f̂ ]] +

1
2
[[c, [[c, f̂ ]]]]− . . . : c ∈ T , f̂ ∈ TΩ

}
. (11)



We now make three restrictions: �rst, we consider only B-series of integrators, i.e. f̂( ) =
f̃( ) = 1. Second, we consider only non-Hamiltonian conjugacies c. The de�nition of non-
Hamiltonian is arbitrary, but turns out to be immaterial.

De�nition 3. Let T ′
Ω be any complement of TΩ in T . Let T ′

H be any complement of TH in T .

For example, we could choose T 3′
H = span( ), or any other 1-dimensional subspace of T 3

independent of T 3
H = span( ). We take c ∈ T ′

Ω.
The motivation for this restriction is that the conjugate of a Hamiltonian B-series by a

Hamiltonian B-series is another Hamiltonian B-series, so we expect that including Hamiltonian
terms in the conjugacy will not be very useful (but see Theorem 10 below).
Third, instead of allowing the conjugacy c to range over all non-Hamiltonian B-series in

(11), we will take its terms of order < n − 1 to be �xed; and instead of allowing f̂ to range
over all Hamiltonian B-series, we will take its terms of order < n to be �xed. This is a useful
restriction because it will turn out that, given f̃ , the c that conjugates it to Hamiltonian will
be determined uniquely order-by-order.

Lemma 6. ad is 1�1 on T n for n > 1.

Proof. Suppose not. Then there are distinct trees t1, t2 such that [[t1, ]] = [[t2, ]]. Then
[[F (t1 − t2), f ]] = 0, i.e., f has the nontrivial symmetry F (t1 − t2) for all f . But there are f 's
with no nontrivial symmetries, a contradiction. �

Proof. (A tree-based version). We write τ ∈ T n in terms of the basis Tn as τ =
∑

k ck tk
and prove that ad (τ) =

∑
k ck ad (tk) = 0 implies that each ck = 0. We assume that the

basis has been sorted in a non-increasing order in terms of the number of subtrees of each
element (e.g., t1 is the bushy tree). The key observation is that for a tree t with ` subtrees,
one has ad (t) = [B−(t), ] + τ̄ where the �rst term has ` + 1 subtrees and τ̄ ∈ T n+1 is a
sum of trees each having at most ` subtrees. Furthermore, for two di�erent trees t and s,
[B−(t), ] and [B−(s), ] are di�erent. In particular, the only occurence of the bushy tree of
n + 1 vertices in ad (τ) comes from c1ad (t1) and thus we must have c1 = 0. By induction,
assuming that c1 = · · · = cm−1 = 0 we �nd that the only occurrence of the tree [B−(tm), ]
in ad (

∑
k≥m cktk) comes from cmad (tm) thus cm = 0. We have proved that all ck = 0 and

therefore ad is injective on T n. �

The Lie bracket on T can be split into two pieces by introducing the non-associative left
pre-Lie product B, see e.g. [9], which is de�ned on u, v ∈ T as the sum of all trees obtained by
grafting u onto each vertex of v. It then holds that [[u, v]] = uB v− v Bu. For subsequent use,
we de�ne L ,R as the linear maps L : u 7→ B u and R : u 7→ u B = [u]. Now we can write
ad = L − R . The transpose of ad is denoted ad∗ = L∗ − R∗. We have ad∗(T n+1∗) = T n∗

owing to Lemma 6. Suppose t ∈ Tn+1 and u ∈ Tn. We let r(t, u) count the number of leaves
that, when removed from t, would yield u. Clearly we may have r(t, u) = 0. We have the
following formulas for L∗ and R∗ applied to the dual element t∗.

L∗(t∗) =
∑

u∈T n

r(t, u) u∗ R∗(t∗) =
{

t̄∗ if t = [t̄]
0 otherwise

We may naturally interpret the Butcher product on dual elements as u∗ ◦ v∗ := (u ◦ v)∗ for
any u, v ∈ T . It is convenient to augment the basis T with the identity element ∅ of grade 0,

9



such that ∅ · τ = τ · ∅ = τ for any τ ∈ T ⊕R∅. We then have L∗( ∗) = ∅∗ and by convention
t ◦ ∅ = −∅ ◦ t = t for any t ∈ T . 3

Lemma 7. [[T ′
H , ]] ∩ TH = 0.

Proof. Suppose not. Then there exists g = F (t), t ∈ T ′
H satisfying [[f, g]](H) = 0. Then

0 = [[f, g]](H) = f(g(H))− g(f(H)) = f(g(H)).

That is, f has �rst integral g(H). But there exist f whose only independent �rst integral is
H; in this case, g(H) = G(H) for some scalar function G. But g is an elementary di�erential
of f so G(H) = 0 and g ∈ TH , a contradiction. �

Proof. (A tree-based version) It is enough to prove that for any n ≥ 0 one has

∀τ ∈ T n, ad τ ∈ T n+1
H ⇒ τ ∈ T n

H

The above condition is equivalent to Ann(T n
H ) ⊆ ad∗

(
Ann(T n+1

H )
)
. Each dual tree appears

in at most one basis element (8), this de�nes a linear surjective map annn : T n∗ → Ann(T n
H ),

by annn(t∗) = bt if t∗ features in the annihilator basis element bt. It su�ces to prove that
annn(t∗) ∈ ad∗(Ann(T n+1

H )) for all t ∈ Tn. We order Tn by decreasing number of subtrees,
starting from the bushy tree t1 and proceeding by induction. We have ad∗(annn+1(t∗1 ◦ ∗)) =
annn(t∗1). For the other trees in Tn, we use the following relation

ad∗(annn+1(t∗ ◦ ∗)) = annn(L∗t∗ ◦ ∗ + t∗).

Suppose that t∗ has q subtrees. The argument of annn on the right hand side equals mtt
∗+ τ∗

where mt is a positive integer, and τ∗ ∈ T n∗ is a linear combination of dual trees with q + 1
subtrees. The induction hypothesis asserts that annn(τ∗) ∈ ad∗(Ann(T n

H )) and it follows that
also annn(t∗) ∈ Ann(T n

H ). �

Lemma 8. [[T ′
Ω, ]] ∩ TΩ = 0.

Proof. The vector �eld f is assumed Hamiltonian, that is, ifΩ = dH or difΩ = 0. Suppose
the lemma is false. Then there exists g = F (t), t ∈ T ′

Ω such that [[f, g]] is Hamiltonian, i.e.,

0 = di[[f,g]]Ω

⇒ 0 = d(Lf igΩ− igLfΩ)
⇒ 0 = dLf igΩ
⇒ 0 = d(dif igΩ + ifdigΩ)

⇒ 0 = dif Ω̃ where Ω̃ := digΩ = LgΩ.

That is, the �ow of the vector �eld f preserves both Ω and Ω̃. (In coordinates, Ω̃ = Ωg′+g′>Ω.)
But there exist f whose �ow does not preserve two independent 2-forms: for example, in R2

with Ω = dx ∧ dy, Ω̃ = w(x, y)dx ∧ dy, we would need ∇ · f = 1 = w(x, y). Regardless of t
there will exist f for which w(x, y) 6≡ 1, a contradiction. �

3∅ ◦ ∅ remains unde�ned



Proof. (A tree-based version) As in the proof of Lemma 7 it is enough to show that Ann(T n
Ω ) ⊆

ad∗
(
Ann(T n+1

Ω )
)
. Below, we shall order the basis for Ann(T n

Ω ) given in Theorem 3 as b1, b2, . . .
and we use induction. For each k we �nd b̄k ∈ Ann(T n+1

Ω ) having the property that ad∗(b̄k) =
mkbk+δk where mk is a positive integer and δk is a linear combination of bj , j < k, in particular
δ1 = 0. Then bk = 1

mk
(ad∗(b̄k)− δk) ∈ ad∗(Ann(T n+1

Ω )) by the induction hypothesis. Each bk

is of the form u∗ ◦ v∗ + v∗ ◦ u∗ where u ∈ T ` and v ∈ Tn−`. We order these basis elements
non-increasingly in terms of the number of subtrees of u, assuming |u| ≥ |v|. In particular
b1 = t∗1 ◦ ∗ + ∗ ◦ t1 where t1 ∈ Tn−1 is the bushy tree. If bk = u∗ ◦ v∗ + v∗ ◦ u∗ we let
b̄k = ū∗ ◦v∗+v∗ ◦ ū∗ where ū = u◦ . We have ad∗(b̄1) = (n−1)b1. We now invoke the formula

ad∗(ū∗ ◦ v∗ + v∗ ◦ ū∗) = L∗ū∗ ◦ v∗ + ū∗ ◦ L∗v∗ + L∗v∗ ◦ ū∗ + v∗ ◦ L∗ū∗. (12)

But L∗ū∗ = mku
∗ + τ∗ where mk is a positive integer, and τ is a linear combination of trees

with precisely one more subtree than u. So L∗ū∗ ◦ v∗ + v∗ ◦ L∗ū∗ = mkbk + δk,1 where δk,1

is a linear combination of bj , j < k. Furthermore, ū∗ ◦ L∗v∗ + L∗v∗ ◦ ū∗ = δk,2 where, since
ū has precisely one more subtree than u, δk,2 is a linear combination of bj , j < k. Therefore
ad∗(b̄k) = mkbk + δk with δk = δk,1 + δk,2.

�

Theorem 9. Let n > 2. As the conjugacy c ranges over T ′
Ω with terms of order < n− 1 �xed,

and f̂ ranges over TΩ with f̂( ) = 1 and terms of order < n �xed, the order n terms in the
conjugate-to-Hamiltonian B-series

f̃ = f̂ − [[c, f̂ ]] +
1
2
[[c, [[c, f̂ ]]]]− . . .

range over the a�ne space
T neΩ + b

where the linear space
T neΩ := Tn

Ω ⊕ [[T n−1′
Ω , ]]

and b ∈ T n is a constant depending on the lower order terms in c and f̂ . The space T neΩ is

well-de�ned in the sense that it does not depend on the choice of complement T n−1′. The
dimension of T neΩ is

|T neΩ | = |T n
Ω |+ |T n−1| − |T n−1

Ω |.

Proof. At order n, the only variable terms are f̂n and [[cn−1, ]]; everything else is collected in
the constant term b. Thus the order n terms in f̃ range over

T n
Ω + [[T n−1′

Ω , ]] + b

By Lemma 8, this is a direct sum. By Lemma 6, ad is 1�1 on T n−1, and hence also 1�1 on any
subspace of T n−1; in particular, on T n−1′

Ω . Thus |[[T n−1′
Ω , ]]| = |T n−1′

Ω |, giving the dimension
result. �

Now turn things around and determine the conjugacy c ∈ T ′
Ω from f̃ . From Theorem 9 and

f̂ = f̃ + [[c, f̃ ]] +
1
2
[[c, [[c, f̃ ]]]] + . . . ,

11



the order n − 1 terms in c are determined uniquely from the terms of order n terms in f̂ , of
order ≤ n in f̃ , and of order < n− 1 in c. This determines c uniquely order-by-order.
We now relax the assumption that c ∈ T ′

Ω.

Theorem 10. Let n > 4. Let the conjugacy c ∈ T be split into its Hamiltonian and non-
Hamiltonian parts as c = cΩ + c′Ω. As c′Ω ranges over T ′

Ω with terms of order < n − 1 �xed,

cΩ ranges over TΩ with terms of order < n− 3 �xed, and f̂ ranges over TΩ with f̂( ) = 1 and
terms of order < n �xed, the order n terms in the conjugate-to-Hamiltonian B-series f̃ range
over an a�ne space with linear part

Tn
Ω ⊕

(
[[T n−1′

Ω , ]] + c′Ω( )[[Tn−3
Ω , ]]

)
(13)

Proof. Proceeding as in Theorem 9 we get

f̃ = f̂ − [[cΩ + c′Ω, f̂ ]] +
1
2
[[cΩ + c′Ω, [[cΩ + c′Ω, f̂ ]]]]− . . .

=
(

f̂ − [[cΩ, f̂ ]] +
1
2
[[cΩ, [[cΩ, f̂ ]]]] + . . .

)
+
(
−[[c′Ω, f̂ ]] +

1
2
[[c′Ω, [[c′Ω, f̂ ]]]]− . . .

)
+

1
2

(
[[cΩ, [[c′Ω, f̂ ]]]] + [[c′Ω, [[cΩ, f̂ ]]]]

)
+ . . . .

The order n terms in the �rst parentheses range over T n
Ω as before. Thus, introducing Hamil-

tonian terms in c does not not provide any extra degrees of freedom here. The order n terms
in the second parentheses range over T neΩ as before, and do not involve cΩ. We thus concentrate

on the terms in the third parentheses. The lowest order term in c′Ω is proportional to . f̂
has no term proportional to as is not Hamiltonian. Thus, at order n, cΩ enters through its
order n− 3 terms as

c′Ω( )
(
[[cn−3

Ω , [[ , ]]]] + [[ , [[cn−3
Ω , ]]

)
.

Rearranging using the Jacobi identity, this is

c′Ω( )
(
2[[cn−3

Ω , ]]− [[[[cn−3
Ω , ]], ]]

)
.

The second term lies in [[Tn−1, ]], a space of trees already conjugate to Hamiltonian by c′Ω.
Only the �rst term can give anything new. The new space [[Tn−3

Ω , ]] is non-Hamiltonian, by
an extension of the proof of Lemma 8. This yields Eq. (13). �

Thus, including a Hamiltonian term in the conjugacy potentially increases the dimension of
the space of conjugate-to-Hamiltonian B-series from 10 to 11 at order 6 and from 27 to 28 at
order 7 (see Table 1). However, to get a de�nitive result requires the hypothesis that

[[Tn−3
Ω , ]] ∩ [[T n−1′

Ω , ]] = 0

about which we have no information. Regardless, if it happens that c′Ω( ) = 0, then we get no
new conjugate-to-Hamiltonian terms at all. This will happen if f̃( ) = 0, so that the second-
order terms do not need to be conjugated, i.e., if the method is second order. In general, if f̃
has order p, then including Hamiltonian terms in the conjugacy can only help conjugate terms
of order at least p + 2.
We now consider the conjugate-to-energy-preserving B-series, which are described in precise

analogy to Theorem 9; the proof is similar but uses Lemma 7 instead of Lemma 8.



Theorem 11. Let n > 2. As the conjugacy c ranges over T ′
H with terms of order < n − 1

�xed, and f̂ ranges over TH with f̂( ) = 1 and terms of order < n �xed, the order n terms in
the conjugate-to-energy-preserving B-series

f̃ = f̂ − [[c, f̂ ]] +
1
2
[[c, [[c, f̂ ]]]]− . . .

range over the a�ne space
T neH + b

where the linear space
T neH := Tn

H ⊕ [[T n−1′
H , ]]

and b ∈ T n is a constant depending on the lower order terms in c and f̂ . The space T neH is

well-de�ned in the sense that it does not depend on the choice of complement T n−1′. The
dimension of T neH is

|T neH | = |T n
H |+ |T n−1| − |T n−1

H |.

Theorem 12. For n > 2,
T neH = Tn

Ω ⊕ Tn
H . (14)

Proof. The two spaces on the right have zero intersection, and from the dimension re-
sults in Theorems 11 and 5(ii) (Eq. (9)), the dimensions on both sides are equal. Also,
Tn

H ⊂ TneH := Tn
H ⊕ [[Tn−1′

H , ]]. The result was �rst conjectured using the argument that a

Hamiltonian B-series preserves a modi�ed Hamiltonian and hence (see [5], Theorem 5) is
conjugate to energy-preserving. Another point of view is to argue that if a B-series has a
modi�ed Hamiltonian, then the condition to be energy-preserving is that the coe�cient of
each elementary Hamiltonian vanishes, and these conditions are in 1�1 correspondence with
the Hamiltonian trees. However, we present here instead a constructive proof that resolves an
element of T neH into a unique sum of Hamiltonian and energy-preserving terms.

Recall that to each rooted tree [t1, . . . , tn] is associated the elementary Hamiltonian H(n)(F (t1), . . . , F (tn)).
We let XG denote the Hamiltonian vector �eld with Hamiltonian G, and Xt the combination
of trees such that F (Xt) is the Hamiltonian vector �eld whose elementary Hamiltonian is
associated with t, see [11, Lemma 9.7].
We claim that for all t ∈ T , [[t, ]] − X[t] ∈ TH . That is, the Hamiltonian component of

[[t, ]] ∈ T eH is X[t], and the energy-preserving component is the remainder. We establish the
equivalent statement for elementary di�erentials. Let g = F (t). The elementary di�erential
associated with [[t, ]] is [[g, f ]], and the elementary di�erential associated with X[t] is XH′(g) =
Xg(H). Using f = XH and f(H) = 0 gives

([[g, f ]]−Xg(H))(H) = g(f(H))− f(g(H))−Xg(H)(H)

= −XH(g(H))−Xg(H)(H)

= −{H, g(H)} − {g(H),H}
= 0.

The claim can also be established in terms of trees. We have [[t, ]] = [t]−L (t) where L (t) is
considered as a sum of |t| terms some of which might be identical. Similarly, we note that X[t]
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equals [t] plus an alternating sum of |t| terms corresponding to the root being moved to each
of the nodes other than the root of [t]. In this way, we may ignore the symmetry coe�cients.
First, note that the term [t] appears in both [[t, ]] and X[t] and thus cancels. Then, select a
node x of t and consider the three trees t, t and tx in the picture below. t is the term in
L (t) obtained by adding a leaf to x, whereas tx is obtained from [t] by shifting the root s
places to x. This term appears with the sign (−1)s in X[t]. Adding the terms together results
in t + (−1)stx, but this is precisely an element of the set S of Theorem 4 and is therefore
energy-preserving. We conclude that [[t, ]] −X[t] is a sum of |t| elements from the set S and
thus energy-preserving.

t =

�
�

��

@@
@@

@@
@@

t1

..
.

ts

x,

r

t =

�
�

�
�
�

@@
@@

@@
@@

t1

..
.

ts

r

x, tx =

�
�

�
�
�

@@
@@

@@
@@

ts

..
.

t1

x

r

�

It is curious to note that [[g, f ]]−Xg(H) is energy-preserving for any vector �eld g when f is
Hamiltonian with respect to any symplectic structure, not just g an elementary di�erential of
f and Ω constant, as we have been assuming everywhere else. This decomposition of vector
�elds in adXH into energy-preserving and Hamiltonian parts is explored further in [13].

Example 3. Consider t = . We have

[[ , ]] = − − 3

The Hamiltonian vector �eld associated with [t] is

X[t] = X = 4 −

and thus

[[ , ]] = X − 3
(

+
)

where the term in parentheses is energy-preserving (being one of the basis elements of Theorem
5).

The next space to consider is TeΩ.
Theorem 13. TeΩ ⊂ T eH .

Proof. From Theorem 12, it su�ces to decompose any t ∈ TeΩ into a sum of Hamiltonian
and energy-preserving B-series. The same proof as in Theorem 12 achieves this, for TeΩ =
TΩ⊕ [[T ′

Ω, ]]. Only the second term needs to be considered, but the proof that [[t, ]]−X[t] ∈ TH

works for any t. We do not get equality (as in Theorem 12) because the dimensions do not
match. �

We now ask what new subspaces can be created from the 4 constructed so far.



Theorem 14. (i) From the four naturally-de�ned subspaces of B-series, namely T n
Ω , T n

H ,
T neΩ , and T neH , precisely one new subspace can be constructed using the natural subspace
operations of intersection and sum. This is T neΩ ∩ T n

H , the energy-preserving conjugate-
to-Hamiltonian B-series.

(ii) T neΩ ∩ T n
H is isomorphic to T n−1′

Ω , and an isomorphism is given by the map

T n−1′
Ω → T neΩ ∩ T n

H , t 7→ [[t, ]]−X[t] (15)

(iii) Its dimension is

|T neΩ ∩ T n
H | = |T n−1| − |T n−1

Ω | = dim AnnT n−1
Ω .

(iv) There are B-series that are energy-preserving and conjugate-to-Hamiltonian, but are not
the (reparameterized) �ow of the original di�erential equation.

Proof.

(i) From 4 subspaces and 2 (symmetric) operations, 12 subspaces may be formed. From
Theorems 12 and 13, all but one of these are either empty or are one of the 4 listed
subspaces; the other one is T neΩ ∩ T n

H .

(ii) Recall
T neΩ = T n

Ω ⊕ [[T n−1′
Ω , ]] ⊂ T neH = T n

Ω ⊕ T n
H .

Every element of T neΩ is the sum of a Hamiltonian and an energy-preserving B-series, and

we can calculate T neΩ ∩ T n
H by projecting T neΩ onto T n

H . Let s + [[t, ]] ∈ T neΩ , i.e., s ∈ T n
Ω ,

t ∈ T n−1′
Ω . The projections of T neΩ onto T n

Ω and T n
H are given by

prΩ(s + [[t, ]]) = s + X[t], prH(s + [[t, ]]) = [[t, ]]−X[t]

because the right hand sides have the correct sum and lie in the correct, trivially-
intersecting spaces. This yields the result.

(iii) Follows directly from (ii).

(iv) The �ow of any element of TeΩ ∩ TH has the required properties, and the dimension of
T neΩ ∩ T n

H is positive for n > 2.

�

Note that the isomorphism in Eq. (15) is not canonically de�ned in terms of the natural
basis of trees because it depends on the choice of complement of T n

Ω .
Note that Theorem 14 does not provide a constructive approach to determining whether

B-series methods that are both energy-preserving as well as conjugate-to-symplectic exist.
However, the large dimensions of T neΩ ∩ T n

H (see Table 1) for large n are tantalizing!
We collect the previous results in the following theorem.

Theorem 15. The (Hasse) order diagram under inclusion [8] for the linear spaces T n, T n
H ,

T n
Ω , T neH , and T neΩ ∩ T n

H for n > 2 is

15



order 1 2 3 4 5 6 7 8 9 10

|T n| 1 1 2 4 9 20 48 115 286 719
|T n

Ω | 1 0 1 1 3 4 11 19 47 97
|T n

H | 1 0 1 1 5 9 29 68 189 484
|T neΩ | 1 0 2 2 6 10 27 56 143 336

|T neH | 1 0 2 2 8 13 40 87 236 581

|T neΩ ∩ Tn
H | 1 0 1 1 3 6 16 37 96 239

Table 1: Dimensions of the linear spaces spanned by the rooted trees and their 5 natural
subspaces.

T n

@@
T neH

@@
T neΩ

@@

T n
Ω

��

T n
H

@@ ��
T n

H ∩ T neΩ
@@ ��

0

and their dimensions up to order 10 are as given in Table 1. For n = 1 all these spaces are equal
to span( ), while for n = 2 we have T 2 = span( ) and T 2

H = T 2
Ω = T 2eH = T 2eΩ = T 2eΩ ∩ T 2eH = 0.

Example 4. The subspaces of the 9-dimensional space T 5 can be represented schematically
as follows:

1 2 3 4 5 6 7 8 9
H̃ H̃ H̃ H̃ H̃ H̃ H̃ H̃ ?
Ω Ω Ω H H H H H ?
Ω̃ Ω̃ Ω̃ Ω̃ Ω̃ Ω̃ ? ? ?

where `?' indicates that we know of no natural subspace for the complementary spaces. The
order-5 terms of the B-series of the modi�ed vector �eld of the AVF method (2) lie in T 5

H

(because it is energy-preserving) but not in T 5eΩ (see [4]).

The number of rooted trees |T n| is asymptotic to βn−3/2α−n as n →∞, where α ≈ 0.3383
and β ≈ 0.4399 are Otter's tree enumeration constants [18], and the number of free trees
is asymptotic to |FTn| ∼ β′n−5/2α−n where β′ = 2πβ3 ≈ 0.5349. De�ning γ = 2πβ2 and
substituting these into the dimension results in Theorems 3, 5, 9 and 11 yields the asymptotic
growth rates in Table 2.
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V |V |/|T n|, n →∞ ≈

T n
Ω

γ
n

1.2160
n

T n
H 1− γ

αn 1− 3.5942
n

T neΩ α + 3α + 2γ(1− α)
2n 0.3383 + 1.3121

n

T neH 1− (1− α)γ
αn 1− 2.3782

n

T neΩ ∩ T n
H α + α(3− 2γ)

2n 0.3383 + 0.0961
n

Table 2: Asymptotic growth of the dimensions of 5 subspaces of B-series, relative to the di-
mension of the space of all B-series of order n, as n → ∞, correct up to factors
1 +O(1/n).. Here γ = 2πβ2, and α and β are Otter's tree enumeration constants.
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Appendix. Conjugate B-series as vector bundles

We recapitulate the construction of Section 3 by presenting a geometric description of the
manifold of conjugate B-series as a vector bundle.
Suppose U and V are graded subspaces of T so that

U =
⊕
n>0

Un, V =
⊕
n>0

V n



with Un = T n ∩ U and V n = T n ∩ V . The elements of U and V are B-series. We want to
study B-series belonging to T , which are conjugations of elements in V by elements in U , or
more precisely, we want to characterize the set

M = { w = exp(−adu)v, u ∈ U, v ∈ V }.

where

w = exp(−adu) v = v − [[u, v]] +
1
2
[[u, [[u, v]]]] + · · ·

Since w is a nonlinear function of u, we cannot expect M to be a linear subspace of T . Neither
is it clear how M can be written as a graded space. For instance, even if u and v intersect only
with a �nite number of homogeneous components (Un, V n), w will typically have an in�nite
number of components.
We consider the quotient spaces

Gn = T /
⊕
k>n

T k

so that in Gn we distinguish only between B-series which di�er in their �rst n components. We
can also naturally identify elements of Gn with elements of T 1⊕· · ·⊕T n. We let Pn : T → Gn

be the canonical projection mapping an element of T to the equivalence class it belongs to. It
now makes sense to study the manifolds Mn = PnM ⊆ Gn, and in particular to look at their
dimensions. We introduce the space Bn ⊆ Gn

Bn =

w = Pn exp(−adu)v, u ∈
⊕

k≤n−2

Uk, v ∈
⊕

k≤n−1

V k


or in words, we consider only those series we can get by using terms up to order n − 2 in u
and n− 1 in v. It is useful to observe that the previously de�ned Mn can be interpreted in a
similar way, namely as

Mn =

w = Pn exp(−adu)v, u ∈
⊕

k≤n−1

Uk, v ∈
⊕
k≤n

V k

 ,

this is because the terms of order greater than n − 1 in u and greater than n in v do not
contribute to the terms of order less than or equal to n in w. The reason is that the commutator
respects the grading of T , in the sense that τ ∈ T k, τ ′ ∈ T ` ⇒ [[τ, τ ′]] ∈ T k+`. We can
consider elements of Mn expressed as the �nite sum

w =
∑
k≤n

vk −
∑

k+`≤n

[[u`, vk]] +
1
2

∑
k+`+m≤n

[[u`, [[um, vk]]]] + · · · (16)

where uk ∈ Uk, vk ∈ V k being the order k components of u and v respectively.
To proceed, we shall assume that V contains the element , and consider only series in V

such that v1 = . We now consider for each n the triple (Mn,Bn, π) where π : Mn → Bn is
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the projection obtained by simply removing the n − 1-component of u and the n-component
of v. Precisely, if

w = Pn exp(−adu)v, u =
n−1∑
k=1

uk, v = +
n∑

k=2

vk,

then

πw = Pn exp(−adū)v̄, ū =
n−2∑
k=1

uk, v̄ = +
n−1∑
k=2

vk.

The triple (Mn,Bn, π) forms a vector bundle with total space Mn, base space Bn and projection
π. The typical �ber is Fn = π−1(x), and by construction this space is obtained simply by
considering all terms of (16) which depend only on the n − 1-component of u and the n-
component of v,

Fn = V n + [[Un−1, ]].

Using the identi�cation of Gn with T 1 ⊕ · · · ⊕ Tn it is easy to see that dim Bn = dim Mn−1,
thus,

dim Mn = dim Bn + dim Fn = dim Mn−1 + dim Fn

so that the dimension of Mn is obtained by summing up the dimensions of each F k for
k = 1, . . . , n.


