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Energy Principle with Global Invariants
A. Bhattacharjee, R. L. Dewar, and D. A. Monticello
Plasma Physics Laboratory, Princeton University
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Abstract

A variational principle iz praposed for constructing equilibria with low free energy
in toroidal plasmas in which relaxation is dominated by a tearing mode of single
helicity. States with current density vanishing on the boundary are constructed,
Theoretical predictions are compared with experimental data from reversed field

pinches and tokamaks.
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The formulation of a variational principle for a complete class of static equilibria 3
of toroidal plasmas is due to Kruskal and I'<ulsrud.l They characterized equilibria for
ideal plasmas by a nondenumerable set of topological invariants derivable from the
ideal hydromagnetic equations of motion. A laboratory plasma, however, is inevitably
subject to nonideal effects such as those associated with resistivity or microturbulence. .
'I'aylorz has conjectured that the global invariant K = \-,r dr £ . &/2, first introduced ;

o
in the astrophysical literature by \Vol‘cje-.r3 for a perfectly conducting plasma, remains

an invariant even in the presence of a small but finite amount of dissipation. By
minimizing the energy W = J dr 8%/2 subject to the invariant K, Taylor has argued
*hat a toroidal discharge, ini?cially violently unstable, may relax into a force-free
equilibrium state given hy 3= A8, where Ais a constant Taylor has provided
no detailed justification for K-conservation, but his theory has attracted much
attention because it agrees satisfactorily with experimental observations on field-
reversal from Zeta, Unfortunately, for tokamak discharges, whera the toroidal field is
approximately constant across the plasma, Taylor's theory predicts flat current profiles, ‘:
which are usually not observed experinizntally. Even in reversed field pinches, the ,
toroidal current is observed to he small near the wall® which in general violates ;
3 - AB. we interpret these observations to imply that the replacement of Kruskal and

Kulsrud's infinity of constraints by a single one was too drastic a step; that a reasonably :
well confined plasma preserves at least a few more approximate invariants over the ’
time-scale on which the growth and nonlinear development of tearing instabilities takes

place. This time-scale is of course short compared with the time-scale of plasma

profiles. Thus we seek a variational principle which selects a special subset of the
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transport, which is what determines the gross features of the current and pressure !
i
complete class of equilibria of Kruskal and Kulsrud, including those which can be r

sustained even on the transport time-scale. |
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The shorter the time-scale considered, the better preserved are any approximate
invariants of motion, We are thus led naturally to consider the growth and decay of the
fastest growing tearing mode to be the mechanism responsible for the breaking of the

6 we know this mode to be the

ideal constraints. From linear and nonlinear theory
m = 1, n = 1 tearing mode, Indeed, there is experimental evidence that this mode
plays a dominant role. During fast experiments in pinches, m = 1 helices are observed
prier to field reversa[.8 It is also known’ that particularly favor able for confinement in
tokamaks are discharges in the "internal sawtooth” regime in which the plasma exhibits
soft m = I, n = | activity uncoupled to weak higher harmonics (as opposed to
conditions under which strong coupling to m = 2, n = | modes leads to a major
disruption with global flattening of the current profile, in accordance with Taylor's
theory).

In the following, we first assume the existence of a tearing mode of single helicity
which. grows from an axisymmetric state, saturates, and decays back to a new
axisymmetric state. Although we are mainly considering the m = [, n = | mode,itis
instructive to allow a mode of arbitrary helicity. Within the quasi-ideal model,4 we
find that there is an infinite set of constants of the motion for each assumed helicity.
The special role of the invariant K is confirmed hy the observation that it is the sole
occupant of the intersection of these sets. The raodel, which is described in Fig, |,
zllows for compressible and incompressible displacements of the plasma. The contours
indicate the so-called auxiliary magnetic field (By - rBZ/RqS)@\ for a cylinder with
perodicity length 2R in the z direction which vanishes initially at the singular surface
q= rBz/RBe = qg, shown by the dashed line in Fig. la. In the initial state the
plasma is assumed to be unstable to a helical perturbation of pitch qg resonant at the
singular surface. The argument is based purely on the assumed helical topology, and is
thus valid also for a torus to the extent that the assumptini; of single helicity is valid,

The plasma flows from the vicinity of the original magnetic axis, Mo’ into a magnetic
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Island with a new magnetic axis, M, . Reconnection occurs at the x-point, otherwise
the plasma is assumed ideal. Surfaces S, and S, (Fig. Ib) for example, merge to form
surface S (Fig. 1c), conserving helical and toroidal (but not poloidal) flux. We consider
closed helicai field lines of the same pitch (q.} as the separatrix, drawn on Si» S91 S and
Sp, the surface of the plasma in contact with the perfectly conducting wall. We define
2mm Xl’ 27m )\’2 and 27m X, plus 27 ¢P as the fluxes crussing helical strips with
one edge on SP and the other edges on S[, 52, and S respectively, where anbp is the
total toroidal flux. Xpr Xp and x_, are surface quantitic-:s,l and are conserved on the
time-scale of the instability. Since Sl’ 52, and S share the separatrix at the instant of
reconnection, we have Xl =Xy =X . During reconnection, the toroidal flux trapped
between S, and S, remains trapped in 5. Assuming that the toroidal flux function
? = DatM,, we have 27, = 2:r|'(q'."2 - opl)where 2, 2w P, and 27rg, are
the toroidal fiuxes enclosed by the surfaces Sl, 52' and S respectively, The total
toroidal flux 27 qop, enclosed by the‘ plasma surface SP, is a global invariant by virtue
of the boundary conditions. The remaining surface quantity of interest is the poloidal
flnx function ¥. We assume that W= 0 on SP. It is easy to see that the three surface
quantities X,¥, and @ are linked by the relationship X = qu- ¢ . The helical flux
X{¢) is shown in Fig. 2. Since W (@) = 1/q we have X = gq/a -1. Initially then,
X has a maximum Xgata = qg In the final state (Fig. 1d), which has lower energy
than the intial state,u X is a monotonic function of @ (Fig. 2}, For the initial state, we
obtain the double-valued function @ (X) with branches ¢1:[X°, Xs] —--[0,¢5] and
¢ [XP’ Xs]~[@ s'd'p]‘ The final toroidal flux function @, (X) after reconnection, is
P00 = D,00 - P00 forXe [x, X Jand @0 = 8,00 for Xe [ X, X, ] -
Following Greene and :lohnscm,5 we represent the magnetic field
g =yt x g o+ pP(V) x gg in the coordinate system v, 8,5 ). Assuming that
the scalar and vector potentials are single-valued, E:{ K dI must be constant in the

time, whether the contour C is drawn on Sp in the toroidal or poioidal direction. These
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conditions are satisfied by the choice A =@ (V)P6 - Y g ¢, with @ vanishing on the
magnetic axis, and ¥ vanishing on Sp. (Since W(Vp) - yr(0) is not conserved during
reconnection, K will not be conserved if ws take W (0)=0, as concluded also by

KadomtseV-)a

We consider now the functional

6w - Vf dcw ooK_;_'q’= Q;L)Z ‘{ d,u(X)[¢P() ?{%{-p()()x}’]. 1

o

where w(x) is an arbitrary function and du(X) = w(X)dX may be looked upon as an
infinitestimal invariant measure convected by the plasma. Since @{X) is a double-
valued function in the initial state, and single-valued in the final state, we have to be

careful in interpreting Eq. (1). Now

Xp , XO
56 - [ w [-:»2 - txe)] - f wl@, - ¢,)-%{x
X

-
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X
(®, -¢1)}]= )jj w [o.- jixe.f] s G . @
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Therefore, to the extent that du(X)} is arbitrary, G represents an extended class of
global integrals presérved by all ideal motions and those nonideal motions that are
permitted by the type of reconnection process considered here. K, which corresponds
to the simplest choice w(X) = I, is only one member of this class, but the only one
independent of qg- It may be shown easily that ¢ is gauge-invariant.

We suggest now the following variant of the thought experiment of Kruskal and
Kulsrud,! We imagine a slightly nonideal plasma contained in a toroidal vesse! with
perfectly conducting walls. The plasma is turbulent with tearing modes of different m

and n. The existence of fine-scale tearing destroys all invariants to some extent,
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except K = ‘{, da A 5/2 . On a short time-scale, however, the m =1, n = 1 mode
may be assumed to be least affected by other modes, and the "first moment" with
respect to X(zy@-@), K | = Vo d: XR 312 the best conserved of all invariants other
than d."p and K. Since the two latter invariants are respectively linear and quadratic in
the fluxes, the choice of the functional Kl’ cubic in the fluxes, as the next best
invariant seems eminently reasonable. We shall see that this choice is vindicated by
agreement with experimental observations.

We seek, therefore, minima of W = Vo d: 5212 subject to the global invariants
K“v{ dr A - B/2 and K, =V{d?XR-E/2. We must have W - AJK - A| §K = O
where A and )\l are Lagrange multipliers, With the boundary conditions f . B - 0,
¥ = 0,00 = 0 at the conducting wall, we obtain the Euler-Lagrange equation
7 =A [t +« (¥- ¢)I¢p]1;, where we have chosen 3A,/2 = A/¢p in order that the
toroidal (and poloidal) current density vanish at the wall. This is an experimen*al
boundary condition violated by Taylor's the:c;ry.s

For a straight cylinder we use cylindrical polar coordinates (r,#,z) and assume
that equilbrium quantities depend only on r (Br = O), We have defined 73 E -;3/2 wp,
7= W)z ‘FP’ and @ = /2 ¢p. The boundary conditions are (a = 1) EG o = o, ¥l =0,
d0 - 0, and €{1) = 1/2. This twn-point boundary-value problem has been solved
numerically Ly a shooting procedure. The numerical results are qualitatively similar for
aspect ratios from 10 to 1, and we have reported the results for R/a = 3. For any
given Ae( .=, +=)thers are two distinct branches, which we have broadly classitied
as "pinch-like" (P} and "tokamak-like" (T). In Fig. 3, we compare the predictions of our
theory with recent experimental measurements of the F-@ trajectory (F = B Z(1),
8= B, (1)) during self-reversal in ZT - 10.”

Figure & shovs a plot of V = 1/R \W(Za‘ntap)2 vs I/R Kf(2m ¢p)2 for the solutions.

The point 0, which corresponds to|Al = =, is a branch-point from which four solutions

emerge. For a given value of KI(271'¢p)2 (Volt-Seconds/Toroidal Flux), the plasma
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should prefer the lower energy states indicated by the solid lines. In fact, if
experimental conditions should drive the plasma to the higher energy states indicated
by the dashed lines, instabilities would immediately set in, forcing the plasma to lower
energy states. A preliminary examination of the stability of these states indicate
stable windows of operation for § < .2 and 1.6 < ffor R/a= 5. The first window is
“tokamak-like" and the latter "pinch-like," Figures 4b and 4c show typical stable q-
profiles. The equilibrium equations admit an expansion in po:wers of inverse aspect
ratio. The leading order solutions are

. (A r
= = 3A 1707 )
B (r)al, Byl 2: —— Ty (3
z 6 n=l )\n()\z + 2RN) I Ay

where A | corresponds to the solutions of J O(}.n) = 0. Eq. (3) agrees very well with the
numerical solutions for the "tokamak-like" branch.

An important aspect of this theory is that it allows a natural extension to
equilibria with nonzero pressure gradients, unlike the equilibria in Taylor's -theory
which are force-free even in the presence of finite pressure. Details will be reported
elsewhere.
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Figure Captions

Fig. 1 Model of Magnetic Reconnection.

Fig. 2 Helical Flux Function X(¢) before and after reconnection,

Fig. 3 Comparison of theoretical predictions with F-@ plot from two typical shots in
ZT-40.

Fig. 4 {a) Energy of equilibria in present theory compared with energy of Taylor states
(marked by A). Arrows indicate direction of increasing A. Labels P and T
distinguish pinch-like and tokamak-like equilibria, Dashed lines indicate unstable
equilibrium (energy stationary, but not minimum), (b) Typical g-profile on the

stable P-branch. {c) Typical g-profile on the stable T-branch,
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