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A formalism for the construction of energy principles for dissipa-
tive systems is presented. It is shown that dissipative systems satisfy a
conservation law for the bilinear Hamiltonian provided the Lagrangian
is time invariant. The energy on the other hand, differs from the
Hamiltonian by being quadratic and by having a negative definite time
derivative (positive power dissipation). The energy is a Lyapunov func-
tional whose definiteness yields necessary and sufficient stability crite-
ria. The stability problem of resistive magnetohydrodynamic (MHD)
is addressed: the energy principle for ideal MHD is generalized and the
stability criterion by Tasso [Phys. Letters 147, 28 (1990)] is shown to
be necessary in addition to sufficient for real growth rates. An energy
principle is found for the inner layer equations that yields the resis-
tive stability criterion Dg < 0 in the incompressible limit, whereas the
tearing mode criterion A’ < 0 is shown to result from the conservation
law of the bilinear concomitant in the resistive layer.

52.30Jb, 52.65.Kj

I. INTRODUCTION

Testing the stability of a linear system usually requires the computation of the
growth rate spectrum; if the most positive growth rate 4 has a positive real part
then the system is unstable. This is often a laborious task since it consists in solving
the equations governing the evolution of the modes. In some cases, however, the
knowledge of the growth rates is not required if one can show that stability depends
upon the definiteness of a functional. For instance, one may be able to construct
. a positive quadratic functional which can be shown to increase in time, then the
system is evidently unstable. Conversely, if this positive functional can only decrease
in time then the system is stable. The problem can also be turned around; if the
time derivative is negative definite then stability relies upon having the functional
positive definite. Often this functional may be thought of as representing the energy
of the system and the second case is more often realized since the effect of dissipation
is to lower the energy level of the system.

Such a functional is called a Lyapunov functional [1]; we will derive a Lyapunov
functional which possesses all the expected properties of an energy and for this
reason we will refer to it as the energy functional. In this case we will also say that
we have an energy principle.

The existence of an energy principle for ideal, non-resistive modes is well-known
since Bernstein et al. [2] (henceforth referred to as BFKK), and has found numer-
ous applications. In high-dimensional geometry, the energy principle reduces the
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complexity of determining stability to the one of analyzing the definiteness of a
functional which is quadratic in the normal displacement field [see Newcomb [3] for
the cylindrical case and Bineau [4] for the two-dimensional case]. The existence
of an energy principle for resistive modes has been considered in works including
Furth et al. {5], Adler et al. [6], Bondeson & Sobel [7], Tasso [8] and Wesson [9].
In the pressureless case of a one-dimensional plasma, Furth et al. [10] derived a
stability criterion A’ < 0 for tearing modes with A’ playing a role similar to the
energy functional in ideal stability [5]. Adler et al. [6] have shown that, within the
approximation of the reduced equations, A’ is proportional to the nonlinear increase
of magnetic energy in the resistive layer. [See also White [11] for a summary of the
nonlinear energy balance discussion.] Bondeson & Sobel [7] extended this result by
taking into account asymmetric layers and viscosity, whereas Tasso [8] derived a
sufficient stability criterion against purely growing modes in arbitrary geometry by
means of a functional dispersion relation.

The aim of this paper is to provide tools for the construction of the energy
functional from which necessary and sufficient stability criteria can be extracted
provided some “causality” conditions are satisfied. A large class of problems, in-
cluding those which are time reversible do fulfill these conditions. However, the non-
Hermitian property of some operators in resistive magnetohydrodynamic (MHD)
destroys the causality conditions and therefore the stability criterion does not ap-
ply except for the restricted class of real growth rates.

We adopt the approach of field theory in § II A to derive the set of Euler-Lagrange
equations that leave the action stationary. The originality of the approach resides
in the fact that the equations we seek are not self-adjoint so that the variation of
the action must be performed with respect to the solutions and the adjoint solutions
treated as independent. Thus, the Lagrangian ought to be a bilinear form of the
solutions and their adjoint rather than the quadratic form which is more common
in the literature [12]. The Hamiltonian functional is also a bilinear form which
is shown in § IIB to be conserved; for this reason it can clearly not represent the
energy of a dissipative system. The Hamiltonian is, however, not the only conserved
functional; a conservation law based on the action density is derived in § II C.

In order to define the energy functional, we replace the adjoint solution in the
Hamiltonian by the solution, or indeed any test function, so as to construct a
quadratic energy. A further condition requires the energy to be real, this is achieved
in § IID in the usual way by adding the Hermitian adjoint. These two conditions,
which can be applied to any functional, define the notion of observable similarly to
the prescription in quantum mechanics. It should be added that the arbitrariness
involved in the choice of deciding which of the solutions is the adjoint and conversely
can often be overcome by requiring the Lagrangian and the energy to satisfy the
causal property defined in § IIE, which guarantee that the energy observable de-
crease in time (for isolated systems) as one would expect intuitively.

Because of the dissipative nature of the system, the notion of stability is defined
independently from the concept of potential energy. The system is stable if the
energy remains bounded for all perturbations of the equilibrium (Lyapunov’s the-
orem), and unstable if its energy can be released. We then find that the condition
that the energy ultimately relax to the the initial energy (asymptotic stability) leads
to a necessary and sufficient criterion for causal-dissipative systems in § II F based
on the positive definiteness of the energy, similarly to the ideal stability criterion.

The machinery developed in § IID is used to derive the energy observable, apply
the causality principle and obtain stability criteria for the resistive MHD equations.
First, we focus in § III A on the full set of resistive equations which are shown to
dissipate at a rate proportional to the resistivity. However, the presence of an anti-
Hermitian part prevents us from obtaining a causal relation for all but real growth
rates.



Tasso’s stability criterion [13,8], which applies to purely growing modes, is shown
in § IIT A to be necessary and sufficient without introducing a limiting scaling. We
next turn our attention to the set of equations of Glasser et al. [14] which describes
the evolution of tearing and interchange modes in toroidal plasmas. The system
can be put into causal form corresponding to positive definite dissipation. However,
the problem of anti-Hermiticity recurs here too; it is only in the limit of the Coppi
et al. [15] equations that the system becomes Hermitian and that we are able to
recover the resistive interchange criterion of § III B by requiring the zero-frequency
energy to be positive definite. Finally, we apply in § III C the concomitant formulae
of § IIC to show that the well-known logarithmic jump A(Q) defining the inner
matching index in nonideal stability studies, is positive for positive growth rates Q.
The condition that the outer matching index A’ < 0 is then found to be a sufficient
criterion.

II. GENERAL FORMALISM
A. Lagrangian and Euler-Lagrange equations

Consider the linear system composed of N continuous vector fields z;,i = 1,--- N.
Without loss of generality, one may associate a Lagrangian functional to any linear
system

EE/ndTL[z‘*;z], (1)

which is bilinear in the vector fields

zZy
Zz =
ZN
and
= (z+*)T = (zf', T z}t,)*,

with * denoting the complex conjugate and z7 the transpose of z. The role of the
superscript t is to discriminate the adjoint solution z+ against z, for we will be
mainly interested in systems that are not self-adjoint. If the system turns out to be
self-adjoint, then z+ = z is found a posteriori demonstrating the generality of (1).

We do not wish to be too specific about the components of z+ and z, so let us
assume that each component z} and 2;,7 =1, - N, is a space, or three-component
vector. The inner product between two such components will be denoted by z;"-zi
(the - sign is reserved to the inner product of the space components), whereas the
inner product between two “sets of vectors” by

N
yhz=) y ez
i=1

The following assumptions are made regarding L[z*;z] in (1): firstly, L{zt;Z]
depends on time ¢ only through the field variables (time invariance); secondly, by
(z*;z] we mean that L is a bilinear combination of z+1, Vzt1 = (V2F ... sz\',)*,

itV = (3F .- 2})7, Vitt, Vz, 7 and Vz only, with z = 8,z and excluding



higher-order derivatives so that we consider only second-order systems in space and
time.
The equations for the z; are the Euler-Lagrange equations that leave the action

S= /T il (2)

stationary with respect to variations of z*7:

dS
dz+t

This yields the set of N second-order differential equations

= 0.

. oL ._ oL oL _ _aL
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Lz=0 3)
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according to the convention that the derivative of a row vector is a column vector
and assuming dz% to vanish at the boundaries of Q and T. Requiring

sS
(7
leads to the Euler-Lagrange equations for zt, (I:-z+ =0)!, or

St + Ve ot~

Lzt =0 (4)
oL

VotV V—+3tazN 5%n

which are the adjoint equations to (3) written as a column vector, i.e. Egs.(4) can
be derived by actlng zt1. onto L.z, integrating the V and ; operators of L by parts
so as to have (L«z*)-z and disregarding the endpoint contributions.

B. Conservation laws

It is well known from Noether’s theorem [16] that systems described by a La-
grangian density that does not depend explicitly on time gives rise to a conservation
law for the Hamiltonian:

V-S+6,H =0, (5)

where S is the Hamiltonian flux and H the Hamiltonian. We can convince ourselves
that (5) is satisfied if we choose

41 0L .. 8L 8L . AL

Sl =i ot ey e it e ()
and
oL oL oL oL
F.7 — s+t _w._ 9L oL Q. 9L\ .
H[z";z] =12 (az'+f v avz+f)+<6i \% av&) 1—L, (7)

for we have



TS = [ sl ]
+ (Viﬂh% + (ViJr)T:agiT + 2+T-%
4 [—atv-%% ne - +at66—f] 3
+ ;)VLi:VE + ;VLZ:Vi + g—f-i — 8:L[z"; 2]
=it (L) + (L) 12 (8)

[Where : denotes the tensorial product between spatial tensor, e.g. z1z2:z324 is
equal to (z1-24)(22°23).] Equation (8) vanishes provided L-z = 0 and L-zt = 0. In
this formalism,

oL oL

V. T
0z; vz, :

plays the role of momentum conjugate to z;, allowing us to rewrite the Hamiltonian
(7) in the more familiar form

N
Hiz%;z) = Z (zF*mi+owf*z) - L
i=1

that is two times the kinetic energy minus the Lagrangian. Integrating (7) over an
arbitrary volume Q' which is a subset of the universe Q, the global Hamiltonian

£zt 4 = . drH|[zt; 2], (9)

is found to be invariant except for a boundary term

ig[z”f;z] =_ do-S[z*; 2. (10)
dt anl

We must be careful not to interpret (9) as the energy of the system and (10)
as the corresponding radiation losses, for it is clear that the conservation property
(5) is the consequence of time invariance. We shall come back to the question
of constructing the “proper energy” in § IID. Equation (5) may, however, yield
important information about the time behaviour of the solution knowing the adjoint
solution and wvice versa. We see that if one component, say z*, is exponentially
growing in time and the other component, z, is decaying at the same rate then this
will give rise to a time invariant Hamiltonian. On the other hand, the situation
where zt and z possess identical growth rates cannot be excluded on the grounds
that the different contributions forming the Hamiltonian may cancel. This will
be the case for non-dissipative systems in particular where kinetic and potential
energies are balanced.

The conservation of the global momentum follows the invariance property of
L{z*;z]) with respect to translation of the space coordinates. Provided L{zt;z]
depends on the space coordinates only through zt and z, we can show by following
a similar path to (5) and (8) that the momentum [, drp[z*;2] with

oL OL dL 8L
+. = LY P v Y. .
plz7;27] = (VzT) ( v 3V2+T+82'+T>+< Vsert az) vz (1)




and

L
oVt

L
avr T

oL . oL
-Vz+ v

+.0 — (ot
Tz%;z] = (VzT) 53

+(vzh)!

Z-Vz —Ll (12)
are conserved,
~ T
V-T[z%;2) + 6;p[zt;2] = (L-z)Jr Vzt 4 (L-z"’) +Vz,

where T is the stress tensor and | the identity tensor. Equations (6), (7), (11) and
(12) form the 16 components of the stress-energy tensor [17].

C. The concomitant invariant

We introduce here quantities whose physical interpretation may appear at first
sight obscure but which will be of interest in the subsequent stability analysis as
performed in § IIIC. Let

oL oL
Uplzt; g =21 (62'+T —v'8Vi+T) (13)
and
oL oL
U_[Z+;Z]E— <E—-V'ﬁ) Z (14)
be two bilinear densities, with
0L ar
.o = 5+t
P,.[zt;7 =z SviT +Z+T.3VZ+T (15)
and
oL oL
+.]=— gz .
P_[z7;Z] = 5orl T gvg? (16)

being the fluxes corresponding to (13) and (14). Equations (13) and (15) result
from integrating by parts (z+)!-(L-z) of (3) in space and time, and (14) and (16)
from applying a similar procedure onto —(L-z*)t-z, which yields

JL
2t (Lez) = V-PL [z 2] + QU4 [zF;2] — 2T pRes:
0L oL 0L
_ +3t. _ 5+t —(vzh)t:
(Ve egeer — 2 g~ (V) igg a7
—(I:-z+)1-z = V-P_[z+; z] 4+ 3, U_ [Z+§Z] + —aa—f-z
aL oL . oL .
+ ﬁ:Vz + '6—27-'2 + ﬁvz (18)

Since the right-hand side of (17) and (18) is equal to VP, + 8:U; — L[zt; 2]
and V-P_ + §;U; + L[zt;z] respectively, adding (17) and (18) leads to a third
conservation law

V-Pzt;2] + 8,U[z*;2) = 2t 1. (L-z) — (L-zt)1z, (19)



with

Ulz*;2) = Uy [z¥;2] 4+ U_[zF;4] (20)
and

Plzt;z] = P[22 + P_[zF;2). (21)

Equation (19) is a direct consequence of the bilinearity of L, i.e. the linearity of
Eqs.(3) and (4). To grasp the significance of (19), suppose we take zt = z with
L:z =0, then (19) is a measure of the non-self-adjointness of L. Comparing Egs.(7)
with (13) and (14) and assuming a single Fourier mode dependence of z o exp vt
and z* o expy4t, we find that the Hamiltonian density

Hiz*;2) = vy [z¥; 2] — yU_[z%;2] (22)

is proportional to & provided v = =7}, which defines in § IIE the subclass of
dissipative systems which are time-reversible. Equation (22) also points to Zf having
the dimensions of an “action density”, which appears plays an important role in the
Vlasov-Maxwell theory of wave propagation Kull et al. [18].

On the other hand, choose an L that is self-adjoint and let zt and z be two
solutions of L.y = L-y = 0, then fn drU[z*; 2] can be seen from (19) to be a constant
of motion. Because of the minus sign occurring in (19), [, drU[z*;z] is also a
constant of motion if z+ and z are linearly dependent. Equations (20) and (21)
generalize what is called the bilinear concomitant [17].

The importance of the concomitant concept arises also for self-adjoint opera-
tors acting on the space coordinates. We see in particular that, when integrat-
ing (19) over the finite volume ' C Q while assuming that U = 0 (i.e. the
Lagrangian density does not contain any z nor z* dependence), P may con-
tribute at the endpoints 8’ even though L = L = L, violating the relation
S drzit-(Lez;) = [ dr(L-z;)!-z; which defines Hermiticity. For homogeneous
Dirichlet boundary conditions P vanishes at 8. These are the zero-flux boundary
conditions

oL oL oL . oL
-+T. +T . .
T

. — - =0. 2
vzt avz . 9vz z] Py (23)

We will refer to (23) as the zero-flux boundary conditions in subsequent sections
with the terminology motivated by the similarity exhibited by Eqgs.(15) and (16) as
compared to (6). In the following sections we will concentrate on systems satisfying
the zero-flux boundary condition with exception of § IIIC.

D. Energy and other observables

The distinction between Hamiltonian and energy is intrinsic to non-conservative
systems, where the Hamiltonian is conserved [c.f. (8)] but the energy is in general
not. It is also clear that the Hamiltonian defined by (9) cannot correspond to any
physical reality, being merely a mathematical trick which allowed us to treat dissi-
pative systems on the same footing as conservative systems; the reason being that
the state of a system must be defined from z, and z alone, or alternatively from z*
only but not from both since they are independent functions of ¢. Therefore, it is
natural in a linear theory to postulate that only functionals which depend quadrat-
ically in z can give rise to measurable quantities which we refer to as observables.



Furthermore, we shall require these observables to be real. This is achieved in quan-
tum mechanics by associating observables with Hermitian operators. However, we
find it preferable to use the following, more general prescription; let

Alzi; ] = (21, Az5)

be any bilinear functional, where

(Z,‘,Zj)E/ dTZ,'T-Zj
o

defines the inner product in the volume €' C Q of two states z; and z; in the Hilbert

space H with positive norm || z [[*= (z,2) > 0, z € H. A functional A is symmetric
if

Alzi; 2] = Alzj;z]" YV zi,z € H. (24)
Such a functional satisfies the requirements of an observable which we denote using

the subscript r: Ay[z;;2;] = Alzi;2;]. However, if (24) is not fulfilled we construct
the symmetric form

Ar(zi;z5] = 1 (2i,Arz5) + L (Aezi, z5)

1
2
5 (zi,Azj) + hc, (25)

where h.c. denotes the Hermitian conjugate of the matrix A[z;z;], in order that
Ar(z,z] be real. The lack of symmetry may be due to A # Al [here T denotes
the Hermitian adjoint in the domain Q: [ drz;'-(Az;) = [, dr(Alz;)t-z; with
z; and z; satisfying homogeneous boundary conditions at d€] or may result from
inhomogeneous boundary conditions of z; and z; at Q' indicating the interaction
of the system with a “reservoir” for instance.

E. Causality condition

According to (25), the energy must take the form
Erlzisz5] = %_/Q, drH|zi;2;]+ h.c. (26)
and the energy flux
S,[zi;2;] = $S[zi;2;] + hec.

so that, from (8),

d
Ec‘:r[z,-;zj-] = -;—/ dr {V-S,[zi; z;] + 0; Hr[zi; 2]}
nl

= % (ii, [L + [] 'Zj) +h.c. (27)

We see from (27) that dissipation is a consequence of the non-self-adjointness of
L (L-z; = 0). Expressing L in the generic form of the damped oscillator

L = M&? + D&, + V, (28)

with the adjoint operator to L being



L=M18? - Do, + V1, (29)
and writing

Mg
M4

(M + MT), Dy
(M —MT), Dy

(D+ DY), vy
(D-DT), Vu

(V+Vh,
(V - VT)’

1 L =1
2 2 - 2
1 1 =1
2 2 - 2
in terms of Hermitian and anti-Hermitian parts respectively, which involve differ-
ential operators acting on space variables only, we find from (27)

d%&«[z; z) = (2, Mgz + Vg-z) + hee.,

which can be integrated over ¢ to give (up to a constant of integration)
&z 2) = (2, Mg +2) + (2, Vg z), (30)

provided the concomitant of (21) vanishes at 9§, that is (28) obeys boundary
conditions (23). Equation (30) can be shown to be consistent with definition (26).

It is our intention to discuss now the various degrees of freedom one is confronted
with as one goes through the procedure of constructing the Lagrangian density L.
It is well-known that for conservative systems I = T'— V where T' is the kinetic
energy and V' the potential energy. As T is a positive definite quantity, the sign of
the action (2), and therefore the sign L is determined by T' > 0, this regardless of
the fact that the Euler-Lagrange equations (3) and (4) are invariant under L — — L.
We will see that for a number of dissipative systems the definiteness of D determines
- which of z+ and z should be chosen as representing the physical state of the system
in the sense of observable as defined in § IID.

For dissipative systems, we shall arrange the Euler-Lagrange equations, whenever
possible, in such a way that the kinetic contribution be positive definite. That is
the term quadratic in z in (30),

V 2z € #{. We then postulate that the physically relevant states are such that the
the sign of dissipation be positive, which corresponds to the decrease of &, in time,

%Sr[z;z] = _2(2,Dg3) — [(2, Mas3) + (3, Var2) + c.c] <0 (31)

and which is obtained from (27) by writing [ = L — 2M48% — 2D 8, — 2V for z
such that L-z = 0. The first term on the right-hand side of (31) being quadratic,
we write the causality condition as

(z,Dg-z) > 0 VzeH (32)

which expresses the fact that the energy is bound to decrease provided (z,M4-z) +
(z,Va+z) + c.c. vanishes. If either M4 # 0 or V4 # 0, then the causality condition
(31) only holds in general for real growth rates. Note that the condition M4 and
V4 vanishing is in particular satisfied for time reversible systems where z%t is the
“advanced” solution and z the “retarded” solution with z* () = z(—1).

F. Stability criteria

The issue of stability for dissipative systems will be addressed in this section using
the causality condition. For conservative systems, it is well known since the work of



BFKK that stability is given by the positive definiteness of the potential energy. It
is, however, far from obvious how this criterion generalizes to the dissipative case.
One reason is that the concept of potential energy becomes meaningless in the
dissipative case. Thus, one is led to use a more general definition of stability, which
is consistent with the linear perturbation approximation: a system is unstable when
there erists the possibility for the system to lower its energy exponentially. That
is, an equilibrium is stable when it is a minimum energy state. Suppose the zero-
energy state is the equilibrium state, any infinitesimal perturbation that elevates
the energy gives rise to a positive energy and, conversely, any perturbation that
lowers the energy produces a negative energy. As the system evolves in time, the
energy is bound to decrease for both positive and negative energies if the causality
principle (32) holds. This situation is exposed in Fig. 1. Thus, negative energies
depart exponentially from the zero-energy state, £ = 0 as time passes by, whereas
positive energies have the choice between relaxing to & = 0, or else crossing the
& = 0 axis and joining the negative energy states. Since we have not specified
the origin of time ¢ = 0, the latter case corresponds in essence to a negative initial
energy which is translated in time (such that the energy is positive for ¢t < 0). Thus,
requiring

Elz;2) >0 VzeH (33)

for causal systems [satisfying (32)] provides a necessary and sufficient criterion to
ensure stability; if (33) is satisfied, &, is necessarily positive at all times and this
is sufficient to prohibit the system from diverging exponentially from & = 0 as
t — oo.
Criterion (33) is obviously consistent with having the dominant growth rate
Re¥ < 0 since
d

& = Ref§)E;

as t — o0.

Since (33) is valid for all initial perturbations, including those with z initially
zero, we can rewrite (33) as

Wlzz] = (2,Ve'2) >0 V zeH. (34)

without loss of generality if (z, Mg +z) is positive definite. Criterion (34) is equivalent
to (33) in that & [z;2z] is positive definite if W{z;z] is positive definite, and there
always exists an & < 0 if W < 0.

Equations (33) and (34) are the main results of this section. The procedure to
test stability is the following: first we must ensure that the equations can be put in
causal form, meaning that (32) is satisfied for all states z € H. We speculate that
most physical systems can be put in causal form since intuitively all systems are
dissipative (the complex conjugate in the definition of the inner product ensuring
that no reactive power can alter the causal behaviour). This is the case of all three
examples considered in §§III A — IIIC. When either of M4 or V4 is non-vanishing,
as 1t is the case for the unreduced set of resistive equations (see § III A), then the
energy principle (33) applies to perturbations having real growth rates only.

III. RESISTIVE MHD
A. Resistivity in the plasma bulk

The resistive model with 5 = const is considered here in arbitrary geometry [c.f.
Tasso [8] to generalize this case to 7 # const ]. The Lagrangian density takes the

10



form

L=1 [p§+£ —2uw(€*,€) — Vxat-Vxa+ %—’ (at-a— at-a)
- Qt.Vxa—Vxat-Q+¢+H-Ix(Vxa)] (35)

for the motion of the virtual displacement field ¢ and the potential vector a. This
choice of variable is appropriate for taking the limit of n — 0, for a represents the

correction to the ideal vector potential £ X B; the total magnetic field perturbation
being

b=Q+ Vxa,
where
Q=Vx(£xB).
In (35), J = V xB is the equilibrium current density and
2w(ET,€) = (QT +£TIxn)(Q + £,Ixn) + V-£TTpV £ — 2U¢T¢ (36)

represents the (symmetric) ideal potential energy when integrated over the volume
of the plasma. Here, ¢ is the poloidal magnetic flux coordinate, ¢, = &-n and
€ = &VyY = &,|VY|, pis equilibrium pressure and I' = 5/3 the ratio of specific
heats. For a complete description of the terms involved in the Hermitian operator
U in (36) we refer to Dewar & Pletzer [19].

Following § II1 B, we form the vector

allowing us to write the linear, resistive equations in the form of (28), with

. 0 {0 0
M=§<60),D—5<0 1/77)’ (37)
Ve = 1L —F +BX[VX(VX )] - 1Ix(Vx 1)
H—E(—Vx[Vx(Bxl)+§Vx(Jx|) Vx(VxI) )
(38)
and
, 0 —LIx (Vx|
VA:E(—%VX(JXI) v ))’
where

F-é = —BX[VX(Q +£JIXn)] + V[[pV-£] - nI xn:(Q + £, Ixn) + 2UEVY (39)

is the force operator of BFKK [see for instance Bineau [4] for a derivation of the
present expression]. The cross product of a vector and the unit dyadic, e.g. Ix | in
(38), is by definition the dyadic Jx | =3, I Xe;e; where {e;} is any orthonormal
basis.

The adjoint equation (29) can be derived by means of (19), or alternatively from
(4). Using (6), we find

11



S, (2521 = § [(Q+ 6.3 x0)i"BE; — B(Q + &I xn)i"&; — V£, Tpé

—BVxa;"§; + Vxa; B, + (Vxa+ Q— 1£xJ);* xa;]
+h.c. (40)

and, using (30),
&rlzisz) = 3 (péi)éj) + 3 (VXaj, Vxa;)

which is in agreement with (7). The zero-flux boundary conditions (23) become

(Q+ & IXn+ Vxa;);iBEl,o, =0
[Vy-(Vxa+QF — 16+ xT)ix (a7)] o =0 (42)

where 0 is a ¢ = const surface, i.e. B-V¢ = 0. The boundary conditions (42)
correspond to the presence of an infinitely conducting wall at 992, but can be easily
extended to incorporate an interface between plasma and vacuum.

Substituting (37) into (32), we find

d . . :
St = —% &l = (Vaz2) - (2,Vasd), (43)
which is causal (negative-definite) provided the analysis is restricted to real growth
rates. From the second Lagrange equation (Ohm’s law),

a= (1 - sz) T9%xB = <1+ 792+ ”—Zv‘*---) 1v%xB
Y Y 7T Y

it is found that a ~ % and thus, the rate of dissipation || a ||* /n is proportional
to 7 to lowest order in 7 (yV2/y << 1 except near the rational surfaces). It
can be shown that the momentum conjugate to a is L/0at = a/2y, that is the
momentum is of order #° and proportional to a itself. This is characteristic of
a diffusion equation, which cannot for this reason be put into Hamiltonian form.
Note also that expression (41) for &, is invariant under the gauge transformations
a > a+ V¢ since £ depends only upon the magnetic field perturbation V xa [20].

As M is positive definite, we may apply the necessary and sufficient stability
criterion (34),

(z,Vg2) = /n dr [w(€*, &) + L Vxa+ Q- LExTPP - LQ - 1exI*] >0 (44)

for purely growing/decaying modes v, z o< exp~t. Equation (44) identifies
Q — 36xJ = B:(V§) — (V-£)B — 1£-(VB) — L(VB)-¢ as the driving term of
the instability. In the vicinity of rational surfaces where B-V vanishes, the main
contributions come from field line bending and compressibility.

Criterion (44) is in essence equivalent to the criterion of Tasso [8] which derives
from the dispersion relation

(z,M:2) + (z,D:2) + (z,V-z) = 0. (45)

As a consequence of the positive definiteness of the kinetic term ~%(z,M-z) and
since the dissipative term v(z,D-z) has the sign of the growth rate, it is readily
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seen that (45) does not admit any positive root ¥ > 0 if (z, V+z) is positive definite.
Clearly, Tasso’s criterion is only sufficient since, following his argument, the case
where all the roots v are negative (stable) with (z,V-z) being indefinite, or even
possibly negative definite cannot a priori be excluded. On the other hand, the
existence of a negative definite Lyapunov functional £&. = 2v&, given by (43)
shows independently that a positive ¥ corresponds to a negative &, and conversely,
hence demonstrating that requiring &, = (z, M-2)+(z, Vir-z) to be positive definite is
a necessary and sufficient criterion for stability. The positive definiteness of (z, M-z)
reduces then this criterion to the zero-frequency form (44) without loss of generality.

The limit of zero-resistivity is straightforward, setting a = 0 we find the familiar
energy principle of BFKK

W €]l = —4 (£, F6) = /ﬂ dru(, &) > 0, (46)

V € € H, which is the global stability criterion against ideal modes.

B. Interchange modes

Our prime interest, of course, is to investigate the existence of criteria for the
case where 7 is small but non-zero. The criterion against fast resistive interchange
modes appears suitable for this task, for these modes are known to be localized;
they do not need to be matched to outer region solutions and thus we may apply
the simpler formalism developed in § II D which is only valid for solutions satisfying
Hermitian, or zero-flux boundary conditions. The case where energy fluxes play a
dominant role, as for tearing modes, will be discussed in § III C. The corresponding
Lagrangian density is

L=1{-0t 4+ §"0 - W XE+ §YXE 4 UTHY - UMY
— 20ty 4 9EHE — Bt XV + EY XU — Bt X2E 4 BT X?E
—EtHV +EYHY 4 25N (E+ F)Y - TtKHY + YV KHE
+2TH(KE - G)E+2Y+H(G + KF)T - THT + T+ - 2T+ X ¥ - 2Y* XY} . (47)

Constructing the solution vector

N
I
=] &

(47) yields Lz = 0 with L given by (28). The matrix operators of (28) are

0 0 0 1 X 0
M=1 0 -8% 0 , D=1l X X2 0 (48)
~-KHdx KEZG G+KF 0 0 —8%
and
-8% 0 —Hox
V=11 Hox 0 —E-F }|. (49)
X 0 X2

We find from (48) that
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o0
2 (z,D-2) =/ dX (|¥ - X2+ |1')?) >0 (50)
— o0
is causal in the sense defined by (32). The fact, however, that V and M are non-
Hermitian means that the stability considerations must be restricted, asin § IIT A, to
real growth rates in spite of the existence of overstable modes [14]. Although M can
be made Hermitian by introducing another dependent variable [21], the resulting
equations would violate the causality condition. The stability analysis can, however,
be pursued provided the additional ordering I'p/B? ~ 1/G << 1 is taken, which
gives T = E to leading order, or

zE(él), (51)

0 0 1 X
Mz%(o_a%):Dzé(X_Xﬂ) (52)
and
_ [ -0% -—Hox
V‘5(H0x _E-F ) (53)

These equations exhibit the desired symmetry and possess asymptotic solutions
with exponentially small behaviour as X — oo [22]. The energy observable is
given from (30),

Wiz;z) = %/ dX (|¥ + HE|* — Dg|=]?) (54)
-0

where Dp = E + F + H? is the Mercier resistive index. Thus, stability relies upon

having

Dr <0, (55)

the sufficient criterion towards interchange modes. This result has been derived
for a set of equations similar to Eqs.(52)—-(53) in Johnson et al. [22] by means of a
quadratic functional that bears resemblance to the energy functional (54). The fact
that a functional possessing the properties of an energy has been used to obtain
this result is new,

C. Tearing modes

In the previous section, we excluded the possibility for z to be non-vanishing
at 0€2'. Inhomogeneous boundary conditions can be perceived as being the con-
sequence of energy fluxes interacting between the resistive layer and the outer
region. The Johnson et al. [22] equations also admit the power-like asymp-

1 1
7%y\/ 3-E-F-H

totic solutions with leading exponents given by ¥ ~ X2 and E ~
Let us give for convenience the Lagrangian density,
L=1 {% (¢z+ + XE+> (¥ + XZ) — L (¥ + X=¥) (\I! +X5’)
— UHHE-EYHY + EME - W + EH(E+ F)E} (56)
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As for § III B, we seek a quadratic form which involves the solutions ¥ and = at

X — &oo. To do so, we may use the conservation law for the concomitant (17),
(

Ox Pilz;z] + 0,U4 [2;2] = L[z;2) 57)

or alternatively, one could also take (18),
Ox P_[z;z) + 8,U-[z;2) = (\il'*' + XE*‘) (¥ + XE) — L[z; 2],
assuming Lz = 0 with L given by (52)—(53). Taking the former choice, we find
Pylz7 =1 (E*é’ — Y \II*HE) (58)
and
Uslzid = & (419 + X3P - 272" (59)

from (15) and (13). Inserting Eqs.(58) and (59) into (57) and integrating over the
layer, we then get

s wnsez]” weded [ ax{eEe @ xey (i+x2)}, @)

with W(z;z] being the zero-frequency energy (34). Considering real growth rates
Q* = @, the right hand side of (60) is composed of a positive definite term by
assumption of (55), and a term that possesses the sign of the growth rate. Equation
(60) shows that, in the constant-¥ approximation where

(61)

11 &

Wo+ XUy +- -
Eo/(EX)+El+

(€ << 1 measures the thickness of the layer), the endpoint contribution on the left
hand side of (60) is

[T 9)Z,, = TEA(Q). (62)

Equating the right-hand sides of (60) and (60), we readily find that the inner match-
ing index A(Q) is positive for Q > 0 and zero in the limit of Q@ — 0 at the marginal
point of slow interchange stability W[z;z] = 0. On the other hand, A < 0 is a
sufficient condition to ensure that @ < 0. Equation (60) with (61) and (60) can
be regarded as the counterpart of Furth et al’s [5] expression for the outer match-
ing index €A’ = A(Q), which can be obtained by multiplying the Euler-Lagrange
equation in the ideal, infinite conductivity region by the solution and integrating
by parts to form a symmetric, energy-like functional.

IV. CONCLUSIONS

The focus of the present paper is on the derivation of energy principles. Energy
principles are desirable not only because the equations need not be solved directly,
but also because they provide an insight into the driving mechanisms of instabili-
ties. In some cases, the complexity could be substantially reduced by performing
a minimization of the energy functional [23], which removes modes that tend to
numerically pollute the spectrum [24] without affecting stability.
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Although there has been some previous attempts to find energy principles for the
resistive MHD equations, they did not yield stability criteria that are quite as strin-
gent and useful as in the ideal case. The present work shows that Tasso’s criterion
can be made necessary but this criterion only applies to real growth rates because of
the anti-Hermitian part of the zero-frequency energy. This anti-Hermitian contribu-
tion, however, vanishes in the vicinity of the rational surfaces if the plasma motion
is taken to be incompressible and field line bending is neglected. Resistive inter-
change modes have real growth rates and can be deduced from the zero-frequency
energy in elegant and straightforward way for incompressible plasma motions.

In addition to the Hamiltonian conservation law, a conservation law for the bi-
linear concomitant has been used to derive the sufficient tearing mode stability
criterion A’ < 0. Although (62) is finite only in the zero pressure gradient limit
p’ — 0 where ¥ ~ 1 and X to leading order as X = 200 [E = F = H = 0
in (48) and (49)], it is well known that A’ is analytic as p’ — 0 so that
sYEAQ) = Wiz 7 +1L [ dX{Q?|Z|?+Q|¥ + XE|?} must remain approximately
valid for small p’ as well. This expression is instructive in revealing the stabilizing
effect of W(z;2z] > 0 when Dg < 0, and the importance of the term ¥ + X= that
allows the magnetic field to slip from the ideal, infinite conductivity motion.

Finally, it may be worthwhile to note that the energy principle formalism can be
applied to derive useful properties of the equations. The causality principle which
ensures that the dissipative power is positive definite is an example. The numerical
finite element method which reduces the problem to the one of finding the minimum
of the Lagrangian, is known to be also affected by these properties [25].
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APPENDIX A: EULER-LAGRANGE EQUATIONS

In this appendix, intermediate steps for the derivation of (28) are presented. To
do so the Lagrangian density (35) must be rewritten in a form including only inner
products of £*, at, V& and Va* [or inner products of €, a, V¢ and Va to derive
(29)]. For instance, we write Q = VX (£xB) as B-(V¢) — 1:(VE)B — ¢-(VB),
where | is the identity tensor: |.f = f. Using the standard Gibb’s notation, we
write

Vxf=) Vxeje, f=Vx I (A1)

i
where f is any vector and {e;} is an orthonormal basis so that | = ). e;e;. To
express V Xfin terms of V{, we introduce the triadic e whose elements: e;;x = +1
if 4,7,k € {1,2,3} are cyclic, ejix = e;x; = erji = —1, or €jix = €555 = eijj = 0

otherwise. Equation (A1) becomes
Vxf=eVIi= E Z Z e;jkaj (f-ek)e,-,
i Jj k

allowing us to write (35) as
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=3 {p€+-é — [B:(VET) — 1:(VET)B - ¢7-(VB) + €T nI xn](Q + £,J xn)
— 1:(VENTPpV-£ + 2UET(VY)¢ — e:(Vat)-Vxa+ 515 (at-a—at-a)
—[B-(VEY) - 1:(VEH)B — ¢4 (VB)]-Vxa —e;(Vat)-Q + £H-Ix(Vxa)} (A2)

so that

E—glé—_l_ =1 {B(Q+&Ixn) | —B(Q+&(,Ixn) — ITpV-£+ | B-Vxa— BV xa}
___831; — = —le(Vxa+Q) (A3)
and
oL L
—2UV¢f —IxVxa— (VB)-Vxa}
oL 1.

The divergence of (A3) is taken using V+(B-Q | ) = (VB)-Q + (VQ)-B, yielding
(28).
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