
Energy Priority Scheduling for Variable Voltage Processors

Johan Pouwelse Koen Langendoen Henk Sips
Faculty of Information Technology and Systems
Delft University of Technology, The Netherlands

fpouwelse,koen,sipsg@ubicom.tudelft.nl

ABSTRACT
Clock (and voltage) scheduling is an important technique to
reduce energy consumption of variable-voltage processors.
It is diÆcult, however, to achieve good results at the OS
and hardware level when applications show bursty behav-
ior. We take the approach that such applications must be
made power aware and specify their future demands to a
central scheduler controlling the clock speed and processor
voltage. This paper describes our energy priority schedul-
ing (EPS) heuristic that orders tasks according to how tight
their deadlines are and how often tasks overlap. We schedule
low-priority tasks �rst, since they can be easily preempted to
accommodate for high-priority tasks later. The EPS heuris-
tic does not always yield the optimal schedule, but has low
complexity and can be used as an incremental on-line al-
gorithm. We implemented EPS on a StrongARM-based
variable-voltage platform. Measurements show that EPS
reduces energy consumption with 50% for a bursty video
decoding application without missing any frame deadlines.

1. INTRODUCTION
In many portable systems the microprocessor consumes a

signi�cant amount of energy. This is especially true in very
small systems (PDAs) without a hard-disk and display back-
light. Since battery energy is a scarce resource, energy con-
sumption must be minimized to prolong operation time. Sig-
ni�cant energy savings can be obtained by simply switching
o� the microprocessor when it is running idle; many embed-
ded microprocessors support energy-eÆcient sleep modes.
An even better approach is to lower the supply voltage (and
clock frequency) of the microprocessor, since that amounts
to a quadratic reduction (P = C f V 2

DD).
There are now several variable-voltage processors on the

market that can operate reliably over a range of clock fre-
quencies. The processor circuitry is designed such that at
a lower speed it needs a lower supply voltage than at peak
performance. As a consequence, the energy consumption per
instruction depends on the clock speed, and varies signi�-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’01, August 6-7, 2001, Huntington Beach, California, USA.
Copyright 2001 ACM 1-58113-371-5/01/0008 ...$5.00.

cantly when the speed is changed. As an example, consider
the Intel StrongARM 1100 processor, which is speci�ed for
59-190 MHz and a VDD of 1.5 V. We added circuitry and
software to control the core voltage and are able to operate
the processor from 59 MHz at 0.79 V to as fast as 251 MHz
at 1.65 V (without active cooling) [11]. The di�erence in
energy consumption per instruction is a factor of 5.
The idea of reducing (scaling) the supply voltage (and

clock speed) of a processor to save energy is not new and,
already in 1994, the bene�ts have been quanti�ed by simu-
lation [13]. Nevertheless, the application of voltage scaling
is nearly absent in the current generation of notebooks and
PDAs running a general-purpose OS. The only exception
is the Transmeta LongRun solution. The main reason is
that determining at what supply voltage and clock speed
the processor should run to support the current workload is
a diÆcult problem. For example, scheduling heuristics that
monitor the processor load and dynamically adjust the volt-
age/speed accordingly, often perform worse than running
the processor at a suitable �xed voltage/speed [2].
In this paper we argue that voltage scaling in a general-

purpose context can only be e�ective when applications co-
operate. It is vital that applications communicate their
(future) processing needs to the OS, much like with real-
time OSes. Only then the OS can handle bursty applica-
tions and compute an optimal schedule. The idea of using
application-supplied workloads is also demonstrated in [6]
where the power consumption of a wireless LAN is reduced.
The clock scheduling problem itself is NP complete. We
present a new heuristic scheduling algorithm called energy
priority scheduling that uses workload descriptions to com-
pute energy-eÆcient schedules. We implemented the algo-
rithm as part of the Linux OS and performed several experi-
ments on our variable-voltage StrongARM 1100 platform. In
particular we demonstrate the ability to schedule a compu-
tational task with a bursty video playback application; the
computational task is executed between two low-complexity
video frames.

2. RELATED WORK
The speed at which a processor can operate is a direct

consequence of the voltage supplied (f / (VDD�Vth)2

VDD
) [4].

Therefore, determining the minimal supply voltage is equiv-
alent to determining the minimal clock speed at which to
run the processor. For simplicity we will discuss voltage
scaling in terms of clock speed, but remember that a change
in clock speed implies a corresponding change in supply
voltage. Determining the clock speed of the processor is

2528

Due to the type 3 fonts used, please increase the magnification to view

not trivial. This problem is known as clock scheduling and
consists of determining the moments when to change the
speed, and to what level, given a speci�c workload and
associated real-time constraints (i.e. task deadlines).
Clock scheduling has been investigated within three main

areas: application-speci�c processors, real-time OSes, and
general-purpose OSes. With application-speci�c processors,
the scheduler is provided with all information beforehand.
In a real-time OS accurate information is presented dynami-
cally by the applications. A general-purpose OS, in contrast,
has to derive processing demands from external measures
like processor utilization. Clock scheduling becomes simpler
when more (accurate) information is available.
When crafting an application-speci�c system the exact

workload is known in advance. Therefore the optimal clock
schedule can often be calculated with brute force at chip
design time. This can be costly since clock scheduling is
NP complete when tasks may not be preempted [3]; Hong
et al. present an e�ective heuristic yielding schedules that
are within 2% of the optimum [3]. In the preemptive case
the optimal schedule can be computed with an O(n log2 n)
o�-line algorithm [14].
Clock scheduling is more diÆcult in the context of real-

time OSes as information only becomes available at run
time. Yao et al. present their Average Rate run-time heuris-
tic and prove that it computes schedules that consume at
most a factor of 8 more energy than the optimal preemptive
schedule [14]. Pering et al. present a heuristic based on Ear-
liest Deadline First scheduling that assumes that all tasks
are currently runnable [9]. Measurements show that signif-
icant energy savings can be obtained (20% of peak power)
for some applications. They do not provide insight in how
well their heuristic performs in comparison to the optimal
schedules. Given that they do not preempt tasks, their
scheduler is limited in its possibilities. Several authors [5,
12] presented algorithms that require o�-line analysis of a
real-time workload that is known in advance.
Weiser et al. �rst presented the idea of voltage scaling for

a general-purpose OS [13]. Their scheduling algorithms are
interval based and determine the clock speed depending on
the processor utilization in previous intervals. Simulations
by Pering et al. [8] show that interval-based clock scheduling
on the OS-level reduces energy consumption considerably
compared to running at full power. The gain, however, is
extremely dependent on the interval length and the optimal
setting varies per application. Moreover, applications with
a bursty workload fall signi�cantly short of optimal. For
example, the energy consumption of video decoding was
shown to be 36% above optimum. Evidently, the lack of
information about future demands limits the e�ectiveness.
This observation seriously questions the e�ectiveness of the
Transmeta LongRun technology implemented in the \mi-
crocode" of the TM5400 processor. Our initial experience
with the Transmeta processor shows that it exhibits an in-
eÆcient all-or-nothing behavior switching rapidly between
full and minimal speed.

3. ENERGY PRIORITY SCHEDULING
At Delft University of Technology we have developed a

variable-voltage testbed based on the general-purpose Strong-
ARM processor [1]. Amongst others it will be used as a mo-
bile computing device running Linux. We have developed a
clock scheduler that combines interval-based scheduling with

case 1 case 2
ej sj�dj sj�dj

A 2 0� 3 0� 3
B 2 0� 6 0� 6
C 1 4� 6

Table 1: Workload descriptions.

real-time scheduling to support both traditional applications
and power-aware applications communicating their future
processing demands. Requiring (bursty) applications to be
cooperative is key for achieving energy eÆciency as shown
in the previous section. Our experience with modifying an
H.263 video decoder to estimate its computational demands
for each frame shows that simple measures yield accurate
results [10]. Consequently, considerable energy savings are
obtained (see Section 5).
Our energy priority scheduler is an incremental on-line

heuristic that dynamically adjusts the clock schedule when
new tasks enter the system and old tasks complete their
execution. Since we are operating in a Linux environment
we can safely assume that tasks may be preempted, which al-
lows for better clock schedules. For example, when running
our modi�ed H.263 decoder in combination with some low-
priority task, the latter is executed between low-complexity
video frames.

3.1 Model
This section de�nes a model for clock scheduling. The

model combines and enhances the models presented in [7]
and [14]. Each real-time task j is de�ned by:

� sj Starting time

� dj Deadline time

� ej Execution time at highest speed

The interval of task j is [sj ; dj]. The energy priority schedul-
ing algorithm is used to determine:

� s(t) Speed of the processor at time t

� run(t) Task that is run on the processor at time t

We further de�ne the following parameters:

� Nj(tr) Number of others tasks assigned to interval tr
besides task j

� Nj =
P

tr�[sj ;dj]

Nj(tr)

dj�sj
Average number of others tasks

besides task j

� fj =
ej

dj�sj
Flat processor rate of task j, uses the least

amount of energy

3.2 Algorithm
Before describing our algorithm, we �rst present two ex-

amples that motivate the scheduling heuristic we employ.
Table 1 gives two simple workloads. The �rst case consists of
just two tasks (A and B). An incremental scheduler considers
the tasks one-by-one. Following the Average Rate heuristic
by Yao et. al. [14] we simply add the minimum required at
processor rates fj for each task at time t. Thus, task A
executes at speed 2=3 and B at speed 1=3 (see Figure 1).
The Average Rate schedule is not optimal since A and B

can be scheduled back-to-back as shown in Figure 2. (Run-
ning at a constant speed is more energy eÆcient than with
a varying speed).

2629

B
0

1/3

2/3

1

0 1 2 3 4 5 6

A

Figure 1: Average Rate schedule for case 1.

0

1/3

2/3

1

0 1 2 3 4 5 6

A B

Figure 2: Optimal schedule for case 1.

A �rst improvement to the Average Rate heuristic, is to
take into account the other tasks already scheduled. When
scheduling a new task T we can compute the (water) level
above the current schedule (contour) to �t in the computa-
tional demands (area) of T. The task leveling idea is outlined
in Figure 3.

s d

Figure 3: Task leveling.

Applying task-leveling to the �rst example yields the op-
timum (Figure 2) when scheduling task A �rst, followed by
B. Scheduling B �rst and then A, however, still yields the
inferior schedule shown in Figure 1.
Our second improvement is to account for overlapping

tasks that can be pushed aside. Consider the second case in
Table 1, which adds a third task C to the optimal schedule
in Figure 2. First note that task-leveling fails to �nd a
suitable schedule in this case since C must be layered on
top of B, raising the processor utilization above 1. The
following method does �nd the optimal schedule (an equal
load of 5=6 across the entire [0; 6] interval). In step one we
determine the maximum processor utilization umax on the
interval [sC ; dC], which is 2=3 (cf. interval [4; 6] in Figure 2).
In step two we �ll up the free space below level umax on
interval [sC ; dC]; this has no e�ect in our example because
there is no space available. In the third step we determine all
overlapping tasks (set T) that overlap with C; T equals fBg.
In the fourth step we compute the water level (5=6) above
the contour of T+C that accommodates the remainder of C.
Finally, we reschedule tasks T to create space in the interval
[sC ; dC]; see Figure 4.
Rescheduling in the �nal step is not always possible due

to deadlines regarding tasks T , in which case steps four
and �ve must be repeated. Dealing with overlapping tasks
greatly enhances the quality of the clock schedules. Further
improvements can be expected to also account for tasks that
overlap with the overlapping tasks, etc. We do not pursue

0

1/3

2/3

1

0 1 2 3 4 5 6

A B C

Figure 4: Optimal schedule for case 2.

this direction, but rather arrange that tasks are scheduled
in ascending priority. Tasks with relaxed deadlines (fj close
to 0) and few overlaps (low Nj) are ranked to be scheduled
�rst, so they can easily be pushed aside when more diÆcult
tasks are scheduled later.

Algorithm 1 Energy Priority Scheduling

0 Given a set of tasks T , each task with a starting time,
deadline time, and fastest execution time.
1 Partition interval [smin; dmax] into a set of time regions
tri[starti; endi] where starti and endi are start or deadline
times of T , and there exists no other start or deadline time
within tri.
2 For each task compute its priority: pj = fjNj .
3 Repeat j T j times:
3.1 Select task j that is not scheduled yet and has lowest pj .
3.2 Repeat until task j is fully scheduled:
3.2.1 Determine intervals tri � [sj ; dj] with lowest scheduled
processor utilization ui
3.2.2 Determine overlapping task intervals trl, tri � [sl; dl]
3.2.3 Determine spill intervals trk 2 ftrlg n ftrig, uk = ui
3.2.4 De�ne

uup = 2nd lowest processor utilization on trl
(or 1 if ftrlg n ftrkg = ;)

Li =
P

k tri k
Lk =

P
k trk k

Æ =
minfLiui;Lk(uup�ui);remainder(ej)g

Lk

3.2.5 Set processor utilizations ul to ui + Æ and reschedule
tasks (including j) on trl accordingly.
4 Regroup tasks spread across multiple intervals.

The details of our energy priority scheduler are presented
in Algorithm 1. In steps 3.2.n a part of task j is scheduled
by raising the \water" to the next level up. This level is
to be found on the interval that includes all overlapping
tasks. The actual increase (Æ) is bound by the remainder
of j that still needs to be scheduled, the amount of work
that can be spilled (Liui), and the step up (uup � ui).
The incremental scheduling of task j in steps 3.2.n can
be eÆciently implemented by maintaining the overlapping
intervals as a sorted list (ascending processor utilization).
Once the �nal schedule is determined, tasks tend to be
scattered over multiple intervals. To minimize the number
of context switches, we regroup tasks in step 4 by swapping
workloads between intervals.
The energy priority scheduling heuristic does not always

�nd the optimal schedule, since it only accounts for pushing
aside tasks that directly overlap with j. For example, when
modifying case 2 slightly by changing task B to start at
time 2, the insertion of task C will not raise the \water"
above interval [0,2] as it could when realizing that B in turn
should push task A aside. The complexity of the heuristic
depends on the number of iterations needed to schedule j.

2730

In the worst case each interval tri causes one step up. The
maximum number of intervals is 2n�1, leading to the upper
bound of O(n3) for the complete heuristic. In practice, one
or two iterations often suÆce and the number of overlapping
tasks is small lowering the complexity to O(n log n).
Although energy priority scheduling is presented as an

o�-line algorithm, it can easily be implemented as an incre-
mental on-line algorithm. When a new task j arrives, the
set of intervals tri must be extended followed by one round
of scheduling for task j (no looping over all tasks in step 3).

4. IMPLEMENTATION
To study the e�ectiveness of energy priority scheduling in

practice we have build a complete system from the hardware
up to the application level. Figure 5 gives an overview of our
system, showing the four components involved: hardware,
OS, clock scheduler, and applications. All our hardware
schematics and software drivers are freely available [1].
The hardware is designed around the StrongARM SA1100

processor, which supports di�erent clock speeds: 59-251 MHz
in 14.7 MHz steps. We added a variable supply voltage
(DC/DC converter) that can be controlled from the CPU's
general I/O pins connected to a D/A converter. We ran
a number of experiments to determine the minimal voltage
required at each speed setting, and added a driver to the
Linux OS that uses a lookup table to select the appropriate
voltage level when a new clock speed is requested. The
driver additionally recon�gures the memory access timings,
which are derived from the processor clock on the SA1100.
The end result is that a speed/voltage switch initiated from
user space completes in 140 �s, and that the power dissi-
pated by the SA1100 shows a quadratic increase from 33 mW
at 59 MHz to 696 mW at 251 MHz [11].
We implemented a clock scheduler that mediates between

applications and the basic OS driver. To minimize imple-
mentation e�ort at the application level we designed the
clock scheduler to support both unmodi�ed applications as
well as power-aware applications specifying their future needs.
We use a combination of interval-based scheduling (for han-
dling unknown workloads) and energy priority scheduling
(supporting power-aware applications). We call the com-
bined clock scheduler PowerScale. For convenience Power-
Scale is implemented as a daemon process in user space,
but it can be moved inside the kernel when the need arises.
An application connects to PowerScale using a UNIX socket
and speci�es its workload as a set of tasks with starting
times, deadlines, and required cycles or minimum speed. Be-
fore running the energy priority scheduling (EPS) algorithm,
PowerScale empties all sockets to consider at once all tasks
currently made available by the power-aware applications.
The computed schedule is then executed in a loop, listening
on the socket for new tasks by invoking select() with a
time-out value matching the time to the next speed change.
Changing the speed involves calling our OS driver, which
exports the 13 settings provided by the StrongARM; we
select the setting just above the EPS speed leading to an
overshoot of just 7 MHz on average. The EPS algorithm may
preempt tasks. PowerScale uses the Linux process scheduler
for this purpose and sends STOP and CONT signals to the
processes that must be preempted.
To support traditional applications and to correct for miss

predicted workloads PowerScale includes an extra interval-
based component. By monitoring the Linux process sched-

applappl appl

DC/DC

D/A CPU

OS
clock scheduler

Figure 5: System overview.

uler statistics PowerScale can infer whether or not its energy-
priority schedule is capable of handling the current load.
When the system load (processor utilization) is close to 1,
the CPU is running at the right speed. Otherwise, the speed
is adjusted: an overload (util = 1) is handled by increasing
the speed, an underload (util < 0.5) is handled by reducing
the speed. Since we do not know what caused the system
imbalance, we must employ heuristics when adjusting the
speed. The relative long intervals (100 ms) prompt us to
react quickly to overloads to guarantee responsiveness of
the system; we double the speed increase on consecutive
adjustments (exponential increase). Running at a too high
speed does not impact responsiveness, only energy is wasted,
and we step down to the next lower speed setting (linear de-
crease). The system load is also used by the energy priority
scheduler to infer the average background load generated by
ignorant applications. By directly accounting for this load,
better schedules will be produced and less negative feedback
needs to be applied by the interval-based component.
Applications play an important role in achieving energy

eÆciency. Bursty applications like video decoding cannot
be handled well by the interval-based component of Power-
Scale and must be modi�ed to explicitly state their future
workloads. Making applications power-aware must be con-
sidered as one of the many changes required when porting
an application to a resource-constrained mobile device. As
an example we adapted the Telenor H.263 video encoder
to annotate the video frames with information about the
decoding complexity, so that the corresponding decoder can
specify the workload per frame. This �ne granularity is
necessary since the processing requirements for subsequent
frames can di�er as much as a factor of three. We found
that the combination of frame type (I, P, or PB) and frame
length (i.e., number of bits in the encoded stream) yields a
complexity measure that is simple and accurate [10].
A second modi�cation was required to work around the

poor granularity of the internal Linux timer. The H.263 de-
coder has a simple rate control mechanism for displaying the
frames at the speci�ed rate (15 fps): after decoding a frame
it computes the time left until the next display deadline, and
invokes the usleep() system call to wait for that time to pass
before outputting the video frame. Usleep() may return up
to 10 ms late, which is a signi�cant part of the frame time
(67 ms). Each delay causes a frame deadline miss, and must
be compensated for in the next frame to catch up. When
running at a constant high speed, this happens automat-
ically by waiting a bit shorter in the next frame. When
scaling speeds, however, we must explicitly account for the
inaccuracy by overestimating the computational demand of

2831

 59

 89

118

148

177

207

236

136 138 140 142 144 146 148 150

Pr
oc

es
so

r
sp

ee
d

[M
H

z]

Video frame sequence number

EPS

task

Interval

Figure 6: Clock schedules executed by PowerScale.

0

50

100

150

200

250

300

350

136 138 140 142 144 146 148 150

Po
w

er
 c

on
su

m
pt

io
n

[m
W

]

Video frame sequence number

task

Figure 7: Processor power consumption of EPS.

each frame. We took a drastic approach and replaced the
usleep() call with a busy-wait loop, in which we read the
clock until the next display deadline is met.

5. RESULTS
This section reports on an experiment with our variable-

voltage system. The setup involves the enhanced H.263
decoder processing the 12.6 s carphone benchmark video,
encoded at a rate of 15 fps with all optimizations on. The
encoded �le has a size of 98 KB and is stored in main
memory (RAM-disk). A second synthetic application is set
to execute for a short period (150 ms, 40 MHz) near the end
of the video sequence. We log the speed changes initiated by
PowerScale during the experiment, and measure the energy
consumption of the SA 1100 processor core by sampling (at
25 kHz) the voltage and current. Figure 6 shows the actions
of the PowerScale scheduling for one second of the bench-
mark video (frames 135-150). The curve shows how the
processor speed changes over time (each frame takes 67 ms).
The corresponding power consumption of the StrongARM
processor core is shown in Figure 7. For clarity this curve
is down sampled by averaging uniform intervals containing
100 points.
For comparison Figure 6 shows the two modes of operation

of PowerScale. The solid `EPS' line shows the actions when
PowerScale has complete knowledge (i.e. all tasks have
registered their needs). The dotted `Interval' line shows the
actions when no information is available and PowerScale
responds to changes in the processor load as reported by
Linux. The EPS line follows the bursty workload generated
by the H.263 decoder, except for the shaded area where
the synthetic task is accommodated by raising the speed
to 207 MHz. The interval line clearly shows that without
application knowledge bursty workloads can not be handled
well. The speed is either too low (e.g., frame 136) or too high
(e.g, frames 144-150). One reason is that the decisions lag

0

100

200

300

400

500

600

700

136 138 140 142 144 146 148 150

Po
w

er
 c

on
su

m
pt

io
n

[m
W

]

Video frame sequence number

Figure 8: Total system power consumption of EPS.

behind reality because of the 100 ms scheduling resolution,
for example, the increase in frame 140 is a response to
the overload in frame 138; reducing the time-interval is an
option, but a too short interval limits the possibilities to
average out the workload at a common speed. The exact
trade-o� is application dependent. Another reason for the
poor performance in Interval-mode is that a heuristic (ex-
ponential increase) must be applied to raise the speed up
to the right level once an underload is detected leading to
ineÆciencies (e.g., response during frame 141 is too little).
Consequently, deadlines are missed and energy is wasted.
Now consider PowerScale in EPS mode when both the

H.263 decoder and synthetic application register their tasks
in advance. We carefully crafted the combined workload
to contain overlapping tasks. The synthetic task enters the
system 25 ms after frame 141 starts and must �nish 25 ms
before frame 143 ends; the start-stop interval is indicated in
Figure 6. The synthetic task thus overlaps with frames 141,
142, 143, and 144. The EPS algorithm schedules the syn-
thetic task �rst, because it has the lowest at processor rate
(40 MHz), followed by 141 (148 MHz), 142 (162 MHz), 144
(207 MHz), and 143 (221 MHz). The �nal schedule raises the
processor speed during the decoding of frames 141 and 142
(i.e. the shaded area in Figure 6). This e�ectively creates
a 30 ms gap between frame 141 and 142, which contains
enough cycles to run the synthetic task (30�207 > 150�40).
The measured power dissipation of the processor (Fig-

ure 7) shows a shape that is quite similar to the clock sched-
ule executed by PowerScale in EPS-mode (Figure 6). Note,
however, that the peak-to-bottom power ratio is larger than
the corresponding speed ratio. Neglecting frame 137, which
requires no computation and causes the processor to enter its
special idle-mode, the peak-to-bottom power ratio is around
6 (frame 136 : frame 135 � 271 : 43), the speed ratio is around
2.5 (221 : 89). This shows the e�ect of the quadratic relation
between power and voltage. The exact time location of the
synthetic task is marked in Figure 7. Its power consumption
is larger than that of its neighboring decoding tasks running
at the same speed because the synthetic task does not ref-
erence main memory, hence, incurs no processor stalls when
waiting for memory accesses to complete.
Figure 7 shows the power dissipated by the variable-voltage

core (CPU + cache) of the StrongARM processor only. The
remaining parts of the system (bus, memory, etc.) are pow-
ered from a �xed 3.3 V. Figure 8 shows the power dissipation
of the 3.3 V part of our system. The high peaks correspond
to the reading of the encoded frame into cache memory,
which is expensive because the video is stored in FLASH
memory. The system activity is similar for each frame,
except for frames 136 and 137 that involve decoding a PB

2932

frame, irrespective of the clock speed set by PowerScale.
Note that the average system power (202 mW) exceeds the
average processor power (118 mW), which limits the overall
e�ectiveness of voltage scaling.

power [mW] misses [ms]

235 MHz 400 0
interval 337 401
EPS 304 0

Table 2: Total power dissipation and accumulated

deadline misses.

Table 2 shows the average total (core + system) power
dissipation over the complete carphone video. For reference
we measured the power dissipation of running at a �xed
235 MHz, which allows all P and PB frames to be decoded
with the 67 ms frame time. Interval-based scheduling re-
duces energy consumption with 16%, but at the cost of
missing deadlines. For each frame we recorded the time at
which it was actually written to the display bu�er and accu-
mulate the deadline misses. PowerScale in EPS mode does
not miss a deadline and reduces energy consumption with
24%. (When considering the processor only, EPS reduces
energy consumption with 50%.)

6. CONCLUSIONS AND FUTURE WORK
Clock (and voltage) scheduling is an important technique

to reduce energy consumption of mobile devices equipped
with a general-purpose variable-voltage processor. From the
hardware perspective the gains are impressive, for exam-
ple, the StrongARM SA1100 processor running at 251 MHz
requires �ve times more energy per instruction than when
running at 59 MHz. From the software perspective, however,
it is diÆcult to achieve such reductions when applications
show bursty behavior. OS-based approaches like interval
scheduling do manage to reduce energy consumption some-
what, but at the expense of missing deadlines. We have
shown that by requiring applications to be power aware (i.e.
they must specify their future demands) much better energy
reductions can be achieved while still meeting all deadlines.
This paper describes our energy priority scheduling (EPS)

heuristic that given a set of tasks yields a clock schedule for
controlling the speed (and voltage) of the processor. The
approach is to order tasks according to how tight their dead-
lines are and how often tasks overlap with others. We sched-
ule low-priority tasks �rst, since they can be easily pushed
aside (preempted) to accommodate for high-priority tasks
scheduled later. The heuristic does not always yield the op-
timal schedule, but has low complexity and can be used as
an incremental on-line algorithm with little modi�cation.
To demonstrate the e�ectiveness of EPS we have actually

build a complete system consisting of variable-voltage hard-
ware (StrongARM based), OS support (Linux driver), clock
scheduling daemon (PowerScale), and power-aware applica-
tions (H.263 video decoder). We measured and analyzed
the e�ectiveness of EPS with a workload consisting of the
power-aware video decoder competing with a computational
task. The results show that EPS successfully schedules
both applications and reduces the energy consumption of
the processor with 50% when compared to running at full
speed (235 MHz), which is a signi�cant improvement over
interval-based scheduling achieving 33% reduction. EPS

achieves this reduction without missing deadlines, unlike
interval scheduling that does miss deadlines.
Currently our PowerScale daemon always selects a sched-

ule that complies with task deadlines. In the future we
would like to investigate the trade-o� between energy re-
duction and deadline misses. Knowing this trade-o� is use-
ful when batteries are low, and the user might accept a
(slight) degradation in performance in favor of a (much)
more energy-eÆcient execution. We also would like to ex-
tend our work to include other resources such as hard-disks,
wireless connections, and smart batteries such that Power-
Scale can determine the remaining battery life at the cur-
rent performance level. Eventually, PowerScale should be
capable of automatically adjusting the performance of ap-
plications (e.g., lowering the audio quality) to match a user
requested lifetime.

Acknowledgements
This work was conducted within the Ubicom program (www.
ubicom.tudelft.nl) funded by the TU Delft, DIOC research
program. We thank Jan-Derk Bakker and Erik Mouw for
providing us with an excellent low-power platform, and as-
sisting us with the measurements and their interpretation.
We thank Hylke van Dijk, Dick Epema, and Arjen van der
Schaaf, for commenting on draft versions of this paper.

7. REFERENCES
[1] J.-D. Bakker, J. Mouw, and M. Joosen. Linux Advanced

Radio Terminal. http://www.lart.tudelft.nl/

[2] D. Grunwald, P. Levis, K. Farkas, C. Morrey, and
M. Neufeld. Policies for dynamic clock scheduling. In
OSDI, San Diego, CA, October 2000.

[3] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and
M. Srivastava. Power optimization of variable voltage core-
based systems. In 36th Design Automation Conference,
pages 176{181, June 1998.

[4] T. Ishihara and H. Yasuura. Voltage scheduling problem for
dynamically variable voltage processors. In ISPLED, 1998.

[5] C. Krishna and Y.-H. Lee. Voltage-clack-scaling adaptive
scheduling technique for low power in hard real-time
systems. In RTAS, May 2000.

[6] Y.-H. Lu, L. Benini, and G. D. Micheli. Requester-aware
power reduction. In ISSS, Sept. 2000.

[7] A. Manzak and C. Chakrabarti. Variable voltage task
scheduling for minimizing energy or minimizing power. In
IEEE Int. Conf. on Acoustic, Speech, and Signal
Processing (ICASSP'00), pages 3239 {3242, June 2000.

[8] T. Pering, T. Burd, and R. Brodersen. The simulation and
evaluation of dynamic voltage scaling algorithms. In
ISPLED, Aug. 1998.

[9] T. Pering, T. Burd, and R. Brodersen. Voltage scheduling
in the lpARM microprocessor system. In ISPLED, 2000.

[10] J. Pouwelse, K. Langendoen, R. Lagendijk, and H. Sips.
Power-aware video decoding. In 22nd Picture Coding
Symposium, Seoul, Korea, Apr. 2001.

[11] J. Pouwelse, K. Langendoen, and H. Sips. Dynamic voltage
scaling on a low-power microprocessor. In Mobicom'01,
Rome, Italy, July 2001.

[12] Y. Shin, K. Choi, and T. Sakurai. Power optimization of
real-time embedded systems on variable speed processors.
In ICCAD, Nov. 2000.

[13] M. Weiser, B. Welch, A. Demers, and S. Shenker. Schedul-
ing for reduced CPU energy. In OSDI, pages 13{23, 1994.

[14] F. Yao, A. Demers, and S. Shenker. A scheduling model for
reduced CPU energy. In 36th IEEE Symposium on
Foundations of Computer Science, pages 374{382, 1995.

3033

