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The increasing penetration of intermittent, unpredictable renewable energy sources, e.g., wind energy, poses

significant challenges for utility companies trying to incorporate renewable energy in their portfolio. In this

work, we study the problem of conventional energy procurement in the presence of intermittent renewable

resources. We model the problem as a variant of the newsvendor problem, in which the presence of renewable

resources induces supply side uncertainty, and in which conventional energy may be procured in three stages

to balance supply and demand. We compute closed form expressions for the optimal energy procurement

strategy and study the impact of increasing renewable penetration, and of proposed changes to the structure

of electricity markets. We explicitly characterize the impact of a growing renewable penetration on the

procurement policy by considering a scaling regime that models the aggregation of unpredictable renewable

sources. A key insight from our results is that there is a separation between the impact of the stochastic

nature of this aggregation, and the impact of market structure and forecast accuracy. Additionally, we study

two proposed changes to the market structure: the addition and the placement of an intermediate market.

We show that addition of an intermediate market does not necessarily increase the efficiency of utilization

of renewable sources. Further, we show that the optimal placement of the intermediate market is insensitive

to the level of renewable penetration.

1. Introduction

Society’s insatiable appetite for energy and growing environmental concerns have led many states

in the United States to enact renewable portfolio standards. The standards mandate that utility

companies must procure a certain percentage of their electricity from renewable sources (Wiser

2008). For example, California has set the goal that 33% of its electricity should come from renew-

able sources by 2020. Among possible renewable sources, wind energy is expected to play a major

role. There has been an explosive growth in installed wind capacity over the last few years (Global

Wind Energy Council 2009) due to the ease of installation, as well as the low maintenance and

operational costs.

1



2

Wind energy, and renewable energy in general,1 pose a number of significant challenges as a

result of the intermittency and the unpredictability of the available energy. In particular, in order

to maintain balanced operation of the grid, a suitable amount of ‘reserve’ capacity of conventional

generation must be procured to absorb the volatility created by the uncertainty in wind generation.

However, current electricity markets that govern energy procurement were designed for a scenario

where there is very little uncertainty. More specifically, until now, supply side uncertainty has been

low, and mainly arises due to generator failures, which are typically rare. Furthermore, accurate

demand forecasting ensures that the uncertainty in demand is small. However, going forward, the

introduction of large volumes of highly intermittent and unpredictable renewable generation will

increase supply side uncertainty dramatically. Thus, incorporating wind energy into the energy

portfolio of utilities is a challenging task that requires rethinking the current design of electricity

markets (GE Energy 2010, GE Energy Consulting 2007). This paper seeks to provide insights into

the impact of increasing supply side uncertainty on the ‘efficiency’ of procurement in electricity

markets.

Utility companies typically purchase their electricity via two modes of operation - bilateral long

term contracts and competitive electricity markets (Kirschen and Strbac 2004, Stoft 2002, Harris

2006). In the former, utility companies sign long term bilateral contracts with various generators

to supply certain amounts of electricity for specified periods. Currently, most utility companies

purchase the bulk of their generation through long term bilateral contracts. This is feasible because

the aggregate demand is highly predictable and because most conventional generators have very

little uncertainty. To account for daily (or hourly) fluctuations in demand, the utility companies

purchase the remainder of their electricity in competitive electricity markets. In such markets,

buyers (i.e., utility companies) and sellers (generators) participate in a single market that is run

by a third party called the independent service operator (ISO). These markets typically consist of

day-ahead (DA) forward market as well as a real time (RT) market. A utility company may buy

electricity in both markets in order to ensure that it has enough supply to meet the demand.

Integration of wind energy into current electricity markets has attracted considerable interest in

recent years (DeMeo et al. 2007, Negrete-Pincetic et al. 2010). Broadly speaking, there are two dif-

ferent approaches to integrate wind into current electricity markets. In one approach, wind power

producers participate only in competitive electricity markets (Bitar et al. 2011), e.g., California’s

1 For the remainder of the paper, we will use wind energy interchangeably with renewable energy; the models and
the insights of our paper apply to any form of intermittent resource.
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participating intermittent resource program (PIRP). In the second approach, the wind power pro-

ducers do not participate in electricity markets; instead, they sign long term multi-year contracts

with utility companies. In such contracts, the utility company acquires rights to the energy gen-

erated from a certain wind farm installation in return for a predetermined payment. For example,

Southern California Edison (SCE), a major utility company serving the greater Los Angeles area,

has signed various contracts spanning 2−10 years with various wind farms to procure wind energy

ranging from 66.6 MW to 115 MW (Southern California Edison 2011).

In this paper, we study the consequences of following the second approach. In particular, we

study a setting where utility companies have procured large volumes of intermittent, unpredictable

renewable energy via long term contracts. Because the realized amount of wind energy is variable

and unpredictable, the utility company must still procure conventional generation via the electricity

markets. Our goal is to study the impact of this long term commitment to renewable generation

on the procurement strategies for conventional generation.

Given the complexity of electricity markets, we must consider a simplified model to be able to

obtain analytical results. To that end, we consider a setting that ignores many complexities of

generation and transmission (e.g., ramp constraints and line capacities), but models explicitly the

multi-timescale nature of electricity markets. That is, we model real time, day ahead, and long

term markets, assuming that the electricity price is larger in markets closer to real time, but that

the accuracy of predictions of the available renewable energy is also better in markets closer to real

time. The details of our model can be found in Section 2.

The main contributions of the work fall, briefly, into two categories: (i) we characterize the

optimal procurement strategy in the presence of long-term contracts for intermittent, unpredictable

generation; and (ii) we study the impact of increasing renewable penetration as well as possible

changes to market structure on the optimal procurement strategy. We describe these each in more

detail in the following.

The first contribution of this work is to characterize the optimal procurement strategy for a utility

company that has a long term contract with an unpredictable generation source, e.g., wind energy

(see Section 3). More specifically, we derive closed-form formulas for the optimal procurement that

a utility company needs to make in both long term and day ahead markets. This solution is a

generalization of solutions for the classical newsvendor problem (Arrow et al. 1951, Silver et al.

1998, Khouja 1999). A key feature of our result is that the optimal procurement quantities can be

viewed in terms of reserves, where these reserve quantities are the additional purchases that the
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utility company needs to make to balance the current uncertainty of the supply and the higher

cost of procuring energy in future markets.

In addition to deriving the optimal procurement strategy, we are able to study how it changes

as the penetration of renewable energy grows (see Section 4). In particular, we consider a scenario

where the quantity of renewable generation contracted for grows, and ask how the procurement

changes. The scaling for increasing penetration that we consider allows for a wide variety of mod-

els for how the unpredictability of renewable generation changes with increased penetration. For

example, it includes scaling via additional sources with either independent or highly correlated

generation. Our main result from this section yields an extremely simple, informative, managerial-

level equation summarizing the impact of renewable generation on the procurement of conventional

generation. Specifically, Theorem 2 states that the average total procurement of conventional gen-

eration in the presence of a long term contract for wind is

d−αγ+ δγθ (1)

where d is the demand, α is the generation of average output of a single wind farm, γ is the number

of wind farms (i.e., the renewable penetration), θ is a constant capturing the dependence between

the generations of different wind farms, and δ is a constant that depends on the details of the

market structure. The way to interpret this equation is as follows. d−αγ represents the minimum

average procurement, since this is the amount of demand that is not met by the wind. Thus, the

‘extra’ generation required because of the uncertainty of the wind is δγθ. The key point about this

term is that γθ is purely dependent on the degree of renewable penetration and the correlation

between renewable sources; thus the impact of market structure is limited to δ.

There are two types of changes to the market structure that are most commonly considered:

changing the placement of the day ahead market, e.g., by moving it closer to real time; and adding

markets, e.g., adding a new market between the day ahead and real time markets (Rajagopal et al.

2012). The results in Sections 5 and 6 address each of these possibilities.

First, Section 5 studies the optimal placement of markets. This is a particularly salient issue

because one might expect that as the penetration of renewable energy increases, it is beneficial to

shift markets closer to real time, in order to take advantage of the improved prediction accuracy of

the renewable generation. Our results highlight that this intuition may not be true. Specifically, we

prove that, under very general assumptions, the placement of the day ahead market that minimizes

the average total cost of procurement is independent of the penetration of renewables (Theorem 3).
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Next, Section 6 studies the impact of additional markets on procurement. The addition of mar-

kets is often suggested as a way to help incorporate renewable generation by providing new markets

closer to real time where predictions about renewable availability are more accurate. Our results

highlight that one needs to be careful when considering such a change. Specifically, we contrast

procurement in a two level market with procurement in a three level market in order to understand

the role of adding an intermediate market. Of course, the cost of procurement always decreases as

additional markets are introduced. However, with environmental concerns in mind, the key question

is not about cost but about the amount of conventional generation procured. Perhaps surpris-

ingly, additional markets do not always reduce the amount of conventional generation procured.

Specifically, if we consider the addition of an intermediate market, then the average amount of

conventional generation may drop or grow depending on the quality of the estimates for renewable

generation, i.e., δ in Equation (1) may decrease or increase. Informally, if the estimation error is, in

a sense, light-tailed (e.g., Gaussian), then the addition of an intermediate market reduces procure-

ment of conventional generation (Theorem 4); but if the error has a heavy-tail (e.g., a power-law),

then the addition of an intermediate market can have the opposite effect (Lemma 2).

Finally, it is important to note that though we focus entirely on procurement of electricity,

our model and results should be of interest more broadly within the domain of inventory theory.

Specifically, at its core, our model considers a three level newsvendor problem, and characterizes

the impact on procurement in a setting in which uncertainty grows.

The remainder of the paper is organized as follows. Section 2 describes our market model as well

as the model for wind forecast evolution. The optimal procurement strategy for three markets is

derived in Section 3. We study the effect of increasing wind penetration in Section 4. Section 5

shows that the optimal placement of the intermediate market is insensitive to the capacity of wind

generation. In Section 6, we study the impact of additional markets on the total conventional

procurement. Section 7 describes related work and Section 8 concludes the paper.

2. Market model

Our goal in this paper is to understand how the presence of long term contracts for intermittent,

unpredictable renewable generation impacts the procurement of conventional generation; and the

role the structure of the electricity market plays. Thus, at the core of the paper, is a model

for the electricity markets, which we describe in this section. The model we study is necessarily

simple, so as to facilitate analysis and allow the derivation of simple and informative closed-form

characterizations of procurement.
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The key feature we seek to capture is the multi-timescale nature of electricity markets. Thus, we

ignore issues such as generator ramping constraints and transmission network capacity constraints.

Furthermore, we assume that the utility company has no access to large scale storage capacity.

These assumptions allow us to focus on a single instant of time, which we denote by t = 0, and

consider only aggregate supply and demand. We assume that the demand (denoted by d) is fixed

and known ahead of time.2

There are two key components of our model of the electricity markets: (i) the model of the

structure of the markets; and (ii) the model of forecast evolution for the renewable generation

realized at time t= 0.

Market structure. Recall that the setting we consider in this paper is that of a utility company

with long term contracts for uncertain, intermittent, renewable energy. Given such a long term

contract, the utility company participates in a three tiered market for conventional generation

consisting of:

(i) a long term market, in which a purchase commitment is made at time −Tlt and the price of

energy is plt,

(ii) an intermediate market (typically day ahead), in which a purchase commitment is made at

time −Tin and the price of energy is pin,

(iii) a real time market, in which purchase commitment is made at time t = 0 and the price of

energy is prt,

with −Tlt <−Tin < 0. In practice, the long term market could take place years or months ahead of

time t= 0 and the intermediate market could take place a day or several hours ahead of time t= 0.

We assume that the energy prices in the markets are fixed, known ahead of time, and ordered

such that 0< plt < pin < prt. In other words, we assume that utility companies are price-takers in

these markets and that conventional energy gets more expensive closer to real time. The ordering

of prices is a mild assumption and is borne out of the fact that any conventional energy that is

demanded closer to real time is provided by generators that have low start up time. Typically

these generators are more expensive than the generators that require several hours to start up.

Furthermore, in practice, the price of electricity in real time markets tends to be higher on average

than in day ahead markets.

2 Demand-side uncertainty can be folded into the supply-side uncertainty in our model.
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Renewable forecasts. A key feature of the model is how we capture the uncertainty associated

with the availability of renewable generation. Clearly, the procurement policy of a utility company

will depend upon the information available to it at the time of each market. In particular, at the

time of each market, the utility company needs to forecast how much wind generation will be

available at time t= 0. Note that if the available wind energy was known with certainty, the utility

company could purchase its entire remaining demand exactly in the long term market; however

because the amount of available wind energy at time t= 0 is highly uncertain at the time of the

long term market, the utility company needs to balance its lowest cost purchase in long term with

better estimates of wind energy closer to real time. To capture this, we consider a model where

the forecast accuracy of the wind generation improves upon moving closer to real time, i.e., t= 0.

Let w denote the actual wind energy that is available at time t= 0. We assume that the utility

company comes to know the value of w at time t = 0. Let ŵlt and ŵin denote respectively the

forecasts of w available at the time of the long term market (i.e., at t=−Tlt) and the intermediate

market (i.e., at t=−Tin). Formally, we assume that

ŵin = ŵlt −E1, and w= ŵin −E2, (2)

where E1 and E2 are zero mean independent random variables. In other words, we assume that the

forecast of w evolves with independent increments. The random variables E1 and E2 capture the

evolution of the forecast of w between the instants of the three markets. Note that ŵlt is a coarser

estimate of w than ŵin, since the long term forecast error ŵlt −w= E1 + E2 is more variable than

the intermediate forecast error ŵin −w= E2. A special case of our forecast evolution model is the

well studied martingale model of forecast evolution (Hausman 1969, Graves et al. 1985, Heath and

Jackson 1994), in which it is additionally assumed that E1 and E2 follow a Gaussian distribution.

Let [L1,R1] and [L2,R2] denote respectively the supports of the random variables E1 and E2.
3

We make the following regularity assumptions on the distributions of E1 and E2: they are associated

with continuously differentiable density functions, denoted by fE1(·) and fE2(·) respectively, with

fEi(x)> 0 for x∈ (Li,Ri).

In the remainder of this paper, we use the following notation. We use P (E) to denote the

probability of an event E, and F̄X to denote the complementary cumulative distribution function

associated with the random variable X, i.e., F̄X(x) = P (X >x). Finally, [x]+ :=max{x,0}.

3 L1,L2 ∈ {−∞}∪R and R1,R2 ∈R∪{∞}.
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3. Optimal procurement

Given the model in the previous section, we can now pose the procurement problem for the utility

company, which is the focus of this paper. As we have described, the objective of the utility

company is to procure enough conventional energy to meet its residual demand (i.e., demand minus

the available wind energy) at real time. Recall that the cost of procurement is lowest in the long

term market. However, the utility company has a very coarse estimate of the available wind energy

at that time. As we move closer to real time, the utility company gets an improving estimate of

the available wind energy and hence, of the residual demand. However, conventional energy also

gets more expensive as we approach real time. Thus, in order to minimize its procurement cost,

the utility company needs to balance the improving forecast accuracy with an increasing cost of

procurement approaching real time.

In this section, we formalize the utility’s procurement problem, and then characterize the optimal

procurement strategy. This strategy is the basis for the explorations of the impact of increased

penetration of renewables and changes to market structure that make up the remainder of the

paper.

The procurement problem. To begin, note that the procurement decision of the utility in each

market can depend only on the information available to the utility company at that time. Specifi-

cally, in each market, we consider procurement strategies that depend only on (i) the wind estimate

available at the time of purchase, and (ii) the total conventional generation that has already been

procured.4 Accordingly, let qlt(ŵlt) denote the quantity of conventional generation procured in

the long term market, given the long term wind estimate ŵlt. Similarly, let qin(ŵin, qlt) denote the

quantity of conventional generation procured in the intermediate market, given the corresponding

wind estimate ŵin and qlt (the quantity procured already). Finally, let qrt(w,qlt + qin) denote the

the quantity of conventional generation procured in the real time market, which depends on the

realized wind w, and the quantity procured already, i.e., qlt + qin. For notational convenience we

often drop the arguments from these functions and simply write qlt, qin, qrt. We make the assump-

tion that the utility cannot sell power in any market5, and thus the quantities procured in all three

markets must be non negative.

When determining these procurement quantities, we assume that the utility company is seeking

to minimize its expected total cost while ensuring that the total quantity purchased in these three

4 In our model, we assume that the estimate of the wind in the real time evolves with independent increments. Hence,
it is easy to show that there is no loss of optimality in restricting policies to this class.

5 Our model can be extended to relax this assumption. However, we do not consider this generalization because it
adds complexity with no additional insights.
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markets satisfies the residual demand (i.e., the demand minus the available wind in real time).

Thus, we can express the optimal procurement problem as follows:

min
qlt,qin,qrt

E [pltqlt + pinqin + prtqrt] (P )

subject to qlt ≥ 0, qin ≥ 0, qrt ≥ 0

qlt + qin + qrt +w≥ d.

Recall that qlt, qin and qrt are functions that depend on the corresponding wind estimate and the

total procurement so far.

The optimal procurement problem posed above is mathematically equivalent to a variant of the

classical newsvendor problem (Khouja 1999, Porteus 2002). In Section 7, we discuss the relationship

between our work and the literature on the newsvendor problem.

A final comment about the the optimal procurement problem above is that we have considered

a three tiered market structure that models the common current practice. In general, the optimal

procurement problem is simply a Markov decision process, and can be studied for arbitrary numbers

of tiers, e.g., see Rajagopal et al. (2012). We limit ourselves to a three tiered structure in this paper

to keep the analysis simple and the resulting formulas interpretable. Moreover, our formulation

allows us to study the impact of increased wind penetration and market structure on the optimal

procurement policy, something that is not previously considered in the literature.

Optimal procurement strategy. Given the procurement problem introduced above, we can now

study the optimal procurement strategy. The following theorem is the foundational result for the

remainder of the paper. It characterizes the optimal procurement strategy for a utility company in

a three tiered market.

Theorem 1. The optimal procurement strategy for the utility company in the three tiered market

scenario of Problem (P ) is:

q∗lt = [d− ŵlt + rlt]+ , (3)

q∗in = [d− ŵin − qlt + rin]+ , (4)

q∗rt = [d−w− (qlt + qin)]+ . (5)

where

rin = F̄−1
E2

(
pin
prt

)
, (6)

and rlt is the unique solution of

h(r), plt − pinF̄E1(r− rin)− prtP (E1 + E2 > r,E1 ≤ r− rin) = 0. (7)
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The proof of Theorem 1 is included in Appendix A. A key feature of this theorem is that the

structure of the the optimal procurement strategy gives a natural interpretation to rlt and rin

as reserve levels. Specifically, at the time of purchase in the long term market, d − ŵlt can be

interpreted as an estimate of the conventional procurement that is required to meet the demand.

Then rlt is the additional ‘reserve’ purchased by the utility to balance the current wind uncertainty

and the higher cost of conventional energy in subsequent markets. The reserve rin has a similar

interpretation. We will henceforth refer to rlt and rin as the (optimal) long term and intermediate

reserves respectively.

It is important to point out that the reserves rlt and rin may be positive or negative. A negative

reserve implies that it is optimal for the utility to maintain a net procurement level that is less

than the currently anticipated residual demand, and purchase any shortfall in subsequent markets.

The values of the optimal reserves depend on the prices of conventional energy in the three markets

and the distributions of the random variables E1 and E2, which capture the accuracy of the wind

forecasts ŵlt and ŵin. Note that the optimal reserves do not depend on the demand d, or on

procurements made in prior markets.

As is evident from Equation (6), the optimal reserve in the intermediate market is the pin/prt-

th quantile of the complementary cumulative distribution function associated with the random

variable E2. This solution is structurally similar to the the critical fractile solution of the classical

news vendor model (Arrow et al. 1951). This is because, at the time of the intermediate market,

the utility company (having already purchased the quantity qlt) faces a problem similar to the

classical news vendor problem.

Finally, Theorem 1 highlights the need for the following additional assumption in order to avoid

trivial solutions.

Assumption 1. We assume that the demand is large enough that the utility company procures a

positive quantity in the long term market. That is, d− ŵlt + rlt > 0.

This assumption ensures that the optimal procurement problem in the three market has a non-

trivial solution in the following sense: if d− ŵlt−rlt ≤ 0, then the utility company procures q∗lt = 0 in

the long term. In this case, the procurement problem effectively reduces to a two market scenario.

Intuitively, this assumption will hold as long as the demand d exceeds the peak capacity of the

renewable installations, which is of course true in most current practical scenarios. The benefit of

Assumption 1 is that it allows us to rewrite the optimal procurement quantities in three markets

as follows:

q∗lt = d− ŵlt + rlt,
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q∗in = [E1 − rlt + rin]+ , (8)

q∗rt = [E2 − rlt +min{E1, rlt − rin}]+ ,

where we abuse notation to let q∗lt, q
∗
in and q∗rt represent the (random) quantities that are purchased

in the long term, the intermediate, and the real time markets respectively.

4. The impact of increasing renewable penetration

The penetration of renewable energy, in particular of wind energy, is poised for major growth

over the coming years. A consequence of this is that utility companies will face an ever increasing

supply side uncertainty. In this section, we explore the impact of this growth on procurement.

Specifically, we ask: how will the optimal procurement policy change as the volume of intermittent

wind resources increases?

In this section, we introduce a scaling regime for wind penetration, which models the effect of

aggregating the output of several wind generators. A key feature of our scaling model is that it

allows for varying levels of stochastic dependence between the intermittent energy sources being

aggregated. For example, our model lets us study the aggregation of independent sources, as well

as perfectly correlated sources. Based on this scaling model, we study how the optimal reserves,

the amount of conventional generation procured, as well as the cost of procurement scale with

increasing wind penetration. Our analysis yields clean and easy to interpret scaling laws for these

quantities. Remarkably, the scaling laws reveal a decoupling between the impact of the level of

stochastic dependence between different wind sources and the impact of market structure and wind

forecast accuracy.

4.1. Scaling regime

We begin by describing our scaling model for wind penetration. We start with a baseline scenario.

Let us denote by α the average output of a single intermittent generator. For concreteness, we refer

to this as the baseline wind farm in the following. We let Ẽ1 and Ẽ2 be the error random variables

that relate the long term wind estimate ŵlt to the estimate of the wind in the intermediate market

ŵin and the actual wind realization w (see Equation (2)). We assume that in the long term market

there is no better estimate of the wind than the long term average, i.e., ŵlt = α. Note that the

optimal procurement in the baseline scenario (before scaling) can be computed using Theorem 1.

For the remainder of this section, we use r̃lt and r̃in to denote respectively the optimal long term

and the intermediate reserve in the baseline scenario.
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To scale the wind penetration, we introduce a scale parameter γ that is proportional to the

capacity of wind generation. The scale parameter γ may be interpreted as the number of (homoge-

neous) wind farms whose aggregate output is available to the utility company. Thus, the average

wind energy available to the utility company is given by ŵlt(γ) = γα. Clearly, as the capacity of

wind generation scales, the error in the wind forecast available at both the long term and the

intermediate markets will also scale, and this scaling will depend on the correlation between the

generation at each of the wind farms. We use the following simple, but general scaling model.

ŵlt(γ) = γα,

E1(γ) = γθẼ1, (9)

E2(γ) = γθẼ2,

where we let θ ∈ [1/2,1].

To interpret this scaling, consider first the case θ = 1. In this case, E1 = γẼ1 and E2 = γẼ2,

implying that ŵin(γ) and w(γ) scale proportionately with γ. This scaling corresponds to a scenario

where the aggregate wind output with γ wind farms is simply γ times the output of the baseline

wind farm. One would expect such a scaling to occur if the wind farms that are co-located.

The case of θ = 1/2 (with Ẽ1 and Ẽ2 being normally distributed) corresponds to a central limit

theorem scaling, and seeks to capture the scenario where the output of each wind farm is inde-

pendent. Equation (9) captures this scenario exactly if the forecast evolution distributions for each

wind farm follow a Gaussian distribution.6 If not, Equation (9) can be interpreted as an approxi-

mation for large enough γ based on the central limit theorem. Intuitively, one would expect such

a scaling if the different wind farms are geographically far apart.

Finally, the case θ ∈ ( 1
2
,1) seeks to capture correlations that are intermediate between indepen-

dence and perfect correlation (see, for instance Baldovin and Stella (2007), Umarov et al. (2008)).

Note that the forecast error distributions grow slowest when the outputs of different wind farms

are independent, and fastest when the outputs are perfectly correlated.

4.2. Our results

Given the scaling regime described above, we are now ready to characterize the impact of increasing

penetration of intermittent resources on the procurement of conventional generation. First, we

analyze how the optimal reserve levels scale with increasing wind penetration. Next, we use these

results to obtain scaling laws for the procurement quantities in the three markets, and also the

total procurement and the total cost of procurement.

6 This is a common assumption in the literature, see, Heath and Jackson (1994), Wang et al. (2012), Rajagopal et al.
(2012).
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Scaling of reserve levels. The following lemma characterizes the scaling of the optimal reserves

under our wind scaling model. It shows the optimal reserve levels in the long term and intermediate

markets follow the same scaling as imposed on the distributions of the forecast errors.

Lemma 1. Under the scaling regime defined in Equation (9), the optimal long term and interme-

diate reserves scale as:

rlt(γ) = γθr̃lt, rin(γ) = γθr̃in.

Proof. From Theorem 1, given any scale parameter γ, the optimal reserve in the intermediate

market is the unique solution of the equation

rin(γ) = F̄−1
E2(γ)

(
pin
prt

)
.

Using the definition of complementary cumulative distribution function and noting that E2(γ) =

γθẼ2, we get that the optimal intermediate reserve is given by the unique solution of the equation

P
(
γθẼ2 > rin(γ)

)
=

pin
prt

.

It is easy to check that rin(γ) = γθr̃in satisfies the above equation. Similarly, the optimal long term

reserve is the unique solution to the equation

plt − pinP (E1(γ)> rlt(γ)− rin(γ))− prtP (E1(γ)+ E2(γ)> rlt(γ),E1(γ)≤ rlt(γ)− rin(γ)) = 0.

Substituting for rin(γ) = γθr̃in, we note that rlt(γ) = γθr̃lt is a unique solution to the above equa-

tion. �

Scaling of procurement quantities. Using Lemma 1, we can now characterize the optimal pro-

curement amounts in the three markets. As in Section 3, to avoid the trivial solution with zero

long term procurement, we restrict the range of scale parameter γ to satisfy

d> γα− γθr̃lt, (10)

This ensures that the optimal long term procurement, given by

q∗lt(γ) = [d− ŵlt(γ)+ rlt(γ)]+

is strictly positive.7 For the remainder of this section, we focus on the range of scale parameter γ

that satisfies Condition (10). Intuitively speaking, Condition (10) will hold as long as the demand

7 One sufficient θ-independent condition that ensures the inequality is given by γ < d

α+|r̃lt|
. This imposes an upper

bound on the degree of penetration that we consider.
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is larger than the peak wind capacity. Under this assumption, using Equation (8) and Lemma 1, we

get that the optimal procurement quantities in the long term, intermediate, and real time markets

is given by

q∗lt(γ) = d− γα+ γθr̃lt,

q∗in(γ) = γθ
[
Ẽ1 − r̃lt + r̃in

]

+
, (11)

q∗rt(γ) = γθ
[
Ẽ2 − r̃lt +min{Ẽ1, r̃lt − r̃in}

]

+
.

The above equations reveal that as we increase the penetration of wind, the optimal procurement

in the intermediate and the real time markets increases proportionately to γθ. This increasing

procurement in markets closer to real time is a consequence of the increasing uncertainty in the

renewable forecasts. Indeed, note that the procurements in the intermediate and real time markets

scale in exactly the same manner as the forecast error distributions. Therefore, these procurements

scale slowest when outputs of different wind farms are independent, and fastest when the outputs

are perfectly correlated. From the standpoint of the system operator, Equation (11) describes

how the installed capacity of fast ramp conventional generators that can supply energy in the

intermediate and real time markets needs to scale as the capacity of wind generation scales.

Scaling of total procurement and total cost of procurement. As we scale the wind capacity, we

expect that the amount of total conventional energy procured, as well as the cost of procurement

must decrease. The following theorem characterizes the scaling laws for these quantities. Let TP (γ)

and TC(γ) denote respectively the total procurement of conventional energy and the total cost of

procurement, corresponding to scale parameter γ.

Theorem 2. For the range of scale parameter γ satisfying Equation (10), the expected total pro-

curement and the expected total cost are given by

E[TP (γ)] = d−αγ+ δγθ, (12)

E[TC(γ)] = plt(d−αγ)+ δ′γθ, (13)

where, δ≥ 0 and δ′ ≥ 0 are defined as

δ, r̃lt +E

[
Ẽ1 − (r̃lt − r̃in)

]

+
+E

[
Ẽ2 − r̃lt +min{Ẽ1, r̃lt − r̃in}

]

+
,

δ′ , pltr̃lt + pinE
[
Ẽ1 − (r̃lt − r̃in)

]

+
+ prtE

[
Ẽ2 − r̃lt +min{Ẽ1, r̃lt − r̃in}

]

+
.
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The scaling law (12) has the following interpretation. If there was no uncertainty in the wind

generation, i.e., w(γ) = ŵlt(γ) = αγ, then the utility would procure the exact residual demand, i.e.,

d−αγ in the long term market. This is the minimum possible value of expected total procurement.

From (12), we see that on average, the utility has to make an ‘additional procurement’ equal to δγθ

as a result of the uncertainty in the wind generation. The fact that this additional procurement

grows proportionately to γθ highlights the benefit of aggregating independent wind sources. Specif-

ically, if θ= 1, i.e., the wind farms are co-located, then the additional procurement is of the same

order as the wind capacity. On the other hand, if θ = 1/2, i.e., the wind farms are geographically

far apart, then the additional procurement grows much slower than the wind capacity.

The scaling law (13) has a similar interpretation. Note that plt(d−γα) is the minimum possible

value of expected cost of procurement for the utility company; this would be the case if there was

no uncertainty in the wind generation. From (13), we see that on average, the utility incurs an

‘additional cost’ equal to δ′γθ as a result of the uncertainty in the wind generation. Once again,

we see the benefit of aggregating independent wind sources. Thus, intuitively speaking, a utility

company would benefit from signing long contracts with wind generators that are as geographically

spread out as possible.

The structure of the scaling laws (12) and (13) also reveals an interesting separation between

the impact of the level of stochastic dependence between different wind sources and the impact of

market structure and wind forecast accuracy. To see this, consider the ‘additional procurement’ δγθ

in Equation (12) and the ‘additional cost’ δ′γθ in Equation (13). The factor γθ is purely dependent

upon the volume of wind capacity and the stochastic dependence between the outputs of the dif-

ferent wind farms. On the other hand, the factors δ and δ′ depend on only the price of conventional

energy in the three markets, and the baseline forecast error distributions. In other words, δ and δ′

are invariant with respect to the aggregation of wind sources. As we discuss in the next section,

this separation has interesting consequences for market design.

We now present the proof of Theorem 2, which follows easily from Lemma 1 and Theorem 1.

Proof of Theorem 2. The expected total procurement and the expected total cost follow triv-

ially from Equation (11). To prove that δ ≥ 0, we note that the optimization problem P requires

that the total procurement exceed d−w(γ) for every realization of wind w. Thus, the expected

total procurement must satisfy

E[TP (γ)]≥ d− γα,

where we use the fact that the expected value of w(γ) is γα. From Equation (12), we get that δ≥ 0.

Finally, note that δ′ can be written as

δ′ = pltδ+(pin−plt)E [E1(1)− (rlt(1)− rin(1))]++(prt−plt)E [E2(1)− rlt(1)+min{E1(1), rlt(1)− rin(1)}]+ .
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Since the prices satisfy 0< plt < pin < prt and δ≥ 0, we get that δ′ ≥ 0. This proves the theorem. �

5. The optimal placement of the intermediate market

In current electricity markets, intermediate markets take place about 14 hours before t= 0 (these

markets are called day ahead or forward markets) (CAISO 2011). Because the demand can be

predicted reasonably accurately at that time, this allows the utility company to procure most of

their generation much before the time of use. However, accurate prediction of wind in the current

day ahead markets is not feasible. Thus, it is commonly suggested that as the penetration of wind

increases, the system operator may decide to move the intermediate market closer to real time to

allow for better prediction of the wind. In this section, we consider the optimal placement of the

intermediate market and study how this optimal placement changes as we increase the penetration

of wind energy.

Recall that, in our model, the intermediate market takes place Tin time units prior to the time

of use (i.e. t= 0). If the system operator were to move this intermediate market closer to real time,

this would imply better estimates of available wind at that time. However, in moving the market

closer to real time, the procured conventional generation must come from generators that have

faster ramp up times. These generators are typically more expensive and hence we would expect

that the price of the conventional generation in the intermediate market would increase as we move

the market closer to real time. We define the optimal placement of the intermediate market as the

one that minimizes the average total procurement cost. Note that this optimal placement would

balance an improving forecast of the wind generation moving closer to real time with an increasing

price of conventional energy.

The optimal placement is clearly a function of how the forecast errors E1 and E2 change as the

function of the intermediate market time Tin. It also depends on how the price of the conventional

generation in the intermediate market pin changes as the Tin changes. Let us denote by T ∗
in the

optimal placement of the intermediate market that minimizes the expected total cost of procuring

conventional generation (note that the market itself would be at time −T ∗
in).

One question of interest from the system operator viewpoint is how does the optimal placement

of the intermediate market change as we increase the penetration of wind energy? The answer

to this question has significant implications for future market design. Remarkably, based on the

scaling regime developed in the previous section, the following theorem tells us that the optimal

placement does not depend upon the scale parameter γ or the aggregation parameter θ.
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Theorem 3. For the wind scaling satisfying Equation (10), over the range of γ satisfying Condi-

tion (10), the optimal placement of the intermediate market is independent of the scale parameter γ

and the correlation parameter θ.

Proof. From Theorem 2, we note that the expected total cost of procurement is given by

E[TC(γ)] = plt(d−αγ)+ δ′γθ.

Furthermore, the effect of placement is only on the parameter δ′ (via the distributions Ẽ1, Ẽ2

and pin) which is independent of γ and θ. Thus, the optimal placement is independent of scale

parameter γ and the aggregation parameter θ. �

Theorem 3 has important implications for market design. It says that the optimal intermediate

market placement can be decided independently of how many wind farms are there in the system,

and how correlated their outputs are. Thus, the system operator can keep the placement of this

market fixed as more and more wind energy is incorporated into the system.

6. The value of additional forward markets

One of the key objectives of this paper is to study the impact of increased renewable penetration

on the structure of electricity markets. As seen in the previous section, the optimal placement

of the intermediate market is independent of the amount of wind present in the system. In this

section, we look at another important market design question: can we facilitate the penetration of

renewable energy by providing additional forward markets? It is commonly suggested that having

additional markets would be beneficial, since this allows the utility to better exploit the evolution

of the wind forecast. Indeed, the intuition is true in terms of procurement cost – having additional

forward markets benefits the utility company (and thus the end consumer) by lowering the average

cost of conventional energy procurement.

However, minimizing cost is not the only goal. Another important question is if additional

forward markets also lower the total amount of conventional energy that a utility company needs

to procure. From the environmental viewpoint, this is an extremely relevant question; reducing

conventional energy use is one of the key driving factors for the renewable portfolio standards.

Indeed, one would desire that the policy decision of adding a forward market for conventional

energy increases the efficiency of the available renewable sources by decreasing our consumption

of conventional generation.

In order to address the impact of additional markets on total procurement, we study the effect

of the addition of a single intermediate (forward) market on the (average) total conventional pro-

curement. Specifically, we compare the average total procurement under the three market scenario
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with the average total procurement under a scenario where there is no intermediate market. Let

us denote the average total procurement under the three market scenario by TPl,i,r, and let TPl,r

represent the total procurement under the scenario with no intermediate market.

Intuitively, one expects that the addition of an intermediate market helps utility companies

exploit the refined wind estimate to better match its residual demand with the overall conventional

procurement. This would suggest that E[TPl,i,r] < E[TPl,r]; in other words, the addition of an

intermediate market helps reduce total procurement. However, as the lemma below suggests, this

intuition is not always correct. In fact, for some forecast evolution models and price structures, the

addition of an intermediate forward market actually increases the average total procurement. This

result is summarized in the Lemma below (the proof is provided in the Appendix).

Lemma 2. If the distribution of E2 has infinite support on the left (i.e., L2 =−∞), and

lim
x→−∞

fE2(x)

FE2(x)
= 0, (14)

then, there exist values of demand d and prices satisfying 0< plt < pin < prt such that

E[TPl,i,r]>E[TPl,r].

This lemma provides a counter example to the commonly held assumption that adding forward

markets is always beneficial both from the cost and procurement viewpoints. It is important to note

that the condition given in Equation (14) depends on the probability that the random variable E2

takes large negative values. Recall from Equation (2) that E2 = ŵin−w; in other words the condition

in the lemma looks at the probability that the wind forecast at the intermediate time ŵin severely

underestimates the actual wind generation.

We can interpret the condition in Equation (14) as a hazard rate condition. Note that if the

distribution of E2 is symmetric, then the condition can be rewritten as

lim
x→∞

fE2(x)

F̄E2(x)
= 0.

The quantity in the above equation is the conventionally defined hazard rate function. Condition

(14) states that the distribution of E2 is long-tailed to the left (Goldie and Klüppelberg 1998,

Sigman 1999). Long-tailed distributions are an important sub-class of the class of heavy-tailed

distributions, and are typically used to model phenomenon in which extreme values occur with a

non-negligible probability. Examples of long-tailed distributions include distributions with power-

law tails. Therefore, Lemma 2 can be interpreted informally as follows. If the wind estimate at
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the point of additional markets can significantly underestimate the wind generation w with a

non-negligible probability, then the average total procurement may increase with the additional

market.

Lemma 2 highlights the importance of building better wind prediction models and understand-

ing the distributions of wind prediction errors. The lemma also suggests that, if the probability

that the wind forecast severely underestimates the actual available wind is small, then adding an

intermediate might reduce the average total procurement. The following theorem formalizes this

intuition by giving a sufficient condition for this to occur.

Theorem 4. Suppose that the distribution of E2 satisfies the following properties:

(i) fE2(x) is non-decreasing for x< 0 and non-increasing for x> 0,

(ii)
fE2

(x)

FE2
(x)

is strictly decreasing over x∈ (L2,0),

(iii)
f ′
E2

(x)

fE2
(x)

is non-increasing over x∈ (L2,0).

Then, under Assumption 1, E[TPl,i,r]<E[TPl,r].

Theorem 4 highlights that there are a broad set of forecast error distributions for which the

introduction of an intermediate market will lower the average total procurement. These are defined

via three conditions. The first condition simply states that the density function fE2 is unimodal

at x= 0, i.e., it has its maximum at x= 0, and is monotone over x < 0 and x > 0. The last two

conditions are concerned with the behavior of the distribution of E2 when E2 ≤ 0, i.e., when ŵin

under estimates the actual wind generation w. Condition (ii) is in contrast with the condition in

Lemma 2; it requires that the hazard rate of the left tail of E2 be strictly decreasing. This implies

that E2 is light-tailed to the left. The conditions of Theorem 4 are satisfied by many common

distributions, such as the zero mean Gaussian distribution and the zero mean uniform distribution.

7. Related literature

There are two distinct streams of literature related to the current problem.

The first stream of literature is that related to the classic newsvendor problem (Porteus 2002,

Khouja 1999). Our optimal procurement formulation (P ) is mathematically equivalent to a variant

of the newsvendor problem. Indeed, by substituting demand by the residual demand, i.e., demand

minus wind (thereby shifting the uncertainty from the supply side to the demand side) and inter-

preting the real time price as a shortfall penalty, the optimization (P ) reduces to single period

newsvendor problem in which procurements can be made at two different lead times. See Silver

et al. (1998) for a survey of the literature relating to such variations of the newsvendor problem. In

this space, the formulation in Wang et al. (2012) is closest to that in the current paper. However,
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in contrast to this body of work, the focus of the current paper is to understand the impact on

electricity markets of the increasing supply side uncertainty induced by an increasing penetration

of renewable resources. To the best of our knowledge, an effort to understand the effect of “scal-

ing up the uncertainty” has not been attempted in the literature pertaining to the newsvendor

problem.

The second stream of literature related to the current paper is work studying the introduction

of intermittent renewable sources to electricity markets. Recently, there has been considerable

research in this direction, for example, Meyn et al. (2010), Varaiya et al. (2011), Bitar et al. (2011),

Rajagopal et al. (2012). Of particular note is the work in Meyn et al. (2010), which studies an

electricity market equilibrium in the presence of wind generation, and the work in Bitar et al.

(2011) and Cai et al. (2011), which analyzes the optimal bidding strategies for wind producers in

the real time market. Kim and Powell (2011) study energy commitments made by wind producers

in presence of electrical storage, while Korpaas et al. (2003) studies scheduling and operation of

storage for wind power producers in electricity markets. The setting considered in this paper, in

which the utility contracts on a long term basis the output of wind farms is also studied in Varaiya

et al. (2011), Rajagopal et al. (2012). These papers also study optimal procurement strategies for

the utility. In fact, the formulation (P ) in this paper is a special case of that in Varaiya et al. (2011).

However, these papers focus primarily on the solving of the ‘static’ optimal procurement problem

using techniques within framework of Markov decision processes. In contrast, the current paper

focuses on the impact of increasing wind penetration and market structure (i.e., placement and

inclusion/exclusion of markets). Additionally, the work in Varaiya et al. (2011), Rajagopal et al.

(2012) focuses on numerical solutions for the optimal procurement while the current paper focuses

on deriving closed form, interpretable, expressions for procurement that highlight the impact of

the market structure.

8. Concluding remarks

Our goal in this paper is to quantify the impact of increasing penetration of intermittent, unpre-

dictable, renewable energy on (i) the procurement of conventional generation by utilities, and (ii)

the structure and efficiency of electricity markets. To accomplish this, we consider a three tiered

model of electricity markets. Within this context, we derive the optimal strategy for procurement

of conventional generation and analyze the changes to this strategy as the penetration of renewable

increases. Additionally, we study the impact of increasing renewable penetration on the value and

the placement of an intermediate electricity market.
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The main messages that follow from our results are the following. First, as is commonly rec-

ognized, reducing the dependence between the renewable sources (by locating different renewable

sources geographically far apart) is key to ensuring efficient utilization of renewable generation.

More surprisingly, it turns out that the optimal placement of the intermediate market does not

change as renewable penetration increases. Further, the impact of the intermediate market on the

total procurement can be either positive or negative depending on the the distribution of forecast

errors. The results in this paper highlight that there are many important, and counterintuitive

issues with respect to the incorporation of renewable generation into electricity markets.

This work extends easily along several directions. The model in our work can be easily extended

to allow for an arbitrary number of forward markets for conventional energy procurement. Another

extension that can be easily incorporated in our model is to allow utility companies to sell excess

conventional generation in forward markets (as in Rajagopal et al. (2012)). In our model, we

assumed that the exact realized wind energy is known at the time of the real time market. This

assumption can also be relaxed by introducing a third distribution that reflects the error between

wind forecasts in the real time market and the actual realized wind (as in Rajagopal et al. (2012)).

The results presented in this paper can be easily generalized to this setting under the requirement

that the utility company maintains a certain loss of load probability at the time of the real time

market. There are, however, some non-trivial extensions to this model which are interesting oppor-

tunities for future research. One such extension is to understand the role of large quantities of grid

energy storage on the optimal procurement policy of utility companies. Another extension of inter-

est is to take into account ramp constraints of various generators, which would couple procurement

decisions between different time instants.

More generally, the big question for the area is how and where renewables should be allowed

to interact with electricity markets. The setting considered here is one extreme, where renewable

energy only interacts through long-term contracts. The other extreme, where renewable energy

interacts only in the real time market, is also studied in recent work. Hopefully, building on these

results, we can move toward a unified approach highlighting the most efficient manner for renewable

energy to interact with the electricity markets.

Appendix A: Proof of Theorem 1.

To compute the optimal procurement strategy, we first look at the decision in the real time. Recall

that the optimal procurement in real time is a function of the actual available wind as well as the

total conventional energy procured until that time. Let qlt and qin be the quantities procured in
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long term and intermediate markets respectively. Note that the utility company needs to satisfy

the demand. Thus, the optimal strategy in real time is to procure enough conventional energy

to exactly meet the demand, i.e., q∗rt = [d−w− qlt − qin]+. This real time procurement strategy

ensures that the last constraint in the optimization problem is always satisfied.

Having decided the optimal strategy for real time, the optimization problem (P ) can now be

re-written as

min
qlt,qin

E
[
pltqlt + pinqin + prt [d−w− qlt − qin]+

]

subject to qlt ≥ 0, qin ≥ 0.

This problem is a 3-stage Markov decision process (Bertsekas 2007), with the stages correspond-

ing to the long term, intermediate, and real time markets. The state in each market is the tuple

consisting of (i) the current wind estimate, and (ii) the total conventional generation procured so

far. The action at each time corresponds to the procurement decisions at that time and the stage

cost is the cost of that procurement. We summarize the Markov decision process associated with

the optimal procurement problem in the table below.

Stage 1 Stage 2 terminal stage
state (ŵlt,0) (ŵin, qlt) (w,qlt + qin)
action qlt qin
disturbance E1 E2

stage cost pltqlt pinqin prt [d−w− qlt − qin]+

We can now compute the optimal procurement strategy for the intermediate and the long term

markets using the dynamic programing algorithm Bertsekas (2007). In the intermediate market,

the optimal procurement strategy is the minimizer of the expected cost to go; it is therefore the

solution to the following optimization problem

min
qin≥0

pinqin +EE2

{
prt [d−w− qlt − qin]+

}
. (15)

Using Equation (2) to write w = ŵin −E2 and making the substitution qin = d− qlt − ŵin + r, we

can write the objective function in the above minimization problem as

ξ(r) = pin(d− qlt − ŵin + r)+ prtEE2 [E2 − r]+ .

Here, we can think of r as the additional reserve required in the intermediate market. By direct

differentiation, we get that

ξ′(r) = pin − prtF̄E2(r).
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Since ξ′(r) is non-decreasing, ξ(·) is convex. Moreover, rin ∈ (L2,R2) is the unique minimizer of ξ(·)

over R. It is now easy to see that minimization (15) is convex, and that the optimal procurement

in the intermediate market is given by (4).

The optimal cost to go from the intermediate stage onwards is given by

J∗
2 (ŵin, qlt) = pin [d− ŵin − qlt + rin]+ +EE2

{
prt

[
d− (ŵin −E2)− qlt − [d− ŵin − qlt + rin]+

]
+

}
.

(16)

In the long term market, the optimal procurement is the solution to the following optimization.

min
qlt≥0

pltqlt +EE1J
∗
2 (ŵin, qlt). (17)

Using Equation (2) to write ŵin = ŵlt − E1 and substituting Equation (16), we can write the

objective function in the above minimization problem as

J(qlt, ŵlt) = pltqlt +EE1

{
pin [d− (ŵlt −E1)− qlt + rin]++

EE2

{
prt

[
d− (ŵlt −E1 −E2)− qlt − [d− (ŵlt −E1)− qlt + rin]+

]
+

}}

We make the substitution qlt = d− ŵlt + r, with the interpretation that r is the additional reserve

in the long term. We can now write the objective function as

ϕ(r) = plt(d− ŵlt + r)+ pinE [E1 − (r− rin)]+ + prtE
[
E1 + E2 − r− [E1 − (r− rin)]+

]
+

= plt(d− ŵlt + r)+ pinE [E1 − (r− rin)]+ + prtE [E2 − r+min{E1, r− rin}]+

= plt(d− ŵlt + r)+ pin

∫ ∞

r−rin

(y− (r− rin))fE1(y)dy

+ prt

(
F̄E1(r− rin)

∫ ∞

rin

(z− rin)fE2(z)dz+

∫ ∞

z=r

∫ r−rin

y=−∞

(z− r)fE1(y)fE2(z− y)dzdy

)
.

Recall that the random variables E1 and E2 are defined over the support (L1,R1) and (L2,R2)

respectively. Here, we interpret the density function to be zero outside the support of the random

variables, if the support is finite.

Differentiating the above objective function yields

ϕ′(r) = plt − pinF̄E1(r− rin)− plt

∫ ∞

z=r

∫ r−rin

y=−∞

fE1(y)fE2(z− y)dzdy

= h(r),

where h(r) is defined in Equation (7). We have

ϕ′′(r) = h′(r) = fE1(r− rin)(pin − prtF̄E2(rin))+ prt

∫ r−rin

−∞

fE1(y)fE2(r− y)dy
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= prt

∫ ∞

rin

fE1(r− z)fE2(z)dz.

Since ϕ′′(·) is non-negative, ϕ(·) is convex. Since fEi(x)> 0 over x∈ (Li,Ri), it follows that ϕ
′′(r)> 0

for r ∈ (L1 + rin,R1 +R2), and that ϕ′′(r) = 0 for all r < L1 + rin and r > R1 +R2. This implies

that ϕ′(r) is strictly increasing over the range r ∈ (L1 + rin,R1 +R2). Note that

lim
r→−∞

ϕ′(r) = plt − pin < 0,

and

lim
r→∞

ϕ′(r) = plt > 0.

It therefore follows that the equation ϕ′(r) = 0 has a unique solution rlt ∈ (L1+rin,R1+R2). More-

over, rlt is the unique minimizer of ϕ(·) over R. Finally, it follows as before that the optimization

(17) is convex, and that the optimal procurement in the long term market is given by (3). �

Appendix B: Proofs of Theorem 4 and Lemma 2

In this section, we prove Theorem 4 and Lemma 2. We first characterize the optimal procurement

policy with no intermediate market in Section B.1. We then prove some preliminary lemmas in

Section B.2. In Section B.3 we prove Theorem 4. Finally, we prove Lemma 2 in Section B.4.

B.1. Optimal procurement policy with only long term and real time markets

In this section, we analyze the optimal procurement strategy for the utility company when there

is no intermediate market. Formally, this problem can be stated as follows.

min
qlt,qrt

E [pltqlt + prtqrt] (P̃ )

subject to qlt ≥ 0, qrt ≥ 0

qlt + qrt +w≥ d.

Recall that in the above formulation, qlt and qrt are functions that depend on the corresponding

wind estimate and the total quantities procured so far. The following lemma characterizes the

optimal procurement policy for this case.

Lemma 3. The optimal procurement strategy for the utility company in the two tier market scenario

given in problem (P̃ ) is:

q∗lt = [d− ŵlt + r̄lt]+ , (18)

q∗rt = [d− qlt −w]+ , (19)

where

r̄lt := F̄−1
E1+E2

(
plt
prt

)
. (20)

The lemma can be proved easily along the same lines as Theorem 1 and the proof is omitted.
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B.2. Preliminary lemmas

In the next two lemmas, we study the sensitivity of the optimal reserves and procurement with

respect to the intermediate price pin. For the remainder of this section, we keep the distributions

E1 and E2, as well as prices the plt and prt fixed. Before we proceed, we introduce the following

additional notation. We define

r̄in = F̄−1
E2

(
plt
prt

)
. (21)

We can think of r̄in as the optimal reserve in a two market scenario, where the long term market

occurs at the time −Tin.

Lemma 4. For the optimal procurement problem (P ), the following results hold.

1. The intermediate reserve rin is a strictly decreasing function of the intermediate price pin with

∂rin
∂pin

=−
1

prtfE2(rin)
. (22)

Furthermore,

lim
pin↓plt

rin = r̄in (23)

lim
pin↑prt

rin = L2. (24)

2. The long term reserve rlt is a non-decreasing function of the intermediate price pin with

∂rlt
∂pin

=
F̄E1(rlt − rin)

prt
∫ rlt−rin

−∞
fE1(y)fE2(rlt − y)dy

. (25)

Furthermore,

lim
pin↓plt

rlt = L1 + r̄in, (26)

lim
pin↑prt

rlt = r̄lt := F̄−1
E1+E2

(
plt
prt

)
(27)

Proof. Equations (22) and (25) follow from an application of the implicit function theorem

(Rudin 1976). Equations (23) and (24) follow easily from (6) and noting that fact that the random

variable E2 is defined over the support (L2,R2).

Note that rlt is a monotone function of the intermediate price plt. Hence, as pin ↓ plt or pin ↑ prt,

the long term reserve rlt has a limit. To prove Equation (26), suppose that as pin ↓ plt, rlt → řlt.

From Equation (7), (by taking the limit pin ↓ plt), we note that řlt is a solution of the equation

ϕ(r) := plt − pltF̄E1(r− r̄in)− prt

∫ ∞

z=r

∫ r−r̄in

y=−∞

fE1(y)fE2(z− y)dzdy= 0.

It is easy to check that
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1. ϕ(r) = 0 for r≤L1 + r̄in,

2. For r ∈ (L1 + r̄in,R1 +R2), we have

ϕ′(r) = prt

∫ ∞

rin

fE1(r− z)fE2(z)dz > 0,

3. For r >R1 +R2, ϕ
′(r) = 0.

Thus we conclude that ϕ(r)> 0 for r > L1 + r̄in, which implies that řlt ≤L1 + r̄in. However, for

any pin ∈ (plt, prt), we have rlt >L1+rin, which implies that řlt ≥L1+ r̄in. Therefore, řlt =L1+ r̄in,

which proves Equation (26).

To prove Equation (27), suppose that as pin ↑ prt, rlt → r̂lt. Taking the limit as pin ↑ prt in

Equation (7), we conclude that r̂lt satisfies

plt − prtP (E1 > r̂lt −L2)− prtP (E1 + E2 > r̂lt;E1 ≤ r̂lt −L2) = 0

Define A to be the event that {E1+E2 > r̂lt} and B to be the event that {E1 > r̂lt−L2}. Using the

fact that P (A∩Bc)+P (B) = P (A∪B), we get that r̂lt satisfies the equation

plt − prtP ({E1 + E2 > r̂lt}∪ {E1 > r̂lt −L2}) = 0.

Note that the random variable E2 ∈ (L2,R2) and hence the event {E1 > r̂lt −L2} implies the event

{E1 + E2 > r̂lt} almost surely. Thus, the long term reserve r̂lt satisfies the equation

plt − prtP (E1 + E2 > r̂lt) = 0,

which implies Equation (27). This proves the lemma. �.

The next lemma studies how the total procurement changes as a function of the intermediate

price plt. Recall that E[TPl,i,r] and E[TPl,r] are the expected total procurement under the three

market scenario (long term, intermediate, and real time) as well as under the two markets (long

term and real time) respectively. For the remainder of this section, we introduce some additional

notation. We let q∗lt;l,i,r, q
∗
in;l,i,r, and q∗rt;l,i,r to the optimal procurement quantities in the long term,

intermediate, and the real time market under the scenario that the utility company has three

opportunities to procure energy. These optimal quantities are given in Theorem 1. Similarly, we

let q∗lt;l,r and q∗rt;l,r to be the optimal quantities in the long term and in the real time under the

scenario where there is no intermediate market. These quantities are given by the Lemma 3. We

have the following lemma.



27

Lemma 5. As the intermediate price pin approaches the real time price prt, the expected total

procurement in three market scenario converges to the expected total procurement in the two market

scenario. That is,

lim
pin↑prt

E[TPl,i,r] =E[TPl,r].

Proof. We prove this lemma using a sample path argument. A sample path is defined by the

values of ŵlt, E1, and E2. We will show that as pin ↑ prt,

q∗lt;l,i,r + q∗in;l,i,r + q∗rt;l,i,r −→ q∗lt;l,r + q∗rt;l,r (28)

almost surely. An elementary application of the dominated convergence theorem would then prove

the lemma.

From Theorem 1, Lemma 4, and Lemma 3, it is easy to show that as pin ↑ prt, we have

q∗lt;l,i,r −→ q∗lt;l,r (29)

almost surely. Thus, to prove (28), it suffices to show that

q∗in;l,i,r + q∗rt;l,i,r −→ q∗rt;l,r, (30)

almost surely as pin ↑ prt. Recall that q
∗
rt;l,r =

[
d−w− q∗lt;l,r

]
+
From Lemma 4 and Equation (29),

we conclude that as pin ↑ prt. we have

q∗in;l,i,r −→
[
d− ŵin − q∗lt;l,r +L2

]
+
,

q∗rt;l,i,r −→
[
d−w− q∗lt;l,r − [d− ŵin +L2]+

]
+
.

(31)

To see that Equation (31) implies (30), we consider the following two cases. On sample paths

satisfying d< ŵin + q∗lt;l,r −L2, we have

q∗in;l,i,r
pin↑prt−→ 0, q∗rt;l,i,r

pin↑prt−→
[
d−w− q∗lt;l,r

]
+
,

which implies Equation (30). On sample paths satisfying d≥ ŵin + q∗lt;l,r −L2, we have

q∗in;l,i,r
pin↑prt−→ d− ŵin − q∗lt;l,r +L2, q∗rt;l,i,r

pin↑prt−→ [E2 −L2]+ .

Noting that E2 ≥L2 almost surely, we conclude that except possibly on a measure zero set of sample

paths, we have

q∗in;l,i,r + q∗rt;l,i,r
pin↑prt−→ (d− ŵin − q∗lt;l,r +L2)+ (E2 −L2) = d−w− q∗lt;l,r.

Since the procurements are always non-negative, the above equation implies Equation (30). This

completes the proof. �
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The above lemma states that the (optimal) total procurement in the three market scenario

converges to that in the two market scenario (with only the long term and real time markets) as

pin ↑ prt.. Before we proceed further, we present an additional technical lemma.

Lemma 6. Suppose that the distribution of E2 satisfies the following properties:

(i) fE2(x) is non-decreasing for x< 0 and non-increasing for x> 0,

(ii)
fE2

(x)

FE2
(x)

is strictly decreasing over x∈ (L2,0),

(iii)
f ′
E2

(x)

fE2
(x)

is non-increasing over x∈ (L2,0).

Then (
prt − plt
prt − pin

)
fE2(rin)>

∫ rlt−rin

−∞

fE1(y)fE2(rlt − y)dy+ F̄E1(rlt − rin)fE2(rin). (32)

Proof. For this proof, we use the notation β := F̄E2(0). Let us also denote by L(pin) and R(pin)

the left hand side and the right hand side of the Inequality (32) respectively. To prove the lemma,

we need to show that L(pin)>R(pin) for all values of pin ∈ (plt, prt). Let us consider two separate

cases.

Case 1: plt <βprt.

Consider first the case pin ∈ (plt, βprt]. For this case, we have pin/prt ≤ β and hence from Equa-

tion (6), we have that rin ≥ 0. Using a change of variables, we can write R(pin) as

R(pin) =

∫ ∞

rin

fE1(rlt − y)fE2(y) dy+ F̄E1(rlt − rin)fE2(rin).

Note that fE2(x) is non increasing for all x> 0 and rin ≥ 0. Thus, for all y≥ rin, we have fE2(rin)≥

fE2(y). Thus, we can write R(pin) as

R(pin)≤ fE2(rin)

∫ ∞

rin

fE1(rlt − y) dy+ F̄E1(rlt − rin)fE2(rin),

= fE2(rin),

< L(pin),

where the last inequality follows from that fact that plt < pin. Next consider the case where pin ∈

(βprt, prt). From Equation (6), we have that rin < 0. Furthermore, from the conditions of the lemma,

we have that fE2(y)≤ fE2(0) for all y ∈R. Thus, we can write

R(pin) =

∫ ∞

rin

fE1(rlt − y)fE2(y) dy+ F̄E1(rlt − rin)fE2(rin),

≤ fE2(0)

∫ ∞

rin

fE1(rlt − y) dy+ F̄E1(rlt − rin)fE2(0),

≤ fE2(0). (33)
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Let us now look at L(pin). We will construct a lower bound for L(pin) for pin ∈ (βprt, prt). Note

that F̄E2(rin) = pin/prt and hence we can write L(pin) as

L(pin) =

(
prt − plt

prt

)
fE2(rin)

FE2(rin)
.

Recall that for pin ∈ (βprt, prt), we have rin < 0. Furthermore from Lemma 4, rin is strictly decreas-

ing function of pin. From the statement of the lemma, fE2(x)/FE2(x) is a strictly decreasing function

for all x≤ 0. Hence, L(pin) is strictly increasing over pin ∈ (βprt, prt). Thus, we have

L(pin)>L(βprt),

=

(
prt − plt
prt −βprt

)
fE2(0),

where the last equality follows since rin = 0 when pin = βprt. Since plt <βprt, the term in the paren-

theses in the above equation is greater than one. Hence L(pin)> fE2(0) and from Equation (33), it

follows that L(pin)>R(pin). This proves Case 1.

Case 2: plt ≥ βprt.

In this case, we note that pin/prt > β and hence from Equation (6), we get that rin < 0. Using

the argument similar to Case 1, it is easy to verify that L(pin) is a strictly increasing function for

pin ∈ (plt, prt). Thus, we have

L(pin)> lim
pin↓plt

L(pin),

= fE2(r̄in),

where we use the fact that as pin ↓ plt, rin → r̄in (Lemma 4). Thus, to prove the lemma for this

case, it suffices to show that R(pin)≤ fE2(r̄in). From Lemma 4, we note that limpin↓plt
rlt− rin =L1

and hence

lim
pin↓plt

R(pin) = fE2(r̄in).

Thus, to prove the lemma, it suffices to show that R(pin) is non-increasing over the range pin ∈

(plt, prt). To show this, we note that

∂R(pin)

∂pin
=

∂

∂pin

(∫ rlt−rin

−∞

fE1(y)fE2(rlt − y)dy+ F̄E1(rlt − rin)fE2(rin)

)
,

=
∂rlt
∂rin

∫ rlt−rin

−∞

fE1(y)f
′
E2
(rlt − y)dy+

∂rin
∂pin

F̄E1(rlt − rin)f
′
E2
(rin),

=
F̄E1(rlt − rin)

prt

[∫ rlt−rin

−∞
fE1(y)f

′
E2
(rlt − y)dy

∫ rlt−rin

−∞
fE1(y)fE2(rlt − y)dy

−
f ′
E2
(rin)

fE2(rin)

]
,
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=
F̄E1(rlt − rin)

prt

[∫∞

rin
fE1(rlt − y)f ′

E2
(y)dy

∫∞

rin
fE1(rlt − y)fE2(y)dy

−
f ′
E2
(rin)

fE2(rin)

]
. (34)

Here the third equality follows from Lemma 4 and the last equality follows from a change of

variable. We will show that ∂R(pin)

∂pin
≤ 0 by considering the following two separate cases.

Case 2a: Consider the case ∫ 0

rin

fE1(rlt − y)fE2(y)dy= 0. (35)

Recall that the density functions fE1(·) and fE2(·) are assumed to be strictly positive over the

interior of the supports of E1 and E2 respectively. Therefore, the condition (35) implies that the

intersection of the supports of the functions fE2(y) and fE1(rlt − y) and [rin,0] has measure zero.

This implies that ∫ 0

rin

fE1(rlt − y)f ′
E2
(y)dy= 0. (36)

Using (35) and (36), the expression for ∂R(pin)

∂pin
in (34) can be rewritten as

∂R(pin)

∂pin
=

F̄E1(rlt − rin)

prt

[∫∞

0
fE1(rlt − y)f ′

E2
(y)dy∫∞

0
fE1(rlt − y)fE2(y)dy

−
f ′
E2
(rin)

fE2(rin)

]
≤ 0.

The inequality above follows from the assumption that f ′
E2
(x)≤ 0 for x≥ 0.

Case 2b: We now consider the case

∫ 0

rin

fE1(rlt − y)fE2(y)dy > 0.

Since f ′
E2
(x)≤ 0 for x≥ 0,

∫ ∞

rin

fE1(rlt − y)f ′
E2
(y)dy≤

∫ 0

rin

fE1(rlt − y)f ′
E2
(y)dy.

Therefore, the expression for ∂R(pin)

∂pin
in (34) can be bounded above as follows.

∂R(pin)

∂pin
≤

F̄E1(rlt − rin)

prt

[∫ 0

rin
fE1(rlt − y)f ′

E2
(y)dy

∫ 0

rin
fE1(rlt − y)fE2(y)dy

−
f ′
E2
(rin)

fE2(rin)

]
.

Define

p(y) =
fE1(rlt − y)

∫ 0

rin
fE1(rlt − y) dy

,

ξ(y) =
f ′
E2
(y)

fE2(y)
, and

ϕ(y) = fE2(y).
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Note that p(y) is a valid probability density function defined over the interval (rin,0). We can then

write
∂R(pin)

∂pin
=

F̄E1(rlt − rin)

prt

[∫ 0

rin
p(y)ξ(y)ϕ(y)dy

∫ 0

rin
p(y)ϕ(y)dy

−
f ′
E2
(rin)

fE2(rin)

]

Using Lemma 7, we get

∂R(pin)

∂pin
≤

F̄E1(rlt − rin)

prt

[∫ 0

rin

p(y)
f ′
E2
(y)

fE2(y)
dy−

f ′
E2
(rin)

fE2(rin)

]
,

≤ 0,

where the last inequality follows from the fact that f ′
E2
(y)/fE2(y) is non-increasing over the range

y ∈ (rin,0).

We have now proved that R(pin) is non-increasing over the range pin ∈ (plt, prt). This completes

the proof of Case 2. �

The above lemma uses the following technical lemma.

Lemma 7. Let [a, b] denote an interval on the real line. Suppose that ξ : [a, b]→R is non-increasing,

and ϕ : [a, b]→R is non-decreasing. Also, suppose that p(·) is a probability density function defined

over the interval [a, b]. Then
∫ b

a

p(y)ξ(y)ϕ(y) dy≤

[∫ b

a

p(y)ξ(y) dy

][∫ b

a

p(y)ϕ(y) dy

]
.

To prove the above lemma, we look at the discrete version of the above inequality. The above

lemma then follows naturally by taking a limit of Reimann sums.

Lemma 8. Consider finite sequences {ξi}
n
i=1, {ϕi}

n
i=1, and {pi}

n
i=1, satisfying

1. ϕi is non-decreasing,

2. ξi is non-increasing,

3. pi ≥ 0,
∑n

i=1 pi = 1.

Then
∑

i

piξiϕi ≤

[
∑

i

piξi

][
∑

i

piϕi

]

.

Proof. We can write the right hand side of the above inequality as
[
∑

i

piξi

][
∑

i

piϕi

]
=
∑

i

p2i ξiϕi +
∑

i,j:i6=j

pipjξiϕj.

Thus to prove the lemma, it suffices to show that

∑

i

piξiϕi ≤
∑

i

p2i ξiϕi +
∑

i,j:i6=j

pipjξiϕj,
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which is equivalent to proving that

∑

i

pi(1− pi)ξiϕi ≤
∑

i,j:i6=j

pipjξiϕj.

Note that (1− pi) =
∑

j 6=i
pj and hence the above inequality is equivalent to

∑

i,j:j 6=i

pipjξiϕi ≤
∑

i,j:i6=j

pipjξiϕj.

To prove the last inequality above, it suffices to check that for i 6= j, ξiϕi+ ξjϕj ≤ ξiϕj + ξjϕi. This

inequality is equivalent to checking that for i 6= j, (ξi − ξj)(ϕi − ϕj) ≤ 0 which follows from the

monotonicity assumption on the sequences {ξi}
n
i=1, {ϕi}

n
i=1. This completes the proof. �

B.3. Proof of Theorem 4

Let plt, pin and prt be the prices in the three markets. Let Γ(p) be the expected optimal total

procurement in three markets, when the long term price is plt, the real time price is prt, and the

intermediate price is p. In other words, Γ(p) gives the expected total procurement for a variable

intermediate price (denoted by p). Clearly, we have E[TPl,i,r] = Γ(pin). From Lemma 5, we know

that

E[TPl,r] = lim
p↑prt

Γ(p).

Thus, to prove the theorem it suffices to show that Γ(p) is a strictly increasing function of p. This

would imply that

E[TPl,i,r] = Γ(pin)< lim
p↑prt

Γ(p) =E[TPl,r].

From the statement of the theorem, Assumption 1 holds for prices plt, pin and prt. From Lemma 4,

we know that rlt is a non decreasing function of intermediate price. Hence for all p≥ pin, Assump-

tion 1 holds. Thus, the optimal procurements for all intermediate price p≥ pin are given by Equa-

tion 8. Let q∗lt(p), q
∗
in(p), and q∗rt(p) be the optimal procurements for the intermediate price p. Thus,

we have

∂E[q∗lt(p)]

∂p
=

∂

∂p
(d− ŵlt + rlt)

=
∂rlt
∂p

.

∂E[q∗in(p)]

∂p
=

∂

∂p
E [E1 − (rlt − rin)]+

= F̄E1(rlt − rin)

(
∂rin
∂p

−
∂rlt
∂p

)
.

∂E[q∗rt(p)]

∂p
=

∂

∂p
E [E2 − rlt +min{E1, rlt − rin}]+
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=
∂

∂p

(
F̄E1(rlt − rin)

∫ ∞

rin

(z− rin)fE2(z)dz+

∫ ∞

z=rlt

∫ rlt−rin

y=−∞

(z− rlt)fE1(y)fE2(z− y)dzdy

)

=−F̄E1(rlt − rin)F̄E2(rin)
∂rin
∂p

−
∂rlt
∂p

∫ ∞

z=rlt

∫ rlt−rin

y=−∞

(z− rlt)fE1(y)fE2(z− y)dzdy.

The last step above follows from a direct differentiation. Combining the above equations, we have

∂Γ(p)

∂p
=

∂rlt
∂p

[
1− F̄E1(rlt − rin)−

∫ ∞

z=rlt

∫ rlt−rin

y=−∞

(z− rlt)fE1(y)fE2(z− y)dzdy

]

+
∂rlt
∂p

[
F̄E1(rlt − rin)− F̄E1(rlt − rin)F̄E2(rin)

]

=
∂rlt
∂p

[
1−

plt
prt

−

(
1−

p

prt

)
F̄E1(rlt − rin)

]
+

∂rlt
∂p

F̄E1(rlt − rin)

(
1−

p

prt

)
.

The last equality follows from the fact that h(rlt) = 0 and that F̄ (rin) = p/prt. Substituting ∂rlt/∂p

and ∂rin/∂p from Lemma 4 and after some algebraic manipulation, we get that ∂Γ(p)/∂p > 0 if

and only if
(
prt − plt
prt − p

)
fE2(rin)>

∫ rlt−rin

−∞

fE1(y)fE2(rlt − y)dy+ F̄E1(rlt − rin)fE2(rin).

From Lemma 6, we know that this inequality holds for all p ∈ [pin, prt). This completes the proof.

�

B.4. Proof of Lemma 2.

Let us fix some long term and real time market prices plt and prt such that 0< plt < prt. Let Γ(p)

be the expected optimal total procurement in a three market scenario with long term price plt, real

time price prt, and the intermediate price p. From Lemma 5, we know that

lim
p↑prt

Γ(p) =E[TPl,r].

So to prove the lemma, it suffices to show that there exists pin ∈ (plt, prt) such that for all interme-

diate market price p∈ (pin, prt),
∂Γ(p)

∂p
< 0.

This would imply that for all p ∈ (pin, prt), Γ(pin) > limp↑prt Γ(p) = E[TPl,r]. Since Γ(pin) =

E[TPl,i,r], the expected total procurement in three market scenario under the intermediate price

pin, this implies a tuple of prices satisfying the claim of the lemma.

Pick p̄ ∈ (plt, prt). Now choose demand d large enough such that Assumption 1 holds when the

intermediate price p= p̄. From Lemma 4, we know that rlt is a non decreasing function of inter-

mediate price p. Thus, Assumption 1 continues to hold for all intermediate price p≥ p̄. Following

the argument similar to the proof of Theorem 4, we can show that for all p∈ [p̄, prt),

∂Γ(p)

∂p
< 0
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if and only if

(
prt − plt
prt − p

)
fE2(rin)<

∫ rlt−rin

−∞

fE1(y)fE2(rlt − y)dy+ F̄E1(rlt − rin)fE2(rin). (37)

Let us denote by L(p) and R(p) the left hand side and the right hand side of the above inequality

respectively. From Equation (6), we have that

L(p) =

(
prt − plt

prt

)
fE2(rin)

FE2(rin)
.

From Lemma 4, we know that limp↑prt rin =−∞. From the conditions of the lemma, this implies

that

lim
p↑prt

L(p) = 0. (38)

Now let us look at R(p). From Lemma 4, note that limp↑prt(rlt − rin) =∞ and limp↑prt rlt = r̄lt.

Thus, using dominated convergence theorem, we get that

lim
p↑prt

R(p) = fE1+E2(r̄lt)> 0. (39)

From Equation (38) and Equation (39), we conclude that there exists pin ∈ (p̄, prt) such that for

all p∈ (pin, prt) the inequality in Equation (37) holds. This completes the proof. �
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