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Summary. - -  The concept of energy velocity for linear dispersive waves is 
usually given for a normal mode solution of the system as the ratio between 
the mean energy flux and the mean energy density. In the absence of 
dissipation this velocity is known to coincide with the corresponding group 
velocity. When dispersion is accompanied by dissipation, this interpretation 
is not correct since the group velocity loses its original meaning and can 
assume nonphysical values. In this note the relation between energy velocity 
and group velocity is derived for dissipative, uniaxial waves, governed by a 
linear hyperbolic system. An example is provided where the energy velocity 
is compared with the phase and group velocities. 

PACS 03.40 - Classical mechanics of continuous media: general mathe- 
matical aspects. 

The concept of ene rgy  velocity for l inear dispersive waves  can be s ta ted  as the 

rat io be tween  the mean ene rgy  flux and the mean ene rgy  densi ty  of a 

monochromatic  wave  (normal mode solution of the system),  following a classical 
a rgument  originally due to Reynolds (1) and Rayleigh (2) for surface wa te r  waves .  

In  the absence of dissipation this velocity is known to coincide with the group 

(1) O. REYNOLDS: Nature, 16, 343 (1877). 
(2) j .  W. STRUTT (Lord RAYLEIGH): Proc. London  M a t h  Soc., 9, 21 (1877). 

33 - II Nuovo Cimento B. 487 



488 F. MAINARDI and E. VAN GROESEN 

velocity computed at the frequency (or wavelength) of the wave; this general 
property of linear systems can be proven in different wayes (see e.g. (3.8)). 

When there is dissipation this coincidence is manifestly broken since the 
group velocity (defined by taking the real part in the usual formula) loses its 
original meaning and can assume, in certain ranges of frequency or wavelength, 
nonphysical values (e.g., exceeding the wave-front velocity), as pointed out by 
Sommerfeld and Brillouin(9) for electromagnetic waves. In other words, at 
variance with conservative systems, for dissipative systems the concept of group 
velocity may become meaningless and appears not easily related to energy 
propagation, so that specific treatments are necessarily required. 

Recently Mainardi(1~ has provided an interesting relation between the 
energy velocity and the phase velocity for dispersive and dissipative waves that 
are governed by a linear hyperbolic system. In this note, in view of the 
importance of the concept of group velocity for conservative waves (in both 
linear and nonlinear system, see e.g. (1~)), we will show how, in the presence of 
dissipation, the energy velocity of hyperbolic waves can be related to the group 
velocity as well. Furthermore an example of physical interest is provided where 
the energy velocity is compared with the phase and group velocity. 

As in (10) we restrict ourselves to uniaxial waves and we agree to write the 
governing hyperbolic system in the form 

(1) 5u D ~U + M u = O  
- ~  + ~x 

where u = u(x, t) is a real n-vector function which represents the field variable 
and D and M are constant real n • n matrices, with D symmetric. Furthermore 
we assume that the variable u in eq. (1) is chosen in such a way that the 
functional 

(2) ~[u] - u -  u 
2 

is the energy density for the physical system, where �9 denotes the inner product 
in R ~. 
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The system is supposed to be nonconservative in the sense that  4,' satisfies the 
following balance law: 

(3) 5 6' ~_ ~,~7- _ j , ,  
3t ~x 

where ,~7-= ,~7-[u] is the (energy) flux density and d ' =  d'[u] is the rate of loss 
(if positive), or of supply (if negative). We agree to refer to ~1" as to the loss 
density. For  a detailed discussion of the energy balance law in nonconservative 
systems we refer to recent papers of the authors (12.19, where also the notion of 
centrovelocity of energy is introduced. 

For  the system (1) we obtain particularly simple expressions for the flux and 
for the loss (1~ in the present notation they read 

(4) ,~Y-[u] - u .  Du 
2 

(5) J~[u] = u .  M~u, 

where M S (M a) denotes the symmetric (antisymmetric) part  of the constant 
matrix M. 

Let  us now recall the relevant concepts related to energy propagation. 
Denoting by ( f l u ] )  the space mean value of a d e n s i t y f = f ( x ,  t) for a prescribed 
solution u, computed in a fixed interval of length L (say, in xo ~< x ~< x0 + L), and 
assuming ,~Y-(Xo, t) -- ,~7-(Xo + L, t) Vt, we introduce the following (time depend- 
ent) functionals, the energy-flux velocity: 

(6) VJu]- 

and the dissipation rate 

( 7 )  (,r[u]) 
" 

The velocity Ve is sometimes called the mean velocity of energy transport;  here, 
we will simply refer to it as the energy velocity. The importance of the rate  ~ can 
be recognized after  integrating (3) over x. I t  follows that  

d (8) ~ ( 6' ) = - ~ ( ,': ) ,  

(12) E. VAN GROESEN and F. MAINARDI: Wave Motion, 11, 201 (1989). 
(18) E. VAN GROESEN and F. MAINARDI: Balance Laws and Centrovelocity 
Dissipative Systems, to be published. 

in 
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from which it is found that 

[J ] (9) ( ~ [ u ] )  = ( & )  exp - ~[u(,)]dr , 

where ~0 is the energy density corresponding to the initial data u(x, 0). 
As a consequence of eqs. (2) and (4)-(7) we get 

(10) Ve[u] - (u .  Du) <u.u> ' 

(11) :r = 2 (u.  M~u) 
<u.u> 

From eqs. (2), (5) we note that, if the matrix M ~ is proportional to the identity 
matrix, then, for any solution u(x, t) of (1) and for all x, t, the loss density is 
proportional to the energy density. This peculiar fact, referred to as uniform 
damping, can also be expressed by 

(12) a = - -  = 

where now the dissipation rate ~ is a characteristic constant of the system, 
indipendent of the solution and of the space domain (12). 

In this paper we consider particular space-periodic solutions, referred to as 
normal modes, from which usually the analysis of linear dispersive waves starts. 
These solutions are of the form 

(13) u(x, t; k) = Re [V(k) exp [i[kx - ~(k) t]]], 

with k real and ~ complex in general, and V a complex n-vector. Henceforth we 
will denote a given normal mode simply by u(k), so dropping the dependence on 
x, t; furthermore we will use the notation ue(k) to denote the complex solution 
whose real part provides u(k). 

These normal modes represent (pseudo) monochromatic waves, since they 
are sinusoidal in space with period (wavelength) ~ = 2=/k, but not necessarily 
sinusoidal in time, since ~o may be complex. Only if oJ is real, these solutions 
represent effectively monochromatic waves with a time period T = 2=/~ and 
with a constant amplitude. In general these waves are decaying or growing 
exponentially in time if the quantity (damping factor) 

(14) y =  - Im[~] 
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is positive or negative, and they propagate with speed (phase velocity) 

Re [~] 
(15) Vp - k 

For u(k), and hence uC(k), to be a solution of (1), ~ and V depend on k in such a 
way that they satisfy the following eigenvalue problem: 

(16) [ -  ioJ + ikD + M] V = 0, 

namely they should be an eigenvalue and a corresponding eigenvector of the 
matrix (2(k) = kD - iM. In particular ~o must satisfy the dispersion relation that 
follows from (16), i.e. 

(17) ~(~o, k) - det [ -  i~oI + ikD + M] = O. 

In general at a given k there may be several branches oJ(k) of (17), providing 
distinct modes. For a given branch ~o = o~(k), the dispersive properties are 
illustrated by the functions (14) and (15). Furthermore we introduce the group 
velocity as 

(18) Vg = d Re [~(k)]. 

In the conservative case o~ is real and Vg has the kinematic meaning of speed of 
the group (wave packet). In the nonconservative case, Im [o(k)] does not vanish 
in general so that Vg is expected to lose its usual meaning (see e.g. (9)), while Vp 
does keep it. 

The energy velocity and the attenuation factor associated with the waves (13) 
can easily be obtained from eqs. (10), (11), respectively, inserting the solution 
(13) and averaging over the wavelength. For this purpose we recall the following 
properties concerning two normal modes with a given k and o~(k) but with 
different amplitude: 

(19) 2 < / t l ( k ) "  u2(k)> --  Re [<u~(k). u~(k)}] 

and 

(20) < u~(k), u~(k) > = u](k), u~(k) = exp [ -  2~,t] (VI" V2), 

where the inner product is in R n or C ** as appropriate. 
The importance of relations (19)-(20) is that they enable us to compute Ve and 

without carrying out the averages present in eqs. (10)-(11); we obtain 

(21) Ve - V.  DV 
V . V  
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and 

(22) a = 2 - -  V .  M s V  

V . V  " 

From (21)-(22) we recover the property that for normal-mode solutions the 
energy velocity and the dissipation rate are constant ( t ime independen t ) ,  

depending uniquely on the wavenumber. Furthermore, the energy velocity 
turns out to be bounded from above and below by the extreme eigenvalues of the 
matrix D, i.e. by the extreme characteristic velocities of the hyperbolic system. 

Recently Mainardi (io) has proven the following identities: 

i V . M a V  
(23) V e = Vp 4 k V.V 

and 

V .  M s V  
(24) Y= V.V 

These equations can readily be obtained taking the On-inner product of (16) with 
V, and considering the imaginary and real parts, respectively. From (22) and 
(24), we may incidentally note that ~ = 2•. 

Previously, Broer and Peletier (14) have used the eigenvalue equation (16) to 
prove that, in the absence of dissipation (M s = 0), the r.h.s, of (21) equals the 
group velocity. Now we would like to extend the analysis in (lo.14) to show how the 
energy velocity can be related to the group velocity, taking into account the 
s y m m e t r i c  part M S of the matrix M, that is responsible for dissipation. This 
relation, which is known to be an identity when M is purely a n t i s y m m e t r i c  (it), 

can be obtained from the eigenvalue equation (16) after some manipulations. For  
this purpose we differentiate (16) with respect to k and take the C n inner product 
with V so obtaining 

(25) ~ o ' V . V - V . D V + V . ( o I - k D + i M ) V ' = O ,  ~ ' -  d~ V' = d__V_V 
dk ' dk ' 

and hence 

(26) ~ * ' V .  V - V .  D V  + V' . (~o*I - k D  - i M  t) V = 0, 

where * and t denote complex and Hermitian conjugate, respectively. Noting 
that 

(27) ~o* = oJ + 2 i y ,  M t = - M + 2 M  s , 

(~4) L. J. F. BROER and L. A. PELETIER: Appl. Sci. Res. A,  17, 65 (1967). 
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and, using (16), eq. (26) reads 

(28) (o * ' V .  V - V "  D V  - 2 i V '  �9 ( M  s - , f I )  V = O, 

namely 

(29) V .  D V  
_ _  - -  0 9 ~  t - -  

V ' V  
V2.V [V �9 (M s - TI) V']*. 

Using (21) and noting that  oJ' = V~ - i1", it is a simple mat te r  to get from (29) 

2 Im [V. (M ~ - 1"1) V'] (30)  v~ = v ~  - v . - - v  

and 

(31) 
dl" 2 
dk V. V 

- -  R e  [ V .  ( M  s - 1"I) V ' ] .  

We recognize from (30) the fact that  the identification of energy velocity with 
group velocity is valid not only in the absence of dissipation (y = 0 r M s = 0), but 
also for uniform damping (M s = 1"1). In the particular case of uniform damping 
without dispersion (M = M ~ = 14) we recover from (23), (30) the trivial equality 
of the three velocities V~, V~, Vg. 

We conclude our analysis with recalling the instructive example of the linear 
Klein-Gordon equation with dissipation (KGD equation) that  rules wave propa- 
gation in an elastic string, anchored elastically to its equilibrium position by a 
t ransverse restoring force and damped by air friction. I t  is a second-order 
hyperbolic equation that  reads 

(32) eft + 2aCt + b2r = c '~ Cxx, 

where r = r  t) denotes the transverse displacement and a, b, c are non- 
negative constants related with air damping, restoring force and string tension, 
respectively (1~). The corresponding dispersion relation reads 

(33) (co + i a f i  = c2k  2 + (b 2 - a2) , 

and indicates that  different cases can be expected, depending on the sign of 
(b 2 - a2). If  0 ~< a < b, then for any k the real part  of ~ does not vanish, i . e .  there 
is propagation for each k; if 0 ~< b < a, there is propagation only for wavenumbers 

(15) G. R. BALDOCK and T. BRIDGEMAN: T he  M a t h e m a t i c a l  T h e o r y  o f  W a v e  M o t i o n  
(Chichester, U.K., New York, N.Y., 1981), Chapt. 5. 
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k such that  Ikl ~>V r ~ -  b 2. The propagation regimes are characterized by a 
constant damping factor ~, = a and 

~/c2k 2 + (b 2 - a 2) c 2 
(34) Vp-  k , Vg = ~-~p. 

In particular we get n o r m a l  d i spers ion  (0 <~ Vg <~ c <~ Vp) if 0 ~< a < b, a n o m a l o u s  

d i spers ion  (0 <- Vp <~ c <~ Vg) if 0 ~< b < a, and no d i spers ion  (Vp = Vg = c) if a = b. 
The energy velocity has been computed in(1~ start ing from the energy 

balance for a single-mode solution. The terms 3, ~ -  and ~ entering this balance 
are, respectively, 

(35) = (r 2 + c2r + b2r ~J-= _ c2r162 ~f = 2aCt 2 , 

and the energy velocity turns out to be 

(36) Ve = Re [co] 
c2 k 

b 2 + c 2 k 2 ' 

or, using (33)-(34), 

a 2 b2::2k2] Vg[1 b2+c2k21 
Formulae (36) and (37) can also be found after some elementary calculations 

from eq. (21) or (23) or (30) as well, thus providing a check of our present  theory. 
For  convenience we quote the relevant passage required to get the energy 
velocity. 

Choosing u = col(r cCx, be), the KGD equation (32) can be wri t ten as a first- 
order hyperbolic system of type (1)-(2) with n = 3, where 

[0c01 
(38) D =  - c  0 0 , M =  0 0 . 

0 0 0 - 0 0 

After  deriving the dispersion relation (33) from the eigenvalue problem (16) 
using (1), (13), (38) (and neglecting the spurious eigenvalue oJ = 0 tha t  arises 
because a three-vector u is introduced to describe a second-order equation), 
we obtain the eigenvector for the progressive mode, to be inserted in eqs. (21), 
(23), (30), 

(39) V = col (~, - ck,  ib) .  
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1 ~  1LI 0 = ~ <  b 

" - e L .  
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

~ ~=~ 

J 
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2 
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i 1 2 k 
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0 k 

1 2 k 3 

Fig. 1. - Comparison among the energy velocity Vo, the phase velocity Vp and the group 
velocity Vg for the linear KGD equation Ctt + 2aCt + b2r = C2r with c = 1 and 1) a = 0, 
b = l ; 2 )  a = l / V ~ ,  b = l ; 3 )  a = l ,  b = l / V ~ ; 4 )  a = l ,  b=0.  

In particular, after  simple algebra, we obtain the relevant  expressions 

(40) 

V .  V =  ~ *  + b 2+ c2k 2 = 2 ( b  2+c2k2), 

V .  D V  = c2k(~  + oJ*) = 2 Re [oJ] c2k = 2c2k2Vp,  

V .  M " V  = ib2(co + oJ*) = 2ib ~ Re [~o] = 2 ib2kVp ,  

V .  ( M  s - ],I) V'  = a(oJ*~' - c2k) = ia2Vg.  

We note that  Ve as given by (36) and (37) is an increasing function of k which 
does not exceed the wave front velocity c (either Vp or Vg), and that  it reduces to 
the phase velocity only if b = 0, and to the group velocity only if a = 0. In the 
particular case a = b, it remains distinct from c in spite of the absence of 
dispersion (dissipation is however  acting not uniformly on the energy since M S is 
not proportional to I).  

For  the sake of clearness, in fig. 1 we show pictures that  compare the energy 
velocity Ve with the kinematic velocities Vp, Vg in the following relevant  cases: 
1) O = a < b ,  2) 0 < a < b ,  3) 0 < b < a ,  4) O = b < a .  
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