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Abstract. In the present work we establish an energy quantization (or energy identity)

result for solutions to scaling invariant variational problems in dimension 4 which includes

biharmonic maps (extrinsic and intrinsic). To that end we first establish an angular energy

quantization for solutions to critical linear 4th order elliptic systems with antisymmetric

potentials. The method is inspired by the one introduced by the authors previously in

“Angular energy quantization for linear elliptic systems with antisymmetric potentials and

applications” (2011) for 2nd order problems.
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1 Introduction

Let N be a C 3 closed submanifold of R
k (i.e. N is compact without boundary).

Let B1 the unit ball of R
n and u 2 W 1;2.B1; N /. Then we can define the Dirichlet

energy of u as

D.u/ D 1

2

Z

B1

jruj2 dx:

The critical points of D are the so-called harmonic maps for which an extensive the-

ory has been developed. In particular, when n D 2 since in that case the functional

is conformally invariant, it has been proved that the harmonic maps have some

special properties, in particular an energy quantization for sequences of bounded

energy, see [13] for instance.

In this paper, we consider still quadratic scaling invariant problems but in dimen-

sion n D 4 this time. In that case, there are several ways to define an equivalent of

the Dirichlet functional. Since we look for a scaling invariant quadratic functional,

the gradient has to be replaced by some expression involving second derivatives.

The simplest example is given by

E.u/ D 1

4

Z

B1

j�uj2 dx:



192 P. Laurain and T. Rivière

The critical point of this functional are called extrinsic biharmonic maps. The term

extrinsic comes from the fact that this functional (and consequently its critical

points) depends on the choice of the embedding of N into R
k . Trying to remedy to

this lack of intrinsic nature of the problem, one can instead consider the following

functional:

I.u/ D 1

4

Z

B1

j.�u/T j2 dx;

where .�u/T is the projection of �u onto TuN (indeed .�u/T WD
P

k D@xk
@xk

u

where D is the pull back by u of the Levi-Civita connection r on N for the induced

metric). The critical point of I will be called intrinsic biharmonic maps. One can

further introduce other functionals sharing similar properties and we refer to [12]

for more examples. The Euler Lagrange equations satisfied by the biharmonic maps

have been computed in particular in [17]. One shows that u 2 W 2;2.B1; N / is an

extrinsic (resp. intrinsic) biharmonic map if and only if u satisfies

Te.u/ � �2u � �.B.u/.ru; ru// � 2r � h�u; rP.u/i C h�.P.u//; �ui D 0;

respectively

Ti .u/ � �2u � �.B.u/.ru; ru// � 2r � h�u; rP.u/i C h�.P.u//; �ui
� P.u/.B.u/.ru; ru/ruB.u/.ru; ru//

� 2B.u/.ru; ru/B.u/.ru; rP.u// D 0;

where P and B are the orthogonal projection onto TuN and the second fundamental

form of N .1 Since our result applies indistinctly to extrinsic as well as to intrinsic

biharmonic maps, except when it is necessary, in what follow we will indifferently

employ the denomination biharmonic map for both extrinsic biharmonic map and

intrinsic biharmonic map. We observe that these equations are of the form,

�2u D
X

˛1C���C˛4D4
0�˛i <4

c˛.u/ @˛1u @˛2u @˛3u @˛4u;

which make them critical in dimension 4 for W 2;2 in the sense that classical

Lp-theory can be directly applied to this equation for proving regularity or com-

pactness results assuming u is in W 2;p.B1/ with p > 2 but such an approach fails

in W 2;2. The critical nature of an elliptic problem is characterized by possible

loss of compactness at isolated points. In order to fully describe this concentration-

compactness phenomenon one has to understand “how much” energy is lost at

1 See section 2 for precise definitions.
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these isolated points. Energy quantization means that the energy lost corresponds

exactly to the sum of the energies of the so called bubbles – or rescaled elementary

solutions on S4 – concentrating at these points. The word quantization refers to the

fact that the bubbles cannot have arbitrary small energy and in some problems it is

even known that they can realize only a discrete set of values.

Our main result in this paper is the energy quantization result for biharmonic

maps. In fact we are proving something stronger considering more generally se-

quences of approximate solutions of biharmonic maps. To that end we need the

following definition.

Definition 1.1. Let N be a C 3-submanifold of R
k , p � 1, f 2 Lp.B1; R

k/ and

u 2 W 2;2.B1; N /. The map u is f -approximate biharmonic if u satisfies

Ti .u/ D f or Te.u/ D f:

The reason why we need N at least C 3 is made clear in Section 2 when we

rewrite the equation in term of orthogonal projections onto TuN . Hence, we are in

a position to state our main result.

Theorem 1.2. Let N be a C 3-submanifold of R
k , p > 1, fn 2 Lp.B1; R

k/ and

let un 2 W 2;2.B1; N / be a sequence of fn-approximate biharmonic maps with

bounded energy, i.e.

Z

B1

�
jr2unj2 C jrunj4 C jfnjp

�
dz � M: (1.1)

Then there exists f 2 Lp.B1; R
k/, u1 2 W 2;1.B1; N / an f -approximate bihar-

monic map and

(i) !1; : : : ; !l some biharmonic maps of R
4 to N ,

(ii) a1
n; : : : ; al

n a family of converging sequences of points of B1,

(iii) �1
n; : : : ; �l

n a family of sequences of positive reals converging all to zero,

such that, up to a subsequence,

un ! u1 in W
2;q

loc .B1 n ¹a1
1; : : : ; al

1º/

for all q < 2p
2�p

if p < 2, for any q otherwise, and








r2

0
@un � u1 �

lX

iD1

!i
n

1
A








L2
loc.B1/

C








r

0
@un � u1 �

lX

iD1

!i
n

1
A








L4
loc.B1/

! 0;
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where !i
n D !i .ai

n C �i
n : /. Moreover, if N is C lC3 and the map fn is bounded in

C l;�.B1; R
k/, then the convergence of un to u1 is in C lC4;�.B1 n¹a1

1; : : : ; al
1º/

for any 0 � � < �.

Observe that for a sequence of biharmonic maps into a smooth manifold the

convergence holds in C 1
loc . Such a result was already known for intrinsic biharmonic

maps, see [6] and [7], or for extrinsic biharmonic maps into a sphere, see [19]. Here,

the method employed seems particularly robust since it can be applied equally for

both extrinsic and intrinsic biharmonic maps but it applies moreover to a larger

class of scaling invariant problems. As an illustration of this fact we prove that the

method applies to the following general lagrangians:

Z

B1

�
j�uj2 dx C u��

�
or

Z

B1

�
j.�u/T j2 dx C u��

�
; (1.2)

where � is an arbitrary smooth 4-form of R
k .

The method we use goes first through the proof of an angular energy quantization

result2 for sequences of solutions to the general critical 4th order elliptic system

with antisymmetric potentials introduced by Lamm and Rivière [10]. We follow in

fact the approach that we originally introduced in [11] for second order problems.

We have good reasons to think that the method could further be extended for proving

a general energy quantization result for polyharmonic maps in critical dimension

(see the "-regularity for polyharmonic maps in [4] and [3] for the general case, see

also [14]).

As an immediate consequence of Theorem 1.2, we get the asymptotic behavior

of biharmonic maps flow. A weak solution to the extrinsic biharmonic map flow is

a map u 2 W 2;2.Œ0; C1Œ � B1; N / satisfying

8
ˆ̂<
ˆ̂:

@u

@t
C �2u D �.B.u/.ru; ru// C 2r � h�u; rP.u/i

� h�.P.u//; �ui on Œ0; C1Œ � B1;

u D u0 on ¹0º � B1;

(1.3)

where u0 2 W 2;2.B1; N /. Several existence results have been established for

(1.3), see for instance [9] for small initial data or [2] and [18] for solution with

finitely many singular times and arbitrary initial data. All these solutions satisfy the

energy identity

2

Z T

0

Z

B1

ˇ̌
ˇ̌@u

@t

ˇ̌
ˇ̌
2

dxdt C
Z

B1

j�uj2 dx �
Z

B1

j�u0j2 dx for all T � 0: (1.4)

2 See the end of Section 5 for a precise statement.
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Corollary 1.3. Let N be a C 3-submanifold of R
k and u0 2 W 2;1.B1; N / and let

u 2 W 2;2.Œ0; C1Œ � B1; N / be a global solution of (1.3) satisfying the energy

inequality (1.4). Then there exist tn a sequence of positive real such that tn ! C1,

a biharmonic map u1 2 W 2;1.B1; N /, l 2 N, !1; : : : ; !l some biharmonic maps

of R
4 to N and a1

n; : : : ; al
n a family of points of B1 converging to a1

1; : : : ; al
1

such that

u.tn; : / ! u1 on W
2;p

loc .B1 n ¹a1
1; : : : ; al

1º/ for all p � 1

and







r2

0
@u.tn; : / � u1 �

lX

iD1

!i
n

1
A








L2
loc.B1/

C








r

0
@u.tn; : / � u1 �

lX

iD1

!i
n

1
A








L4
loc.B1/

! 0;

where !i
n D !i .ai

n C �i
n : /.

In fact, thanks to (1.4), we easily prove that there exists tn such that u.tn; : /

satisfies the hypothesis of Theorem 1.2 with p D 2.

The paper is organized as follows: in Section 2, we rewrite the equations in order

to apply the theory of Lamm and Rivière, in Section 3 we recall the main results

of Lamm and Rivière and we prove an "-regularity result for biharmonic maps, in

Section 4 we derive the key estimate in Lorentz space for the angular derivatives in

a annular region of arbitrary conformal type, finally in Section 5 we prove our main

result postponing technical result to Sections 6 and 7.

2 Biharmonic equation in normal form

Let N � R
k be a C 3-submanifold, there exists ı > 0 such that … W Nı ! N , the

nearest point projection map, is well defined and C 3, where

Nı D ¹y 2 R
k j d.y; N / � ıº:

Let, for y 2 N , P.y/ � r….y/ W R
k ! TyN be the orthogonal projection,

and P ?.y/ � Id � r….y/ W R
k ! .TyN /?. In the following, we will write

P (resp. P ?) instead of P.y/ (resp. P ?.y/) and we will identify these linear

transformations with their matrix representations in Mk . We also note that these

projections are in C 2 and therefore their composition with u, that we keep denoting

respectively P and P ?, are in W 2;2.B1; Mk/ as soon as u is in W 2;2.B1; N /.
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Finally, let B. : /. : ; : / be the second fundamental form of N � R
k , which is

defined by

B.y/.Y; Z/ D DY P ?.y/.Z/ for all y 2 N; Y; Z 2 TyN:

We know that, see [16], that u 2 W 2;2.B1; N / is an extrinsic biharmonic map if

and only if

�2u ? TuN almost everywhere;

which can be rewritten as follows:

�2u D P ?�2u

D div.P ?r�u/ � rP ?r�u:
(2.1)

Then we rewrite the second term of the right hand side as follows:

rP ?r�u D rP ?P ?r�u C rP ?P r�u

D rP ?P ?r�u � P ?rP r�u

D 2rP ?P ?r�u C .rPP ? � P ?rP /r�u:

(2.2)

But

2rP ?P ?r�u D 2rP ?P ?r�u � 2rP ?r div.P ?ru/

D �2rP ?rP ?�u C 2 div.rP ?.rP ?ru//

� 2�P ?rP ?ru:

(2.3)

Thanks to (2.1), (2.2) and (2.3), we get

�2u D div.P ?r�u/ � div.2rP ?.rP ?ru//

C 2rP ?rP ?�u C 2�P ?rP ?ru

� .rPP ? � P ?rP /r�u

D �.P ?�u/ � div.rP ?�u C 2rP ?.rP ?ru//

C 2rP ?rP ?�u C 2�P ?rP ?ru

� .rPP ? � P ?rP /r�u;

which finally gives the equation of extrinsic biharmonic maps

�2u D ��.rP ?ru/ � div.rP ?�u/

C 2rP ?r.rP ?ru/ C 2rP ?rP ?�u

� .rPP ? � P ?rP /r�u:

(2.4)
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For intrinsic biharmonic maps, we need to add some tangent terms, see [17] for

details, which gives

�2u D ��.rP ?ru/ � div.rP ?�u/

C 2rP ?r.rP ?ru/ C 2rP ?rP ?�u

� .rPP ? � P ?rP /r�u

C P
�
rP ?rur.rP ?ru/

�

C 2rP ?rurP ?rP:

(2.5)

Proposition 2.1. Equations (2.4) and (2.5) can be rewritten in the form

�2u D �.V ru/ C div.wru/ C r!ru C F ru; (2.6)

where

V 2 W 1;2.B1; Mk ˝ ƒ1
R

4/; w 2 L2.B1; Mk/;

! 2 L2.B1; sok/; F 2 L2 � W 1;2.B1; Mk ˝ ƒ1
R

4/

with

jV j � C jruj;
jF j � C jruj

�
jr2uj C jruj2

�
almost everywhere;

jwj C j!j � C
�
jr2uj C jruj2

�
(2.7)

where C is a positive constant which depends only on N .

Proof of Proposition 2.1. We give a proof for equation (2.4), the intrinsic case will

follow easily.

On the one hand, we proceed to the following Hodge decomposition:

dPP ? � P ?dP D d˛ C d�ˇ;

where ˛ 2 W 1;2.B1; sok/, ˇ 2 W
1;2

0 .B1; ƒ2.R4/ ˝ Mk/. Hence ˛ and ˇ satisfy

�˛ D �PP ? � P ?�P and �ˇ D dP ^ dP ? � dP ? ^ dP:

Then ˛ 2 W 2;2.B1; sok/, d�ˇ 2 W
2;. 4

3
;1/

0 .B1; ƒ2.R4/ ˝ Mk/ and we get

.rPP ? � P ?rP /r�u D d�˛ru C �d�ˇru C �..rPP ? � P ?rP /ru/

� 2 div.r.rPP ? � P ?rP /ru/

D r!1ru C F1ru C �.V1ru/ C div.w1ru/;
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with !1 2 L2.B1; sok/, F1 2 L2 �W 1;2.B1; Mk ˝ƒ1
R

4/, V1 2 W 1;2.B1; Mk ˝
ƒ1

R
4/ and w1 2 L2.B1; Mk/.

On the other hand, we have

2rP ?r.rP ?ru/ D F2ru;

with

F l
2 D 2

@P ?

@yl
r.rP ?ru/ 2 L2 � W 1;2.B1; Mk ˝ ƒ1

R
4/

and

2rP ?rP ?�u D F3ru;

with

F l
3 D 2

@P ?

@yl
rP ?�u 2 L2 � W 1;2.B1; Mk ˝ ƒ1

R
4/;

which achieves the proof.

For general Lagrangian of the form (1.2), the equation becomes

Te.u/ D H

�
@u

@x1
;

@u

@x2
;

@u

@x3
;

@u

@x4

�
or Te.u/ D H

�
@u

@x1
;

@u

@x2
;

@u

@x3
;

@u

@x4

�
;

where H is the 4-form on R
k into R

k defined by

d�.U; V; W; X; Y / D UiH
i .V; W; X; Y / for all U; V; W; X; Y 2 R

k :

Hence we have

H

�
@u

@x1
;

@u

@x2
;

@u

@x3
;

@u

@x4

�
D F ru;

with F 2 L2 � W 1;2.B1; Mk ˝ ƒ1
R

4/.

3 Preliminaries

First, we recall the main result of [10] that provides a divergence form to elliptic

4th order system of the kind (2.6) under small energy assumption. This will be one

of the main tools in order to obtain the estimate needed for the energy quantization.

Theorem 3.1 ([10, Theorem 1.4]). There exist constants " > 0 and C > 0 depend-

ing only on N such that the following holds: Let V 2 W 1;2.B1; Mk ˝ ƒ1
R

4/,

w 2 L2.B1; Mk/, ! 2 L2.B1; sok/ and F 2 L2 � W 1;2.B1; Mk ˝ ƒ1
R

4/ such

that

kV kW 1;2 C kwk2 C k!k2 C kF kL2�W 1;2 < ":
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Then there exist A 2 L1 \W 2;2.B1; G lk/ and B 2 W 1; 4
3 .B1; Mk ˝ ƒ2

R
4/ such

that

r�A C �AV � rAw C A.r! C F / D curl B;

and

kAkW 2;2 C d.A; SOn/ C kBk
W

1; 4
3

� C
�
kV kW 1;2 C kwk2 C k!k2 C kF kL2�W 1;2

�
:

Thanks to the previous theorem, we are in a position to rewrite equations of the

form (2.6) in divergence form.

Theorem 3.2 ([10, Theorem 1.2 and 1.4]). There exist constants " > 0 and C > 0

depending only on N such that if u 2 W 2;2.B1; R
k/ satisfies

�2u D �.V ru/ C div.wru/ C r!ru C F ru C f;

where

V 2 W 1;2.B1; Mk ˝ ƒ1
R

4/; w 2 L2.B1; Mk/; ! 2 L2.B1; sok/;

F 2 L2 � W 1;2.B1; Mk ˝ ƒ1
R

4/; f 2 L1.B1; R
k/

with

kV kW 1;2 C kwk2 C k!k2 C kF kL2�W 1;2 < ";

then there exist A 2 L1 \ W 2;2.B1; G lk/ and B 2 W 1; 4
3 .B1; Mk ˝ ƒ2

R
4/ such

that

kAkW 2;2 C d.A; SOn/ C kBk
W

1; 4
3

� C
�
kV kW 1;2 C kwk2 C k!k2 C kF kL2�W 1;2

�

and

�.A�u/ D div
�
2rA�u � �Aru C Awru C rA.V ru/

� Ar.V ru/ � Bru
�

C Af:

A first consequence of the previous theorem is the "-regularity for biharmonic

maps. It can also be compared with the corresponding result established for second

order problems in [11, Theorem 3.2].

Theorem 3.3. Let p > 1. There exist constants " > 0 and Cp > 0 such that the

following hold:

(i) ("-regularity) If u 2 W 2;2.B1; R
k/, f 2 Lp.B1; R

k/, V 2 W 1;2.B1; Mk ˝
ƒ1

R
4/, w 2 L2.B1; Mk/, ! 2 L2.B1; sok/ and F 2 L2 � W 1;2.B1; Mk ˝

ƒ1
R

4/ satisfy (2.7) and

kr2uk2 C kruk4 � ";
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with u a solution of

�2u D �.V ru/ C div.wru/ C r!ru C F ru C f on B1;

then we have u 2 W 2; Np.B 1
2
; R

k/, where Np D 2p
2�p

if p < 2 else any Np � 2

and

kr2ukL Np.B 1
2

/CkrukL2 Np.B 1
2

/ � Cp

�
kr2ukL2.B1/CkrukL4.B1/Ckf kp

�
:

Moreover, if N is smooth and f 2 C l;� for l 2 N and � > 0, then we can

replace W 4; Np by C lC4;�.

(ii) (Energy gap) If u 2 W 2;2.R4; R
k/, f 2 Lp.R4; R

k/, V 2 W 1;2.R4; Mk ˝
ƒ1

R
4/, w 2 L2.R4; Mk/, ! 2 L2.R4; sok/ and F 2 L2 � W 1;2.R4; Mk ˝

ƒ1
R

4/ satisfy (2.7) and

kr2uk2 C kruk4 � ";

with u a solution of

�2u D �.V ru/ C div.wru/ C r!ru C F ru on R
4;

then u is identically equal to zero.

The proof of Theorem 3.3 could be achieved almost following [10, Lemma 3.1].

We give however an independent proof of this fact that sheds new lights on the

problem.

Proof of Theorem 3.3. Let 0 < " < 1 such that, thanks to (2.7), the hypothesis of

Theorem 3.2 is satisfied. Then we can rewrite our equation as

�.A�u/ D div.K/ C Af;

where A 2 L1 \ W 2;2.B1; G lk/ and K 2 L2 � W 1;2 � L
4
3

;1 satisfy

kAkW 2;2 C d.A; SOn/ C kKk
L

4
3

;1

� C
�
kr2uk2 C kruk4 C kV kW 1;2 C kwk2 C k!k2 C kF kL2�W 1;2

�

where C is independent of u.

Let p 2 B 1
2

and 0 < � < 1
2

. We decompose A�u on B�.p/ as

A�u D C C D;

where C 2 W
1;2

0 .B�.p// and D 2 W 1;2.B�.p//. Then C satisfies

�C D div.K/ C Af on B�.p/
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and D satisfies

�D D 0 on B�.p/:

Thanks to the standard Lp-theory and Sobolev embeddings, we get

�Z

B�.p/

jC j2 dx

� 1
2

� C
�
kKk 4

3
C �

4.p�1/
p kf kp

�

� C
�
"kr2uk2 C "

�
kruk2 C �

4.p�1/
p kf kp

�
;

(3.1)

where C is a positive constant in dependent of u.

Using the fact that D is harmonic, we have that

ı 7! 1

.ı�/4

Z

Bı�.p/

jDj2 dx

is an increasing function and hence for all ı 2 �0; 1Œ we deduce,

Z

Bı�.p/

jDj2 dx � ı4

Z

B�.p/

jDj2 dx: (3.2)

We then decompose the map u as follows: u D E C F where E 2 W
1;4

0 .B�.p//

and F 2 W 1;4.B�.p// satisfy

�E D A�1.C C D/ on B�.p/

and F satisfies

�F D 0 on B�.p/:

Thanks to the standard Lp-theory and Sobolev embeddings, we get

1

�

�Z

B�.p/

jrEj2 dx

� 1
2

� C

��Z

B�.p/

jC j2 dx

� 1
2

C
�Z

B�.p/

jDj2 dx

� 1
2
�

;

(3.3)

where C is a positive constant in dependent of u.

The function

ı 7! 1

.ı�/4

Z

Bı�.p/

jrF j2 dx

is increasing since F is harmonic and we have again, for all ı 2 �0; 1Œ,

1

.ı�/2

Z

Bı�.p/

jrF j2 dx � ı2

�2

Z

B�.p/

jrF j2 dx: (3.4)
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Then, thanks to (3.1), (3.2), (3.3) and (3.4), for ı and " small enough (with respect

to some constant independent of u), we have
Z

Bı�.p/

�
jr2uj2 C 1

.ı�/2
jruj2

�
dx

� 1

2

Z

B�.p/

�
jr2uj2 C 1

�2
jruj2

�
dx C Cı

4.p�1/
p kf k2

p:

Iterating this inequality gives the following Morrey type estimate: there exist

˛ > 0 and C > 0 such that

sup
p2B 1

2
; 0<�< 1

2

��˛

�Z

B�.p/

�
jr2uj2 C 1

�2
jruj2

�
dx

�
� C kf kp:

Then

sup
p2B 1

2
; 0<�< 1

2

��˛

Z

B�.p/

j�2uj dx � C kf kp:

Then a classical estimate on Riesz potentials gives, for all p 2 B 1
3

j�uj.p/ � .C kf kp/
1

jxj2 � �B 1
2

j�2uj C C kr2ukL2.B1/;

jruj.p/ � .C kf kp/
1

jxj � �B 1
2

j�2uj C C krukL2.B1/;

where �B 1
2

is the characteristic function of the ball B 1
2

. Together with injections

proved by Adams in [1], see also [5, 6.1.6], the latter shows that

kr2ukLr .B 1
3

/ C krukL2r .B 1
3

/ � C
�
kf kp C kr2uk2 C kruk4

�
;

for some r > 1. Then bootstrapping this estimate, we get

kr2ukL Np.B 1
4

/ C krukL2 Np.B 1
4

/ � C
�
kf kp C kr2uk2 C kruk4

�
;

where Np is the limiting exponent of the bootstrapping given by the Sobolev injection

of W 2;p into L Np if p < 2. Indeed, thanks to (2.7), the only limiting term for the

bootstrap is the regularity of f .

Now, we can easily derive the proof of the energy gap. Indeed, thanks to the

previous estimate, we easily see that for some q > 2 we get

kr2ukLq.BR/ C krukL2q.BR/ � C
kukW 2;2

R2� 4
q

for all R > 0;

which proves that u � 0.
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4 Uniform estimate in annular region

In this section, we derive a strong estimate for angular derivatives in an annular

region independently of the conformal class.

Theorem 4.1. There exist constants " > 0 and C > 0 depending only on k such

that if 0 < r < 1
4

, p > 1 and u 2 W 2;2.B1 n Br ; R
k/ satisfies

�2u D �.V ru/ C div.wru/ C r!ru C F ru C f;

where

V 2 W 1;2.B1 n Br ; Mk ˝ ƒ1
R

4/; w 2 L2.B1 n Br ; Mk/;

! 2 L2.B1 n Br ; sok/; F 2 L2 � W 1;2.B1 n Br ; Mk ˝ ƒ1
R

4/;

f 2 Lp.B1; R
k/

with

kV kW 1;2 C kwk2 C k!k2 C kF kL2�W 1;2 < ";

then


rT ru




L2;1.B 1

4
nB4r /

� C
�
1 C kr2ukL2.B1nBr /

C krukL4.B1nBr / C kf kLp.B1nBr /

�
;

where rT f D rf � @f
@r

@
@r

.

Proof of Theorem 4.1. Using some Whitney extension theorem, we see that there

exist

QV 2 W 1;2.B1; Mk ˝ ƒ1
R

4/; Qw 2 L2.B1; Mk/;

Q! 2 L2.B1; sok/; QF 2 L2 � W 1;2.B1; Mk ˝ ƒ1
R

4/

such that QV D V , Qw D w, Q! D ! and QF D F on B1 n Br and

k QV kW 1;2 C k Qwk2 C k Q!k2 C k QF kL2�W 1;2 < 2":

Thanks to Theorem 3.1, for 0 < " < 1
2

small enough, there exist

A 2 L1 \ W 2;2.B1; G lk/ and B 2 W 1;. 4
3

;1/.B1/

such that

d.A; SOk/ C kAkW 2;2 C kBk
W

1;. 4
3

;1/

� C
�
k QV kW 1;2 C k Qwk2 C k Q!k2 C k QF kL2�W 1;2

�
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and

r�A C �AV � rAw C A.r! C F / D curl B:

Then we extend u by Qu 2 W 2;2.B1/ such that

kr2 QukL2.B1/ C kr QukL4.B1/ � 2
�
kr2ukL2.B1nBr / C krukL4.B1nBr /

�
:

We easily see that Qu satisfies

�.A� Qu/ D div.K/ C Af on B1 n Br ;

with

K D 2rA� Qu � �Ar Qu C Awr Qu C rA.V r Qu/ � Ar.V r Qu/ � Br Qu 2 L
4
3

;1.B1/

such that

kKk
L

4
3

� C
�
1 C kr2ukL2.B1nBr / C krukL4.B1nBr /

�
:

Then, we extend Af by Qf 2 Lp.B1/ such that

k Qf kp � 2kAf kp:

Then take D 2 W
1; 4

3

0 .B1/ which satisfies

�D D div.K/ C Qf on B1:

Hence, thanks to the standard Lp-theory, there exists C a positive constant inde-

pendent of r such that

kDk2;1 � C
�
kKk

L
4
3

;1
C kf kp

�
:

Finally, thanks to Lemma 6.1, there exist a; b 2 R
k and C a positive constant

independent of r such that




D � A�u � a � b

jxj2






L2;1.B 1

2
nB2r /

� C


D � A�u




2

� C
�
1 C kr2 Quk2 C kKk

L
4
3

;1
C kf kp

�
:

(4.1)

Hence we have

div.Ar Qu/ D a C b

jxj2 C F on B1 n Br

with

kF kL2;1.B 1
2

nB2r / � C
�
1 C kr2ukL2.B1nBr / C krukL4.B1nBr / C kf kp

�
:
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Let us proceed to the following Hodge decomposition, see [8, Corollary 10.5.1],

Ad Qu D d˛ C d�ˇ; (4.2)

where ˛ 2 W
1;2

0 .B 1
2
/ and ˇ 2 W 1;2.B 1

2
/ satisfy

�˛ D a C b

jxj2 C F on B 1
2

n B2r

and

�ˇ D dA ^ d Qu on B 1
2
:

On the one hand, we extend F by QF 2 W 1;2.B 1
2
/ such that

k QF kL2;1.B 1
2

/ � 2kF kL2;1 :

Then, let Q̨ 2 W
1;2

0 .B 1
2
/ which satisfies

� Q̨ D QF on B 1
2
:

Hence, thanks to the standard bounds for singular integrals on Lorentz spaces,

see [5], there exists C a positive constant independent of r such that

kr2 Q̨ k2;1 � C kF k2;1:

Then, thanks to Lemma 6.1, there exists C a positive constant independent of r

such that


rT r.˛ � Q̨ /




L2;1.B 1

4
nB4r /

� C kr2.˛ � Q̨ /k2

� C
�
kF k2;1 C kr2ˇk2 C krAr Quk2 C kAr2 Quk2

�
:

(4.3)

On the other hand, thanks to the standard-Lp-theory and Sobolev embeddings, we

get



r2ˇ




L2;1.B 1
4

/
� C

�
1 C kr2ukL2.B1nBr / C krukL4.B1nBr /

�
: (4.4)

Here we use the injection of W 1;2 into L4;2. Finally, thanks to (4.2), (4.3), (4.4)

and the fact that



rT ru




L2;1 � C
�

rT .Aru/




L2;1 C



rT Aru




L2;1

�
;

we get the desired estimate.
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5 Proof of Theorem 1.2

First we are going to separate B1 in three parts: one where un converges to a

limiting solution, another composed of some small neighborhoods where the energy

concentrates and where some bubbles blow and a third part which consists of some

neck regions which join the first two parts. This “bubble-tree” decomposition is by

now classical, see [13] for instance, hence we just sketch briefly how to proceed.

Step 1: Finding the points of concentration. Let "0 be such that the V; w; !

and F given by Section 2 satisfy, thanks to (2.7), the hypothesis of Theorem 3.3 as

soon as kr2uk2
2 C kruk4

4 � "0. Then, thanks to (1.1), we easily proved that there

exist finitely many points a1; : : : ; an where
Z

B.ai ;r/

�
jr2uj2 C jruj4

�
dx � "0 for all r > 0: (5.1)

Moreover, using Theorem 3.3, we prove that there exist f 2 Lp.B1; R
k/ and

an f -approximate biharmonic map u1 2 W 2;2.B1; N / such that, up to a subse-

quence,

fn * f in Lp.B1; R
k/

and

run ! ru1 in W
1; Np

loc .B1 n ¹a1; : : : ; anº/:

Step 2: Blow-up around a
i . We choose ri > 0 such that

Z

B.ai ;ri /

�
jr2u1j2 C jru1j4

�
dx � "0

4
:

Then, we define a center of mass of B.ai ; r i / with respect to un in the following

way:

ai
n D

 R
B.ai ;ri / x˛jr2unj2 dx
R

B.ai ;ri / jrunj2 dx

!

˛D1;:::;4

:

Let �i
n be a positive real such that

Z

B.ai
n;ri /nB.ai

n;�i
n/

�
jr2unj2 C jrunj4

�
dx D "0

2
:

Then we set Qui
n.x/ D un.ai

n C �i
nx/ and N i

n D B.ai
n; r i / n B.ai

n; �i
n/. Thanks to

the conformal invariance, we easily see that
Z

B.0; ri

�i
n

/

�
jr2 Qui

nj2 C jr Qui
nj4
�

dx D
Z

B.ai
n;ri /

�
jr2unj2 C jrunj4

�
dx � M
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and Qui
n still satisfies the equation of approximate biharmonic maps with the approx-

imation .�i
n/4 Qfn which goes to zero in Lp-norm. Let a

j
i be the possible points of

concentration of Qui
n where

Z

B.a
j

i
;r/

�
jr2 Qui

nj2 C jr Qui
nj4
�

dz � "0 for all r > 0: (5.2)

Then, up of a subsequence, for each i ,

r Qui
k ! rui

1 in W
1; Np

loc .B1 n ¹a1
i ; : : : ; a

ni

i º/;

where ui
1 2 W 2;2.R4; N / is a biharmonic map.

Step 3: Iteration. Two cases have to be considered separately:

� Qui
n is subject to some concentration phenomenon as (5.1), and then we find

some new points of concentration, in such a case we apply Step 2 to our new

concentration points.

� eui
n converges in W

2; Np
loc .R4/ to a non-trivial biharmonic map.

Of course this process has to stop, since we are assuming a uniform bound on

kr2unk2 Ckr2unk4 and each step is consuming at least the energy of a non-trivial

biharmonic map which is bounded from below thanks to the energy gap proved in

Theorem 3.3.

Analysis of a neck region: A neck region is an annular region which is a union

of a finite number of annuli N i
n D B.ai

n; �i
n/ n B.ai

n; �i
n/ such that

lim
k!C1

�i
n D 0; lim

k!C1

�i
n

�i
n

D 0;

and Z

N i
n

�
jr2unj2 C jrunj4

�
dx � "0

2
(5.3)

In order to prove Theorem 1.2, we start by proving a weak estimate on the energy

of the gradient and the hessian in the region N i
n.

First we remark that, for all " > 0, there exists r > 0 such that for all � > 0 such

that

B2�.ai
n/ n B�.ai

n/ � N i
n.r/

where N i
n.r/ D B.ai

n; r�i
n/ n B.ai

n;
�i

n

r
/, we have

Z

B2�.ai
n/nB�.ai

n/

�
jr2unj2 C jrunj4

�
dx � ": (5.4)
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If this is not the case there would exist a sequence �i
n ! 0 such that, up to a

subsequence,

Oun D un.ai
n C �i

nz/

converges in W
2; Np

loc .R4 n ¹0º/ to Ou1, a non-trivial biharmonic map. Using the fact

that the W 2;2-norm of Ou1 is bounded and the Schwartz Lemma, we can remove

the point singularity. Hence it has to be in fact a solution on the whole space. Using

the energy gap proved in Theorem 3.3 we deduce that Ou1 is such that

Z

N i
k

�
jr2u1j2 C jru1j4

�
dx � "0; (5.5)

which contradicts (5.3).

Then for all " > 0, there exists r > 0 such that

kr2unkL2;1.N i
n.r// C krunkL4;1.N i

n.r// � ": (5.6)

Indeed, let 0 < " < "0 and r > 0 such that, for all B2�.ai
n/ n B�.ai

n/ � N i
n.r/, we

have Z

B2�.ai
n/nB�.ai

n/

�
jr2unj2 C jrunj4

�
dx � ": (5.7)

Then, thanks to "-regularity in Theorem 3.3, there exist q > 2 and C a positive

constant, independent of r and u, such that for all � > 0 such that

B2�.ai
n/ n B�.ai

n/ � N i
n

�r

2

�
;

and n big enough, we have

�2� 4
q kr2ukLq.B2�nB�/ C �1� 2

q krukL2q.B2�nB�/

� C
�p

" C .r�n
i /

4.p�1/
p jfnjp

�
� C

p
":

(5.8)

Let � > 0, f .x/ D jr2u.x/j if x 2 N i
n. r

2
/ and f D 0 otherwise. For any � > 0,

we denote

U.�; �/ � ¹x 2 B2� n B� j f .x/ > �º:
Thanks to (5.8), we have

�qjU.�; �/j � C r"
q
2 �4�2q:

Let k 2 Z and j � k, we apply the previous inequality with � D 2�j ��1 and we

sum for j � k, which gives

�2j¹x 2 R
4 n B2k��1 j f .x/ > �ºj � C 2�k.4�2q/"

r
2 �4�2q:
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Hence, for any k 2 Z, we have

�2j¹x 2 R
4 j f .x/ > �ºj � C

�
2�k.4�2q/"

q
2 C 24k

�
:

Taking 24k � "
q
2 , we have

kr2unkL2;1.N i
n.r// � C "

q
4 ;

We prove a similar inequality for krunkL4;1 , and then we have (5.6).

Finally using Theorem 4.1 and the duality for Lorentz spaces, we see that, for all

" > 0, there exists r > 0 such that

krT .ru/kL2.N i
k

.r// � ": (5.9)

Then using the Pohožaev identity (7.4) for extrinsic biharmonic maps (resp. (7.5)

for intrinsic biharmonic maps) and the fact that the convergence is strong on the

boundary of a neck region, we get that for all " > 0, there exists r > 0 such that

kr2ukL2.N i
k

.r// C krukL4.N i
k

.r// � ": (5.10)

Which achieves the proof of Theorem 1.2.

Following step by step the proof of Theorem 1.2, we can prove the following

theorem about the angular energy quantization of solution of fourth order elliptic

system in the form of Lamm–Rivière, [10].

Theorem 5.1. Let

Vn 2 W 1;2.B1; Mk ˝ ƒ1
R

4/; wn 2 L2.B1; Mk/;

!n 2 L2.B1; sok/; Fn 2 L2 � W 1;2.B1; Mk ˝ ƒ1
R

4/;

and let un 2 W 2;1.B1; R
n/ be a sequence of solutions of

�2un D �.Vnrun/ C div.wnrun/ C r!nrun C Fnrun; (5.11)

with bounded energy, i.e.

kr2unk2 Ckrunk4 CkVnkW 1;2 Ckwnk2 Ck!nk2 CkFnkL2�W 1;2 � M: (5.12)

Then there exist

V1 2 W 1;2.B1; Mk ˝ ƒ1
R

4/; w1 2 L2.B1; Mk/;

!1 2 L2.B1; sok/; F1 2 L2 � W 1;2.B1; Mk ˝ ƒ1
R

4/

and let u1 2 W 2;1.B1; R
n/ be a solution of

�2u1 D �.V1ru1/ C div.w1ru1/ C r!1ru1 C F1ru1 on B1;
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l 2 N
� and

(i) �1; : : : ; � l a family of solutions to a system of the form

�2� i D �.V i
1r� i / C div.wi

1� i / C r!i
1r� i C F i

1r� i on R
4

where

V i
1 2 W 1;2.R4; Mk ˝ ƒ1

R
4/; wi

1 2 L2.R4; Mk/;

!i
1 2 L2.R4; sok/; F i

1 2 L2 � W 1;2.R4; Mk ˝ ƒ1
R

4/;

(ii) a1
n; : : : ; al

n a family of converging sequences of points of B1,

(iii) �1
n; : : : ; �l

n a family of sequences of positive reals converging all to zero,

such that, up to a subsequence,

Vn * V1 in W
1;2

loc .B1; Mk ˝ ƒ1
R

4/;

wn * w1 in L2
loc.B1; Mk/;

!n * !1 in L2
loc.B1; sok/;

Fn * F1 in L2
loc � W

1;2
loc .B1; Mk ˝ ƒ1

R
4/;

un ! u1 on W
2;2

loc .B1 n ¹a1
1; : : : ; al

1º/
and 






*
r
 

r
 

un � u1 �
lX

iD1

� i
k

!!
; Xn

+





L2

loc.B1/

C







*
r
 

un � u1 �
lX

iD1

� i
k

!
; Xn

+





L4

loc.B1/

! 0;

where !i
n D !i .ai

n C �i
n : / and Xn is any vector field whose image is in .rdn/?

with dn D min1�i�l.�
i
n C d.ai

n; : //.

6 A lemma about harmonic maps on an annular regions

Lemma 6.1. Let 0 < r < 1
8

and u 2 W 1;2.B1 n Br/ be a harmonic function such

that Z

@B1

u d� D 0;

Z

@Br

u d� D 0:

Then there exists C a positive constant independent of r and u such that

kukL2;1.B 1
2

nB2r / � C kuk2 and krT rukL2;1.B 1
2

nB2r / � C krT ruk2:
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Proof. Since u is harmonic, it can be decomposed with respect to the spherical

harmonics as follows:

u D
C1X

lD1

NlX

kD1

�
d l

kr l C d�l
k r�l�2

�
�l

k; (6.1)

where .�l
k
/l;k are a L2-basis of eigenfunction of the Laplacian on S3. In particular

we get ��l
k

D �l.l C 2/�l
k

on S3. Thanks to this equation, Lp-theory for singular

operators gives the existence of a positive constant C , independent of l such that

k�l
k
k1 � C.l.l C 2//2.

Moreover we know that Nl , the dimension of the eigenspace associated to

�l.l C 2/, is equal to .l C 1/2. Hence, computing the L2-norm and L2;1-norm of

the function fj W x 7! jxjj , we get

kfj k2 � r2Cj

2
p

�2j � 4
if j < �2;

kfj k2 � 1

2
p

2j C 4
if j � 0;

kfj kL2;1.B 1
2

nB2r / � .2r/2Cj if j < �2;

kfj kL2;1.B 1
2

nB2r / �
�

1

2

� 3j
4

C1

if j � 0;

where C is independent of j .

Then

kukL2;1.B 1
2

nBr / � C

C1X

lD1

NlX

kD1

�
d l

k

�
1

2

� 3l
4

C1

C d�l
k .2r/�l

�
.l.l C 2//2

� C

  
C1X

lD1

NlX

kD1

.d l
k/2 1

4.2l C 4/

! 1
2

�
 

C1X

lD1

NlX

kD1

4.2l C 4/.l.l C 2//4

�
1

2

� 3l
2

C2
! 1

2

C
 

C1X

lD1

NlX

kD1

.d�l
k /2 r�2l

8l

! 1
2

�
 

C1X

lD1

NlX

kD1

8l.l.l C 2//4

�
1

4

�l
! 1

2
!

:
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Thanks to the fact that Nl , the dimension of the eigenspace associated to the

eigenvalue �l.l C 2/ of the Laplacian, is equal to .l C 1/2, we get the first estimate.

The second identity is obtained in the same way.

7 Pohožaev identities

In this section, we prove a Pohožaev identity for extrinsic and intrinsic biharmonic

maps in order to rely the radial derivatives to the angular ones. First we multiply

our equation by xk@ku and we integrate by parts:

Z

B.0;r/

.xk@ku/.�2u/ dx

D �
Z

B.0;r/

hru; r.�u/i dx �
Z

B.0;r/

.xk@k@iu/.@i .�u// dx

C
Z

@B.0;r/

.xk@ku/@�.�u/ d�

D 2

Z

B.0;r/

.�u/2 dx C
Z

B.0;r/

xk@k.�u/.�u/ dx

C
Z

@B.0;r/

�
.r@�u/@�.�u/ � .@�u/.�u/ � r.@2

�u/.�u/
�

d�

D
Z

@B.0;r/

r

2
.�u/2 d�

C
Z

@B.0;r/

�
.r@�u/@�.�u/ � .@�u/.�u/ � r.@2

�u/.�u/
�

d�:

Using the fact that for an extrinsic harmonic maps we have �2u?TuN almost

everywhere, we get for all r that

Z

@B.0;r/

�
1

2
.�u/2 � .@2

�u/�u C .@�u/@�.�u/ � 1

r
.@�u/.�u/

�
d� D 0: (7.1)

But

�u D @2
�u C 3

r
@�u C 1

r2
�S3u:

Hence

.�u/2 D .@2
�u/2 C 9

r2
.@�u/2 C 1

r4
.�S3u/2 C 6

r
.@�u/.@2

�u/

C 2

r2
.�S3u/.@2

�u/ C 6

r3
.@�u/.�S3u/:
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On the one hand, we have

1

2
.�u/2�.@2

�u/�u D �1

2
.@2

�u/2C 9

2r2
.@�u/2C 1

2r4
.�S3u/2C 3

r3
.@�u/.�S3u/;

which gives
Z

BRnBr

�
1

2
.�u/2 � .@2

�u/�u

�
dx

D
Z

BRnBr

�
�1

2
.@2

�u/2 C 9

2r2
.@�u/2

C 1

2r4
.�S3u/2 C 3

r3
.@�u/ .�S3u/

�
dx:

(7.2)

On the other hand

.@�u/@�.�u/ � 1

r
.@�u/.�u/ D .@�u/.@3

�u/ C 2

r
.@�u/.@2

�u/ � 6

r
.@�u/2

C 1

r2
.@��S3u/.@�u/ � 3

r3
.�S3u/.@�u/:

Integrating by part, we get
Z

BRnBr

�
.@�u/@�.�u/ � 1

r
.@�u/.�u/

�
dx

D
Z

BRnBr

�
.@�u/.@3

�u/ C 2

r
.@�u/.@2

�u/ � 6

r
.@�u/2

�
dx

C
Z

BRnBr

�
1

r2
.@��S3u/.@�u/ � 3

r3
.�S3u/.@�u/

�
dx

D
Z

@.BRnBr /

.@�u/.@2
�u/ d�

C
Z

BRnBr

�
� 1

2r
.@�.@�u/2/ � .@2

�u/2 � 6

r
.@�u/

�
dx

C
Z

BRnBr

�
1

r2
.@��S3u/.@�u/ � 3

r3
.�S3u/.@�u/

�
dx

D
Z

@.BRnBr /

�
.@�u/.@2

�u/ � 1

2r
.@�u/2

�
d�

�
Z

BRnBr

�
.@2

�u/2 C 5

r2
.@�u/2

�
dx

C
Z

BRnBr

�
1

r2
.@��S3u/.@�u/ � 3

r3
.�S3u/.@�u/

�
dx:

(7.3)
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Finally, thanks to (7.1), (7.2) and (7.3), we have
Z

BRnBr

�
3

2
.@2

�u/2 C 1

2r2
.@�u/2

�
dx

D
Z

BRnBr

�
1

2r4
.�S3u/2

�
dx C

Z

BRnBr

�
1

r2
.@��S3u/.@�u/

�
dx

C
Z

@.BRnBr /

�
.@�u/.@2

�u/ � 1

2r
.@�u/2

�
d�:

(7.4)

Since the equations of extrinsic and intrinsic biharmonic maps differ only by

P.u/.B.u/.ru; ru/ruB.u/.ru; ru//C2B.u/.ru; ru/B.u/.ru; rP.u//, we

multiply this term by xk@ku which gives

xk@ku
�
P.u/

�
B.u/.ru; ru/ruB.u/.ru; ru/

�

C 2B.u/.ru; ru/B.u/.ru; rP.u//
�

D B.u/.ru; ru/rxk@kuB.u/.ru; ru/

C 2B.u/.ru; ru/B.u/.ru; r.xk@ku/

D xk@k

� jB.u/.ru; ru/j2

2

�
C 2 jB.u/.ru; ru/j2

D 1

jxj3
@

@�

�
r4

2
jB.u/.ru; ru/j2

�
:

Then integrating, we get the following Pohoždev identity for intrinsic biharmonic

maps:
Z

BRnBr

�
3

2
.@2

�u/2 C 1

2r2
.@�u/2

�
dx

D
Z

BRnBr

�
1

2r4
.�S3u/2

�
dx C

Z

BRnBr

�
1

r2
.@��S3u/.@�u/

�
dx

C
Z

@.BRnBr /

�
.@�u/.@2

�u/ � 1

2r
.@�u/2 � r

2
jB.u/.ru; ru/j2

�
d�:

(7.5)

We also get a Pohoždev identity for the critical point of general functional, since
Z

BRnBr

.xk@ku/H

�
@u

@x1
;

@u

@x2
;

@u

@x3
;

@u

@x4

�
dx

D
Z

BRnBr

d�

�
xk @u

@xk

;
@u

@x1
;

@u

@x2
;

@u

@x3
;

@u

@x4

�
dx D 0:
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