
Energy Reduction Techniques for
Caches and Multiprocessors

Energy Reduction Techniques for
Caches and Multiprocessors

PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen

op 16 oktober 2009 om 12:30

door

Pepijn Jacob DE LANGEN

elektrotechisch ingenieur

geboren te Groningen, Nederland

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. K.G.W. Goossens

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter Technische Universiteit Delft

Prof. dr. K.G.W. Goossens, promotor Technische Universiteit Delft

Dr. B.H.H. Juurlink, copromotor Technische Universiteit Delft

Prof. dr. N.J. Dimopoulos University of Victoria

Prof. dr. K.G. Langendoen Technische Universiteit Delft

Prof. dr. S.K. Nandy Indian Institute of Science

Prof. dr. ir. H.J. Sips Technische Universiteit Delft

Prof. dr. H.A.G. Wijshoff Universiteit Leiden

ISBN: 978-90-72298-03-4

Keywords: Energy reduction, Caches, Multi processor scheduling

Cover design: Floris de Langen

Copyright c© 2009 P.J. de Langen

All rights reserved. No part of this publication may be reproduced, stored in

a retrieval system, or transmitted, in any form or by any means, electronic,

mechanical, photocopying, recording, or otherwise, without permission of the

author.

Printed in the Netherlands

The research presented in this dissertation was partially funded by the Nether-

lands Organization for Scientific Research (NWO, The Hague, project no. 612-

064-308).

Dedicated to Nicole and Tijmen,

for all their love and support over the years.

Energy Reduction Techniques for

Caches and Multiprocessors

Pepijn de Langen

Abstract

E
nergy consumption is a growing concern in many areas of computer

architecture. Not only for the handheld embedded market, but also

for desktop machines and high-end server facilities, there is a demand

for ever increasing processing power while maintaining or even decreasing

energy consumption. For processors embedded in battery-powered devices,

consumers both demand an increasing number of features and an increase of

battery lifetime. For commodity desktop and high-end server systems, the de-

mand to reduce energy consumption is mostly fueled by cost, environmental

issues, and the wish to have systems without noisy cooling systems. This dis-

sertation studies several techniques that aim at reducing energy consumption

in processors.

Part of the techniques presented in this dissertation focusses at reducing energy

consumption by decreasing the amount of data transferred between a proces-

sor and external memory. Since memory is one of the known bottlenecks in

computer systems, manufacturers had to employ increasingly aggressive tech-

niques in the past decades to increase performance. The techniques proposed

in this dissertation target at improving or at least maintaining performance,

while reducing the amount of energy dissipated in the memory subsystem.

Another part of this dissertation focusses on reducing energy by lowering the

speed of nodes in multiprocessor systems in combination with turning off some

of these nodes. Multiprocessor systems have gained significant interest in the

past years, mostly because power constraints have prevented further increasing

clock frequencies and because instruction level parallelism has suffered from

diminishing returns. Due to the way how energy is dissipated in semiconduc-

tor fabric, using multiple cores on a reduced frequency is an effective way to

reduce energy consumption. Due to decreasing sizes of the components from

which processors are built, it is expected that this energy model will change

significantly in future years. Some of the techniques presented in this disserta-

tion aim at reducing energy consumption in such contemporary and near-future

multiprocessor systems.

i

Acknowledgments

This dissertation is the result of over 4 years of work in the Computer Engi-

neering laboratory of the Technical University in Delft. This work would not

have been possible without the help and support of several people.

First of all, I would like to thank my adviser and copromotor Ben Juurlink, for

providing the opportunity to perform my Ph.D. research and for the guidance

throughout the years. His insightful comments have significantly contributed

to this work.

I am very grateful for having known Professor Stamatis Vassiliadis, both in a

professional and in a personal setting. Like for most people in the Computer

Engineering group, Professor Vassiliadis was a huge source of inspiration. It

was a great loss to everyone when he passed away on April 7th 2007. He was

a passionate researcher and a great person. He will always remain in my heart

and mind as ‘my professor’.

I thank Professor Kees Goossens, who suddenly had to take up the role of

promotor for me and many other Ph.D. candidates.

I would like to thank my first office mates, Dan and Gabi, who have helped

me significantly getting started in the first months of my Ph.D. They both were

valuable sources for getting quick answers to technical questions, but also great

people for having endless discussions about non-technical issues.

I want to thank all my friendly colleagues in the Computer Engineering group.

I have really enjoyed working with such a wide variety of inspiring people. I

am especially thankful to my good friends Carlo and Lotfi, for all the lovely

dinners, the interesting discussions, and especially for their support in the last

years.

I also owe my thanks to Georgi Gaydadjev, for being both a good neighbor and

a good friend. I thank Bert and Lidwina, for all their technical and administra-

tive support.

I would like to thank my parents for all the love they have brought to my life,

iii

and for always supporting my academic endeavors. I am grateful to Gillis,

Floris, and Roderik, for the fact that we are not only brothers but also very

good friends. In addition, I want to thank Floris for designing the cover of this

dissertation.

Last but not least, I am in great debt to Nicole and Tijmen, the two most impor-

tant people in my life. This work would not even have been remotely possible

if it weren’t for their love, support, and understanding throughout the years.

Numerous evenings, weekends, and holidays were given up or reorganized to

support my Ph.D.

Pepijn de Langen Delft, the Netherlands, 2009

iv

Contents

Abstract i

Acknowledgments iii

List of Figures xii

List of Tables xiii

List of Acronyms xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Power and Energy . 3

1.3 Challenges . 4

1.4 Organization and Contributions 6

2 Reducing Cache Conflict Misses 9

2.1 Introduction . 10

2.2 Related Work . 11

2.3 Detecting Conflict Misses . 13

2.4 BCC and SCC Caches . 14

2.5 Experimental Results . 16

2.5.1 Experimental Setup 16

2.5.2 Impact of the CDT Size 17

2.5.3 Traffic . 18

v

2.5.4 Energy Reduction . 22

2.5.5 Impact on Execution Time 25

2.6 Conclusions . 27

3 Memory Copies in Multi-Level Memory Systems 29

3.1 Introduction . 29

3.2 Related Work . 31

3.3 Memory Copies in Multi-Level Memory Systems 32

3.3.1 Copying Using Copy Engines 33

3.3.2 Limitations of On-Chip Copy Engines 35

3.3.3 Dynamic Copy Engines 37

3.3.4 Dynamic Copy Engine with Non-Temporal Fetching . 42

3.4 Experimental Results . 43

3.4.1 Experimental Setup 43

3.4.2 Experiments with a Memcopy Micro-Benchmark . . . 46

3.4.3 Experiments with a TCP/IP Processing Benchmark . . 50

3.4.4 Energy Reduction . 53

3.5 Conclusions . 53

4 Limiting the Number of Dirty Cache Lines 55

4.1 Introduction . 56

4.2 Related Work . 59

4.3 Clean/Dirty Cache . 61

4.4 Experimental Results . 63

4.4.1 Experimental Setup 63

4.4.2 Experimental Results 65

4.5 Case Study with Cache Decay 69

4.5.1 Cache Decay . 69

4.5.2 Cache Decay using the Clean/Dirty Cache 70

4.6 Conclusions . 77

vi

5 Energy Efficient Multiprocessor Scheduling using DVS 79

5.1 Introduction . 80

5.2 Related Work . 81

5.3 Energy Reduction using DVS 83

5.3.1 Dynamic Voltage Scaling 83

5.3.2 Voltage Scaling Requirements 84

5.3.3 Voltage Scaling in a Multiprocessor Environment . . . 87

5.4 System and Application Model 88

5.5 Energy Efficient Scheduling Algorithms 90

5.5.1 Schedule & Stretch 90

5.5.2 Leakage Aware MultiProcessor Scheduling 92

5.6 Experimental Results . 95

5.6.1 Experimental Setup 95

5.6.2 Experimental Results 96

5.7 Conclusions . 101

6 Energy Efficient Multiprocessor Scheduling using DVS and DPM 103

6.1 Introduction . 104

6.2 Related Work . 105

6.3 Preliminaries . 106

6.3.1 Power Model . 106

6.3.2 Effect of DVS for the Power Model 109

6.3.3 Processor Shutdown / DPM 109

6.4 Multiprocessor Scheduling with DVS and DPM 110

6.4.1 S&S+DPM and LAMPS+DPM 111

6.4.2 LIMIT-SF & LIMIT-MF 114

6.5 Experimental Results . 115

6.5.1 Experimental Setup 115

6.5.2 Results for the Standard Task Graph Set 117

6.5.3 Results for MPEG-1 123

6.5.4 Results for Different Levels of Static Power 124

vii

6.6 Conclusions . 126

7 Conclusions 131

7.1 Summary and Contributions 132

7.2 Possible Directions for Future Work 136

Bibliography 139

List of Publications 151

Samenvatting 153

Curriculum Vitae 155

viii

List of Figures

1.1 Relative improvement in energy density of lithium ion batter-

ies versus the number of transistors in Intel microprocessors. . 2

1.2 Total electricity use for servers in the world in 2000 and 2005,

including cooling and auxiliary equipment. 3

2.1 Conflict Detection Table (CDT). 14

2.2 Relative amount of traffic produced by a 4kB BCC cache. . . . 19

2.3 Relative amount of traffic produced by a 4kB SCC cache. . . . 19

2.4 Relative amount of traffic produced by a 16kB BCC cache. . . 20

2.5 Relative amount of traffic produced by a 16kB SCC cache. . . 20

2.6 Relative amount of traffic saved by the BCC cache, when com-

pared to a conventional cache. 21

2.7 Relative amount of traffic saved by the SCC cache, when com-

pared to a conventional cache. 22

2.8 Energy per reference in the off-chip memory bus and CDT for

conventional, BCC, and SCC caches of 1kB. 24

2.9 Energy per reference in the off-chip memory bus and CDT for

conventional, BCC, and SCC caches of 4kB. 24

2.10 Miss rates for conventional, BCC, and SCC caches of 1kB. . . 26

2.11 Miss rates for conventional, BCC, and SCC caches of 4kB. . . 26

3.1 Schematic description of how a copy is performed by a copy

engine . 34

3.2 Schematic design of how the copy engines are implemented in

several levels of the memory hierarchy 38

3.3 Pseudo-code for the dynamic copy engines. 40

ix

3.4 Maximum speedups for copying non-resident data using an

on-chip copy engine and the DCE 42

3.5 Example of how one missing block may cause all consecutive

memory blocks to be copied in the same cache 44

3.6 Data traffic produced by the memcopy kernel using a 16kB L1

data cache. 47

3.7 Data traffic produced by the memcopy kernel using a 32kB L1

data cache. 48

3.8 Ratio of transferred bytes to copied bytes in the memcopy

micro-benchmark. 49

3.9 Execution time reduction . 51

3.10 Off-chip traffic reduction . 52

3.11 Percentage of memory copies performed in L2 52

4.1 Schematic representation of the Clean/Dirty-cache 61

4.2 L2 accesses per 1000 cycles for baseline write-back and CD-

caches with capacities of 36kB and 40kB. 66

4.3 IPC for write-back and CD-caches of 36kB and 40kB. 67

4.4 Dynamic energy consumed in L1 and L2 for baseline write-

back and CD-caches of 36kB. 68

4.5 Dynamic energy consumed in L1 and L2 for baseline write-

back and CD-caches of 40kB. 68

4.6 Average active size for normal write-back and CD-caches us-

ing cache decay. 72

4.7 L2 accesses per 1000 cycles for write-back and CD-caches us-

ing cache decay. 74

4.8 Relative energy consumption in the L1 data cache and by the

additional L2 accesses when using cache decay with a period

of 16000 cycles. 76

4.9 Performance of two different decay caches for the twolf and

vpr benchmarks with various decay periods, relative to a write-

back cache without decay. 77

x

5.1 Normalized energy consumption as a function of the normal-

ized frequency for varying combinations of the dynamic and

static components. 86

5.2 Normalized energy consumption as a function of the normal-

ized frequency for varying threshold voltages. 86

5.3 Example of translating periodic tasks into a DAG. 89

5.4 Example for translating KPNs into DAGs. 90

5.5 Example graph and schedule. 91

5.6 Pseudo-code for the list scheduling algorithm. 92

5.7 Schedules produced by S&S and LAMPS. 93

5.8 Pseudo-code for the LAMPS heuristic. 94

5.9 Average power consumption of various schedules, normalized

to a single fully active processor, for different benchmarks with

the deadline at 1.5× the critical path length. 97

5.10 Power reduction achieved by the LAMPS scheduling heuristic

over S&S. 100

5.11 Power reduction achieved by the LAMPS scheduling heuristic

over S&S, when scaling the voltage in discrete steps. 101

6.1 Power consumption as a function of the normalized frequency 108

6.2 Energy consumption as a function of the normalized frequency 108

6.3 Minimum number of idle cycles required for processor shut-

down to be beneficial, as a function of the normalized proces-

sor frequency. 110

6.4 Illustration of S&S and S&S+DPM. 111

6.5 Pseudo-code for the SS+DPM heuristic. 112

6.6 Pseudo-code for the LAMPS+DPM heuristic. 113

6.7 Dependence graph for processing 15 MPEG-1 frames. 116

6.8 Energy consumption relative to S&S for coarse-grain tasks. . . 118

6.9 Energy consumption relative to S&S for fine-grain tasks. . . . 119

6.10 Energy/total work as a function of the average amount of par-

allelism. 122

xi

6.11 Energy consumption as a function of the relative frequency for

different levels of static energy consumption. 125

6.12 Total energy consumption as a function of the relative fre-

quency for different levels of static energy consumption. . . . 125

6.13 Energy consumption relative to S&S for fpppp and robot, us-

ing different levels of static power consumption. 127

6.14 Energy consumption relative to S&S for MPEG-1, using dif-

ferent levels of static power consumption. 128

xii

List of Tables

2.1 Benchmarks and inputs from the MediaBench suite. 16

3.1 Main properties of the simulated system 45

4.1 Average percentage of dirty cache lines in a 32kB 2-way set-

associative cache with a line size of 32 bytes. 56

4.2 Write miss alternatives. 58

4.3 Baseline processor configuration. 64

4.4 Energy consumption of 32kB 2-way set-associative caches with

cache lines of 32 bytes. 64

4.5 Relative energy costs of caches in experimental model. 65

5.1 Six benchmarks from the Standard Task Graph set and their

main characteristics. 96

5.2 Results for deadlines of 1.5× the critical path length. 98

5.3 Results for deadlines of 2× the critical path length. 98

5.4 Results for deadlines of 4× the critical path length. 99

5.5 Results for deadlines of 8× the critical path length. 99

6.1 Constants for 70nm technology. 107

6.2 Employed benchmarks from the Standard Task Graph set and

their main characteristics. 116

6.3 Energy consumption relative to S&S for the MPEG-1 bench-

mark using various approaches. 123

xiii

List of Acronyms

Notation Description

ABB Adaptive Body Biasing

ABC Allocation By Conflict

BCC Bypass in Case of Conflict

CD-Cache Clean/Dirty cache

CDT Conflict Detection Table

CE Copy Engine

CMOS Complementary Metal-Oxide Semiconductor

CPL Critical Path Length

DAG Directed Acyclic Graph

DCE Dynamic Copy Engine

DCE-NT Dynamic Copy Engine with Non-Temporal

Fetching

DMA Direct Memory Access

DPM Dynamic Power Management

DTSE Data Transfer and Storage Exploration

DVFS Dynamic Voltage and Frequency Scaling

DVS Dynamic Voltage Scaling

EDF Earliest Deadline First

GOP Group Of Pictures

IPC Instructions Per Second

xiv

Notation Description

KPN Kahn Process Network

LAMPS Leakage Aware MultiProcessor Scheduling

LAMPS+DPM Leakage Aware MultiProcessor Scheduling with

DPM

LCM Least Common Multiple

LS-EDF List Scheduling with Earliest Deadline First

MAT Memory Address Table

PIM Processing-In-Memory

SCC Sub-block in Case of Conflict

SMT Simultanious Multi-Threading

S&S Schedule and Stretch

S&S+DPM Schedule and Stretch with DPM

STTD Shortest Time To Deadline

xv

1
Introduction

T
his dissertation covers several different energy reduction techniques for

contemporary and future processors. While background and motiva-

tion for each distinct technique is provided with each corresponding

chapter, this introductory chapter provides the background and motivation that

is common among the different chapters. Finally, the organization of this dis-

sertation is outlined.

1.1 Motivation

Energy and power consumption are becoming increasingly important in the

design of processors. Not only for processors embedded in battery powered

devices, also for processors targeted at high-end server clusters energy con-

sumption gains a growing interest. In this dissertation we propose several tech-

niques targeted at reducing energy consumption in single- and multiprocessor

systems, applicable to the embedded as well as to the high-end market.

Although computer architecture research was historically mostly targeted at

enhancing performance, energy and power consumption have become increas-

ingly important in recent years for several reasons.

The first reason is that processors are increasingly deployed in battery-powered

1

2 CHAPTER 1: INTRODUCTION

���� ���� ���� ���� ����

�

��

���

����

�����

������

����	
�

��

�	�

�
	
��
��
�
	
��
	

�
�

�
�
�
�
	
��
�
�

�
�
	
�
	
�
�

FIGURE 1.1 Relative improvement in energy density of lithium

ion batteries versus the number of transistors in Intel microproces-

sors [14].

embedded systems. The physical size of batteries as well as their limited ca-

pacity demand that these systems use power as sparingly as possible. This

demand is even more fueled by an increasing demand for more processing

power without a comparable improvement of battery capacities. The dispar-

ity between the growth of processors and the growth of battery capacities is

depicted in Figure 1.1, which shows a graph redrawn from work by Chala-

mala [14].

Another reason for increased attention for energy reduction relates to the in-

crease in the total number of servers deployed around the world, and the grow-

ing importance of the electricity cost of these servers. Figure 1.2 depicts the

total amount of electricity used by servers in world in 2000 and 2005, as esti-

mated by Koomey [63]. The data in this figure is separated in electricity used

for three different server classes and electricity used for cooling and auxiliary

equipment. From this figure, it is clear that in 5 years the total amount of elec-

tricity used by servers around the world has more than doubled. Moreover,

approximately half the electricity is used for cooling and auxiliary equipment.

As a result of an increase in power consumption and a decrease in the cost of

computing hardware, for many companies the electricity bills are becoming an

increasingly large fraction of the total expenditure.

1.2 POWER AND ENERGY 3

���� ����

�

��

��

��

��

���

���

���

�		
�������
����
���

���������������

���������
�������

�	
�����������

�
	
��

�
�

�

��
�
��
�
��
��

�!
"
�

�
	
�
�#
$
�
%�
�
�
�&

FIGURE 1.2 Total electricity use for servers in the world in 2000

and 2005, including cooling and auxiliary equipment [63].

1.2 Power and Energy

In many works in literature, power and energy are used interchangeably. Al-

though there is a clear relation between these two quantities, they are only

proportional if power refers to average power. In many cases, however, power

reduction techniques aim to reduce the peak power consumption or the power

density [80], in order to keep processors functional without requiring exorbi-

tant cooling.

This dissertation presents techniques to reduce the energy or average power

consumption of processors. Although there are strong relations between tech-

niques aimed at reducing average power and techniques aimed at reducing

peak power or power density, the first is the primary focus of this dissertation.

Power in CMOS circuits is generally classified in a dynamic and a static part.

The dynamic part refers to the power dissipated due to switching between low

and high logic levels. The static part refers to the power dissipated through

leakage currents in non-ideal transistors. Dynamic power has dominated static

power in the past decades, and has increased significantly due to its quadratic

relation on the clock frequency. Due to increasing transistor counts and de-

creasing feature sizes, however, static power consumption has increased sig-

nificantly and is expected to increase further in the next decades [41]. More

4 CHAPTER 1: INTRODUCTION

specifically, Borkar [8] predicted leakage current to increase by a factor of five

with each technology generation, and Duarte et al. [25] predicted that static

power consumption will eventually surpass the dynamic power consumption.

1.3 Challenges

In order to develop energy efficient techniques for future processors, one should

know the key challenges for such processors, both from an energy and a per-

formance perspective. To this end, two key observations were made.

The first observation is that limited memory bandwidth is and will remain a

fundamental impediment to attain higher performance, rendering the memory

hierarchy as one of most important considerations in the design of contem-

porary and future processors. To hide the long latency of off-chip memories,

most processors employ several levels of caches, on-chip and/or off-chip. This

is beneficial due to the inherent temporal and spatial locality of data. While

memories get faster over time, processors become faster as well. In fact, pro-

cessors speeds have grown at a faster rate than memory speeds have, which

has led to a growing disparity between the speeds of processors and memo-

ries. Due to the limited number of processor pins and the intrinsic delay due

to the physical distance between processors and off-chip memories, this dis-

parity is even more significant for memories located off-chip. This problem

is often referred to as the memory wall [71, 95]. To improve performance of

systems with limited bandwidth and long memory latency, chip manufacturers

have used increasingly larger on-chip caches, boosted the transfers speed be-

tween processors and off-chip memories, and employed aggressive prefetching

techniques. While these choices provide one-time improvements, they do not

fundamentally solve the problem. And while these techniques improve per-

formance for memory-bound programs, they generally also increase the total

energy consumption.

Accesses to off-chip memory are not only posing an impediment to higher

performance, they also contribute significantly to the power budget [69, 86].

For example, Basu et al. [6] show that an off-chip data bus in an embedded

processor consumes between 9.8% and 23.2% of the total power.

In many contemporary processors, large on-chip caches often already take up

the majority of the die area. This not only drives the cost of these processors,

larger caches also consume a significant amount of power.

These observations have led to the following questions:

1.3 CHALLENGES 5

• Especially for low-power embedded processors, memory transfers are

responsible for a significant amount of energy consumption. Moreover,

the memory bandwidth is a fundamental impediment to attain higher

performance on memory-bound programs. How can we decrease the

used memory bandwidth in processors while maintaining or possibly

improving performance, without employing large caches?

• Are there situations in which caches and multi-level memories perform

particularly bad? If so, can these problems be resolved efficiently?

• Since larger on-chip caches are more costly in terms of energy and man-

ufacturing cost than smaller caches, can we attain comparable perfor-

mance with processors employing significantly smaller caches?

The second observation is that industry no longer tries to improve performance

by boosting the clock frequency. While this has been popular and effective in

past decades, this trend cannot simply be continued for the following reasons.

First, the key to increasing clock frequency has been the shrinking size of tran-

sistors. With decreasing feature size, however, it becomes increasingly hard

to make reliable circuits, both due to an increase in transient errors and due

to process variations. Furthermore, decreasing transistor sizes inherently lead

to an increases in leakage current, which in term may lead to higher energy

consumption. Secondly, power consumption in CMOS circuits grows quadrat-

ically with the clock frequency. Increasing this frequency therefore leads to

fundamental cooling problems, required to guarantee proper operation. As a

result, the trend of increasing clock frequencies has shifted to maintaining the

same frequency but increasing the number of processor cores. Yet, this has

been an energy efficient solution mostly due to the current state of technology.

In current technology, dynamic power consumption (due to switching between

logic levels) dominates static power consumption (due to leakage currents in

non-ideal transistors). With decreasing feature sizes and with reduced clock

frequencies, however, this balance may be different. When static power be-

comes more significant, the most energy efficient solution is no longer to use

as many processors as possible on a low clock frequency. Instead, it will be

more efficient to find a proper balance between the clock frequency and the

number of used processor cores.

From these observations, the following questions were derived:

• While in many cases increasing the number of processor cores and de-

creasing the clock frequency leads to a reduction in energy, this is mostly

6 CHAPTER 1: INTRODUCTION

due to the importance of dynamic energy. In the case of increased leak-

age power, to what extend will increasing parallelism lead to a reduction

in energy?

• In CMOS, both dynamic and static power consumption decrease with

decreasing voltage and clock frequency. Lowering the clock frequency,

however, also increases the time to complete computational tasks. Since

energy equals power multiplied by time, the static energy consumption

will actually increase when reducing the clock frequency. As a result,

the total energy consumption may also start to increase below a certain

speed. To what extend should the clock frequency be lowered in order

to minimize energy consumption?

• When static power consumption is more significant, it becomes worth-

while to temporarily power-off processor cores. Switching cores off and

on, however, requires a certain amount of time and will therefore also

consume energy. Under which circumstances is switching of processor

cores an interesting option?

• How do these options (number of processor cores, reduced frequency,

and temporarily turning off processors) relate, and how can we find the

optimal operating point that minimizes energy?

1.4 Organization and Contributions

As was already indicated in the previous section, the techniques presented in

this dissertation can be classified into two areas. The first area, covered by the

first three chapters, targets energy reduction in the multi-level memory system.

The second area, covered by the last two chapters, proposes energy efficient

scheduling techniques for near-future multiprocessor systems.

Small direct-mapped caches consume less energy than large set-associative

caches. However, small direct-mapped caches incur many conflict misses. In

Chapter 2, we target energy reduction by reducing the amount of (off-chip)

memory traffic caused by recurring conflict misses in caches. The proposed

technique is based on a structure called the Conflict Detection Table (CDT).

The CDT is used to detect conflict misses in direct-mapped caches. Using

this information, memory traffic is reduced by transferring only the requested

word instead of the whole cache line from the next memory level. Two cache

organizations that employ the CDT are proposed: the Bypass in Case of Con-

flict (BCC) cache and the Subblock in Case of Conflict (SCC). While the BCC

1.4 ORGANIZATION AND CONTRIBUTIONS 7

bypasses the cache when a conflict miss is detected, the SCC only stores the

requested subblock on the same event. Experimental results show that these

organizations can reduce the amount of memory traffic by up to 65% for the

BCC, and up to 47% for the SCC.

Memory copies require virtually no computational power, but produce a signif-

icant amount of memory traffic. Furthermore, large memory copies can com-

pletely replace the contents of the data cache, while the newly allocated data

may not be used directly after. In Chapter 3, we develop a technique to effi-

ciently handle memory copies in multi-level memory systems, using an organi-

zation where memory copies are performed using Copy Engines (CEs). A tech-

nique is proposed that can dynamically decide in which level the copy should

be performed in order to minimize memory traffic. By avoiding transfers back

and forth between the main memory and the CPU, a significant amount of traf-

fic and energy can be saved. Furthermore, by reducing the amount of used

memory bandwidth and by performing the memory copies asynchronously

in dedicated hardware, the proposed organization also improves performance.

In an experimental setup with a TCP/IP processing benchmark and a 2-level

cache hierarchy, the proposed technique shows to reduce memory traffic by up

to 94% and improve execution time by up to 21%.

Write-back caches are usually preferred over write-through caches since they

attain significantly higher performance. Furthermore, write-through caches

produce significantly more write traffic, wasting precious memory bandwidth

and energy. Write-back caches, on the other hand, maintain a significant num-

ber of dirty cache lines, which can be problematic for several reasons. Many

techniques to reduce energy consumption in caches resize, reconfigure, or shut

down (parts of) a cache dynamically. With these techniques, dirty cache lines

have to be written back to the next memory level first. Not only can this lead

to an increased number of bandwidth stalls due to bursts of write-back traffic,

it can also bring additional complexity to the design of the energy reduction

logic. Furthermore, with error detection clean cache lines are tolerant to tran-

sient errors, whereas dirty cache lines need error correction. In Chapter 4, we

propose a cache organization called the Clean/Dirty (CD) cache. The CD-

cache is a cache organization using two separate cache structures. The first

structure is only used to store clean data. The second structure is much smaller,

and is used to store all dirty data. By splitting the cache in clean and dirty data,

cache energy reduction techniques can be applied efficiently to the clean data,

while maintaining an acceptable amount of write traffic. The proposed orga-

nization results in a similar or higher performance than a write-back cache,

while reducing the number of dirty cache lines significantly. In a case study it

8 CHAPTER 1: INTRODUCTION

is shown how the proposed organization can be applied efficiently to a energy

reduction technique called Cache Decay. Compared to a conventional write-

back cache that uses cache decay, the CD-cache with cache decay improves

the energy reduction by more than twice on average.

An effective technique to reduce power consumption in modern CPUs is Dy-

namic Voltage Scaling (DVS), in which both the frequency and the supply volt-

age are scaled down when less performance is demanded. For multiprocessors,

an effective technique is to use as many processors as possible to reduce the

makespan of the schedule, and to use the remainder of time until the deadline

(slack) to reduce the frequency and supply voltage. This technique is effective

because in current technologies dynamic power consumptions dominates static

power consumption. As static power consumption due to leakage currents is

expected to increase dramatically in the near future, this technique may no

longer suffice. Instead, it becomes more effective to balance between reduc-

ing the makespan and limiting the number of employed processors. In Chap-

ter 5, we propose a technique called Leakage Aware MultiProcessor Schedul-

ing (LAMPS). LAMPS is a scheduling heuristic that finds an optimal balance

between DVS and using the correct number of processors. This is achieved by

using a non-optimal but fast scheduling algorithm, which allows our heuris-

tic to dedicate more time to finding the optimal number of processors. Results

show that this heuristic improves energy consumption by up to 67%, compared

to a technique that employs as many processors as possible.

In Chapter 6, we extend LAMPS by also allowing a processor to shut down

temporarily. The proposed heuristic finds an optimal balance between DVS,

using the correct number of processors, and shutting down these processors

temporarily. Results show that this approach reduces the energy consump-

tion by up to 14%, compared to the LAMPS heuristic presented in Chapter 5.

Furthermore, two lower bounds are presented. One for the case where all pro-

cessors run at the same frequency and where this frequency is fixed throughout

the schedule, and one where each processor is assigned its own frequency and

this frequency may change over time. Using these lower bounds, it is shown

that after applying the proposed scheduling heuristic, there is little room left

for improvement.

Chapter 7 concludes this dissertation by summarizing the most important con-

tributions and directions for future research.

2
Reducing Cache Conflict Misses

O
ff-chip memory accesses are a major source of power consumption in

embedded processors [6, 13, 93, 94]. In order to reduce the amount

of traffic between the processor and the off-chip memory as well as

to hide the memory latency, nearly all processors have one or more levels

of cache on the same die as the processor core. However, because small

caches dissipate less power and are cheaper than large caches, a small cache is

preferable to a large cache in embedded processors. Furthermore, because set-

associative caches consume more power than direct-mapped caches, a direct-

mapped cache is preferable to a set-associative one. Small, direct-mapped

caches, however, generally incur many conflict misses. To reduce the amount

of traffic generated by small direct-mapped caches, in this chapter we propose

and evaluate a structure called the Conflict Detection Table (CDT). This table

can be used to determine if a memory access is expected to hit the cache. If

a hit is expected and a miss occurs, then a conflict is detected and appropriate

action can be taken. In addition, we propose two cache structures that use this

information to apply a better caching strategy: the Bypass in Case of Conflict

(BCC) cache and the Sub-block in Case of Conflict (SCC) cache. The BCC

cache bypasses the cache when a conflict is detected, whereas the SCC cache

fetches a sub-block of the missing cache line in such a case. Both the BCC

and the SCC cache try to minimize the amount of data traffic, by only fetching

the requested word instead of a whole cache line when a conflict is detected.

9

10 CHAPTER 2: REDUCING CACHE CONFLICT MISSES

While bypassing the cache disallows exploiting temporal or spatial locality, the

benefit is that it avoids the need to discard the previous contents of the cache

line. With sub-block caching, the previous contents are discarded. In this case,

however, it may be possible to exploit temporal locality if the requested sub-

block is referenced again in the near future. Whether bypassing or sub-block

caching is more efficient, therefore, depends on how data is referenced after-

wards. Experimental results using several embedded workloads show that the

BCC and SCC cache reduce the amount of traffic significantly in many cases.

Furthermore, overall they incur the same number of cache misses as the direct-

mapped cache. This shows that the BCC and SCC cache reduce the amount of

energy consumption with a negligible reduction in performance.

Most of the material presented in this chapter has been previously published

in [19].

2.1 Introduction

In order to limit the amount of off-chip memory traffic, it is essential that

embedded processors make effective use of the on-chip cache. Embedded pro-

cessors often exploit a small cache with limited associativity, because they are

cheaper and more power efficient than large caches, and because increased

associativity increases the power consumption and cycle time [84]. Small,

direct-mapped caches, however, generally produce many conflict misses and,

as a result, generate a significant amount of processor-memory traffic [18].

In this chapter, we present a novel technique to detect and eliminate conflict

misses in caches. This technique is based on a structure called the Conflict De-

tection Table (CDT). The CDT contains the tag part of the addresses referenced

by recently executed load/store instructions and is indexed by the lower-order

bits of the program counter. The idea behind the CDT is that if an entry corre-

sponding to a load/store instruction is found in the CDT and the data tag stored

in this entry matches the tag of the current data address, a (spatial) hit is ex-

pected because the referenced word was loaded in the cache the previous time

this instruction was executed. Furthermore, if a hit is expected but the cache

access yields a miss, then a conflict is detected because the word must have

been replaced by another instruction.

We propose two cache structures that employ the CDT. The first, called the

Bypass in Case of Conflict (BCC) cache, bypasses the cache when a conflict is

detected. The second, called the Sub-block in Case of Conflict (SCC) cache,

is a sector cache that fetches only the missing sector (or sub-block) when a

2.2 RELATED WORK 11

conflict is detected. Both the BCC as well as the SCC cache are direct-mapped.

This chapter is organized as follows. Section 2.2 briefly discusses related work.

In Section 2.3 we explain how recurring conflict misses can be detected and

appropriate action can be taken. Section 2.4 presents cache organizations that

use the CDT to reduce the negative effect of recurring conflict misses. The

effectiveness of these caches are experimentally verified in Section 2.5. Con-

clusions are given in Section 2.6.

2.2 Related Work

Jouppi [47] proposed employing a small (consisting of four to eight entries),

fully associative victim cache in order to reduce conflict misses in direct-

mapped caches. Blocks evicted from the L1 cache are not immediately placed

in the L2 cache but are given a second chance in the victim cache. The vic-

tim cache is fully associative, however, and fully associative caches consume

more energy than direct-mapped caches [84]. Memik et al. [73] showed how

the victim cache can be used to reduce energy consumption by avoiding more

expensive accesses to the next memory level. They furthermore showed that

this resulted in better energy-delay and energy-delay-area products than would

be obtained by increasing the size or associativity.

Kin et al. [60] stated that designers should be willing to trade performance

for low power, and proposed to use an unusually small filter cache in-between

the L1 cache and the load store unit. Energy is reduced by servicing memory

access from the much smaller filter cache instead of the normal L1 cache.

However, due to the limited size of this filter cache, many requests are serviced

from the bigger L1 cache with an increased latency, thereby causing a decrease

in performance.

The Dual Data Cache proposed by González et al. [29] includes a mechanism

that detects if a load instruction interferes with itself. This happens, for ex-

ample, when a vector is accessed repeatedly and the vector is larger than the

cache. In such a case, the vector displaces itself from the cache. This situation

is even worse when the vector is accessed with a stride unequal to one and the

stride and the cache size are not co-prime, because in this case not all blocks

are used to cache the vector. This mechanism, however, does not detect cross-

interference, i.e., it does not discover situations in which data is replaced by

data referenced by a different load instruction. Juurlink proposed to apply this

technique using a sector cache instead of two separate cache structures, which

was called the Unified Dual Data Cache [49].

12 CHAPTER 2: REDUCING CACHE CONFLICT MISSES

Johnson et al. [45] try not to evict a block if it is more heavily used than the

arriving block that generated a miss. To do so they divide the memory into

regions called macroblocks and employ a table called the Memory Address

Table (MAT) that contains information about how often each macroblock is

used. If the MAT indicates that the block to be replaced is more heavily used

than the arriving block, the arriving block is not stored in the cache. The MAT

behaves like a cache, and according to results in [45] it appears that it must be

rather large in order to be effective. Furthermore, this technique is targeted at

improving performance rather than reducing energy consumption.

Tam [89] proposed the Allocation By Conflict (ABC) replacement policy. In

this organization a 1-bit counter is associated with each cache block, which is

increased (decreased) each time an access to this block yields a miss (hit). A

block is evicted from the cache only when two consecutive accesses produce a

miss.

There are also static (compiler) approaches aimed at reducing conflict misses.

The Data Transfer and Storage Exploration (DTSE) methodology [10, 11]

developed at IMEC, for example, focuses on compile-time techniques. One

of the steps in this methodology aims at improving locality by applying loop

transformations such as loop interchange and loop splitting and merging. In

another step the restricted lifetimes of (parts of) array variables are exploited

to overlap them in the address space. The leads to better cache performance

and also reduces the total size of the required memories. While very good

results have been achieved using the DTSE methodology (speedups of up to

a factor of 3 and reductions in bus load by an order of magnitude have been

reported), the approach has two limitations. First, the methodology is only

partially supported by tools and, hence, requires manual intervention which

increases the design complexity. Second, it is unclear if it can be applied to

dynamic, pointer-based applications.

Another static approach to reduce conflicts in caches is proposed by Petrov and

Orailoglu [78]. Their method is aimed at application-specific customization of

the data cache of embedded processors. They present an algorithm that parti-

tions memory access instructions into groups of instructions that exhibit data

reuse amongst them. Each group is mapped to a certain partition of the cache,

which allows to isolate them from possibly interfering groups. Furthermore,

the tag comparison can be avoided if it can be determined that a reference will

invariably hit the cache.

2.3 DETECTING CONFLICT MISSES 13

2.3 Detecting Conflict Misses

A conflict miss occurs when a memory word is referenced twice but is in-

between replaced by other data. Conflict misses occur more frequently in

direct-mapped caches than in set-associative caches, because each memory

word is mapped to only one cache location. Consider, for example, the follow-

ing simple loop:

for (i=0; i<n; i++)

a[i] = b[i]+c[i];

If the differences between the base addresses of the arrays a, b, and c are

a multiple of the cache size, each a[i], b[i], and c[i] all map to the

same cache line and each will replace the other in the cache so that there is no

chance to exploit the spatial locality exhibited by this code. Such ‘ping-pong’

effects will degrade the cache performance severely. Although, in this simple

example, these conflicts can be avoided by loop transformations, this may not

always be possible for more complex code.

To detect conflict misses in direct-mapped caches, we propose a small structure

called the CDT. The principle idea behind the CDT is that when consecutive

executions of a load/store instruction access the same cache line, a cache hit is

expected for all but the first access. If a hit is expected but a cache miss occurs,

a different instruction must have accessed a word that is mapped to the same

cache line.

As illustrated in Figure 2.1, the CDT is a cache-like structure that is indexed by

the lower-order bits of the program counter. While the CDT could be designed

as a set-associative cache, in this work it is assumed to be direct-mapped. Ev-

ery entry contains the higher-order bits of the instruction address and the tag of

the address referenced the previous time the corresponding load/store instruc-

tion was executed. Each time a load/store instruction is executed, the CDT is

accessed and the higher-order bits of the instruction address are used to deter-

mine if there is an entry for the current instruction. If no entry is found, one

is allocated and the data tag field is set to the tag of the current address. If the

higher order bits of the instruction address match, an entry is found, and the

data tag stored in this entry is compared to the tag of the current address. If

these data tags also match, the requested data is expected to be already present

in the cache, because it was fetched the last time this instruction was executed.

From this it follows that if a cache miss is encountered, the requested data must

have been replaced by a different instruction and a conflict is detected.

14 CHAPTER 2: REDUCING CACHE CONFLICT MISSES

=?

=?

tagtag index

Program Counter Data Address

cache miss

conflict detected

C
D

T
 h

it

h
it e

x
p

e
c

te
d

FIGURE 2.1 Conflict Detection Table (CDT).

A conflict can only be detected when a cache miss occurs. The information

about possible conflicts, therefore, does not need to be available until after the

tag comparison. This implies that the CDT will not increase the time to hit the

cache. Furthermore, since the amount of required logic to implement the CDT

is fairly low, it will not consume much energy. A detailed evaluation relating

the energy consumed by the CDT to the energy saved by reducing memory

traffic is presented in Section 2.5.

2.4 BCC and SCC Caches

When a conflict is detected, it is not known in advance which instruction will

be the first to re-use this cache line. Therefore, for reducing the miss rate, it is

not certain what will be most efficient: replacing the current line or bypassing

the cache. The same is true for reducing the amount of traffic. If a cache line

is not reused in the near future, it may be beneficial to only fetch the requested

data and/or to bypass the cache. If the same cache line is accessed several

times in the near future, however, this will increase the amount of traffic since

2.4 BCC AND SCC CACHES 15

each request also requires transferring the address. The techniques presented

in this chapter target memory traffic reduction by fetching only the requested

word instead of the whole cache line, but only if a conflict is detected.

We propose two cache structures that employ the CDT to detect and elimi-

nate conflict misses. Both caches are direct-mapped but have the additional

possibility to bypass the cache or to store only part of the requested cache line.

• Bypass in Case of Conflict — The first cache organization using the

CDT uses cache bypassing and is called the BCC cache. When a conflict

is detected in the BCC cache, the requested word is fetched from the

next memory level, but it is not stored in cache. In other words, when the

CDT detects that the cache line has been replaced by another instruction,

this cache will no longer store the words referenced by this instruction,

as long as the instruction references the same cache line.

• Sub-block in Case of Conflict — The second cache organization using

the CDT employs sub-block caching [33] and is called the SCC cache.

When a conflict is detected by the CDT, only the requested sub-block

is fetched instead of the whole cache line. This sub-block is then stored

in the corresponding location in cache, and the rest of the sub-blocks on

the same cache line are invalidated. When afterwards an invalidated sub-

block is referenced, it is treated as a normal miss and the whole cache

line is fetched from the next memory level.

When a miss occurs in either the BCC or the SCC cache, this data is fetched

from the next memory level, similar to a conventional cache. However, when

a conflict is detected in the BCC and SCC caches, only the requested word of

the cache line is transferred from the next memory level, whereas in a con-

ventional cache the whole cache line is transferred. This potentially saves a

significant amount of data traffic, especially if a significant number of con-

flict misses occur. However, not fetching the remainder of the cache line may

degrade performance if the CDT incorrectly predicts conflicts for instructions

that exhibit a certain amount of spatial locality.

Both the BCC and the SCC cache avoid transferring data speculatively when

a conflict is detected. The fundamental difference between the BCC and the

SCC caches is that when a conflict is detected, the SCC assumes there is no

benefit from spatial locality, but still tries to benefit from temporal locality by

storing the requested sub-block. The BCC cache, on the other hand, tries to

benefit from not replacing a previously referenced cache line.

16 CHAPTER 2: REDUCING CACHE CONFLICT MISSES

Benchmark Input # of mem. refs.

adpcm-dec clinton.adpcm 4.59 · 105

adpcm-enc clinton.pcm 4.59 · 105

g721-dec clinton.g721 4.90 · 107

g721-enc clinton.pcm 4.78 · 107

gsm-dec clinton.pcm.gsm 8.39 · 106

gsm-enc clinton.pcm 5.19 · 107

jpeg-dec testimg.jpg 1.18 · 106

jpeg-enc testimg.ppm 6.55 · 104

mpeg2-dec mei16v2.m2v 3.28 · 107

pegwit-dec my.sec & pegwit.enc 5.31 · 106

pegwit-enc my.pub & pegwit.plain 8.52 · 106

epic test image.pgm 7.47 · 106

unepic test image.pgm.E 1.64 · 106

TABLE 2.1 Benchmarks and inputs from the MediaBench [64] suite.

2.5 Experimental Results

In this section, it is shown by experiments that the BCC and SCC cache reduce

the amount of off-chip memory traffic without causing a significant perfor-

mance degradation. It is furthermore shown how these reductions in off-chip

traffic can be translated to energy improvements.

2.5.1 Experimental Setup

As benchmarks, we employed the MediaBench [64] benchmarking suite, which

consists of a number of audio and video codecs as well as encryption and de-

cryption routines. These benchmarks are representative of embedded multime-

dia applications. The MiBench [32] benchmarking suite, which is specifically

aimed at embedded systems and also contains workloads from other applica-

tion domains, was not available at the time this project was started. Moreover,

MediaBench and MiBench suites have several benchmarks in common. The

employed benchmarks are listed in Table 2.1.

The sim-safe simulator from the SimpleScalar tool set [4] was modified to gen-

erate traces containing instruction and data addresses of all executed load and

store instructions. These traces were fed to our trace-driven cache simulator,

2.5 EXPERIMENTAL RESULTS 17

which generates several statistics, such as to the number of hits and misses and

how often a replaced cache line is dirty. From these statistics, the number of

transferred bytes can be computed, as well as the miss rate. We also use these

statistics to compute the average energy per reference.

The simulated cache size ranges from 256 bytes to 16 kilobytes. All caches

have a line size of 32 bytes, are direct-mapped, and employ the write-back

policy. The sub-block size of the SCC cache is equal to the word size (32 bits).

For the CDT, we have used a direct-mapped structure with 8 to 128 entries.

We measured the total amount of traffic between the cache and main memory,

including request (address) traffic.

Some benchmarks issue significantly more data references and therefore pro-

duce more memory traffic than others. In order to be able to compare the

attained traffic savings for different benchmarks, we therefore show the rela-

tive changes between the proposed cache organizations and the conventional

direct-mapped cache. For miss rates, however, relative differences do not pro-

vide proper information. If, for example, in one case the miss rate increases

from 1% to 2%, and in another case it increases from 40% to 80%, the perfor-

mance penalty is far more severe with the latter than with the former. There-

fore, one should consider absolute differences between the miss rates of two

caches rather than relative differences.

This section also quantifies the possible energy reductions by using BCC or

SCC caches compared to conventional caches. While existing tools tools such

as sim-wattch can be used to determine the energy consumption of experi-

ments performed using SimpleScalar, we have chosen not to use these tools

for several reasons. First, these tools are well suited to determine the energy

consumption of existing architectures, while we employ a more custom cache

architecture. Second, we are mostly interested in the savings obtained by re-

ducing memory traffic, offset against the energy used by the CDT.

2.5.2 Impact of the CDT Size

One of the most influential design parameters for both the BCC and SCC

caches is the size of the CDT. The CDT can only detect conflicts if an entry

is not replaced in-between two consecutive invocations of the same load/store

instruction. Furthermore, the CDT will predict subsequent conflicts as long

as the entry remains available. For a very small CDT, both the BCC and the

SCC will behave exactly like normal caches. For a very large CDT, on the

other hand, these caches may keep predicting conflicts indefinitely, even if

18 CHAPTER 2: REDUCING CACHE CONFLICT MISSES

these conflicts only occurred for a small period of time. Naturally, it would be

preferable to keep the CDT as small as possible, in order to limit the required

area and the energy consumption.

To determine the proper size of the CDT, experiments were conducted us-

ing CDT sizes ranging from 8 to 128 entries. Figures 2.2 and 2.3 depict the

amount of traffic relative to a normal direct-mapped cache for the BCC and

SCC caches, respectively. In both cases, a cache size of 4kB was used. Fig-

ures 2.4 and 2.5 depict results from the same experiments with caches of 16kB.

Clearly, when the CDT has too few entries, the opportunities to detect and

predict conflict misses become limited, as can be seen from Figures 2.2 and 2.3

for the adpcm-enc and jpeg-dec benchmarks. A CDT with too many entries,

on the other hand, can also be detrimental to traffic reduction, as can be seen

for the mpeg-dec benchmark in Figure 2.4. In this case, the CDT incorrectly

keeps predicting conflicts, leading to a significant increase in traffic in case of

the BCC cache. A similar unwanted behavior can be seen for the g721-dec and

the g721-enc benchmarks in Figure 2.2 and 2.3. Overall, a CDT of 32 entries

shows to be a good balance, leading to no significant increase in traffic for any

benchmark and to proper traffic savings for most benchmarks. Therefore, we

will use a CDT of 32 entries in the remainder of this chapter.

Another notable results is that for some benchmarks, such as adpcm-dec and

unepic, the savings appear to be almost independent of the CDT size. In these

cases, a CDT of only 4 entries is sufficient to detect most conflicts, leading to

a traffic reduction of up to 65% with adpcm-dec and over 20% for the unepic

benchmark when using caches of 4kB.

As the benchmarks used in this chapter have relatively small working sets, they

do not stress larger data caches significantly. In fact, from Figures 2.4 and 2.5

it can be seen that both the BCC and the SCC are only able to reduce traffic

for less than half of the employed benchmarks. Because of this, and because

the number of conflict misses decreases significantly with an increase in cache

size, the experiments presented in this chapter are performed using relatively

small caches of 1 to 16kB. The fact that these benchmarks perform relatively

well on small caches can be verified by looking at the corresponding miss rates,

presented in Section 2.5.5.

2.5.3 Traffic

Figure 2.6 and Figure 2.7 depict, for various benchmarks and cache sizes, the

relative traffic savings upon a normal direct-mapped cache of the same size, for

2.5 EXPERIMENTAL RESULTS 19

�
�
�
�
�
��
�
�
��

�
�
�
�
�
��
	
�
��

�
�

��
�
�
��

�
�

��
	
�
��

�
�
��
�
�
��

�
�
��
	
�
��

��
�

��
�
�
��

��
�

��
	
�
��

�
�
�

�
��
�
�
��

�
�

�
����

�
�
��

�
�

�
����

	
�
��

�
�
��
��

�
	
�
�
��
��

�
��

�
�
�

�

���

���

���

���

��

� � �� �� ��

��	� ��!"

!�
#�
��
$
�
��
!�
%%
��

FIGURE 2.2 Relative amount of traffic produced by a 4kB BCC

cache using a CDT of 8, 16, 32, 64, and 128 entries.

�
�
�
�
�
��
�
�
��

�
�
�
�
�
��
	
�
��

�
�

��
�
�
��

�
�

��
	
�
��

�
�
��
�
�
��

�
�
��
	
�
��

��
�

��
�
�
��

��
�

��
	
�
��

�
�
�

�
��
�
�
��

�
�

�
����

�
�
��

�
�

�
����

	
�
��

�
�
��
��

�
	
�
�
��
��

�
��

�
�
�

�

���

���

���

���

��

� � �� �� ��

��	� ��!"

!�
#�
��
$
�
��
!�
%%
��

FIGURE 2.3 Relative amount of traffic produced by a 4kB SCC

cache using a CDT of 8, 16, 32, 64, and 128 entries.

20 CHAPTER 2: REDUCING CACHE CONFLICT MISSES

�
�
�
�
�
��
�
�
��

�
�
�
�
�
��
	
�
��

�
�

��
�
�
��

�
�

��
	
�
��

�
�
��
�
�
��

�
�
��
	
�
��

��
�

��
�
�
��

��
�

��
	
�
��

�
�
�

�
��
�
�
��

�
�

�
����

�
�
��

�
�

�
����

	
�
��

�
�
��
��

�
	
�
�
��
��

�
��

�
�
�

�

���

���

���

���

��

��

��

��

�

� � �� �� ��

��	� ��!"

!�
#�
��
$
�
��
!�
%%
��

FIGURE 2.4 Relative amount of traffic produced by a 16kB BCC

cache using a CDT of 8, 16, 32, 64, and 128 entries.

�
�
�
�
�
��
�
�
��

�
�
�
�
�
��
	
�
��

�
�

��
�
�
��

�
�

��
	
�
��

�
�
��
�
�
��

�
�
��
	
�
��

��
�

��
�
�
��

��
�

��
	
�
��

�
�
�

�
��
�
�
��

�
�

�
����

�
�
��

�
�

�
����

	
�
��

�
�
��
��

�
	
�
�
��
��

�
��

�
�
�

�

���

���

���

���

��

� � �� �� ��

��	� ��!"

!�
#�
��
$
�
��
!�
%%
��

FIGURE 2.5 Relative amount of traffic produced by a 16kB SCC

cache using a CDT of 8, 16, 32, 64, and 128 entries.

2.5 EXPERIMENTAL RESULTS 21

�
�
�
�
�
��
�
�
��

�
�
�
�
�
��
	
�
��

�
�

��
�
�
��

�
�

��
	
�
��

�
�
��
�
�
��

�
�
��
	
�
��

��
�

��
�
�
��

��
�

��
	
�
��

�
�
�

�
��
�
�
��

�
�

�
����

�
�
��

�
�

�
����

	
�
��

�
�
��
��

�
	
�
�
��
��

�
���

�
�
�

���

��

��

���

���

���

���

���

���

� !� �� !� �� !� �" !� �� !�

#�	�$��%

�%
�
&&
��
��
�
'
�	

�

FIGURE 2.6 Relative amount of traffic saved by the BCC cache,

when compared to a conventional cache.

respectively the BCC cache and the SCC cache. The bars labelled G.MEAN

denote geometric means measured over all benchmarks. Geometric means are

used instead of averages, since we are comparing relative quantities.

It can be seen that in most cases both the BCC cache and the SCC cache pro-

duce significantly less traffic than the normal direct-mapped cache. Specifi-

cally, in 55% of all benchmark/cache size combinations, the BCC cache pro-

duces at least 5% less traffic than the direct-mapped cache. The SCC cache

improves upon the direct-mapped cache by at least 5% in 50% of all cases. Es-

pecially when the cache size is small (1, 2, or 4 kB), a traffic reduction of more

than 50% can be achieved by the BCC as well as the SCC cache. Averaged

over all benchmarks and cache sizes (using a geometric mean), the amount of

traffic produced by the BCC cache is 20% smaller than the amount of traffic

generated by the direct-mapped cache. For the SCC cache, the average reduc-

tion is 11%. For larger cache capacities, fewer benchmarks benefit from the

proposed conflict detection technique.

The efficacy of the BCC and SCC cache depend significantly on the type and

amount of locality that is exhibited by an application. In a small number of

cases, the BCC and the SCC cache actually produce more traffic than the

direct-mapped cache. This is particularly the case with the pegwit-dec and

22 CHAPTER 2: REDUCING CACHE CONFLICT MISSES

�
�
�
�
�
��
�
�
��

�
�
�
�
�
��
	
�
��

�
�

��
�
�
��

�
�

��
	
�
��

�
�
��
�
�
��

�
�
��
	
�
��

��
�

��
�
�
��

��
�

��
	
�
��

�
�
�

�
��
�
�
��

�
�

�
����

�
�
��

�
�

�
����

	
�
��

�
�
��
��

�
	
�
�
��
��

�
���

�
�
�

���

��

��

���

���

���

���

�� � ��� � ��� � �!� � �"� �

#�	�$��%�

�%
�
&&
��
��
�
'
�	

�

FIGURE 2.7 Relative amount of traffic saved by the SCC cache,

when compared to a conventional cache.

pegwit-enc benchmarks. In these cases, the benchmarks suffer from decreased

performance due to the fact that available spatial locality is not fully exploited.

In most cases, however, both cache organizations reduce the amount of off-chip

traffic considerably and, hence, the amount of energy consumed by an appli-

cation. We further observe that although the BCC cache produces the least

amount of traffic for most benchmarks and cache sizes, it will also increase

traffic more than the SCC cache when incorrectly predicting conflicts.

2.5.4 Energy Reduction

By reducing the amount of data that is transferred between on-chip and off-

chip memories, a significant amount of energy can be saved. However, this

has to be offset against the energy consumed by the CDT, which is accessed on

every load or store instruction. The difference in energy consumption between

the conventional direct-mapped cache and the BCC and SCC can be estimated

by comparing the energy saved by the traffic reduction to the energy consumed

by the accesses to the CDT. In both cases, these numbers have to be multiplied

by the appropriate energy cost.

2.5 EXPERIMENTAL RESULTS 23

Since the CDT closely resembles a cache, the energy consumption of accessing

the CDT can be estimated using CACTI [90]. Using CACTI 4.1, a 128-entry

direct-mapped cache with a line size of 8 bytes was modelled, using the 180 nm

technology node. According to CACTI, this results in a cost of approximately

2.14pJ per access. It should be noted that we use a CDT of 32 entries in these

experiments and that the CDT actually employs a line size of 4 bytes. However,

the minimum line size in CACTI is 8 bytes, and the energy cost of accessing

the CDT is therefore over-estimated.

To model the cost of transferring data between on- and off-chip memories, we

use a lower bound by only calculating the energy involved in bit switches on

the bus. The dynamic energy consumed by a single bit switch can be expressed

as:

E = C · V 2,

where C denotes the bus capacitance and V denotes the employed voltage.

This voltage is assumed to be 1.8V , which is the minimum voltage used in

commodity memories available on the market today [38]. The capacitance of

a single metal wire between on- and off-chip is estimated at 20pF for 180 nm

technology. This is the same value as is used by Basu et al. [6], which in turn

is based on data provided in [12].

We assume that, when transferring data, on average half the bits on the mem-

ory bus switch. As a result, the energy involved with these transfers can be

estimated by:

Ebus = 4 · traffic · C · V 2,

where traffic denotes the total number of bytes transferred across the bus. For

example, a transfer of one 4-byte word across the bus will consume 4 · 4 · 20 ·
10−12 · (1.8)2 = 1.036nJ , whereas transferring a 32-byte cache line will cost

8.29nJ .

The dynamic energy consumption of both the CDT and the memory bus will

be lower when a smaller technology is used. However, we expect that this will

benefit the CDT at least as much as the memory bus, and that the presented

results are a lower bound for smaller technologies as well.

The energy consumed by the CDT is found by multiplying the number of

memory accesses by 2.14pJ. This results in the graphs depicted in Figures 2.8

and 2.9, which depict the energy per reference consumed in the memory bus

and CDT for cache sizes of 1kB and 4kB, respectively. These results include

data for a conventional cache, the BCC, and the SCC.

As expected, the energy reduction of the proposed cache organizations de-

24 CHAPTER 2: REDUCING CACHE CONFLICT MISSES

�
�
�
�
�
��
�
�

�
�
�
�
�
��
�
�

	

�
�
��
�
�

	

�
�
��
�
�

	

�
��
�
�

	

�
��
�
�

��
�
	
��
�
�

��
�
	
��
�
�

�
�
�
	
�
��
�
�

�
�
	
�
����

�
�

�
�
	
�
����

�
�

�
�
��

�
�
�
�
��

�
��

�
�
�

�

����

����

����

����

����

����

��� �������!"
���#�

$�� %��

&���#��'(

�
�
�
'	
)
*'
�
+�
'�
�
�
�
",
�
-.

FIGURE 2.8 Energy per reference in the off-chip memory bus and

CDT for conventional, BCC, and SCC caches of 1kB.

�
�
�
�
�
��
�
�

�
�
�
�
�
��
�
�

	

�
�
��
�
�

	

�
�
��
�
�

	

�
��
�
�

	

�
��
�
�

��
�
	
��
�
�

��
�
	
��
�
�

�
�
�
	
�
��
�
�

�
�
	
�
����

�
�

�
�
	
�
����

�
�

�
�
��

�
�
�
�
��

�
��

�
�
�

�

���

����

����

����

����

�������������

��� �

!�� "��

#��� ��$%

�
�
�
$	
&
'$
�
(�
$�
�
�
�
�)
�
*+

FIGURE 2.9 Energy per reference in the off-chip memory bus and

CDT for conventional, BCC, and SCC caches of 4kB.

2.5 EXPERIMENTAL RESULTS 25

creases with increasing cache size. Although accessing the CDT on every

memory reference adds to the total energy consumption, the reduction in traf-

fic on the off-chip memory bus outweighs this. In fact, for the cases in Fig-

ures 2.6 and 2.7 where either the BCC or the SCC show a significant reduction

in traffic, a similar energy reduction per reference can be found in Figures 2.8

and 2.9. However, where these caches in Figures 2.6 and 2.7 show an increase

in traffic, the increase in energy in Figures 2.8 and 2.9 is far less significant.

The reason for this difference is that while the relative amount of traffic is in-

creased significantly, this increase is still not very significant in absolute terms.

Due to a low cache miss-rate in the baseline cache, the energy consumption per

reference will increase, but it will not be very significant when compared to the

total number of memory references.

In general, Figures 2.8 and 2.9 show that the BCC is able to reduce energy

consumption by approximately a factor of two for benchmarks like the adpcm

and jpeg applications. The SCC cache also reduces energy consumption in

these cases, but generally to a lesser extend. Only for the pegwit benchmarks

there is a slight increase in energy, in which case the increase is less than 2.1%.

2.5.5 Impact on Execution Time

The results discussed above show that the BCC and the SCC cache reduce the

amount of off-chip memory traffic. However, if they would increase the miss

rate (and therefore execution time) significantly, no energy reduction would be

achieved. To validate this, Figure 2.10 and Figure 2.11 depict the miss rates

generated by the direct-mapped cache, the BCC cache, and the SCC cache, for

cache capacities of 1kB and 4kB, respectively. In most cases the miss rates of

the BCC cache and the SCC cache are comparable to the miss rate of the direct-

mapped cache. In some cases, however, the miss rate of the BCC cache is

significantly larger than the miss rate of the direct-mapped cache. In one case,

for mpeg2-dec using a cache size of 1kB, the miss rate increases from 26% to

34% when using the BCC cache. The largest increase in miss rate for the SCC

cache, from 16% to 20%, is found with the epic benchmark. Furthermore, in

several cases the BCC cache performs better than the direct-mapped cache. On

average, they perform equally.

We conclude that the BCC cache is the most efficacious cache structure. It

generates significantly less off-chip traffic than a direct-mapped cache, while

performing equally as well. However, for some applications the SCC cache

may be preferable, especially when performance is critical.

26 CHAPTER 2: REDUCING CACHE CONFLICT MISSES

�
�
�
�
�
��
�
�

�
�
�
�
�
��

�
�

	

�
�

��
�

�

	

�
�

��
�

�

	

�

��
�

�

	

�

��
�

�

��
�

	
��

�
�

��
�

	
��

�
�

�
�

�
	

�
��

�
�

�
�

	
�

����
�

�

�
�

	
�

����
�

�

�
�

��

�
�

�
�

��

�
��

�
�

�

�

���

���

���

���

���

����������� !

���"�

#�� $��

%���"��&'

�
�

!&

�
��

FIGURE 2.10 Miss rates for conventional, BCC, and SCC caches of

1kB.

�
�
�
�
�
��
�
�

�
�
�
�
�
��
�
�

	

�
�
��
�
�

	

�
�
��
�
�

	

�
��
�
�

	

�
��
�
�

��
�
	
��
�
�

��
�
	
��
�
�

�
�
�
	
�
��
�
�

�
�
	
�
����

�
�

�
�
	
�
����

�
�

�
�
��

�
�
�
�
��

�
��

�
�
�

�

����

���

����

���

����

�������������

��� �

!�� "��

#��� ��$%

�
�

�$
�
��

FIGURE 2.11 Miss rates for conventional, BCC, and SCC caches of

4kB.

2.6 CONCLUSIONS 27

2.6 Conclusions

We have proposed a technique which can detect and is often able to reduce the

negative effects of recurring conflict misses. The proposed technique employs

a small structure called the Conflict Detection Table (CDT). This conflict de-

tection mechanism does not require much logic and as as result does not sig-

nificantly add to the total energy consumption. Furthermore, since the CDT

only needs to be consulted on a cache miss, it will not increase the cycle time.

Consequently, it can easily be applied to on-chip caches that lack associativity.

We have proposed two cache organizations that employ the CDT: the Bypass

in Case of Conflict (BCC) cache and the Sub-block in Case of Conflict (SCC)

cache.

The BCC cache decreases the amount of produced traffic on average by 20%

with a maximum of 65%, compared to the conventional direct-mapped cache.

It was also shown, however, that this cache sometimes increases the amount of

traffic, which may happen when bypassing the cache for data which is accessed

repeatedly. Furthermore, also the miss rate can suffer badly from inefficiently

bypassing the cache. The SCC cache also decreases the amount of produced

traffic considerably in most cases. On average, the reduction achieved by the

SCC cache was 11% with a maximum of 47%. Only in a few cases, the BCC

or SCC caches produced more traffic than a conventional direct-mapped cache.

Furthermore, these increases are small. In addition, the miss rate of the SCC

cache is never considerably higher than that of the conventional direct-mapped

cache. While the BCC produced a higher miss rate than the SCC cache in

several cases, for some benchmarks it also showed to decrease the miss rate

compared to a conventional direct-mapped cache. We conclude that using the

CDT to fetch sub-blocks instead of whole cache lines, significantly decreases

the amount of produced traffic, and hence also the amount of energy consumed.

Whether the BCC or the SCC cache is more effective, is largely determined by

the application.

To further improve the effectiveness of the proposed cache organizations, the

conflict detection mechanism can be extended with counters to record the

number of bypass or sub-block predictions. This could be used to limit the

time a certain prediction is remembered, which could avoid recurring miss-

predictions.

3
Memory Copies in Multi-Level Memory

Systems

D
ata movement operations, such as the C-style memcpy function, are

often used to duplicate or communicate data. This type of function

typically produces a significant amount of off-chip traffic, while it

hardly requires any processing power. In this chapter, we try to reduce the en-

ergy consumption in a multi-level memory hierarchy by providing an energy

efficient solution targeted at specifically this type of function. The proposed

solution implements a hardware copy engine in several levels of the memory

hierarchy, and provides a method to dynamically select the appropriate level

to perform the copy. Reducing the required amount of communication in the

off-chip memory bus not only saves energy, it can also significantly improve

performance for memory-bound applications.

Most of the material presented in this chapter has been previously published

in [22].

3.1 Introduction

Block copy operations, such as the C-style memcpy function, are often used

to duplicate or communicate data in operating systems [9, 15], message pass-

29

30 CHAPTER 3: MEMORY COPIES IN MULTI-LEVEL MEMORY SYSTEMS

ing systems, webservers [57], and database applications [85]. Desktop and

embedded applications also often use this function, but less often and mostly

for smaller blocks of data. Although a memory copy is computationally one

of the least intensive functions, current software implementations still require

all data to be loaded into registers and to be written back to main memory

afterwards. This is wasteful, since it requires significant memory bandwidth

and hardly any processing power. As a result, this can render the CPU idle,

waiting for data from the congested memory system. Furthermore, current

software implementations store the source data and often also the destination

data in cache. Especially with large copy operations, this data will be evicted

from the cache before the next use. This is often referred to as single-usage

cache pollution [79]. Due to the increasing disparity between the speeds of

processors and memories, applications are expected to spend an increasingly

large fraction of their time in memory-bound functions like memcpy. For op-

erating systems, being very memory and I/O intensive, this problem is even

more severe than for user applications [75].

This chapter is targeted at reducing the amount of traffic between the proces-

sor and off-chip memory for functions such as memcpy. The goal of this traffic

reduction is foremost to reduce energy consumption. However, for memory-

bound applications, reducing the amount of data traffic can also provide a sig-

nificant speedup.

The most common way to reduce off-chip traffic is by keeping the required

data close to the CPU. This is commonly done with caches, and by adapting

their designs, parameters and/or policies to specific application behavior. One

of the key problems with this approach is, however, that there is no or very lim-

ited possibility for programmers to influence the dynamic behavior. Hence, the

only possibility to reduce memory traffic for the memcpy function is by avoid-

ing to allocate the cache lines corresponding to the destination addresses. This

can be accomplished on some architectures by special store instructions, such

as the non-temporal store instructions available in the Intel SSE instruction set

extension [39].

Another approach is to employ scratchpad memories [5], in which transfers

between on- and off-chip memories are programmed explicitly. The downside

of this is, however, that all memory transfers have to be programmed and that

it is often not known in advance which data is needed and if it will fit in the

on-chip memory. Direct memory access (DMA), another popular technique to

transfer data is not always suitable for use in memcpy due to the significant

time required to initiate a transfer, as explained in [102]. Our approach is

3.2 RELATED WORK 31

different in that we perform block memory operations close to the actual data.

More precisely, we propose to copy the data in the highest memory level where

it is found.

The main contribution of this chapter is that we propose to perform mem-

ory copies in hardware copy engines and to have these copy engines imple-

mented in several levels of the memory hierarchy. Furthermore, we show how

this technique reduces the amount of traffic between the CPU and the off-chip

memory system, and therefore reduces energy consumption and improves per-

formance.

This chapter is organized as follows. Section 3.2 discusses related work. The

technique to perform memory copies by using caches is explained in Sec-

tion 3.3. The same section also discusses the limitations of performing the

copies on-chip, and explains how these limitations can be resolved by imple-

menting this functionality in several memory levels. In Section 3.4, the exper-

imental results are presented and analyzed. Section 3.5 concludes the chapter

and presents some directions for future research.

3.2 Related Work

Several other researchers focussed on optimizing the memcpy function. Cal-

houn et al. [9] showed that operating systems spend a significant amount of

time copying data between buffers, and proposed to dynamically select the

proper memcpy algorithm based on the size of the data as well as on pre-

dicted reuse, and to use this in a system with write combining buffers and

non-temporal stores. While being able to reduce cache pollution and hence

improve performance, this can only reduce the amount of off-chip traffic by

not fetching the cache line associated with the destination addresses. Piquet

et al. [79] proposed a general method to reduce single-usage cache pollution

by bypassing the L2 cache. For memory copies, however, this method still

requires the data to be transferred via registers. Duarte et al. [26] proposed to

store pointers to copied data in a separate table to avoid having several copies

of the same data in the cache. Future read accesses to the copy are dynamically

diverted to the original source. While this method improves the performance

of some kernels, the actual copy is only delayed, and hence there is no reduc-

tion in traffic. In fact, it is assumed that data is always available in the cache

and the fact that it has to be written back to memory at a certain point is not

considered.

In all these works, the data that is copied still has to travel from the main

32 CHAPTER 3: MEMORY COPIES IN MULTI-LEVEL MEMORY SYSTEMS

memory to the CPU and back. Zhao et al. [102] recently showed the perfor-

mance benefits of having data movement functions implemented in a hardware

Copy Engine (CE). They presented a thorough overview of the possible imple-

mentation choices. Unlike our approach, however, these authors propose to

implement the copy engine either close to the on-chip or close to the off-chip

memory. In our approach, the copy engine is placed next to the on-chip as

well as next to the off-chip memory. If (part of) the source is located in on-

chip memory, the system will decide to perform the duplication there. If no

part of the data is found on-chip, the operation is diverted to off-chip logic.

In this way, the amount of off-chip traffic is minimized by only sending the

corresponding addresses to the off-chip logic, instead of sending all data to the

CPU and back.

Khunjush and Dimopoulos [55] found that copy operations are the main con-

tributors to delivery latencies in message passing environments. These authors

propose to use a specialized network cache and instructions to manage this

cache. They furthermore introduce new policies to determine when to transfer

messages to the data cache. Experiments show that these extensions, compared

to other methods, reduce the access latency of received messages without pol-

luting the data cache. Whereas these authors focus on reducing copy overhead

in message passing environments, we target to improve performance on mem-

ory copies in general.

Our proposed idea shows some similarities with Processing-In-Memory (PIM)

techniques, such as IRAM [76], Active Pages [74], and FlexRAM [51], since

we also try to offload simple tasks to the memory system. However, in those

approaches, the processing is performed in the lowest level memory. In our

case, it is dynamically decided where to perform the copy, and this can happen

anywhere in the memory system.

3.3 Memory Copies in Multi-Level Memory Sys-

tems

Software implementations of memcpy generally use an unrolled loop contain-

ing a series of loads followed by a series of stores. To maximally exploit data

parallelism, some systems use optimized implementations of memcpy, using

multi-word registers and corresponding loads and stores. However, most sys-

tems incur a significant penalty if the source or destination of a copy are not

properly aligned to the granularity of memory accesses in the system. In this

case, software implementations either have to use loads and stores of half word

3.3 MEMORY COPIES IN MULTI-LEVEL MEMORY SYSTEMS 33

or smaller data types, or they must load consecutive data into two registers and

write back by shifting and merging their contents. Alvarez et al. [1] proposed

an extension to the Altivec SIMD instruction set to support unaligned memory

operations.

In this chapter, we present a novel principle for duplicating or moving data ef-

ficiently in a multi-level memory system is presented. The method is based on

the observation that copied data is not always required in the near future, and

that it can be harmful to performance to have several copies of the same data in

small memories, especially if the data is large. First we discuss the organiza-

tion of the copy engine, i.e. the hardware that performs the actual copy. Then,

we explain the instruction that uses the copy engine and the potential perfor-

mance improvements due to a single copy engine placed either next to the L1

cache or to the L2 cache. This is followed by a discussion on the limitations

of copy engines implemented on the processor die. Finally, a dynamic ver-

sion of the copy engine is discussed, where a copy engine is placed in several

consecutive cache levels.

3.3.1 Copying Using Copy Engines

In this chapter we propose to use copy engines that copy a block of data of the

same size as a cache line. The central part of this copy engine is a shift register

twice the size of a cache line. The copy engine is placed next to the cache, as

it reuses existing logic for reading and writing data from and to the cache.

The copy engine can be instructed to copy data by issuing a special movblk

instruction. This instruction takes two operands: the starting address of the

source and the starting address of the destination of the copy. While there are

no restrictions on the address pointing to the source to be copied, the destina-

tion address should be aligned with a cache line (i.e.: it should point to the first

byte in a cache line). The movblk instruction copies a block of data the size of

a cache line and the destination of the copy is always exactly one cache line.

Figure 3.1 schematically depicts how a copy is performed in copy engine con-

nected to the L1 data cache. In this example, the source is not aligned to a

cache line boundary, and therefore the copy engine needs to fetch two consec-

utive cache lines and combine these into one. The copy engine first loads a

cache line into the left side of the buffer. The second cache line is loaded into

the right part of the buffer. The buffer is then shifted a corresponding number

of places to the left, and the left part is finally written back to the cache. The

time required for performing a copy is the total of the delays involved with

34 CHAPTER 3: MEMORY COPIES IN MULTI-LEVEL MEMORY SYSTEMS

������
������
������
���������

���
���

���
���
���

���
���
���
���

������
������
������
������

(a) The copy engine first fetches 2 cache lines into
a 2-line wide buffer

�������
�������
�������

�������
�������
�������

��
��
��

��
��
��

(b) The double cache line is shifted to the
left

���������
���������
���������

���������
���������
���������

��������
��������
��������

��������
��������
��������

(c) The result is written back to cache

FIGURE 3.1 Schematic description of how a copy is performed by a copy

engine

reading the source cache lines, writing the destination line, and one additional

cycle for the shift buffer.

Performing copies in blocks that correspond to exactly one destination cache

line has several advantages:

• By performing the copies in larger blocks, the speed of data copies can

be improved significantly compared to using registers. This improve-

ment, however, decreases for systems with larger registers. Moreover,

as software implementations can be pipelined efficiently and because the

memory transfers may very well be the most time consuming part, this

speedup might not be significant.

• When copying in the L1 cache the destination cache line can be allo-

3.3 MEMORY COPIES IN MULTI-LEVEL MEMORY SYSTEMS 35

cated without fetching data, since the whole line is overwritten. Many

caches that employ write-back also fetch the corresponding cache line

on a write miss, as this avoids the need of maintaining multiple valid

bits per cache line. Since our copy engine always overwrites the whole

cache line, there is no need to fetch the old data on a write miss. This

way, we avoid fetching the destination cache line while requiring only

one valid bit per cache line.

• By reusing the existing logic for reading from and writing to the caches,

our copy engines can be implemented with little additional hardware.

• By using blocks of the same size as a cache line, we make sure that the

source data is located in at most two different cache lines. Using larger

blocks may significantly complicate the copy process as the source data

can be spread over more than two levels of the memory hierarchy. When

part of the source data is found, our implementation assures that at max-

imum one other part needs to be fetched. Whereas larger copies can be

done by performing several copies, data smaller than a cache line cannot

be copied by this copy engine.

An additional advantage of this copy engine is that we do not incur a penalty

when the data is unaligned. When the source and destination addresses are dif-

ferently aligned, the source data has to be shifted before it can be written to the

destination address. In software implementations, this is often done by loading

half-word or even smaller data types and combining these before writing the

result. In the copy engines proposed in this chapter, the time required for a

copy is independent of the data alignments, aside from the special case where

both the source and destination addresses are aligned to a cache line boundary.

In this special case, the copy is performed even faster, since we only need to

read from the cache once and there is no need to shift the data.

To avoid hazards in an out-of-order processor, the movblk instruction is not

allowed to bypass other memory instructions and vice versa.

3.3.2 Limitations of On-Chip Copy Engines

The simplest implementation of the copy engine presented in Section 3.3.1 is

to connect it to the L1 data cache. In this case, however, the copy is performed

on-chip and can severely suffer from delays in the memory system if the data

needs to be fetched from off-chip memory. Also, most works discussed in

36 CHAPTER 3: MEMORY COPIES IN MULTI-LEVEL MEMORY SYSTEMS

Section 3.2 provide software and/or hardware solutions to improve the perfor-

mance of memory copies on the processor itself. These solutions not only do

not reduce the amount of data traffic, they will also not be able to provide sig-

nificant performance improvements in future years, as explained below. The

fundamental problem with all solutions that perform the copy on the processor

is that they can only provide performance improvements as long as the time

taken to perform the copy in a baseline system is significant, and cannot be

hidden by the latency involved in transferring the data to the chip and writing

back results. For modern processors, this is only true if the data already resides

on-chip. Copying data on-chip always involves at least three steps: fetching

the source data, performing the copy, and writing back the results. Although

the results may not always need to be written back directly, this cannot be de-

layed indefinitely. Furthermore, for copies exceeding the size of the on-chip

cache, writing back data is always an integral part of the copy process. The

time taken to copy D bytes of data is given by:

tmemcopy(D) = tin(D) + tcopy(D) + tout(D), (3.1)

where tin(D) denotes the time required to fetch D bytes of data, tcopy(D) de-

notes the time required to actually copy this data, and tout(D) denotes the time

required to write back the D bytes of copied data. It should be noted that in

many modern systems, memory transfers are performed in parallel to compu-

tations. This is not taken into account in this section, as we only aim at estab-

lishing an upper bound on the time taken by memory copies. By grouping the

terms related to data transfers into one term tdata = tin + tout, Equation (3.1)

is rewritten as:

tmemcopy(D) = tdata(D) + tcopy(D).

Using this expression, the maximum possible improvement in performance is

determined by assuming the time required to copy the data on the processor

can be decreased to a negligible amount. The upper bound on the speedup for

copying D bytes of data is then expressed as:

speedupupb(D) =
tdata(D) + tcopy(D)

tdata(D)
. (3.2)

By relating the time required for transferring data back and forth to the time

required to perform the actual copy as:

δ(D) = tcopy(D)/tdata(D), (3.3)

Equation (3.2) is rewritten as:

speedupupb(D) = 1 + δ(D). (3.4)

3.3 MEMORY COPIES IN MULTI-LEVEL MEMORY SYSTEMS 37

Most processors available today operate at a much higher speed than the in-

terface to external memory can sustain. In fact, for many currently available

processors, this difference is more than an order of magnitude. Whereas mod-

ern processors can perform multi-word operations at a speed of several giga-

hertz, modern memories have a theoretical peak bandwidth a few gigabytes per

second. The peak memory bandwidth, however, can never be attained if the

accesses cross a page-boundary. Furthermore, modern processors can easily

sustain an IPC of 1 or above for only reading and writing data that is available

in the cache. Therefore, it can be safely assumed that δ(D) is indeed far less

than 1.

Even more importantly, since the processors increase in speed much faster

than memories, the disparity between these speeds also grows each year [71].

Even though the clock frequencies of processors have not grown at the same

pace in the past years, this is still true since processor manufacturers are em-

ploying increasingly more parallelism, for example by using Simultaneous

Multi-Threading (SMT) or by putting multiple processing cores on the same

chip. Since both processors and memories experience an exponential growth

in speed, the difference between these two speeds also grows exponential. This

implies, that even if an improvement to on-chip copying provides a significant

improvement now, the technique will suffer from diminishing returns in future

years.

For reasonable modern systems (i.e. δ ≪ 1), no solution that performs the

actual copy on chip will ever provide a significant performance improvement,

and any attained improvement will decrease exponentially over time. In fact,

the only solution to reduce the amount of memory traffic, and the only funda-

mental solution to improving the speed of memory copies, is to perform the

operation much closer to the data. However, performing the copies close to the

main memory can hurt performance significantly if the source data is already

available in the on-chip caches. Furthermore, in this case it is also necessary

to flush any destination data from on-chip caches. Therefore, we propose a

dynamic solution where special hardware is included in several layers of the

memory system, as will be explained in the next section.

3.3.3 Dynamic Copy Engines

The copy engine presented in Section 3.3.1 can be integrated in any level of

the memory hierarchy. When performing a copy of a small amount of data that

was recently used, it makes sense to have a copy engine connected to the L1

data cache. When the copied data is not in the L1 cache or when the data is

38 CHAPTER 3: MEMORY COPIES IN MULTI-LEVEL MEMORY SYSTEMS

CPU

FIFO CE

L1 L2

CE CE

Ln

FIGURE 3.2 Schematic design of how the copy engines are implemented in

several levels of the memory hierarchy

too large to fit in this cache, it makes more sense to perform the copy engine

in a lower level cache.

When data is available in the cache close to the copy engine, the maximum

attainable speedup is proportional to the difference in size of a cache line and

the size of the registers. In case the data is not in the cache, however, the

speedup will be severely limited by delays and stalls in the memory system, as

was already discussed in the previous section.

In fact, a copy engine per se does not reduce the amount of traffic in the mem-

ory system, and as such will not provide any speedup if the copy performance

is limited by memory bandwidth. In order to minimize the amount of off-chip

traffic, and at the same time improve performance and reduce energy consump-

tion, we propose the Dynamic Copy Engine (DCE). In the DCE, a copy engine

is implemented in several consecutive levels of the memory hierarchy. This is

schematically depicted in Figure 3.2. The first copy engine is employed with a

FIFO buffer to allow pipelining several movblk instructions. The DCE follows

the following procedure, to perform the copy in the most appropriate memory

level:

• After receiving the operands, the first copy engine first checks if the

source of the memory copy is present in the current memory level. In

case the source is also aligned on a cache line boundary, this implies a

singe cache access. Otherwise, two cache accesses are needed.

• If one or more lines with source data are found in this cache, the copy

is performed by the associated copy engine. In case the source is not

aligned on a cache line boundary and one of the cache lines is not

present, it is fetched from the next cache or lower level memory. When

the copies are performed in blocks corresponding to the cache line, the

3.3 MEMORY COPIES IN MULTI-LEVEL MEMORY SYSTEMS 39

destination cache line can be allocated without fetching the data. How-

ever, as lower level caches often have larger cache lines, this may only

be possible for L1 caches.

• If no source data is found in this cache, another check is performed to

find the destination cache line. If found, this line is invalidated since it

will be updated in a lower memory level. The instruction is then diverted

to the copy engine associated with the next level memory, where the

same procedure is repeated until the last copy engine is reached. The

last copy engine will always perform the copy, irrespective of whether

data is available or not.

This procedure is also explained by the pseudocode depicted in Figure 3.3. In

this code, the calculation of the source alignment in line 4 can be performed in

parallel to fetching the first cache block in line 3. While a pipelined cache may

allow a second access (line 8) to proceed while another one is still in progress,

we conservatively assume that the DCE starts a possible second cache access

only after the first one has completed.

Instead of moving the source data from a lower level memory to the CPU and

the destination back from CPU to memory, we propose to move the opera-

tion down the memory hierarchy and to perform the copy close to the memory

where the source is found. This way, the amount of traffic is reduced sig-

nificantly by only sending addresses to the correct copy engine, instead of

transferring the data from lower level memory to the CPU and back.

The amount of traffic saved by this approach depends on the address size, the

size of the cache lines, and the number of transfers required by the baseline

implementation. This last number depends on whether or not the baseline

cache employs the fetch-on-write policy. When a write produces a miss in a

cache that employs the fetch-on-write, the corresponding cache line is fetched

from the next memory level. With the no-fetch-on-write policy, this data is

stored without fetching the neighboring data. In the latter case, however, dirty

bits should be used on a granularity equal to the smallest data type that can be

stored. A more detailed explanation of cache write policies can be found in

Section 4.1.

Caches that employ write-allocate generally require three transfers per copy.

For caches that employ write-no-allocate, two transfers per copy is the mini-

mum. The same is true for (write-allocate) caches that employ write-combining

write buffers and support non-temporal stores. More formally, if neither the

source or destination data is already in the on-chip cache, the DCE produces

40 CHAPTER 3: MEMORY COPIES IN MULTI-LEVEL MEMORY SYSTEMS

DYNAMIC-COPY-ENGINE(src, dst)

✄ LINESIZE equals the cache line size in bytes

✄ B, B1, and B2 are cache line sized variables

1 mask ← LINESIZE − 1

2 S1 ← src & mask

3 B1 ← READ-FROM-CACHE(S1)

4 α← src & mask

5 if α = 0
6 then B2 ← B1

7 else S2 ← (src +31) & mask

8 B2 ← READ-FROM-CACHE(S2)

9 if B1 = NOT FOUND

10 then

11 if B2 = NOT FOUND

12 then INVALIDATE-CACHE-LINE(dst)

13 COPY-IN-NEXT-LEVEL(src ,dst)

14 else B1 ← FETCH-FROM-NEXT-CACHE(S1)

15 else

16 if B2 = NOT FOUND

17 then B2 ← FETCH-FROM-NEXT-CACHE(S2)

18 B ← (B1 ≪ (α · 8)) | (B2 ≫ ((LINESIZE − α) · 8))
19 STORE-CACHE-LINE(B, dst)

FIGURE 3.3 Pseudo-code for the dynamic copy engines.

2 · A bytes of off-chip memory traffic, where A denotes the size of address

in bytes. With L denoting the cache line size, a software approach produces

2 · (A + L) bytes of traffic and even 3 · (A + L) if the destination cache line

is fetched as well. Using W to relate the address size to the cache line size as

W = L/A and cbase to denote the number of transfers required by the software

implementation (2 or 3), the relative amount of traffic saved by this approach

is:

relative trafficsaved = 1−
2 · A

cbase · (A + L)
= 1−

2

cbase · (1 + W)
. (3.5)

For a 32-bit system with a cache line size of 32 bytes (W = 8), this would

imply a saving in data traffic of 89% or 93%, depending on whether 2 or 3

transfers are required in the baseline system.

3.3 MEMORY COPIES IN MULTI-LEVEL MEMORY SYSTEMS 41

As in Section 3.3.2, we can also derive an expression for the maximal attain-

able speedup for the DCE. Here, we assume the baseline system can actually

perform the copy itself at the same speed as the copy engines presented in this

chapter. It is furthermore assumed that the baseline system requires only two

transfers to copy one cache line, as in the previous section. Using the same

terminology as in Section 3.3.2, the maximum speedup of the DCE upon the

baseline software implementation can be expressed as:

speedupupb(D) =
tdata(D) + tcopy(D)

taddr + tcopy(D)
, (3.6)

where taddr denotes the time required to transfer 2 addresses. Using δ from

Equation (3.3) to relate the time required for transferring data to the time re-

quired for copying and by relating the time required for transferring a cache

line to the time required to transfer an address as w = taddr/tdata, Equa-

tion (3.6) can be rewritten as:

speedupupb(D) =
1 + δ

w + δ
. (3.7)

Figure 3.4 depicts the maximum speedups for copying data that is not initially

available in an on-chip cache. This graph is constructed using both the above

expression for the maximum speedup of the DCE, and Equation (3.4) for the

maximum speedup of on-chip copy engines. In this figure, δ is varied from 0

to 1, denoting respectively the case where data processing is indefinitely faster

and the case where data processing is as fast as transferring data. For any

reasonable system, δ is smaller than 0.5. Hence, for copying data that is not

resident in on-chip caches, the speedup attainable by performing the copy on-

chip is less 50%, and will significantly decrease in future years. For the DCE,

on the other hand, the maximum speedup is typically more than 50%.

There are several other reasons why the DCE improves performance and re-

duces memory traffic. When the source data is not found in the a cache, it is

also not allocated in this cache. This can reduce cache pollution if the copied

block is large, and/or if the data associated with the source address is not re-

quired in the near future. Furthermore, when a data cache contains the cache

line corresponding to the destination of a copy, but the copy is performed in

a lower level, the cache line can be discarded even if it contains ‘dirty’ data.

Because the data is to be overwritten, there is no need to write back the old

data.

Hazard control in dynamic copy engines is done in a similar way to the de-

scription in Section 3.3.1 for the normal copy engine: memory instructions are

42 CHAPTER 3: MEMORY COPIES IN MULTI-LEVEL MEMORY SYSTEMS

� ��� ��� ��� ��� �

�

���

�

���

�

���

	

	��

�

���

�

���

�

���

��

�

���������

�����������

������������

�������������

�����

�
�

��

!
�
�"
�
�
�
�
!
�

FIGURE 3.4 Maximum speedups for copying non-resident data us-

ing an on-chip copy engine and the DCE

not allowed to bypass the movblk instruction and vice versa. However, with

the DCE, load/store instructions are allowed to execute before the movblk has

finished. While a copy engine is executing, the corresponding cache is locked,

however. This implies that while a copy is being performed in L2, the proces-

sor can safely read and write to and from the L1 cache in the mean time.

Caches often employ increasingly larger cache lines for lower level caches.

Therefore, it may occur that the copy engines of lower level caches copy data

in smaller blocks than the cache line. In these cases, the source data is still

guaranteed to be located at no more than two different cache lines. The desti-

nation data, however, will no longer occupy a whole cache line. This implies

that, when copies are performed in lower level caches, it may be necessary to

fetch the cache line corresponding to the destination address.

3.3.4 Dynamic Copy Engine with Non-Temporal Fetching

When the source is not aligned on a cache line boundary and the copy engines

needs to perform two fetches, it may happen that the first cache line is found

while the second is missing. In the method described above, the missing cache

line would then be fetched from the lower memory level and stored into the

3.4 EXPERIMENTAL RESULTS 43

cache. However, when this instruction is part of a group of several movblk

instructions used to copy a larger block of data, the next movblk instructions

will all find part of their source data in this cache. Since a large part of a copied

block may actually not have been in the cache at the time of the first copy, this

could severely reduce performance. An example of this process is depicted in

Figure 3.5. Assume memcopy is instructed to copy a memory block of several

cache lines in size starting at address 2. The memcopy function issues movblk

instructions to copy the data in blocks starting at address 2, at address 10, at

address 18, etc. As depicted in Figure 3.5a, words 2–9 are found in the first

cache and are copied there. In Figure 3.5b, words 10–17 are to be copied. In

this case, however, the copy engine finds 10–15 in cache, but 16 and 17 are

not found. After fetching these, the copy proceeds in the first cache. Due to

fetching 16 and 17, however, the first part of the next block (18–25) is now also

found in cache, as is depicted in Figure 3.5d. Although the data at addresses

18–25 was originally not in cache, this block will still be copied in this cache

due to fetching part of the previous block. The same problem occurs for every

next block.

To make sure that one movblk instruction does not influence the decision on

the next one, we propose a variation of the DCE, which we call the Dynamic

Copy Engine with Non-Temporal Fetching (DCE-NT). In the DCE-NT, miss-

ing source data is never stored into the cache. When a copy is performed and

the corresponding cache is missing part of the source data, this data is fetched

from the next level but is only sent to the copy engine. This way, the number of

cache lines may be copied in the current level, while other ones may be copied

in a lower memory level if they were not already present in the current memory

level.

3.4 Experimental Results

This section first describes the models, tools, and benchmarks used for eval-

uating the proposed copy engines. Thereafter, two different sections present

experimental results from a memcopy micro-benchmark and a more extensive

benchmark adapted from a real TCP/IP stack.

3.4.1 Experimental Setup

The experiments described in this chapter were performed using sim-outorder

from the SimpleScalar tool set [4], which was substantially modified to in-

44 CHAPTER 3: MEMORY COPIES IN MULTI-LEVEL MEMORY SYSTEMS

0
10
2 3 541 6 7

8 9 11 12 13 14 15

(a) 2–9 are in cache and can be copied

0
10
2 3 541 6 7

8 9 11 12 13 14 15

(b) 10–15 are in cache, but 16–17 are not

15
0

10
2 3 541 6 7

8 9 11 12 13 14
16 17 18 19 20 21 22 23

(c) After fetching 16–17, 10–17 can be copied

15
0

10
2 3 541 6 7

8 9 11 12 13 14
16 17 18 19 20 21 22 23

(d) Now block 18–25 is also copied here, since 18–23

are in cache

FIGURE 3.5 Example of how one missing block may cause all consecutive

memory blocks to be copied in the same cache

clude the presented copy engines and to support the movblk instruction. We

also modified the memcpy function to check for sizes and alignments, and to

use the movblk instruction to copy data whenever possible. Furthermore, the

linker was instructed to redirect calls to memcpy to our modified version of the

memcpy function.

For these experiments, we simulate a 4-way issue out-of-order processor with

a two-level cache hierarchy. The L1 data and instruction caches connect to a

1MB unified L2 cache. The L1 data cache is either 16kB or 32kB, and the

L1 instruction cache is always 32kB. All caches follow the write-back and

fetch-on-write policies, which means that data is only written back to the next

memory level once it is replaced and that the cache will always fetch the cor-

responding cache line on a write miss. The L2 cache is assumed to be located

off-chip. For the experiments in this chapter, increasing the L1 cache size or

adding more levels of on-chip cache does not improve performance. There-

fore, the results presented here are comparable to a system that for example

3.4 EXPERIMENTAL RESULTS 45

CPU Core

Issue Width 4

RUU Size 128

Functional Units 2 IntALU, 1 IntMult/Div,

1 FPALU, 1 FPMult/Div

Memory Hierarchy

Memory Ports to CPU 2

L1 Data Cache 16kB or 32kB, 4-way associative,

32B lines, 2 cycle latency

L1 Inst. Cache 32kB, 4-way associative,

32B lines, 2 cycle latency

L2 Unified Cache 1MB, 8-way set-associative,

64B lines, 15 cycle latency

Memory Latency 100 cycles

Off-Chip Penalty 10 cycles

TABLE 3.1 Main properties of the simulated system

has on-chip L1 and L2 caches and an L3 cache located off-chip. Table 3.1 lists

the most important system parameters. We implemented an additional 10 cycle

penalty for transferring addresses or data between on- and off-chip logic. This

implies that both accesses to L2 and copy instructions sent to L2 experience a

10 cycle delay before they can proceed to access L2.

We use three different implementations of our proposed copy engine for this

section: a system with only a copy engine in the L1 cache (CE-L1), a system

based on the dynamic copy engine that can copy in both L1 and L2 (DCE), and

the same system using the non-temporal version of the dynamic copy engine

(DCE-NT).

In case of the dynamic copy engines, the decision where to perform the copy

depends on the availability of the source data in the L1 cache, as was explained

in Section 3.3. In case the source data is aligned on a cache line boundary, only

one access is required to read the data. Otherwise, two accesses are needed. We

conservatively assume that these two cache accesses are performed in series,

although they could be performed in parallel by using two-bank interleaved

caches [1]. As explained before, we furthermore assume that these accesses

are not pipelined. Combined with the data from Table 3.1, the delay of the

DCE is as follows:

46 CHAPTER 3: MEMORY COPIES IN MULTI-LEVEL MEMORY SYSTEMS

When the source is not aligned to a cache line boundary

• If both cache lines with source data are in L1, the copy engine performs

a copy in 8 cycles by issuing 2 reads (4 cycles), shifting the data (2

cycles), and writing it back to the L1 cache (2 cycles).

• If one of the source cache lines is in L1 but the other is not, the time taken

by the copy engine depends mostly on the time required for fetching the

missing data. Assuming that the missing data is available in L2, the copy

is performed in 29 cycles, by concurrently fetching the data from L1 and

L2 (10+15 cycles), shifting the double cache line (2 cycles), and writing

the result to L1 (2 cycles). In addition to this, the copy is delayed until it

is known that one cache line is available and the other is not. Assuming

a cache miss is known after 1 cycle, this delay is 3 cycles.

• If no source data is found in L1, the copy is performed in L2. Assuming

the source data is available in L2, the copy is performed in 57 cycles.

After sending the copy instruction to L2 (10 cycles), the data is fetched

(15+15 cycles), shifted (2 cycles), and written back (15 cycles). Since

the L2 cache employs larger blocks than the L1 cache, it may be neces-

sary to also fetch the cache line corresponding to the destination address.

When the source is aligned to a cache line boundary

• If the source data is found in L1, the copy is performed in 4 cycles (2

cycles to read from L1 and 2 cycles to write the data back).

• If the source data is not in L1 but is in L2, the copy is performed in

40 cycles (10 cycles to send the command off-chip and 30 cycles for

reading and writing in L2).

3.4.2 Experiments with a Memcopy Micro-Benchmark

In this section, we present experimental results using a simple memcopy bench-

mark. This benchmark is intended to mimic the case where data is first pro-

duced, then copied, and where this copied data is then used for further process-

ing. For a given size N , this benchmark performs the following steps:

• Allocate two buffers of N bytes each.

• Fill the first buffer with 1s.

• Copy the data from the first buffer to the second.

• Read out the data from the second buffer.

3.4 EXPERIMENTAL RESULTS 47

�������� �	
�� �	 �	
��

� � �� �� �� ���

�

���

���

���

���

���

���

	��

���

��

����������������

�
�
�
�
��
��
��
��
�
��
�
�
�

(a) aligned copies

� � �� �� �� ���

�

���

���

���

���

���

���

	��

���

��

����������������

�
�
�
�
��
��
��
��
�
��
�
�
�

(b) unaligned copies

FIGURE 3.6 Data traffic produced by the memcopy kernel using a 16kB L1

data cache.

The experiments in this section were performed using both a 16kB and a 32kB

L1 data cache. The results from these experiments are depicted in respec-

tively Figure 3.6 and Figure 3.7. The results include data from the software

implementation (Baseline), the implementation with only an L1 copy engine

(CE-L1), the DCE, and the DCE-NT. Both Figures 3.6 and 3.7 include graphs

from aligned as well as for unaligned copies. For aligned copies, the inter-

alignment of the source and destination buffers was forced to be a multiple of

the L1 cache line size. For unaligned copies, this inter-alignment was forced

to be 4 bytes.

For small copies (4kB), the improvement upon the baseline case is negligible.

In this case, most data traffic is generated for loading the program itself and

other overhead. For slightly larger copies (8kB), there is a small improvement

caused by the fact that the copy engine writes the destination data in whole

cache lines, avoiding the need to load the previous contents corresponding to

those addresses.

When the copies are smaller than or equal to half the size of the L1 data cache,

all proposed solutions using copy engines perform equally. In these cases,

48 CHAPTER 3: MEMORY COPIES IN MULTI-LEVEL MEMORY SYSTEMS

�������� �	
�� �	 �	
��

� � �� �� �� ���

�

���

���

���

���

���

���

	��

���

��

����������������

�
�
�
�
��
��
��
��
�
��
�
�
�

(a) aligned copies

� � �� �� �� ���

�

���

���

���

���

���

���

	��

���

��

����������������

�
�
�
�
��
��
��
��
�
��
�
�
�

(b) unaligned copies

FIGURE 3.7 Data traffic produced by the memcopy kernel using a 32kB L1

data cache.

there seems to be no benefit from having other copies engines besides one in

L1. This is in fact a normal result from our memcopy micro-benchmark, where

data is first written, then copied, and the copied data is finally read again. In

this case, all source data will be available from the L1 data cache, and all

copies will be performed in there, irrespective of the used technique. When

the buffers grow bigger than the L1 data cache, the amount of data traffic can

clearly be reduced by using the copy engine in L2. In these cases, the attained

savings are still not as high as described in Section 3.3.3 due to the fact that

in here we also write the source buffer before and read the destination buffer

after copying.

From both Figures 3.6 and 3.7, it can be seen that for aligned copies the DCE

attains the same result as the DCE-NT, while for unaligned copies it performs

equal to CE-L1. For unaligned copies, there is clearly no benefit from dynamic

copy engines unless non-temporal fetches are used.

Another thing that can be seen when comparing Figure 3.6 to Figure 3.7, is

that for larger copies, the DCE-NT actually performs better on a 16kB cache

than on a 32kB cache. This is caused by the fact that in the smaller cache less

3.4 EXPERIMENTAL RESULTS 49

� � �� �� �� ��� ��� ��� ����

�

�

�

�

�

��

��

��������

�	
��

�	
��

	
	�������
�����

��
�
�
�
�

��
�
�

�
��
�
��
�

FIGURE 3.8 Ratio of transferred bytes to copied bytes in the mem-

copy micro-benchmark.

data will be available for copying in L1. As a result more data is copied in L2,

reducing the total amount of memory traffic.

By dividing the amount of data traffic by the size of the copied data, one can

find the number of transferred bytes for each copied byte in the memcopy

micro-benchmark. Figure 3.8 depicts these ratios for unaligned copies with an

L1 data cache of 32kB. The DCE is excluded from this figure as it has identical

results as CE-L1.

Figure 3.8 shows a general trend of decreasing cost as the overhead becomes

decreasingly significant. It also again visible that there is a steep increase

when the data no longer fits in the cache. For copy sizes larger than the L1

data cache, the ratios slowly converge. For this figure, it is important to notice

that, for copies exceeding the cache size, our memcopy benchmark produces

an overhead of 3 bytes for every copied byte: 2 for initializing the source buffer

(fetching and writing back) and 1 for verifying the corresponding byte in the

destination buffer. Taking this overhead into consideration, Figure 3.8 shows

that for large copies (1024kB) the baseline software routine produces more

than 3 bytes of traffic for every copied byte. This is due to fetching the source,

fetching the destination, and writing back the destination. The remainder is

50 CHAPTER 3: MEMORY COPIES IN MULTI-LEVEL MEMORY SYSTEMS

used for sending addresses. Taking the 3 bytes overhead into account, the

L1 copy engine converges to a ratio of between 2 and 3. In this case, 1 byte is

saved compared to the software method by not fetching the data corresponding

to the destination addresses. The DCE-NT, finally, converges to a ratio less

than 1. In this case, most copies are performed by only sending the addresses

to the copy engine in L2.

3.4.3 Experiments with a TCP/IP Processing Benchmark

Since memory copies are often used in operating systems, message passing

parallel systems, webservers, and databases, it would be best to evaluate our

system with those applications. However, in SimpleScalar such large and com-

plex experiments would take months or years to complete. Therefore, we use

a TCP/IP processing workload as was also used by Zhao et al. [102], which

resembles part of the typical processing in an operation system kernel. This

workload is derived from the FreeBSD stack [72]. The traces used in these

experiments consist of 50,000 packets each, with fixed payload sizes of 500,

1000, and 1500 bytes.

Figures 3.9 depicts the execution time reduction upon the software implemen-

tation for the different copy engines when processing TCP/IP payloads of vary-

ing sizes. All three implementations substantially improve performance, and

for each implementation the improvement increases for larger payloads. This

is expected, since every call to memcpy induces overhead for checking the data

size and alignments. For larger copies, this overhead is relatively less. Further-

more, for larger payloads the memcpy function constitutes a larger part of the

workload.

The implementation with only an L1 copy engine (CE-L1) improves perfor-

mance compared to the software implementation by between 11 and 13%. The

most significant part of this speedup is due to the fact that the copy engine

avoids fetching data corresponding to the destination cache line. This can be

seen from Figure 3.10, which depicts the relative savings in off-chip traffic

(i.e.: the total number of bytes transferred between on-chip L1 and off-chip

L2) for all three implementations. The numbers in this figure include transfers

for both data and instructions, and include the corresponding addresses. By

not fetching the old data corresponding to the destination cache line of a copy,

the CE-L1 implementation reduces the amount of traffic by around 20%. We

note that the same saving is attained by the software routine on a system that

has write-combining write-buffers and supports non-temporal stores. In this

case, however, the system incurs a significant performance loss if the copied

3.4 EXPERIMENTAL RESULTS 51

��� ���� ����

��

��

��

��

��

���

���

���

���

���

���

���

	
���

	

	
���

��������������������

�
�
�

!
��
�
"
��
�#

�
�$
�
�
!

��
�
"

FIGURE 3.9 Execution time reduction

data is accessed afterwards.

Compared to the CE-L1 implementation, the dynamic copy engine (DCE) does

not provide a significant additional improvement. In this case, the ability to

perform the copies in an off-chip cache brings a small additional reduction

in the amount of traffic when some data is not present in L1, and hence also

a small improvement of the execution time. The main impediment to more

significant reduction here, is that the vast majority of copies are still performed

in L1. As explained before, when a larger copy is performed by a group of

movblk instructions, a single movblk instruction may cause all following ones

to be performed in L1 as well. Figure 3.11 depicts the percentage of all movblk

instructions that is performed in the off-chip L2 cache. For all payload sizes,

the normal DCE only performs 6% of the copies in L2. As most data was

not located in L1 originally, this clearly limits the potential speedup and traffic

savings.

When the copy engine is instructed to not store source data in the L1 cache,

the percentage of copies performed in off-chip memory increases dramatically.

Figure 3.11 shows that the number of copies performed in L2 is more than 86%

for the smaller payloads, and reaches up to 94% for the larger payloads. Cor-

respondingly, the reduction in execution time attained by the DCE-NT is also

52 CHAPTER 3: MEMORY COPIES IN MULTI-LEVEL MEMORY SYSTEMS

��� ���� ����

��

��

���

���

���

���

���

���

���

���

���

���

�	
��

��	

��	
�

��������������������

�
��

�

��
��
!�
��
��
�!
�
�
"
�
��
�
#

FIGURE 3.10 Off-chip traffic reduction

��� ���� ����

��

���

���

���

���

���

���

	��

��

���

����

��

�����

�������������������

!
�
�
��

�
��

�
"#
�
"$

�
�
��
%
�&

�

FIGURE 3.11 Percentage of memory copies performed in L2

3.5 CONCLUSIONS 53

much higher. For smaller payloads the DCE-NT improves performance by

more than 17%, while for larger ones it improves by more than 21%. By per-

forming the majority of copies in L2, the DCE-NT also reduces the amount of

off-chip traffic significantly. Instead of fetching the source data into the pro-

cessor and writing back the destination, the DCE-NT only sends 2 addresses

to the off-chip logic. This way, the amount of traffic between L1 and L2 can be

reduced by 42% for smaller payloads, and by more than 54% for larger ones.

3.4.4 Energy Reduction

By reducing the amount of traffic between different cache levels, a system em-

ployed with the DCE-NT will also consume less energy in the memory sub-

system when copying data. As opposed to Chapter 2, however, the technique

presented in this chapter does not add any new components that may increase

energy consumption. In fact, the performing copies using the proposed copy

engines will most likely cost less energy than performing the copies in soft-

ware.

Therefore, this chapter does not contain an energy estimation like in Chapter 2.

Such an estimation would be misleading in this chapter, as it would be solely

based on the cost associated with memory transfers. We do state, however, that

the energy saving attainable by using the DCE-NT are substantial, considering

the significant savings in memory traffic. In future work, we plan to perform

a more thorough evaluation of the amount of energy consumed by the copy

operation itself.

3.5 Conclusions

Duplicating data is a common operation found in many applications. In some

applications, like operating system kernels, it is even the most time consuming

function. Unless effort is spent on reducing the number of memory transac-

tions, the disparity between the speeds of processors and memories will pre-

vent any further speedup. Moreover, a significant part of the total power budget

is used for transactions in the memory system.

We proposed copy engines that are built alongside the cache and can perform

data copies of exactly one cache line. Using this copy engine, we proposed

a system called the dynamic copy engine, which implements copy engines in

several levels of the memory hierarchy. By performing the copy in the highest

54 CHAPTER 3: MEMORY COPIES IN MULTI-LEVEL MEMORY SYSTEMS

memory level that contains (part of) the source data, the amount of communi-

cation between different memory levels is significantly reduced. This reduc-

tion in memory traffic not only improves performance, but also significantly

reduces the energy involved with transferring data between different memory

levels.

Detailed experimental evaluation of dynamic copy engines in a two-level cache

system showed that this approach reduces the amount of off-chip traffic by up

to 94% and improves the execution time by up to 21%. Assuming that mem-

ory copies in software cost at least as much energy as performing them in

hardware, these reductions in memory traffic translate to significant reductions

energy. We plan to perform a more detailed evaluation of the energy consump-

tion due to memory copies in future work.

In this chapter, we have assumed that memory copies are always performed in

block sizes equal to the cache lines of the highest level cache. When multiple

consecutive blocks are to be copied in a lower level cache, however, it may be

possible to combine several smaller copies into larger ones. As a result, this

may allow lower level caches to perform certain copies in blocks of the same

size as its own cache, which would further reduce the amount of data traffic.

We intend to investigate this extension to the DCE in future research.

For multiprocessor or multicore systems, reducing the load in the memory

system may not only benefit the node that issues the copies, but also other

nodes. Moreover, since memory copies are used extensively in shared-memory

multiprocessor systems to communicate between different threads, additional

benefits may be expected by using dynamic copy engines. Future research

should show whether dynamic copy engines can be applied successfully in

these systems as well.

4
Limiting the Number of Dirty Cache

Lines

A
n important part of cache design is the write policy. Caches often

employ write-back instead of write-through, since write-back avoids

unnecessary transfers for multiple writes to the same block. For sev-

eral reasons, however, it is undesirable that a significant number of cache lines

will be marked “dirty”. Energy-efficient cache organizations, for example, of-

ten apply techniques that resize, reconfigure, or turn off (parts of) the cache. In

such cache organizations, dirty lines have to be written back before the cache

is reconfigured. The delay imposed by these write-backs or the required ad-

ditional logic and buffers can significantly reduce the attained energy savings.

As another example, write-through caches with error detection are tolerant

to transient bit errors since a valid copy of the data is contained in memory,

whereas write-back caches need error correction.

In this chapter, a cache organization called the Clean/Dirty cache (CD-cache)

is proposed that combines the properties of write-back and write-through. Our

cache design avoids unnecessary transfers for recurring writes, while restrict-

ing the number of dirty lines to a hard limit. This is accomplished by adding

a small dirty cache to the conventional L1 cache, which contains the dirty

lines. Detailed experimental results show that the CD-cache reduces the num-

ber of dirty lines significantly, while achieving similar or better performance

55

56 CHAPTER 4: LIMITING THE NUMBER OF DIRTY CACHE LINES

and a lower energy consumption than a conventional write-back cache. We

also present a case study where the CD-cache is used to implement an en-

ergy reduction technique called cache decay. Experimental results show that

the CD-cache attains similar or higher performance and a lower energy con-

sumption than a normal decay cache, while using a significantly less complex

design.

Most of the material presented in this chapter has been previously published

in [24].

4.1 Introduction

Most modern processors use several levels of caches to hide latency. For data

written to these caches, a distinction is made between two policies: the new

data is written to the cache as well as to the memory (write-through) or the new

data is written only to the cache and marked ‘dirty’ (write-back). In the latter

case, the data is only written back to the next memory level when it is evicted

from the cache.

The advantage of write-back over write-through is that it avoids unnecessary

transfers for recurring writes to the same block, which results in higher per-

formance. Besides reducing performance, an increase in the amount of write

back traffic also translates to an increased energy consumption, especially if

the next memory level is located off-chip.

Although a write-back cache generally outperforms a write-through cache, it

will contain a significant number of dirty cache lines. Table 4.1 shows for

several workloads that on average 45% of the cache lines are marked dirty in a

conventional write-back cache. These numbers were derived from simulations

with a 32kB 2-way set-associative L1 data cache with a line size of 32 bytes

and a 4-way issue out-of-order processor. More details about the employed

simulation environment are given in Section 4.4.

gcc mcf parser twolf vortex vpr

51.5% 26.3% 45.5% 51.9% 39.6% 57.1%

TABLE 4.1 Average percentage of dirty cache lines in

a 32kB 2-way set-associative cache with a line size of 32

bytes.

4.1 INTRODUCTION 57

For several reasons, a high number of dirty cache lines is undesirable. While

delaying a write back reduces traffic by coalescing writes, it may cause prob-

lems for caches that need to flush cache lines on certain occasions. Examples

are caches that need to be flushed on context switches as well as caches that

need to write back cache lines to use partial shutdown, drowse modes or cache

reconfiguration [36, 53]. For these caches, a large number of dirty cache lines

causes problems since these cache lines have to be written back before the

reconfiguration or shutdown can proceed.

Another reason against a large number of dirty caches lines comes from the

area of fault tolerance. With shrinking feature sizes and increasing transistor

counts, the risk of transient errors increases significantly. To allow for correct

operation after such errors, digital circuits can either use error detection or

error correction. In caches, error detection is sufficient for clean data, as this

can be reloaded from the next memory level when an error is detected. For

dirty data, however, error correction is required since there is no other up-to-

date copy if an error occurs.

Besides the write-back and write-through policies, another important differ-

ence is how data is written to the cache for store instructions. While many

authors (e.g.: Hennessy and Patterson [33]) make no distinction between the

allocation policy and the fetch policy, Jouppi [48] makes a distinction between

these policies. While the allocation policy indicates if a cache line is allocated

in case of a write miss, the fetch policy refers to whether the remainder of the

cache line will also be loaded in case of a miss. The final policy on how to

handle write misses is therefore a combination of the write-allocate/no-write-

allocate and the fetch-on-write/no-fetch-on-write policies, and on whether the

data is written to the cache before or after the tag check. Table 4.2 depicts the

possible combinations.

• When write-allocate is used in combination with fetch-on-write, this is

simply called fetch-on-write. Using fetch-on-write without allocation

makes no sense.

• When write-allocate is used in combination with no-fetch-on-write, this

is called write-validate. If the store produces a miss, the remainder of

the cache line is invalidated.

• When reading from a cache, the tag check and reading the data can be

performed simultaneously. When writing to the cache, however, in gen-

eral the tag check needs to be performed before writing the data. In this

58 CHAPTER 4: LIMITING THE NUMBER OF DIRTY CACHE LINES

Fetch-on-write?

Yes No

W
ri

te
-a

ll
o
ca

te
?

Y
es

Fetch-on-write Write-validate No

W
ri

te
-b

ef
o
re

-h
it

?

Fetch-on-write Write-validate Yes

N
o N/A Write-around No

N/A Write-invalidate Yes

TABLE 4.2 Write miss alternatives, taken from

Jouppi [48].

case, the combination of no-write-allocate together with no-fetch-on-

write is called write-around. When the data is written to the cache be-

fore the tag check, however, this combination is called write-invalidate.

With write-around, storing the data is delayed until after it is known

if the store produces a hit. If it misses, the data is not stored in the

cache. With write-invalidate, the data is always written directly to the

cache, but the cache line is invalidated in case the store misses. Since

write-invalidate may overwrite other data, this policy can only be used

in write-through caches.

While write-through caches can use any of these policies, write-back caches

must perform the tag check before writing data to the cache. Furthermore,

caches that employ fetch-on-write only need a single valid bit per cache line,

whereas cache that do not employ fetch-on-write require valid bits at the same

granularity as the smallest data type that can be used in store instructions. For

example, to be able to store single bytes in a cache with a line size of 32

bytes, 32 valid bits would be required per cache line. Storing data in a cache

with less granularity is possible, but not without first merging the data with

neighboring addresses. An additional advantage of the fetch-on-write policy

is that this implies that data is always transferred in cache line sized blocks,

which reduces design complexity. Caches that do not employ fetch-on-write

also need be able to do partial writes to the next memory level. To allow for a

fair comparison, all caches in this chapter use the fetch-on-write policy.

In this work we explore the potential of a cache organization called the CD-

cache. The CD-cache cache puts a hard limit on the number of dirty cache

4.2 RELATED WORK 59

lines, while maintaining or improving performance compared to a write-back

cache of the same size. The proposed organization consists of a cache that is

only used for loads, and a much smaller write-back cache that is used to store

dirty data. Experimental results show that the proposed design attains similar

or higher performance than a write-back cache, while restricting the number

of dirty cache lines to a hard upper limit.

The organization of the CD-cache, using a relatively small cache structure with

a significantly larger one, provides an additional advantage. Serving data from

a smaller cache structure requires significantly less energy than from a larger

one. Hence, the CD-cache reduces the dynamic energy consumption by direct-

ing all writes and a significant number of loads to the smaller cache structure.

This is the same principle as is exploited in the energy reduction technique

known as the filter cache [60, 61].

This chapter is organized as follows. Section 4.2 discusses related work. The

design of the CD-cache cache is presented in Section 4.3. Experimental results

are presented in Section 4.4, and a case study with cache decay is provided in

Section 4.5. Section 4.6 summarizes this work and presents directions for

future research.

4.2 Related Work

Several researchers investigated techniques that use different cache structures

for different behavior. Many of these works propose to use separate caches for

data that exhibits temporal and/or spatial locality [29, 46, 49, 82]. Our work is

similar since we also try to separate data. However, in our case this is based

on whether the data is clean or dirty.

The structure of the proposed CD-cache resembles that of the write cache [47],

which in turn shows similarities with the miss cache and victim cache [48].

The write cache is in principle a write-buffer with the notable difference that,

instead of writing updates to the next memory level as soon as possible, it only

writes back data in case it needs to make room for new entries. This way, it is

possible to coalesce more writes and hence decrease the amount of write traffic.

The CD-cache proposed in this work differs in the following ways. First, in

the CD-cache, both cache structures are mutually exclusive. As a result, stores

only need to update one cache line in the CD-cache. Second, we use two cache

structures in parallel, whereas the write cache is placed between the write-

through data cache and the write buffer. Third, we employ the fetch-on-write

policy. When a write miss occurs in the write cache, however, the cache line

60 CHAPTER 4: LIMITING THE NUMBER OF DIRTY CACHE LINES

is allocated but the remainder of the cache line is not fetched into the cache.

As explained in Section 4.1, combining the allocate-on-write and the no-fetch-

on-write policies requires valid bits for each sub-block in a cache line. This

imposes additional complexity to support stores smaller than the sub-block

size. The fetch-on-write policy is also preferred for caches that support error

correction, since error correction is more efficient on larger blocks and the

no-fetch-on-write policy would therefore impose additional complexity.

Chu et al. [16] evaluated several write buffer configurations for on-chip caches.

They proposed to either flush the whole write buffer at certain intervals or on

certain events, or to write back separate entries from the write buffer in the

background. This is done by writing updates both to the L1 data cache and to

the write buffer, and having the write buffer clear the dirty bit in the L1 data

cache after writing back data. This approach, however, puts additional pressure

on the data cache as it also has to be accessed by the write buffer. Also, the

buffer in this approach is not used to service load instructions like in our work.

Furthermore, in this approach part of the cache lines in the data cache will still

be marked dirty for some time, whereas in our approach these cache lines are

always clean.

Lee et al. [65] proposed a technique called Eager Write-Back. This write-back

cache does not wait to write back data until a line is evicted. Instead, the

memory bus is monitored and write-backs are issued whenever the bus is idle.

This approach can significantly improve the performance of memory bound

programs. However, it does not put a limit on the number of dirty cache lines.

Zhang [100] proposed to improve cache reliability by using a small fully asso-

ciative buffer to replicate stored data in the L1 data cache. Depending on the

required amount of replication, duplicates evicted from the write buffer might

either be discarded or written back to memory. Our work differs in the aspect

that we do not duplicate stored data. When data is written to the dirty cache,

the corresponding cache line is copied from the clean part of the CD-cache and

then invalidated. On eviction from the dirty cache, the data is only copied back

to the clean cache if no conflicting requests have been issued in the mean time.

The advantage of this technique is that, in our approach, data residing in the

primary cache is always clean.

In this chapter, we also present a case study using the CD-cache for a cache

energy reduction technique, introduced by Kaxiras et al. [37, 53, 54], called

cache decay. Cache decay is based on a technique called the gated-Vdd, pro-

posed by Powell et al. [81], which saves energy by turning of unused memory

cells. In cache decay, this technique is employed to reduce energy by turning

4.3 CLEAN/DIRTY CACHE 61

of individual cache lines in the data cache. Our work extends upon this work

by providing a method to handle dirty data efficiently.

A similar technique to reduce static dissipation is to turn cache lines to a low-

power mode, instead of turning them off completely. This idea has been pro-

posed as Drowsy Caches by Flautner et al. [27]. However, decreasing supply

voltages and feature sizes make caches more vulnerable to transient errors. As

a result, drowsy modes with an even lower supply voltage will require signif-

icant error detection/correction facilities to ensure proper operation, which in

turn may offset any attained savings. The CD-cache proposed in this chapter

could be used to assist in this situation also, as error correction only needs to

be applied to dirty cache lines while error detection is sufficient for clean data.

4.3 Clean/Dirty Cache

The proposed design comprises two caches: a primary clean cache and a much

smaller secondary cache called the dirty cache. While the clean cache is only

used to store ‘clean’ data, the cache lines in the dirty cache are marked ‘dirty’

by definition. Furthermore, the contents of these caches are mutually exclu-

sive. Figure 4.1 shows a schematic description of the CD-cache.

address from CPU

data from CPU
data to CPU data from L2

data to L2

Clean Cache

Dirty Cache

FIGURE 4.1 Schematic representation of the Clean/Dirty-cache

In the CD-cache, writes always go to the dirty cache and are never allocated

in the clean cache. Although the data from store instructions is never written

to the clean cache, it may still be necessary to access the clean cache if the

corresponding cache line is allocated in there. Therefore, when a write misses

in the dirty cache, a lookup is performed in the clean cache. If the data is

62 CHAPTER 4: LIMITING THE NUMBER OF DIRTY CACHE LINES

found in the clean cache, this data is invalidated and copied to the dirty cache,

thereby keeping the two structures mutually exclusive. If the data is not found

in either cache, the cache line is fetched from the next memory level and stored

in the dirty cache. The dirty cache employs the write-back policy. Data that is

evicted from the dirty cache is always written back to the next memory level,

since it is dirty by definition. When this happens, the clean cache is probed

again to see if the corresponding cache line is still available, i.e., this cache

line is not used to store other data and is therefore in invalid state. If this is the

case, the data is also written back to the clean cache. Our experimental results

show that this causes a small reduction of L2 accesses.

Data that is read can reside in either the clean or the dirty cache. Therefore,

when a read is issued, a lookup has to be performed in both caches. In the

CD-cache, this is done in parallel. When a read misses in both caches, the data

is fetched from the next memory level and is stored in the clean cache.

Using a split cache design as explained above, however, can impact both the

access time and the energy consumption. Since writes always go to the dirty

cache and since both structures are mutually exclusive, there is no negative

impact on the hit time for writes. For reads, the data can reside in either cache.

This implies the tags in both caches have to be checked before the data can be

read out. It is therefore assumed that read hits experience a one cycle additional

delay compared to a normal write back cache of the same size. This further-

more implies that for every read, the proposed cache organization spends twice

as much energy on comparing tags as compared to a normal cache. However,

since the dirty cache is much smaller than the clean cache, reading data from

the dirty cache takes less energy than reading from the clean cache or from

a normal cache. The same is true for writes, which always go to the smaller

dirty cache but often incur additional tag checks. A more detailed discussion

of the energies involved with comparing tags and reading out data is presented

in Section 4.4.

An important property of the proposed design is that data allocated by load

instructions can only be replaced by other load instructions, and that data al-

located by store instructions can only be replaced by other store instructions.

This implies that issuing a load will never cause a write-back event, and as

such, are not delayed by these. Loads can, however, be delayed by write-back

events due to previous instructions.

By limiting the size of the dirty cache, the maximum number of cache lines

marked dirty is significantly reduced compared to a cache that employs a write-

back policy. By keeping a small windows of recent stores in the L1 cache, a

4.4 EXPERIMENTAL RESULTS 63

significant number of L2 cache accesses is avoided compared to a cache that

employs the write-though policy.

4.4 Experimental Results

In this section, experimental results are presented that show how the CD-cache

can be used to limit the amount of dirty data to an upper limit, without com-

promising performance or increasing energy consumption.

4.4.1 Experimental Setup

For the experiments in this chapter, a selection of the SPEC2000 [87] inte-

ger benchmarks has been used. These benchmarks could be compiled and

simulated without errors. To limit simulation time and yet capture different

program characteristics, the SPEC2000 reduced input set [62] was used. All

simulations ran for at least 500 million cycles and were stopped after 1 billion

cycles. All experiments were performed using sim-outorder from the Sim-

pleScalar tool set [4], which was extended with a detailed memory hierarchy,

including write-buffers and miss-status-holding-registers (MSHRs). The sim-

outorder simulator was configured to resemble a modern multiple-issue super-

scalar processor. The most important parameters for the baseline system are

shown in Table 4.3. For the CD-cache, the same parameters were used, aside

from the following differences. Read accesses to the CD-cache incur an addi-

tional delay of 1 cycle. Writes that hit the dirty cache do not incur this penalty,

but writes that hit in the clean cache incur a penalty of 2 cycles since the cache

line has to be transferred from the clean to the dirty cache.

The CD-caches used in this section are equipped with a 32kB cache structure

to store the clean data, and a 4 or 8kB structure to store dirty data. Since the

capacity of a cache has a significant impact on its performance, these CD-

caches are compared with baseline caches of respectively 36kB and 40kB.

Sim-outorder was modified to allow for simulations with cache sizes that are

not a power of 2.

In this chapter, we calculate energy by multiplying statistics produced by sim-

outorder with the corresponding costs. The exact energies consumed by cer-

tain events, such as L1 accesses, depend on the used implementation and tech-

nology. Table 4.4 depicts a number of results produced by the CACTI 5.3

cache modeling tool [91] for 32kB 2-way set-associative caches with 32-byte

cache lines, using high-performance transistors. Although this table shows

64 CHAPTER 4: LIMITING THE NUMBER OF DIRTY CACHE LINES

CPU Core

Issue Width 4

RUU Size 64

Functional Units 2 IntALU, 1 IntMult/Div, 1 FPALU, 1 FPMult/Div

Memory Hierarchy

L1 Data Cache 36kB or 40kB, 2-way set-associative,

32B lines, 2 cycle latency

L1 Inst. Cache 32kB, 2-way set-associative,

32B lines, 2 cycle latency

L2 Unified Cache 1MB, 4-way set-associative,

128B lines, 12 cycle latency

Memory Latency 100 cycles

TABLE 4.3 Baseline processor configuration.

technology [nm] 45 45 65 65

number of banks 1 2 1 2

access time [ns] 0.828 0.750 1.392 1.261

dynamic energy per read [nJ] 0.061 0.048 0.107 0.084

leakage power [W] 0.040 0.031 0.046 0.035

dynamic power by tags 4.89% 5.89% 3.07% 5.88%

TABLE 4.4 Energy consumption of 32kB 2-way set-associative caches

with cache lines of 32 bytes.

significant differences for different implementations, the relative differences

between the energy consumption of various parts is fairly constant. More

specifically, assuming a clock frequency of between 1 and 2GHz, the dynamic

energy consumed by one cache access is approximately twice as high as the

energy dissipated through leakage in a single cycle. Similarly, CACTI simula-

tions show that approximately 5% of the energy involved with a cache access

is used to compare tags, and that a cache of only 4 or 8kB requires less than

half the energy of a 32kB cache.

Therefore, the following model is used to measure energy consumption in the

simulated caches: An L1 cache access is assumed to consume twice as much

dynamic energy as is dissipated through leakage by the whole cache in one

4.4 EXPERIMENTAL RESULTS 65

Operation Cost

static leakage energy per cycle for the whole L1 cache 1

dynamic energy for accessing the L1 cache (only data) 1.9

dynamic energy per tag comparison 0.1

dynamic energy for accessing the L2 cache (including tags) 10

TABLE 4.5 Relative energy costs of caches in experimental model.

cycle. Of this dynamic energy, 5% is used for the tag comparison and 95%

for reading out data. CACTI results show that accesses to the 1MB L2 cache

require approximately 5 times as much energy as accesses to the L1 cache.

This implies that an L2 access requires 10 times as much energy as is dissipated

through leakage in the L1 cache. It is noted that Hu et al. [37] use the same

energy relation between L2 accesses and L1 leakage in most of their work.

For the CD-cache, twice as many tag comparisons are required. On the other

hand, reads and writes that produce a hit in the dirty cache only need to access

this smaller cache structure. Since accesses to a 4 or 8kB cache require less

than half the energy of accesses to a 32kB cache, it is therefore assumed that

accesses to the smaller dirty cache reduce the energy involved with reading

out data by half. It should be noted that leakage energy is dissipated every

cycle, even when there are no cache accesses. The details of this model are

also depicted in Table 4.5.

4.4.2 Experimental Results

Figure 4.2 depicts the number of accesses to the unified L2 cache for both the

write-back and the CD-caches. As expected, the CD-cache in general increases

the number of accesses to L2 compared to the baseline write-back cache, since

it needs to write back much more often. Although in most cases these in-

creases are moderate, for the twolf and vpr benchmarks they are quite signifi-

cant, both in absolute and relative terms. In one case, with the mcf benchmark

in Figure 4.2b, the CD-cache cache actually produces fewer L2 accesses than a

conventional write-back cache. This small improvement is due to the fact that

separating clean and dirty data adds a small amount of associativity.

Although the CD-cache increases the number of L2 accesses in almost all

cases, this does not necessarily imply a performance reduction. Figures 4.3a

and 4.3b depict the IPC for the baseline and CD-caches of 36 and 40kB, respec-

66 CHAPTER 4: LIMITING THE NUMBER OF DIRTY CACHE LINES

��������	
�	�	�� 	����������	�	��

���
���

����	�

���

���
	�
���

�

�

��

��

��

��

��

��

��

��

�	�������

�
��
�
��
�
�
	
�
�
	
�
��
��
�
�
�
��
�
�
	
�

(a) 36kB (32kB+4kB)

���
���

����	�

���

���
	�
���

�

�

��

��

��

��

��

��

��

��

�	�������

�
��
�
��
�
�
	
�
�
	
�
��
��
�
�
�
��
�
�
	
�

(b) 40kB (32kB+8kB)

FIGURE 4.2 L2 accesses per 1000 cycles for baseline write-back and CD-

caches with capacities of 36kB and 40kB.

tively. For both figures, the differences between the baseline and CD-caches

are rather small, and in most cases are in favor of the CD-cache. Even for

the twolf and vpr benchmarks, which showed significant increases in L2 ac-

cesses, there is no real reduction in performance. This is due to the following

reasons. First, the simulated out-of-order processor is able to effectively hide

the latency of the additional L2 accesses, especially if they do not occur con-

currently with other L2 accesses. Second, due to the limited number of dirty

cache lines in the CD-cache, the accesses to L2 are higher in frequency but

also better spread over time. More importantly, in a normal write-back cache

a read may result in both a transfer from the next memory level to retrieve the

requested data and a transfer back to the next memory level when dirty data is

evicted from the cache. In the CD-cache, on the other hand, reads can never

result in writing back data, and as a result experience less delay.

Improving performance is, however, not the primary objective of the CD-

cache. The goal is to limit the number of dirty cache lines while maintain-

ing comparable performance. Furthermore, since the CD-cache is targeted at

cache energy reduction techniques, it is important to not increase energy con-

4.4 EXPERIMENTAL RESULTS 67

��������	
�	�	�� 	����������	�	��

���
���

����	�

���

���
	�
���

�

���

���

���

���

���

���

���

���

���

�

���

���

���

���

���

�	�������

�
!

(a) 36kB (32kB+4kB)

���
���

����	�

���

���
	�
���

�

���

���

���

���

���

���

���

���

���

�

���

���

���

���

���

�	�������

�
!

(b) 40kB (32kB+8kB)

FIGURE 4.3 IPC for write-back and CD-caches of 36kB and 40kB.

sumption in other parts. Figures 4.4 and 4.5 depict the dynamic energy con-

sumed in the cache hierarchy relative to the baseline write-back cache for the

same experiments as before. The energy consumption in these figures is mea-

sured by using the results produced by SimpleScalar and multiplying these by

the corresponding energy cost, as was described in Section 4.4.1. Figures 4.4

and 4.5 depict separate results for the energies involved with tag comparisons,

reading out data, and accesses to the L2 cache.

For all benchmarks depicted in Figures 4.4 and 4.5, the CD-cache actually

reduces the energy consumption. While the energy consumption in this or-

ganization is increased by performing twice as many tag comparisons and by

issuing more requests to the L2 cache, there is also a significant reduction in

the energy dissipated by reading and writing data from and to the L1 cache.

All write operations and also some reads are performed on the much smaller

dirty cache, which requires significantly less energy per access. As mentioned

before, this is the same technique as is exploited in the energy reduction tech-

nique called the filter cache [60, 61].

In this section results were presented for a 32kB cache equipped with either a

68 CHAPTER 4: LIMITING THE NUMBER OF DIRTY CACHE LINES

�
�
�������

�
�

� �
�
��

�
�

� �
�
��

�
�

� �
�
��

�
�

� �
�
��

�
�

� �
�
��

�
�

���

���

��	

��

���

���

��

���

���

���

���

�	 ������ �������

��
��
��
�
�
��
�
�
��
�

��� ��� ��!�� �"#�� �#���$ � �

FIGURE 4.4 Dynamic energy consumed in L1 and L2 for baseline

write-back and CD-caches of 36kB.
�
�
�������

�
�

� �
�
��

�
�

� �
�
��

�
�

� �
�
��

�
�

� �
�
��

�
�

� �
�
��

�
�

���

���

��	

��

���

���

��

���

���

���

���

�	 ������ �������

��
��
��
�
�
��
�
�
��
�

��� ��� ��!�� �"#�� �#���$ � �

FIGURE 4.5 Dynamic energy consumed in L1 and L2 for baseline

write-back and CD-caches of 40kB.

4.5 CASE STUDY WITH CACHE DECAY 69

4kB or a 8kB dirty cache. Although a larger dirty cache can reduce the number

of L2 accesses, it always increases the number of dirty cache lines. When the

goal is to reduce the number of dirty cache lines, the 32kB cache equipped

with a 4kB dirty cache might be preferable above a 8kB dirty cache, since

the first has twice as few dirty blocks by definition. As shown in Table 4.1,

approximately half the cache blocks are marked dirty in a normal write-back

cache. Hence, the number of dirty blocks is reduced by 50%× 1280/128 = 5
times with a 4kB dirty cache, and by 50% × 1280/256 = 2.5 times when

using a 8kB dirty cache. Higher improvements can be attained by using a

smaller dirty cache, however, at the expense of an increase in L2 accesses.

4.5 Case Study with Cache Decay

In this section, the CD-cache is used to implement an energy saving technique

called cache decay [37, 53]. After briefly explaining cache decay, experimental

results are presented that show how the CD-cache can be used to assist cache

decay.

4.5.1 Cache Decay

Cache decay reduces the static power consumption in caches by switching off

the power supply to cache lines that have not been used for a certain number

of cycles. This is implemented as follows. Each cache line is associated with

a 2-bit saturating local counter. The local counters are incremented at fixed

time intervals, and are reset to 0 when the corresponding cache line is used. To

minimize switching activity, a hierarchical counter mechanism is used, where

a single global counter is used to provide ticks to increment the local counters

at specified intervals. When a local counter saturates, it generates a signal to

switch off the cache line. The valid bits are never switched off and indicate

whether a cache line is powered on.

Kaxiras et al. [53] have shown that, based on the decay interval, a significant

number of cache lines will be switched off. By switching off cache lines,

however, the cache miss rate increases. This can have a negative impact on

performance. More importantly, the energy savings obtained by switching off

cache lines has to be offset against the increase in accesses to the next memory

level. These authors have shown that a decay cache can result in the same

miss rate as a normal cache, while having fewer powered-on cache lines. It

was also shown that the decay cache results in a lower miss rate than a normal

70 CHAPTER 4: LIMITING THE NUMBER OF DIRTY CACHE LINES

cache with the same number of active cache lines.

Dirty cache lines, however, pose a problem with cache decay as dirty lines

have to be written back to memory before they can be decayed. In [37], the

authors proposed to avoid bursts of write-backs on the global tick signal by

cascading the global signal from one local counter to the next with a one cycle

delay. This, however, assumes that write-backs can always be written from

the cache to a buffer without experiencing stalls. The memory subsystem is

a known bottleneck and the same bandwidth that is used for write-backs is

also used for other means. This makes it hard, or at least very costly, to always

guarantee sufficient bandwidth for writing back one cache line per cycle. Other

solutions are to stall the decay process whenever the write-back buffer is full

or to only decay dirty cache lines in case there is sufficient room in the write

buffers. Such solutions, however, would require significantly more complex

decay hardware, since data from cache lines cannot simply be written out on

decay, but only after verifying that there is room in the write-buffer. This, in

turn, can easily lead to an increase in energy consumption.

4.5.2 Cache Decay using the Clean/Dirty Cache

In this section, we show how the CD-cache can be used to efficiently imple-

ment cache decay. The main advantage of separating clean and dirty data in

the CD-cache is that data in the clean cache can be decayed without a prob-

lem. This makes it possible to implement cache decay efficiently in this part

of the cache, without the need to include additional write-back buffers. For

simplicity, in this section we assume that dirty cache lines are not decayed in

the CD-cache.

Cache decay using the CD-cache is compared to a baseline write-back cache

that employs cache decay. The write-back cache is assumed to have an addi-

tional write buffer with a limited number of entries for writing back data. It is

furthermore assumed that cache lines cannot be decayed if there is no room in

the write buffer. In case the write buffer is full, decaying cache lines is delayed

for a whole decay period, until the next global tick arrives.

The most important parameter in cache decay is the decay period. The decay

period determines the intervals at which cache decay is performed. Smaller

decay periods lead to a smaller number of active cache lines, but to a larger

number of accesses to the next memory level.

Another important parameter for cache decay in the CD-cache is the size of

the dirty cache. A larger dirty cache decreases the number of accesses to the

4.5 CASE STUDY WITH CACHE DECAY 71

next memory level. However, a higher number of cache lines dedicated to store

dirty data also implies an increase in the number of active cache lines, as it is

assumed that dirty cache lines cannot be decayed.

To limit the complexity and simulation time, cache decay is used only in the

L1 data cache. Furthermore, performing cache decay in L2 would give unrep-

resentative results as the employed benchmarks do not significantly stress the

L2 data cache. In reality, cache decay would benefit any cache that consumes a

significant amount of energy through leakage currents, especially large on-chip

L2 caches as are common in many modern CPUs.

As noted before, cache decay is performed only in the L1 data cache. The static

energy saved by cache decay can therefore be estimated by the average fraction

of L1 that is decayed multiplied with the duration of the benchmark. This

has to be offset against the increased number of accesses to the next memory

level. An exact comparison between these two is very implementation and

technology specific, as was also indicated by Kaxiras et al. [53]. We therefore

use the same energy model as used in Section 4.4, which relates the dynamic

energy involved with various operations in the caches to the leakage current of

the whole L1 data cache during 1 cycle.

Figure 4.6 depicts the average active size when employing cache decay with

varying periods on both a write-back and a CD-cache. The active size of a

cache is defined as the percentage of cache lines that are powered on. As

explained before, cache decay in a normal write-back cache can be limited due

to the limited size of the write buffer. The results depicted in this figure include

data for write-back caches with write buffers of 4, 8, and 16 entries. These are

labelled respectively WB-4, WB-8, and WB-16. Both these caches are in total

36kB, where in the CD-cache 32kB is used for clean data and 4kB is used for

dirty data.

The graphs presented in Figure 4.6 clearly show that the effect of cache decay

on a conventional write-back cache can be limited if there is insufficient room

to write back dirty cache lines. While for almost all benchmarks, a larger write

buffer leads to a decreased active size, for most benchmarks a write buffer of

more than 16 entries is required to attain the same number of decayed cache

lines as the CD-cache. This is because the CD-cache can always decay cache

lines in the clean part that have not been used recently. The write-back cache,

on the other hand, may need to write back significantly more dirty cache lines

than there is room for in the write buffer.

When, based on the decay interval, the number of active cache lines becomes

really small, the size of the dirty cache starts to play a significant role. This

72 CHAPTER 4: LIMITING THE NUMBER OF DIRTY CACHE LINES

���� ���� ����� �	�
�
�

�� �� � �

��

���

���

���

���

����

	
������
����

�
�
��
�

��
��

(a) gcc

�� �� � �

��

���

���

���

���

����

	
������
����
�
�
��
�

��
��

(b) mcf

�� �� � �

��

���

���

���

���

����

	
������
����

�
�
��
�

��
��

(c) parser

�� �� � �

��

���

���

���

���

����

	
������
����

�
�
��
�

��
��

(d) twolf

�� �� � �

��

���

���

���

���

����

	
������
����

�
�
��
�

��
��

(e) vortex

�� �� � �

��

���

���

���

���

����

	
������
����

�
�
��
�

��
��

(f) vpr

FIGURE 4.6 Average active size for normal write-back and CD-caches us-

ing cache decay. Decay intervals are in 1000 cycles.

4.5 CASE STUDY WITH CACHE DECAY 73

happens, for example, with vortex with a decay interval of 4000 cycles, de-

picted in Figure 4.6e. In this case, the CD-cache has on average 287 active

cache lines. With a clean part of 32kB (1024 cache lines) and a dirty part of

4kB (128 cache lines), this implies that only 159 clean cache lines are active

on average, and that almost half of the active cache lines are dirty cache lines

that cannot be decayed. When targeting such a significant reduction in active

cache lines, a smaller dirty cache should be employed.

Figure 4.7 depicts the number of L2 accesses per 1000 cycles for the write-

back cache and the CD-cache, using cache decay with various decay periods.

This figure also includes results for the write-back and CD-caches without

cache decay. These are labelled∞, as they can be viewed as having an infinite

decay period. The write-back caches in these experiments are equipped with a

16-entry write buffer.

For some benchmarks, like mcf , there is only a marginal increase in L2 ac-

cesses, even when the decay period is rather short. For other cases, like vpr,

the CD-cache with a decay period of 4000 cycles increases the number of L2

accesses almost threefold. However, these more significant increases only oc-

cur when the number of L2 accesses was already low in the baseline cache

(cf. Figure 4.2). For benchmarks with a higher number of L2 accesses in the

baseline cache, the increase in L2 accesses is generally limited.

As expected, the number of active cache lines decreases and the amount of traf-

fic to and from L2 increases with decreasing decay periods. With a large decay

period, hardly any of the cache lines are turned off. With a very small decay

period, on the other hand, a significant number of additional L2 accesses is

generated. For an optimal energy reduction, the chosen decay period depends

on the application and on the difference in energies due to leakage currents and

L2 accesses. Hu et al. [37] describe an adaptive technique to adjust the decay

period to the behavior of an application. This, however, is beyond the scope of

this work.

The exact energy savings attained by cache decay depends on the relative

amount of static energy consumed by the caches versus the amount of dy-

namic energy required for a transaction from or to the next memory level. In

some cases, it might be worthwhile to have a few additional accesses to the

next memory level to allow a significant part of the cache to be shut down. In

other cases, it might be better to shutdown a smaller part of the cache, while

making sure the number of accesses is not increased.

Figure 4.8 depicts the total energy consumption in the L1 data cache and by

the additional L2 accesses for the write-back cache and the CD-cache. The

74 CHAPTER 4: LIMITING THE NUMBER OF DIRTY CACHE LINES

��������	
�	�	�� 	����������	�	��

� �� �� � �

�

	

��

�	

��

�	

��

�	

��

�����������

�
�
�
�
�
�
��
��
�
�
�
�
��
�
�
�

(a) gcc

� �� �� � �

�

��

��

��

��

	�

�����������
�
�
�
�
�
�
��
��
�
�
�
�
��
�
�
�

(b) mcf

� �� �� � �

�

	

��

�	

��

�	

��

�����������

�
�
�
�
�
�
��
��
�
�
�
�
��
�
�
�

(c) parser

� �� �� � �

�
	

��
�	
��
�	
��
�	
��
�	

�����������

�
�
�
�
�
�
��
��
�
�
�
�
��
�
�
�

(d) twolf

� �� �� � �

�

	

��

�	

��

�	

��

�	

�����������

�
�
�
�
�
�
��
��
�
�
�
�
��
�
�
�

(e) vortex

� �� �� � �

�

	

��

�	

��

�	

��

�	

�����������

�
�
�
�
�
�
��
��
�
�
�
�
��
�
�
�

(f) vpr

FIGURE 4.7 L2 accesses per 1000 cycles for write-back and CD-caches

using cache decay. Decay intervals are in 1000 cycles.

4.5 CASE STUDY WITH CACHE DECAY 75

energy in this figure is scaled to the total energy consumed in the L1 data

cache for a baseline write-back cache without cache decay. Furthermore, the

same energy model as in Section 4.4 is used, where an L1 access is assumed to

consume twice as much energy as is dissipated through leakage by the whole

L1 cache in one cycle, and where an L2 access is assumed to consume 5 times

as much energy as an L1 access. The results depicted in Figure 4.8 indicate

the amounts of energy consumed in the L1 data cache, separated by static

energy consumption due to leakage currents (L1 leakage), dynamic energy for

reading and writing data (L1 data), and dynamic energy for tag comparisons.

Since cache decay increases the number of L2 accesses, we also include the

energy consumption due to additional L2 accesses in this figure. As before,

the write-back caches are equipped with a 16-entry write buffer.

The results depicted in Figure 4.8 show that the CD-cache with cache decay

consumes considerably less energy than a write-back cache using cache decay.

On average, the energy reduction achieved by using cache decay with the CD-

cache is more than twice as high as the the energy reduction achieved by using

cache decay in a normal write-back cache. The maximum is found with the

parser benchmark, where the energy reduction is improved by a factor of 2.12.

The additional energy consumed by the increased number of tag comparisons

in the CD-cache is easily offset by the decrease in energy required for reading

and writing data and by the reduction in active size. By separating clean and

dirty data, the CD-cache can employ cache decay on the clean part much more

successfully than a write-back cache, leading to a decrease in the total energy.

So far, we have assumed that L2 accesses consume 10 times as much energy

as is dissipated by the L1 cache in a single cycle. Although this is a reasonable

measure, this ratio may turn out to be quite different when using other cache

configurations or a different technology. From Figure 4.8, however, it can be

seen than even when L2 accesses would dissipate twice as much energy, the

CD-cache would still consume less energy than a write-back cache.

The results presented in this section indicate that it may be possible to attain

higher savings by exchanging even more active cache lines for accesses to L2.

It should be noted, however, that additional L2 accesses do not only consume

energy, but can also induce additional delays and thereby reduce performance.

This is illustrated by Figure 4.9, which depicts how the performance of the

twolf and vpr benchmarks drops for decreasing decay periods. This shows

that care should be taken to not decrease the decay period too much, and make

sure that the number of L2 accesses is not significantly increased for both

energy and performance reasons. As was also shown in Section 4.4, the CD-

76 CHAPTER 4: LIMITING THE NUMBER OF DIRTY CACHE LINES

���������� ���	�
� ���
��� �		�
��������
��������

���

�����

	
���

����

��

�����

�

���

���

���

���

���

���

���

���

���

�

�
��
��
�
�
��
�
�

�
��
�
�
!
"
#
$
��
�
�

(a) gcc

���

�����

	
���

����

��

�����

�

���

���

���

���

���

���

���

���

���

�

�
��
��
�
�
��
�
�

�
��
�
�
!
"
#
$
��
�
�

(b) mcf

���

�����

	
���

����

��

�����

�

���

���

���

���

���

���

���

���

���

�

�
��
��
�
�
��
�
�

�
��
�
�
!
"
#
$
��
�
�

(c) parser

���

�����

	
���

����

��

�����

�

���

���

���

���

���

���

���

���

���

�

�
��
��
�
�
��
�
�

�
��
�
�
!
"
#
$
��
�
�

(d) twolf

���

�����

	
���

����

��

�����

�

���

���

���

���

���

���

���

���

���

�

�
��
��
�
�
��
�
�

�
��
�
�
!
"
#
$
��
�
�

(e) vortex

���

�����

	
���

����

��

�����

�

���

���

���

���

���

���

���

���

���

�

�
��
��
�
�
��
�
�

�
��
�
�
!
"
#
$
��
�
�

(f) vpr

FIGURE 4.8 Relative energy consumption in the L1 data cache and by the

additional L2 accesses when using cache decay with a period of 16000 cycles.

4.6 CONCLUSIONS 77

��������	
�	�	�� 	����������	�	��

�� �� � � �

����

����

����

����

����

��	�

����

��
�

����

����

����

������������������

�
��
��
�

��

��
�
��

�
�
�

(a) twolf

�� �� � � �

����

����

����

����

����

��	�

����

��
�

����

����

����

������������������

�
��
��
�

��

��
�
��

�
�
�

(b) vpr

FIGURE 4.9 Performance of two different decay caches for the twolf and

vpr benchmarks with various decay periods, relative to a write-back cache

without decay.

cache often increases L2 accesses while improving performance, due to the

fact that the CD-cache spreads these L2 accesses better over time than the

write-back cache. This also makes the CD-cache a better candidate for cache

decay than the write-back cache, since it is more capable of hiding the latencies

of additional L2 accesses.

4.6 Conclusions

We have proposed the CD-cache, a novel cache organization for handling

writes in on-chip caches. The most important property of the CD-cache is that

it limits the number of ‘dirty’ cache lines without having to ‘write-through’.

Its performance is comparable to that of a conventional write-back cache of

the same size, while the number of dirty cache lines is reduced significantly.

This property can then be used to benefit energy reduction techniques that shut

down or reconfigure cache lines.

We have also shown that the CD-cache, although generating more write-backs,

improves performance slightly compared to a write-back cache. This is due to

78 CHAPTER 4: LIMITING THE NUMBER OF DIRTY CACHE LINES

the fact that the CD-cache can hold a limited number of dirty cache lines. As

a result, in the CD-cache, the updates to lower level memory are spread more

evenly than with a normal write-back cache.

In the proposed organization, reads and writes that produce a hit in the dirty

cache are serviced by this much smaller cache structure. It was shown that this

reduces the total cache energy consumption compared to a normal write-back

cache.

To show how a cache with a limited number of dirty lines may benefit energy

reduction techniques, a case study was included. In this case study, it was

shown how the dirty cache can be used for a simple and efficient cache decay

implementation. Compared to a write-back decay cache with a 16-entry write

buffer, the CD-cache with cache decay improves the energy reduction by more

than twice on average, partially due to a smaller active size and partially due

to accessing the smaller L1 cache structure.

In the experiments presented in this chapter, the CD-cache was only used in

L1. In future work, we intend to perform measurements using a CD-cache in

lower levels as well.

The CD-cache is a good candidate for implementing other cache energy re-

duction techniques that need to reconfigure or shut down cache lines as well.

Furthermore, since clean cache lines only require error detection instead of er-

ror correction, the CD-cache is expected to be a good candidate for making

fault-tolerant caches as well. In future research, we intend to investigate how

the CD-cache can be used for these means.

For the CD-cache described in this chapter, it was assumed that the dirty cache

lines could not be decayed. However, it may be possible to decay dirty cache

line in case there is room in the write buffer. Furthermore, the size of the dirty

cache could be made to adapt to applications dynamically. Both these options

are interesting candidates for future research. In future work, we also intend to

investigate the benefits of using a dynamic decay period.

5
Energy Efficient Multiprocessor

Scheduling using DVS

M
ultiprocessors are increasingly deployed to realize high-performance

embedded systems. Because in current technologies the dynamic

power consumption dominates the static power dissipation, an effec-

tive technique to reduce energy consumption is to employ as many processors

as possible in order to finish the tasks as early as possible, and to use the re-

maining time before the deadline (the slack) to apply voltage scaling. However,

since the static power consumption is expected to become more significant, this

approach will no longer be efficient when leakage current is taken into account.

In this chapter, we first show for which combinations of leakage current, sup-

ply voltage, and clock frequency, the static power consumption dominates the

dynamic power dissipation. These results imply that, at a certain point, it is

no longer advantageous from an energy perspective to employ as many pro-

cessors as possible. Thereafter, a heuristic is presented to schedule the tasks

on a number of processors that minimizes the total energy consumption. Ex-

perimental results obtained using a public task graph benchmark set show that

our leakage-aware scheduling algorithm reduces the total energy consumption

by up to 24% for tight deadlines (1.5x the critical path length) and by up to

67% for loose deadlines (8x the critical path length) compared to the approach

that employs as many processors as possible to maximize the slack that can be

79

80 CHAPTER 5: ENERGY EFF. MULTIP. SCHED. USING DVS

used for voltage scaling.

Most of the material presented in this chapter has been previously published

in [20].

5.1 Introduction

In contemporary and future embedded as well as high-performance micropro-

cessors, power consumption is one of the most important design considera-

tions. Not only does this apply to processors embedded in battery powered

devices, but also in desktop machines and high-performance dedicated sys-

tems power consumption is a fundamental problem that limits clock frequen-

cies. Through the advent of (single chip) multiprocessors for the embedded

market, such as the IBM/Sony/Toshiba Cell architecture [35] and the ARM11

MPCore [3], power consumption is becoming increasingly important for mul-

tiprocessor systems as well.

Power consumption can generally be classified in dynamic and static power

consumption. The first relates to the power that is dissipated due to switch-

ing activity, while the second one is due to leakage currents. Because in cur-

rent technologies the dynamic power consumption dominates the static power

consumption, and because the dynamic power dissipation grows quadratically

with the supply voltage, dynamic voltage scaling (DVS) [77] is an effective

technique to reduce the power consumption. Consequently, when scheduling

tasks on a multiprocessor system, it is advantageous to employ as many proces-

sors as possible in order to maximize the remaining time before the deadline.

This slack can then be exploited to lower the clock frequency and supply volt-

age. However, as technology scales to increasingly smaller feature sizes, static

power dissipation due to leakage current is expected to grow exponentially in

the near future [53]. In this case, using as many processors as possible com-

bined with voltage scaling will no longer provide an efficient solution. In other

words, while in the past the static power consumption could more or less be

ignored, it should not be neglected in the future.

In this chapter, a scheduling algorithm is presented that is targeted at a near

future technology, where leakage current is responsible for a significant part of

the total power dissipation. The algorithm presented in this chapter schedules

task graphs on a number of processors that is sufficient to meet the deadline,

while the total power consumption is minimized.

This chapter is organized as follows: Section 5.2 contains an overview of re-

5.2 RELATED WORK 81

lated work. In Section 5.3, we describe the conditions under which voltage

scaling can be applied to reduce energy consumption. The employed system

and application models are explained in Section 5.4. Section 5.5 describes our

scheduling and voltage selection algorithm. Experimental results are provided

in Section 5.6. In Section 5.7 conclusions are drawn and directions for future

research are given.

5.2 Related Work

Reducing power consumption has been an important research topic in recent

years and many techniques at the process, circuit design, and micro-architec-

tural level have been proposed. One of the most promising techniques is dy-

namic voltage scaling (DVS), where both the clock frequency and the supply

voltage are scaled down when peak performance is not needed. DVS is also

referred to as dynamic voltage/frequency scaling (DVFS). Several existing pro-

cessors such as the Intel XScale [40] support DVS.

Another approach to reduce energy consumption is to shut down idle parts of a

system. In this chapter, we assume that processors cannot be turned off and on

during execution. Turning processors off temporarily, which is often referred

to as dynamic power management (DPM), will be considered in Chapter 6.

Related works that employ DPM will be described in the corresponding section

of that chapter.

To guarantee real-time performance, embedded multiprocessors and Systems-

on-Chip (SoCs) in general are usually over-budgeted, i.e., they generally con-

tain more processing cores, more memory, and support a higher bandwidth

than needed. In these cases, DVS may be applied to reduce energy consump-

tion. Applying DVS to multiprocessor scheduling has been investigated by a

significant number of researchers. An overview is provided by Jha [44]. A

technique proposed by several authors [31, 103] is to use existing scheduling

techniques such as list scheduling with earliest deadline first (EDF), to fin-

ish the tasks as early as possible and to use the remaining slack before the

deadline to lower the supply voltage. These authors, however, did not include

leakage current in their power estimations. Several authors have proposed this

technique using different names and, therefore, we refer to it as Schedule and

Stretch (S&S). This approach will be explained in detail in Section 5.5.

Using a detailed power model that includes static as well as dynamic power,

Jejurikar et al. [43] showed that there is an optimal operating point, called the

critical speed, at which the total energy consumption is minimized. Lowering

82 CHAPTER 5: ENERGY EFF. MULTIP. SCHED. USING DVS

the supply voltage below this point increases the energy consumption. They

computed processor slowdown factors based on the critical speed. A simi-

lar approach was followed by [83], who employed a fixed priority instead of

EDF. In contrast to our work, both these works focussed on single-processor

scheduling and assumed that tasks are independent and arrive periodically with

deadlines.

Zhang et al. [101] used the same real-time model as we do (weighted DAGs

with deadlines). They did not use EDF scheduling but scheduled in such a

way to have more slowdown opportunities. In Chapter 6, we analyze the ef-

fect of employing a different scheduling algorithm. Furthermore, they did not

determine the number of processors that yields the least energy consumption.

Kianzad et al. [56] presented an integrated approach, combining scheduling

and DVS in a genetic algorithm. Varatkar et al. [92] proposed to execute part

of the code on a lower supply voltage while minimizing communication. Some

researchers proposed to improve DVS by also adjusting the threshold voltage

when scaling the supply voltage [30, 70]. Others extended this to scheduling

for real-time multiprocessor systems [2, 97]. None of these works, however,

attempted to determine the optimal number of processors.

Xu et al. [96] proposed to minimize energy consumption by applying DVS and

choosing the correct number of employed processors. Their work, however,

targets embedded clusters in which the nodes provide the same type of service

in a client-server model.

Most work on scheduling to reduce energy in DVS-enabled systems assumes

that the voltage and frequency can be changed during execution. Depending

on the granularity of these changes, this is referred to as either inter-task or

intra-task scheduling. With inter-task scheduling, changes are only made be-

tween two task, whereas with intra-task scheduling, changes may occur within

a task. Assuming that frequency and voltage may change in between or even

within tasks, however, vastly increases the search-space and therefore makes

the scheduling algorithm costly. In many cases, optimal scheduling using vari-

able voltages has been proven to be NP-complete [2, 98, 99].

Another interesting issue, is that behavior of applications or parts of applica-

tion can depend significantly on the provided input. In some cases, this makes

it much harder to provide performance guarantees. A solution to this problem

is provided by Gheorghita et al. [28]. They proposed a technique to classify in-

put data into so-called scenarios. By detecting the correct scenario at run-time,

the system can efficiently adapt to the required performance.

Our work differs in the following ways. First, in contrast to all other works ex-

5.3 ENERGY REDUCTION USING DVS 83

cept [96], we exploit DVS as well as finding the optimal number of processors.

Second, we focus on multiprocessor scheduling while others focussed mainly

on single-processor scheduling. Third, we assume that applications are repre-

sented as weighted DAGs whereas many others assumed independent periodic

tasks with deadlines. Finally, we use a publicly available set of task graphs,

whereas most others used randomly generated graphs.

5.3 Energy Reduction using DVS

This section starts by explaining the concept of voltage scaling and deriving

how static and dynamic power dissipation relate to leakage current, supply

voltage, and clock frequency. From this, we then derive the extend to which

voltage scaling can be used to decrease the energy consumption for a certain

processor. Thereafter, it is shown how these results can be used for scheduling

of parallel tasks on multiprocessor systems.

5.3.1 Dynamic Voltage Scaling

One of the most successful circuit-level power saving techniques applied by

several CPU manufacturers is DVS. DVS is effective because it significantly

reduces the amount of dynamically dissipated power. DVS works as follows.

When there is no need for peak performance, the clock frequency in a DVS-

enabled processor can be lowered. This already reduces the dynamic power

consumption by reducing the amount of switching activity. Moreover, the min-

imum required supply voltage in a CMOS transistor is largely determined by

the frequency or cycle time. By increasing the cycle time the supply voltage

may be lowered, and since the dynamic power scales quadratically with the

supply voltage this allows for significant dynamic power savings. The exact

benefits of DVS are be explained below.

Some researchers prefer to reserve the acronym DVS to denote the technique

where only the supply voltage can be scaled, and use the term dynamic voltage

and frequency scaling (DVFS) to denote the technique where both the supply

voltage and the frequency can be changed. In this work, the term DVS always

denotes the technique that includes frequency scaling.

84 CHAPTER 5: ENERGY EFF. MULTIP. SCHED. USING DVS

5.3.2 Voltage Scaling Requirements

The efficacy of DVS largely depends on the proportion between dynamic and

static power consumption. When static power consumption can no longer be

neglected, as is predicted to be the case in near future technologies [8, 25, 53],

the extend to which voltage scaling can be used to reduce energy consumption

becomes limited. In this section we explain required conditions for reducing

energy by using voltage scaling and the impact on energy consumption when

time is also taken into account.

The power consumption in a CMOS gate can be approximated by:

P = D + S = CL · V
2 · f + Iq · V, (5.1)

where CL is the load capacitance, V is the supply voltage, Iq is the leak-

age current, and f is the clock frequency. The first term (D) in this equation

corresponds to the amount of dynamically dissipated power, caused by switch-

ing circuitry. The second term (S) models the amount of statically dissipated

power, generated by leakage current.

We start with looking at what the requirements are for voltage scaling to be

beneficial for the total energy consumption. For this purpose, we will first

derive an expression for the normalized power dissipation.

To normalize Expression (5.1), we define that at maximum frequency fmax

and corresponding supply voltage Vmax, a processor will dissipate Pmax =
Dmax + Smax power. The normalized total, dynamic, and static power dissi-

pation (P, D, and S) can then be written as:

P =
P

Pmax

= D + S =
D

Pmax

+
S

Pmax

. (5.2)

We then define δ and σ as:

δ =
Dmax

Dmax + Smax

, σ =
Smax

Dmax + Smax

. (5.3)

In other words, δ and σ (0 ≤ δ, σ ≤ 1) denote the fraction of the total power

dissipation at maximum frequency that is caused by switching activity and the

fraction that is caused by leakage current.

Let V = V/Vmax be the normalized voltage and F = f/fmax the normal-

ized frequency. The expressions for the normalized dynamic and static power

dissipation can then be rewritten as:

D = δ ·
D

Dmax

= δ ·
CL · V

2 · f

CL · V 2
max · fmax

= δ · V2 · F , (5.4)

5.3 ENERGY REDUCTION USING DVS 85

and

S = σ ·
S

Smax

= σ ·
Iq · V

Iq · Vmax

= σ · V. (5.5)

Combining these equations with Equation (5.2) results in:

P(F ,V) = δ · V2 · F + σ · V. (5.6)

Slowing down the clock will increase the time required to finish a task. Mainly

due to unpredictable behavior in the memory system, the execution time of a

task does not solely depend on the clock frequency. However, since reduc-

ing the frequency will make memory accesses relatively less costly, it can be

assumed that scaling down the frequency by a factor of N will increase the

processing time by less than a factor of N . Using a normalized expression for

time, T = 1/F , the expression for the normalized energy consumption E then

becomes:

E(F ,V) = P(F ,V) · T = δ · V2 + σ · V/F . (5.7)

From this equation it can be seen that voltage scaling only reduces the energy

consumption if for a certain F < 1 there exists a V < 1, so that E(F ,V) < 1.

The supply voltage of a processor must be sufficient to guarantee that the logic

levels are always safely reached before the end of a clock cycle. This implies

that a minimum supply voltage is required, depending on the clock frequency.

From [59], we take the following expression approximating the relation be-

tween normalized voltage and frequency:

V = β1 + β2 · F , (5.8)

where β1 = Vth/Vmax and β2 = 1 − β1, with Vth denoting the threshold

voltage. Again, F represents the normalized frequency.

Combining this with Equation (5.7) yields:

E(F) = δ · (β1 + β2 · F)2 + σ · (β1/F + β2). (5.9)

Figure 5.1 depicts the normalized energy consumption as a function of the nor-

malized frequency for the cases where the static energy at maximum frequency

(σ) constitutes respectively 25%, 50%, and 75% of the total energy consump-

tion. Clearly, when 75% or more of the total energy consumption is due to the

static component, there is almost no room for energy reduction through DVS.

Even in the small range where the total energy is less than the energy at max-

imum frequency (when the relative frequency is between 0.83 and 0.96), the

savings are negligible. When the dynamic component is more dominant, the

86 CHAPTER 5: ENERGY EFF. MULTIP. SCHED. USING DVS

� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� �

�

���

���

���

��

�

���

���

���

��

�

������

������

��	���

��������������������

�
�
��

�
��
�
�
�
��
�
�
��
�
��
�
�
�
�
�

!�
�
�

FIGURE 5.1 Normalized energy consumption as a function of the

normalized frequency for varying combinations of the dynamic and

static components.

� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� �

�

���

���

���

��

�

���

���

���

��

�

��������

��������

��������

��������������������

�
�
��

�
��
�
�
�
��

�
�
��

�
��

�
�
�
�
�

�
 �
�
�

FIGURE 5.2 Normalized energy consumption as a function of the

normalized frequency for varying threshold voltages.

5.3 ENERGY REDUCTION USING DVS 87

range of voltages which lead to energy reduction clearly increases. However,

even when the static component constitutes only 25% of the total energy con-

sumption, excessive voltage scaling can be detrimental to the energy reduction.

In this case, the optimum relative frequency is approximately 0.36.

Another important parameter in Equation (5.9) is β1, the ratio between the

threshold and supply voltage, as this parameter relates the clock frequency to

the employed supply voltage. Figure 5.2 depicts the normalized energy con-

sumption as a function of the normalized frequency for a number of different

relative threshold voltages. In this figure, it is assumed that at maximum fre-

quency, the leakage current is responsible for 50% of the total energy consump-

tion (σ = 0.5). This figure shows that a higher threshold voltage diminishes

the possibility to effectively employ voltage scaling.

Figure 5.2 also shows that, for a certain threshold voltage and amount of leak-

age current, there is an optimal frequency at which the total energy consump-

tion is minimized. With a threshold voltage of 0.3 times the maximum supply

voltage (β1 = 0.3), this optimal frequency is about 0.56 times the maximum

frequency. This implies that scaling the frequency to below this point will

result in a higher energy consumption than when running the processor at a

normalized frequency of 0.56 and turning the processor off for the remainder

of time. In order to do this, however, it must be possible to shutdown the

processors. This will be covered in Chapter 6.

5.3.3 Voltage Scaling in a Multiprocessor Environment

In the previous section, the circumstances under which it is useful to employ

voltage scaling in a single processor were determined. For a multiprocessor

system, the requirements for lowering energy consumption by voltage scaling

are equivalent to the case with only one processor. For technologies with very

low leakage current, where voltage scaling always decreases the energy con-

sumption, the lowest energy solution is to run the tasks on as many processors

as possible, with the lowest possible frequency. On the other hand, when the

energy consumption cannot effectively be decreased by voltage scaling, the

lowest-energy solution is to run the tasks on as few processors as possible.

Our approach is based on the following assumptions: First, it is assumed that

all employed processors must stay on all the time. In other words, it is not

possible to turn processors on or off during execution. Unused processors,

however, can be turned off. In the next chapter, we will relax this assumption.

Second, it is assumed that all processors run at the same clock frequency. Un-

88 CHAPTER 5: ENERGY EFF. MULTIP. SCHED. USING DVS

der these assumptions, the normalized power consumption of a multiprocessor

with N processors is given by:

Pmulti = N · (α · δ · V2 · F + σ · V), (5.10)

where α denotes the activity (i.e. the fraction of time that the processors are

busy). Using Equation (5.8), Equation (5.10) can be rewritten as:

Pmulti = N · α · δ · (β1 + β2 · F)2 · F + N · σ · (β1 + β2 · F).

5.4 System and Application Model

We assume a shared memory multiprocessor system running parallel appli-

cations, for which the scheduling and mapping are statically determined. In

this work, an application is represented as a weighted directed acyclic graph

(DAG) [17]. In this DAG G = (V,E,w), each node v ∈ V corresponds to a

task, each edge e ∈ E to a dependency between 2 tasks, and each weight w(v)
denotes the execution time of task v. It is furthermore assumed that this sys-

tem is CPU bound, so that the additional power dissipation and delay caused

by communication can be ignored.

Each task in this DAG must be mapped onto 1 out of N processors, in such

a way that all processors finish before deadline D. The activity (α) of the

resulting schedule is given by:

α =
∑

v∈V

w(v)

N ·D
.

We first show how other application models can be translated to DAGs. As

explained by Liberato et al. [67], real-time applications with periodic tasks

can be translated to DAGs using the frame-based scheduling paradigm. In this

case, a frame with a length equal to the least common multiple (LCM) of all

task periods is constructed, in which each task is assigned a certain amount of

processing time. Thereafter, the schedule is repeated frame after frame. An

example of this is depicted in Figure 5.3. In this example, the LCM of all

task periods depicted in Figure 5.3a is 30. A DAG is then constructed from

all tasks within this frame, by creating dependencies from a root node to the

first occurrences of each task, and dependencies between each recurring task

instance. This is illustrated in Figure 5.3b.

Another common application model based on functional or pipelining paral-

lelism is the Kahn Process Network (KPN) [50], where a group of processes

5.4 SYSTEM AND APPLICATION MODEL 89

Task Period

τ1 3

τ2 5

τ3 10

τ4 15

(a)

2

1

3

4

τ

τ

τ

τ

(b)

FIGURE 5.3 Example of translating periodic tasks into a DAG.

are connected by communication channels to form a network of processes.

Each process is in principle infinite and receives data over its input channels,

processes it, and sends the results over the output channels. In this model,

there is not a single deadline but a certain throughput must be guaranteed.

This model can be converted to DAGs by making several copies of the KPN,

by translating edges in the KPN to edges between successive copies in the

DAG and adding an edge from each node in the ith copy to the corresponding

node in the (i + 1)st copy. The output nodes of the first copy are assigned

an arbitrary but reasonable deadline. The deadline of the output nodes of each

successive copy is set to the deadline of the corresponding node in the previous

copy plus the reciprocal of the throughput. A simple example is depicted in

Figure 5.4. In the KPN in Figure 5.4(a), task T1 successively receives inputs

I1, I2, . . . , processes them, and sends the results to T2. Task T3 receives inputs

J1, J2, . . . but also receives data from T2. It combines input Ji+1 with the ith
data received from T2 and sends the result to T2. In the DAG in Figure 5.4(b),

each node is replicated a number of times. Let T j
i denote the jth copy of task

Ti. Then T j
1 receives input Ij and T j

3 receives input Jj . There are edges from

T j
1 and T j

3 to T j+1
2 . Because T3 combines input Ji+1 with the ith data received

from T2, there are also edges from T j
2 to T j+1

3 . To indicate that not all inputs

are available at time zero, there are also edges from T j
i to T j+1

i . This could

also be modeled by adding dummy input nodes whose weights are equal to the

time the input becomes available.

Throughout this chapter, it is assumed that all processors run at the same fre-

quency, and that this frequency is constant while executing an application.

This brings several advantages, but also implies that the opportunity for en-

ergy reduction through voltage scaling is limited to some extend, especially

90 CHAPTER 5: ENERGY EFF. MULTIP. SCHED. USING DVS

3 2 1..., I , I , I

3 2..., J , J , J 1

T2

T3

T1

(a)

I1

J1

I2

J2

I3

J3

(b)

FIGURE 5.4 Example for translating KPNs into DAGs.

for very unbalanced task graphs. This deficit will be discussed in Chapter 6,

which shows that this limitation is in many cases not significant, especially

when processors are allowed to shut down temporarily. The advantages of us-

ing only one frequency and of disallowing this frequency to change, are that

this allows for less complex hardware and a less complex and therefore much

faster scheduling heuristic. In this chapter, it is furthermore assumed that the

frequency and voltage can be scaled on a continuous range.

5.5 Energy Efficient Scheduling Algorithms

This section describes the baseline approach that is used for comparison, fol-

lowed by the heuristic to schedule task graphs on the number of processors

that minimizes the total energy consumption.

5.5.1 Schedule & Stretch

As mentioned in Section 5.2, several researchers [31, 103] use existing schedul-

ing techniques to minimize the makespan of the schedule, and use the remain-

ing slack to lower the frequency and supply voltage. The most commonly

used scheduling algorithm in this case is list scheduling with earliest deadline

first (LS-EDF). We refer to this approach as Schedule and Stretch (S&S). EDF

was originally presented as the deadline driven scheduling algorithm [68], and

some authors refer to it as shortest time to deadline (STTD).

In order to schedule using EDF, first deadlines are assigned to nodes by travers-

ing the graph in a reverse topological order. The nodes with no outgoing arcs

are assigned a deadline equal to the critical path length (CPL). The deadline of

each other node is determined by the deadlines and weights of its successors.

The deadline of a node is calculated by subtracting the weight of a successor

5.5 ENERGY EFFICIENT SCHEDULING ALGORITHMS 91

4

2

6 4

2

T
1

T
2

T
3

T
4

T
5

(a) Task graph

f

1

f

1

f

1

5
TT

1

3
T

T
2

T
4

d
ea

d
li

n
e

Processor 1 t

Processor 2 t

Processor 3 t

(b) Schedule gener-

ated with (EDF) list
scheduling

FIGURE 5.5 Example graph and schedule.

node from its deadline, and by taking the minimum of these values. More

formally, the deadline d(i) of node i is given by:

d(i) = min
j∈succ(i)

(d(j) − w(j)),

where succ(i) denotes the set of successors of node i, and w(j) the weight of

node j. For the task graph depicted in Figure 5.5a, this implies that first node

T5 is assigned a deadline of 10, thereafter nodes T2, T3, and T4 are assigned a

deadline of 10− 2 = 8, and finally node T1 is assigned a deadline of 2.

After assigning the deadlines, the tasks are scheduled onto processors using

list scheduling. Figure 5.6 depicts the pseudo-code of the scheduling algo-

rithm. The algorithm starts by initializing the ready time for each processor

to zero, and by putting all nodes without predecessors in the ready queue.

Then, a loop is entered in which the task with the earliest deadline is taken

from the ready queue and scheduled onto the first available processor (i.e.,

the processor whose last task finishes first). Thereafter, the indegrees of its

successors are decreased by one. Successors that have no predecessors left are

put in the ready queue. The algorithm ends when there are no tasks left in the

ready queue.

Figure 5.5b depicts the Grantt Chart resulting from using the scheduling ap-

proach described above. From this figure, it can be seen that after the schedul-

ing process, there are certain periods in which a processor is idle. This idle

time is often referred to as slack. In the S&S algorithm, the power consump-

tion is decreased by using the slack that remains at the end of the schedule to

92 CHAPTER 5: ENERGY EFF. MULTIP. SCHED. USING DVS

LIST-SCHEDULE-EDF(G ,N)

1 ✄ G is a weighted directed acyclic graph

2 S ← ∅
3 for p← 1 to N

4 do proc ready [p] ← 0
5 for c ∈ START NODES(G)
6 do ENQUEUE(c, ready queue)
7 while ready queue 6= ∅
8 do

9 t← FIND-EARLIEST-DEADLINE(ready queue)
10 DEQUEUE(t , ready queue)
11 p← FIND-FIRST-AVAILABLE-PROCESSOR()
12 SCHEDULE(t, p, S)
13 proc ready [p] ← proc ready [p] +weight [t]
14 for c ∈ successors[t]
15 do

16 indegree[c]← indegree[c]−1
17 if indegree[c] = 0
18 then ENQUEUE(c, ready queue)
19 return S

FIGURE 5.6 Pseudo-code for the list scheduling algorithm.

lower the clock frequency and supply voltage of all processors, as depicted in

Figure 5.7a.

This technique is effective as long as the dynamic power consumption domi-

nates the static power consumption. When static power consumption becomes

more significant, however, this is no longer the case.

5.5.2 Leakage Aware MultiProcessor Scheduling

Due to the static power dissipation, employing the maximum number of pro-

cessors will not always result in the least energy consumption. Our Leakage

Aware MultiProcessor Scheduling (LAMPS) algorithm determines the number

of processors that results in the lowest energy consumption.

Many other approaches try to optimize for inter-task or intra-task DVS concur-

5.5 ENERGY EFFICIENT SCHEDULING ALGORITHMS 93

f

0.67

f

0.67

f

0.67

T
2

T
4

T
3

d
ea

d
li

n
e

Processor 1 t

Processor 2 t

Processor 3 t

T
1

T
5

(a) S&S

f

0.8

f

0.8

T
2

3
T T

4

T
5 d

ea
d

li
n

e

Processor 1 t

Processor 2 t

T
1

(b) LAMPS

FIGURE 5.7 Schedules produced by S&S and LAMPS.

rently with scheduling tasks. In LAMPS, however, the scheduling is performed

by a near-linear time algorithm and a single, constant frequency/voltage pair

is assumed for all employed processors. By using a simple, near-linear time

algorithm for scheduling and voltage selection, LAMPS can easily process

large graphs and can spend additional time for optimizing on the number of

employed processors.

Our LAMPS algorithm works as follows. Let the task graph be represented by

a weighted DAG G = (V,E,w), where V corresponds to the tasks, E to task

dependencies, and w(v) denotes the execution time of task v. The algorithm

starts with determining the minimal number of processors required to finish

the tasks before the deadline. This step is performed as follows. First, lower

bound Nlwb is established on the number of processors needed to complete

the tasks before the deadline D and an upper bound Nupb on the number of

processors that can be employed efficiently:

Nlwb = ⌈
∑

v∈V

w(v)/D⌉, Nupb = |V |.

Thereafter, a binary search [17] is performed on the interval [Nlwb, Nupb] to

determine the minimal number of processors Nmin required to finish the task

graph on time. First, it is determined if N = (Nlwb + Nupb)/2 are sufficient

to finish before the deadline. This is done using the list scheduling algorithm

shown in Figure 5.6. If the makespan of the schedule produced by the list

scheduler is less than or equal to the deadline, the search continues on the

interval [Nlwb, N]. If not, the search continues on the interval [N + 1, Nupb].

After having found the minimal number of processors Nmin required, the num-

ber of processors that requires the least amount of energy is determined. This

94 CHAPTER 5: ENERGY EFF. MULTIP. SCHED. USING DVS

LEAKAGE-AWARE-MULTIPROCESSOR-SCHEDULE(G, deadline)

✄ G is a weighted directed acyclic graph

✄ CPL is the critical path length of G .

1 N ← FIND-MINIMUM-PROCS(Nlwb, Nupb, deadline)
2 Emin ←∞
3 repeat S ← LIST-SCHEDULE-EDF(G,N)
4 f ← makespan(S) · fmax/ deadline

5 E ← CALCULATE-ENERGY-CONSUMPTION(S, f)
6 if E < Emin

7 then Emin ← E
8 Smin ← S
9 N ← N +1

10 until makespan(S) = CPL

11 return Smin

FIGURE 5.8 Pseudo-code for the LAMPS heuristic.

step is performed as follows. First, we determine the total energy consumption

for Nmin processors. This is done by lowering the clock frequency and supply

voltage so that the task graph is completed exactly at the deadline, as in the

S&S algorithm. We note that in this chapter, unless noted differently, the volt-

age and frequency are assumed to be scalable on a continuous range. In other

words, the schedule is stretched so that it finishes exactly on time. The task

graph is also scheduled on Nmin+1, Nmin+2, etc. processors and the energy con-

sumption of the schedule is computed, until the makespan is equal to the CPL.

At this point, increasing the number of processors will always increase the to-

tal energy consumption. The algorithm returns the schedule with the number

of processors that requires the least amount of energy. Figure 5.8 depicts the

pseudo-code for the LAMPS heuristic.

The reason for performing a linear search instead of a binary search in the

second phase of the algorithm is that the energy consumption as a function

of the number of processors can have local minima. Consequently, a binary

search will not always find the optimal solution. An example of this will be

given in Section 5.6.

Figure 5.7b illustrates the schedule generated by LAMPS. Instead of 3 pro-

cessors, the task graph shown in Figure 5.5a is scheduled on only 2 processors

but with a higher frequency. Nevertheless, because the third processor is turned

5.6 EXPERIMENTAL RESULTS 95

off, the schedule produced by LAMPS consumes less energy than the schedule

generated by S&S.

In Section 5.3.2, it was noted that scaling the frequency to below the optimal

frequency will actually increase the energy consumption. However, since the

option to shut down processors temporarily is assumed to be not available, re-

sults with frequencies below the optimum still reduce the energy consumption.

The time complexity of the algorithm depends on the structure of the task

graph and the time it takes to perform list scheduling. Let Tls denote the time

required to perform list scheduling. The time TLAMPS taken by the LAMPS

algorithm is given by:

TLAMPS = log2(Nupb −Nlwb) · Tls + M · Tls,

where M is the number of iterations of the second phase (number of iteration

required until the makespan of the generated schedule no longer decreases). In

practice, for all benchmarks finding the optimal configuration never took more

than six seconds on a 3GHz Pentium 4.

5.6 Experimental Results

In this section, the results of our LAMPS scheduling approach are presented

and compared to the S&S algorithm.

5.6.1 Experimental Setup

In the experiments, we assume a technology where leakage current contributes

to the overall power consumption to a much larger extend than it does today.

Specifically, it is assumed that half of the power consumption at maximum

frequency is due to this leakage current (δ = 0.5, σ = 0.5). Furthermore, we

assume that the threshold voltage is 0.3 times the supply voltage (β1 = 0.3,

β2 = 0.7), which, according to [59], is representative for current technol-

ogy. In the next chapter, we will also consider other ratios between static and

dynamic power. Note that, although we have assumed a relatively high leak-

age current in this processor, according to Figure 5.2, it is still theoretically

possible to reduce energy consumption by voltage/frequency scaling, until the

frequency becomes lower than 29% of the maximum frequency.

The experimental results have been obtained using a scheduling tool based on

the pseudo-codes in Figures 5.6 and 5.8 and the power model described in

96 CHAPTER 5: ENERGY EFF. MULTIP. SCHED. USING DVS

Section 5.3. Table 5.1 lists the benchmarks that have been used, as well as the

number of nodes and edges, the length of the critical path, and the total weight

of all the nodes (total work). The first three benchmarks have been derived

from real applications, while the other three have been randomly generated.

These benchmarks were taken from the Standard Task Graph Set [52]. Since

this set does not provide deadlines, we have used deadlines of 1.5, 2, 4, and

8 times the CPL. We note that other works usually used randomly generated

graphs.

name number of number of critical total

nodes edges path work

fpppp 334 1196 1062 7113

robot 88 130 545 2459

sparse 96 128 122 1920

proto001 273 1688 167 4711

proto003 164 646 556 1599

proto279 1342 16762 735 13302

TABLE 5.1 Six benchmarks from the Standard Task Graph

set [52] and their main characteristics.

5.6.2 Experimental Results

Figure 5.9 depicts the average power consumption of various schedules, nor-

malized to the power consumption of 1 fully active processor at maximum

frequency, as a function of the number of employed processors for the case

that the deadline is 1.5x the length of the critical path. It can be seen that local

minima can exist that are not global minima. This happens, for example, for

the sparse benchmark at 14 processors. Therefore, a full search must be per-

formed on the number of processors, in order to find the optimum for a certain

graph and deadline.

Tables 5.2, 5.3, 5.4, and 5.5 depict the results obtained for deadlines of 1.5,

2, 4, and 8 times the critical path length, respectively. Results are presented

for LAMPS as well as for S&S. For each benchmark and scheduling approach,

the (optimal) number of processors N , the normalized frequency F , and the

normalized total power consumption P are listed.

For the S&S algorithm, since it produces schedules whose makespans are equal

5.6 EXPERIMENTAL RESULTS 97

� � � �� �� �� �� �� �� ��

�

�

�

�

�

��

��

��

��

��

��

�				

���

�	�
��

	
�����

	
�����

	
�����

�����
����	
������
�

�
��
�
�
�
�	
�
�
�

FIGURE 5.9 Average power consumption of various schedules, nor-

malized to a single fully active processor, for different benchmarks with

the deadline at 1.5× the critical path length.

to the CPL, the normalized clock frequency is given by the ratio of the critical

path length to the deadline. Also note that for S&S, the number of processors

is independent of the deadline. This algorithm employs as many processors as

possible to finish the tasks as early as possible in order to maximize the amount

of slack that can be used to lower the clock frequency. LAMPS, on the other

hand, uses fewer processors and a slightly higher clock frequency to balance

the static and dynamic power dissipation.

Figure 5.10 depicts the power reduction achieved by the LAMPS algorithm

compared to S&S. Since the schedules generated by both algorithms finish at

exactly the same time (at the deadline), they can be compared by power dis-

sipation instead of energy consumption. LAMPS achieves significant energy

savings relative to S&S. Furthermore, as expected, the improvement increases

with the deadline. For example, if the deadline is tight (1.5x the critical path

length), the relative power reduction ranges from 1% to 24%. On the other

hand, if the deadline is loose (8x the CPL), the improvement ranges from ap-

proximately 55% to 67%. If the deadline is less strict, fewer processors can

be used to finish the tasks on time. This allows LAMPS to improve upon

S&S which always employs as many processors as can be used to reduce the

98 CHAPTER 5: ENERGY EFF. MULTIP. SCHED. USING DVS

LAMPS S&S

benchmark N F P N F P
fpppp 7 0.76 4.46 9 0.67 4.76

robot 4 0.82 2.90 7 0.67 3.57

sparse 17 0.72 10.24 19 0.67 10.37

proto001 27 0.79 18.41 36 0.67 19.37

proto003 3 0.74 1.88 5 0.67 2.48

proto279 17 0.78 11.53 25 0.67 13.14

TABLE 5.2 Results for deadlines of 1.5× the critical path

length.

LAMPS S&S

benchmark N F P N F P
fpppp 6 0.64 3.19 9 0.50 3.63

robot 3 0.77 2.05 7 0.50 2.75

sparse 14 0.65 7.51 19 0.50 7.84

proto001 22 0.69 13.01 36 0.50 14.68

proto003 2 0.75 1.32 5 0.50 1.93

proto279 15 0.65 8.20 25 0.50 10.04

TABLE 5.3 Results for deadlines of 2× the critical path

length.

makespan of the generated schedule.

It can also be seen from Tables 5.2 to 5.5 and Figure 5.10 that the amount

of improvement also depends on the benchmark. For example, for the sparse

benchmark a power reduction of only 1% is achieved when the deadline is 1.5x

the critical path length, while for proto003 a power saving of 24% is attained.

The reason for this behavior is that LAMPS requires 17 processors to finish

sparse on time, while S&S requires 19, so only 2 or 2/19 = 10.5% of the

processors can be turned off to save power. On the other hand, for proto003,

2 out of 5 or 40% of the processors can be turned off, which results in a more

significant power reduction. The geometric means of the savings by LAMPS

upon S&S are 11%, 17%, 39%, and 61% for deadlines of respectively 1.5, 2,

4, and 8 times the length of the critical path.

5.6 EXPERIMENTAL RESULTS 99

LAMPS S&S

benchmark N F P N F P
fpppp 3 0.58 1.47 9 0.25 2.33

robot 2 0.57 0.98 7 0.25 1.79

sparse 7 0.59 3.48 19 0.25 4.96

proto001 12 0.60 6.19 36 0.25 9.35

proto003 1 0.72 0.63 5 0.25 1.27

proto279 8 0.58 3.97 25 0.25 6.45

TABLE 5.4 Results for deadlines of 4× the critical path

length.

LAMPS S&S

benchmark N F P N F P
fpppp 2 0.42 0.75 9 0.13 1.81

robot 1 0.56 0.48 7 0.13 1.40

sparse 3 0.66 1.71 19 0.13 3.83

proto001 6 0.59 3.04 36 0.13 7.24

proto003 1 0.36 0.33 5 0.13 1.00

proto279 4 0.57 1.96 25 0.13 5.01

TABLE 5.5 Results for deadlines of 8× the critical path

length.

Generally, processors that support DVS can only scale to a fixed number of

predetermined voltage/frequency pairs. In this chapter, however, we have so

far assumed that the frequency and voltage can be scaled to any value between

0 and the maximum. To show the impact of scaling in discrete steps, we have

also performed the experiments with the limitation that the normalized supply

voltage can only be scaled in discrete steps of 5% of the maximum frequency,

similar to [43]. To perform these experiments, the frequency f calculated in

line 4 of the pseudo-code depicted in Figure 5.8 has been rounded up to the

next discrete level. Because S&S uses as many processors as possible and be-

cause the deadline is based on the length of the critical path, the makespan of a

schedule produced by S&S and the employed frequency are solely determined

by the deadline. Therefore, the increase in power consumption when using dis-

crete scaling in S&S is independent of the structure of the benchmark. In this

100 CHAPTER 5: ENERGY EFF. MULTIP. SCHED. USING DVS

��� � � �

��

��

���

���

���

���

	��

	��

���

���

���

���

��

��

���

�

�����

�����

�������

������	

�������

��������������

�
�
�
��
��
�

!
��
�
�

FIGURE 5.10 Power reduction achieved by the LAMPS scheduling

heuristic over S&S.

case, this increase is completely determined by the distance to the next higher

supported frequency and the fraction of time the processors are busy (α). For

deadlines of 1.5, 2, 4, and 8 times the length of the critical path, the increases

in power consumption for S&S are in the ranges 5.4–5.6%, 0–0%, 5.6–5.8%,

and 3.3–3.4% respectively. Because one of the supported normalized frequen-

cies is exactly 0.5, there is no loss when the deadline is set at 2 times the length

of the critical path. With LAMPS on the other hand, the operating frequency

will vary across the different benchmarks. As a result, the increase in power

consumption will be different for different benchmarks.

Figure 5.11 depicts the improvements of LAMPS upon S&S, when scaling the

voltage in discrete steps. Because S&S with a deadline of 2 times the CPL

does not suffer from using discrete frequency/voltage pairs, the improvements

by LAMPS upon S&S for this deadline are always lower for discrete voltages

than for continuous voltages. For the other deadlines, the results depend on

whether S&S or LAMPS suffers more from having to use discrete steps. If

LAMPS has a higher increase in power consumption, the improvements upon

S&S compared to the continuous case will be less. Examples of this are robot

and proto003 for deadlines of 4 times the length of the critical path. When

S&S suffers more from the discretization than LAMPS, on the other hand,

5.7 CONCLUSIONS 101

��� � � �

��

��

���

���

���

���

	��

	��

���

���

���

���

��

��

���

�

�����

�����

�������

������	

�������

��������������

�
�
�
��
��
�

!
��
�
�

FIGURE 5.11 Power reduction achieved by the LAMPS scheduling

heuristic over S&S, when scaling the voltage in discrete steps.

the improvements will be higher than in the continuous case. This happens,

for example, with all the benchmarks when deadlines of 1.5 times the length

of the critical path are used. In general, LAMPS also effectively reduces the

energy consumption if voltage scaling is limited to discrete steps. It must be

noted, however, that these steps should be chosen carefully, in order not to

waste too much power.

5.7 Conclusions

As feature sizes keep decreasing, the contribution of leakage current to the

total energy consumption is expected to increase significantly. In this chapter,

it was shown that when the static power dissipation becomes more significant,

employing the maximum number of processors to maximize the amount of

slack that can be used to lower the supply voltage is no longer optimal from an

energy perspective.

Depending on the amount of leakage current and the amount of parallelism

exhibited by the application, the proposed LAMPS algorithm determines the

number of processors, their clock frequency, and the corresponding supply

102 CHAPTER 5: ENERGY EFF. MULTIP. SCHED. USING DVS

voltage that minimizes the total energy consumption. The experimental results

show that LAMPS reduces the total amount of dissipated power/energy by up

to 24% for tight deadlines and by up to 67% for loose deadlines.

When voltage scaling is limited to discrete steps, the energy consumption of

a schedule produced by LAMPS will be slightly higher. However, since this

is also the case with S&S, the improvements made by LAMPS will be lower

in some cases, while they will be higher in other ones. In general, the im-

provement of LAMPS upon S&S for discrete voltage scaling is close to the

improvement for scaling on a continuous range.

Ultimately, the relative amount of energy dissipated by leakage currents is ex-

pected to become much larger than the amount of energy dissipated through

switching activity. At that point the lowest energy solution will be to perform

as much as possible sequentially on one processor, and to employ parallelism

only if the required performance demands to do so.

We have assumed that all processors operate at the same frequency. By slowing

down some processors more than others, it could be possible to produce a

more balanced schedule that consumes less power than the schedule generated

by LAMPS. Another option to further reduce power consumption is to allow

frequencies to change over time. Both these options, however, will likely make

scheduling more complicated and therefore also more time consuming. The

option to shut processors down temporarily will be investigated in Chapter 6,

which also discusses the possible improvements that can be attained by using

separate frequencies per processor and by allowing these frequencies to change

over time.

6
Energy Efficient Multiprocessor

Scheduling using DVS and DPM

W
hen peak performance is unnecessary, DVS can be used to reduce

the dynamic power consumption of embedded multiprocessors. In

the previous chapter, it was shown that with an increase in static

power consumption, it will be more effective to limit the number of processors

employed (i.e., to turn some of them off), instead of using as many processors

as can effectively be used to reduce the makespan of the schedule. In this

chapter, the previously presented scheduling heuristics are extended with the

option to shut processors down temporarily. Experimental results obtained

using a public benchmark set of task graphs and real parallel applications show

that our approach reduces the total energy consumption by up to 10% for tight

deadlines (1.5x the critical path length) and by up to 51% for loose deadlines

(8x the critical path length) compared to the heuristic that only employs DVS.

Especially with coarse-grain task graphs and tight deadlines, Leakage Aware

MultiProcessor Scheduling with DPM (LAMPS+DPM) saves more than twice

as much energy as LAMPS. We also compare the energy consumed by our

scheduling algorithms to two absolute lower bounds, one for the case where

all processors continuously run at the same frequency, and one for the case

where the processors can run at different frequencies and these frequencies

may change over time. The results show that the energy reduction achieved by

103

104 CHAPTER 6: ENERGY EFF. MULTIP. SCHED. USING DVS AND DPM

our best approach is close to these theoretical limits.

Most of the material in this chapter has been previously published in [21, 23].

6.1 Introduction

As discussed in Chapter 5, the power consumption of high-performance em-

bedded systems is a prime design consideration. In Chapter 5, a heuristic

named LAMPS was presented which balances the amount of slowdown using

DVS against the number of employed processors. In this chapter, we extend

LAMPS as well as S&S with the option to shut processors down temporarily.

The technique to shut down parts of a system temporarily when they are idle

is often referred to as dynamic power management (DPM) [7]. The heuristics

presented in this chapter determine the best trade-off between DVS, DPM, and

finding the optimal number of processors. The goal of the proposed scheduling

heuristics is to minimize the total energy consumption. We refer to the extend

versions of S&S and LAMPS as Schedule and Stretch with DPM (S&S+DPM)

and LAMPS+DPM, respectively.

Furthermore, we formulate two absolute lower bounds that produce schedules

that consume the least amount of energy possible. The first is for the case

where all processors run at the same frequency throughout the entire sched-

ule. The schedules produced by S&S(+DPM) and LAMPS(+DPM) have this

property. The second is for the case where the processors can run at different

frequencies and these frequencies may change over time.

Experimental results are obtained using a public benchmark set of task graphs

with precedence constraints and real parallel applications. The results show

that our best approach (LAMPS+DPM) reduces the total energy consumption

by up to 21% for tight deadlines (1.5x the critical path length) and by up to

52% for loose deadlines (8x the critical path length) compared to S&S. Com-

pared to LAMPS, LAMPS+DPM decreases the total energy consumption by

up to 11% respectively 14%. We also analyze how the results are affected

by the average amount of parallelism, which is defined as the total amount of

work divided by the critical path length. Comparing the results to the theoret-

ical lower bounds indicates that there is little room left for improvement. For

example, for fairly coarse-grain task graphs, LAMPS+DPM attains over 98%

of the possible energy saving, provided the frequency is the same for all active

processors and constant throughout the schedule. Compared to a lower bound

where the frequency may be different for each processor and where these fre-

quencies may change during execution, LAMPS attains on average over 88%

6.2 RELATED WORK 105

of the potential savings.

In order to be able to generalize the conclusions from this chapter to a wider

range of power consumption scenarios, we also conduct experiments with a

power model where the static power consumption is up to 4 times higher and

up to 4 times lower than assumed in the rest of this chapter. Since our best ap-

proach optimizes on both the number of employed processors and the balance

between DVS and DPM, it also attains good savings when the amount of static

power consumption is either significantly higher or lower.

This chapter is organized as follows. Section 6.2 contains an overview of re-

lated work. The power model and the techniques used to reduce energy con-

sumption are explained in detail in Section 6.3. In Section 6.4, the S&S and

LAMPS heuristics are extended with the option to shut down processors tem-

porarily. Experimental results for randomly generated as well as task graphs

derived from real applications are provided in Section 6.5. Finally, in Sec-

tion 6.6, conclusions are drawn and some directions for future research are

given.

6.2 Related Work

Related works that do not employ DPM were already covered in Section 5.2

of the previous chapter.

Jejurikar et al. [43] proposed to reduce the frequency and voltage to the crit-

ical speed, and to employ DPM for the remainder of time. However, as was

already mentioned in Section 5.2 these authors used a single processor and

assumed independent periodic tasks. The same real-time model was assumed

in [66], but DVS was not considered. Irani et al. [42] also used this model

but assumed a continuous voltage range and presented a theoretical analysis of

systems which can use DVS and DPM. Specifically, they presented an offline

algorithm with a competitive ratio of 3 and an online algorithm with a constant

competitive ratio.

Swaminathan et al. [88] proposed an offline I/O device scheduling algorithm to

optimize energy savings using DPM. They proposed an NP-complete optimal

solver, as well as a near-optimal polynomial time heuristic. Kim et al. [58]

proposed a DPM technique to reduce energy in cluster interconnects.

Our work differs in the following ways. As noted in Section 5.2, we focus

on multiprocessor scheduling and assume that applications are represented as

weighted DAGs. Furthermore, in this chapter we use a detailed power model

106 CHAPTER 6: ENERGY EFF. MULTIP. SCHED. USING DVS AND DPM

and limit the voltage scaling to discrete steps. Besides exploiting DVS and

finding the optimal number of processors, this chapter also considers shutting

processor down. Finally, the results presented in this chapter are derived from

experiments with thousands of graphs from a publicly available set of task

graphs and a task graph derived from a real application (MPEG-1).

6.3 Preliminaries

In this section we first describe the power model, which is different from the

one used in the previous chapter for reasons explained below. Then, we explain

the effect of two primary ways to reduce power dissipation: dynamic voltage

scaling and processor shutdown.

Throughout this chapter, the system and application models are the same as ex-

plained in Section 5.4 of the previous chapter. However, through this chapter

we assume that the voltage can only be scaled to discrete level. Furthermore,

this chapter employs a more detailed power model than was used in Chapter 5.

This is required, because this chapter assumes that the processors of a mul-

tiprocessor system can be independently turned off or put into a deep sleep

mode for short amounts of time. As turning a processor off and on again in-

curs a certain penalty in terms of delay and energy, this cannot be neglected

in the power model. Therefore, the power model described in Section 5.3 is

no longer sufficient for the techniques described in this chapter. Due to the

new power model, the discrete voltage scaling, and the availability of proces-

sor shutdown, the effect of using voltage scaling is slightly different from the

previous chapter.

6.3.1 Power Model

For this chapter, we use the power model described in [43], which in turn is

based on the model and parameters given in [70], where it has been verified

with SPICE simulations. In this model, the power consumption of a processor

is given by:

P = PAC + PDC + Pon, (6.1)

where PAC is the dynamic power consumption (due to switching activity), PDC

is the static power consumption (due to leakage current), and Pon is the intrinsic

power consumption needed to keep the processor on. Like [43], we assume Pon

6.3 PRELIMINARIES 107

K1 = 0.063 K6 = 5.26·10−12 Vth1 = 0.244

K2 = 0.153 K7 = -0.144 Ij = 4.8·10−10

K3 = 5.38·10−7 Vdd0 = 1.0 Ceff = 0.43·10−9

K4 = 1.83 Vbs = -0.7 Ld = 37.0

K5 = 4.19 α = 1.5 Lg = 4.0·106

TABLE 6.1 Constants for 70nm technology ([43, 70]).

is 0.1W . The dynamic power is given by:

PAC = a · Ceff · V
2

dd · f,

where a is the activity factor, Ceff is the effective switching capacitance, Vdd is

the supply voltage, and f is the operating frequency. The static power is given

by:

PDC = Vdd · Isubn + |Vbs| · Ij,

where Isubn is the sub-threshold leakage current, Vbs is the voltage applied

between body and source, and Ij is the reverse bias junction current. The

sub-threshold leakage current is given by:

Isubn = K3 · e
K4·Vdd · eK5·Vbs ,

where K3, K4, and K5 are constants. The relation between operating fre-

quency, supply voltage, and threshold voltage is:

f = (Vdd − Vth)
α/Ld ·K6,

where Ld represents the logic depth and K6 and α are constants for a certain

technology. Finally, the threshold voltage is given by:

Vth = Vth1 −K1 · Vdd −K2 · Vbs,

where Vth1, K1, and K2 are constants. We use the same 70nm technology

constants as [43, 70]. These constants are listed in Table 6.1. The maximum

frequency of this processor is 3.1GHz, which requires a supply voltage of 1V.

Figures 6.1 and 6.2 depict the resulting power consumption and energy per

cycle as a function of the normalized operating frequency.

108 CHAPTER 6: ENERGY EFF. MULTIP. SCHED. USING DVS AND DPM

� ���� ��� ���� �

�

����

���

����

�

����

���

����

�

����

���

��	

�
	

���

��

���������
��������	�

�
�
�
�
��
��

�

FIGURE 6.1 Power consumption as a function of the normalized

frequency

� ���� ��� ���� �

�

���

���

���

���

���

��	

���

��

���

�

���

���

��

���

���

����

�������������������

�
�
�
��

�
��

�
��
�
�
�
��

�
!
"#

FIGURE 6.2 Energy consumption as a function of the normalized

frequency

6.3 PRELIMINARIES 109

6.3.2 Effect of DVS for the Power Model

DVS mainly reduces the dynamic power consumption, which increases quadrat-

ically with the supply voltage. The static component, although having a expo-

nential relation with supply voltage, does not decrease as much with decreasing

supply voltage as the dynamic component, as is depicted in Figure 6.1.

As was already explained in Chapter 5, energy equals power times time, the

energy consumption will therefore increase if the frequency is decreased below

a certain point. Figure 6.2 depicts the energy per cycle as a function of the nor-

malized frequency. It can be seen that the optimal or critical frequency (fcrit)

is 0.38 times the maximum. Because of the discrete voltage levels, however,

the critical frequency is reached at a supply voltage of 0.7V, corresponding to

a normalized frequency of 0.41. Scaling below this frequency will reduce the

power consumption but not the total energy consumption, provided that the

processors can be shut down for the remaining time. When remaining slack is

insufficient to employ DPM, scaling below fcrit will, in fact, reduce the total

energy consumption.

6.3.3 Processor Shutdown / DPM

The second technique to reduce the energy consumption of a multiprocessor

system is to put idle processors temporarily in a deep sleep or shutdown mode.

The advantage of this technique over DVS is that it reduces all terms of the

total power consumption, not only the dynamic part. When shutting down a

processor, however, the contents of, e.g., caches and branch predictors are lost.

When a processor is switched back on, they have to be warmed up again, which

causes additional delay and consumes extra energy. We use the estimates of Je-

jurikar et al. [43], who estimated that a processor in sleep state consumes about

50µW of power and that shutting down and resuming a processor incurs an en-

ergy overhead of 483µJ . This overhead includes the supply voltage switching

as well as the energy spent to warm up caches and predictors. The additional

delay incurred by temporarily powering down can be hidden by waking up

the processor a short time before the end of the idle period. This is possible

because the task graphs are static and the schedules are determined a priori.

The technique where idle parts of a system are temporarily shut down is most

often referred to as DPM. Note, however, that when DPM is used within a

processor, this implies that idle parts of the processor are turned off. In this

work, we assume that processors are turned off completely. In other words, we

employ DPM on a multiprocessor system instead of on separate processors.

110 CHAPTER 6: ENERGY EFF. MULTIP. SCHED. USING DVS AND DPM

� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� �

�

���

���

���

��

����

����

����

����

�
��

����

�������������������

�
�
�
��
�
��
��
�
�
�
�
�
�

FIGURE 6.3 Minimum number of idle cycles required for processor

shutdown to be beneficial, as a function of the normalized processor

frequency.

Because of the energy overhead of shutting down and waking up a processor,

processor shutdown is only beneficial if the processor is idle for a sufficiently

long period. Figure 6.3 depicts this minimum number of idle cycles as a func-

tion of the normalized frequency. It shows that, in order to save energy con-

sumption by putting a processor temporarily in shutdown mode, a significant

number of idle cycles is required. When clocked at half the maximum fre-

quency, for example, an idle period of at least 1.7 million cycles is required.

Since in most cases applications with rather fine-grain tasks will have relatively

short idle periods (unless the task graph is very unbalanced), such applications

will in general not benefit from shutting down processors temporarily between

the execution of two tasks. However, it might still be energy efficient to shut

down at the end of the schedule, provided the deadline is relatively long.

6.4 Multiprocessor Scheduling with DVS and DPM

In this section we extend the S&S and LAMPS scheduling approaches with

the option to shut down processors temporarily. In the schedules produced by

6.4 MULTIPROCESSOR SCHEDULING WITH DVS AND DPM 111

these approaches, all processors run at the same operating frequency and this

frequency is constant throughout the whole schedule. As described in Chap-

ter 5, both S&S and LAMPS employ LS-EDF to perform the actual scheduling.

EDF does not necessarily produce the best schedule, however. To investigate

if other scheduling algorithms could result in additional energy gains, we also

present an ideal model in which idle processors are assumed to consume no

energy. Furthermore, we also show the improvements that could be attained if

the frequency could vary among processors and over time.

6.4.1 S&S+DPM and LAMPS+DPM

We extend S&S with the option to shut down processors temporarily. We

refer to this heuristic as S&S+DPM. In S&S+DPM, the task graph is again

first scheduled using the EDF policy. Thereafter, the optimal balance between

processor slowdown (through DVS) and shutdown is determined by gradually

scaling the operating frequency from the maximum frequency to the minimum

frequency required to meet the deadline.

f

0.67

f

0.67

f

0.67

T
2

T
4

T
3

d
ea

d
li

n
e

Processor 1 t

Processor 2 t

Processor 3 t

T
1

T
5

(a) Schedule produced

by S&S

f

0.8

f

0.8

f

0.8

T
2

T
3

T
4

Processor 1 t

Processor 2 t

Processor 3

d
ea

d
li

n
e

T
1

T
5

(b) Schedule produced

by S&S+DPM

FIGURE 6.4 Illustration of S&S and S&S+DPM.

Figure 6.4 illustrates the different schedules produced by S&S and S&S+DPM.

In both cases the example task graph from Chapter 5 (Figure 5.5a) is first

scheduled using LS-EDF to minimize the makespan of the schedule, or in other

words, maximize the amount of slack before the deadline. Thereafter, the slack

that remains at the end of the schedule is used to lower the clock frequency and

supply voltage of all processors. In the schedule depicted in Figure 6.4b, only

112 CHAPTER 6: ENERGY EFF. MULTIP. SCHED. USING DVS AND DPM

SCHEDULE-AND-STRETCH-WITH-DPM(G, deadline)

✄ G is a weighted directed acyclic graph.

✄ CPL is the critical path length of G .

1 N ← FIND-MINIMUM-PROCS(Nlwb, Nupb,CPL)
2 S ← LIST-SCHEDULE-EDF(G,N)
3 Emin ←∞
4 fmin ← ⌈CPL ·fmax/ deadline⌉
5 for f ← fmin to fmax

6 do S ′ ← PROCESS-SHUTDOWN-PERIODS(S, f)
7 E ← CALCULATE-ENERGY-CONSUMPTION(S′, f)
8 if E < Emin

9 then Emin = E
10 Smin = S′

11 return Smin

FIGURE 6.5 Pseudo-code for the SS+DPM heuristic.

part of the slack at the end of the schedule is exploited to lower the frequency.

The remaining slack is used to shutdown processors temporarily. We note that

this example is merely meant for illustration. In reality, for the given task graph

it is not advantageous to employ processor shutdown.

Determining the balance between slowdown and shutdown is performed by

gradually scaling the operating frequency from the maximum frequency to the

minimum frequency required to meet the deadline using discrete voltage level

steps of 0.05V. For each frequency, the remaining slack both inside as well

as at the end of the schedule is used to shut down processors, provided the

idle period is longer than the minimum idle period to result in energy savings

(cf. Figure 6.3). In other words, the slack is only used to shut down a processor

if it is large enough to make up for the additional energy consumption due to

loss of state.

Figure 6.5 depicts the pseudo-code of the S&S+DPM heuristic. The heuris-

tic starts on line 1 with a binary search for the minimum number of proces-

sors, as explained in Section 5.5.2. In this case, however, we do not search

for the minimum number of processors required to meet the deadline, but in-

stead search for the minimum number of processors that results in a schedule

with a makespan equal to the CPL. After setting S to schedule for N proces-

sors and initializing Emin to infinity, the minimum required frequency fmin

6.4 MULTIPROCESSOR SCHEDULING WITH DVS AND DPM 113

LEAKAGE-AWARE-MP-SCHEDULE-WITH-DPM(G, deadline)

✄ G is a weighted directed acyclic graph

✄ CPL is the critical path length of G

1 N ← FIND-MINIMUM-PROCS(Nlwb, Nupb, deadline)
2 Emin ←∞
3 repeat S ← LIST-SCHEDULE-EDF(G,N)
4 fmin ← ⌈makespan(S) · fmax/ deadline⌉
5 for f ← fmin to fmax

6 do S ′ ← PROCESS-SHUTDOWN-PERIODS(S, f)
7 E ← CALCULATE-ENERGY-CONSUMPTION(S′, f)
8 if E < Emin

9 then Emin ← E
10 Smin ← S′

11 N ← N +1
12 until makespan(S) = CPL

13 return Smin

FIGURE 6.6 Pseudo-code for the LAMPS+DPM heuristic.

is determined in line 4. Since in this chapter we assume discrete voltage lev-

els and frequencies, this minimum frequency is rounded up to the next sup-

ported frequency. Thereafter it enters a loop over all frequencies from fmin

to fmax. Then, for each frequency the sufficiently long idle periods are used

to shutdown processors, after which the energy consumption is calculated. In

lines 8–10 the minimal energy consumption and the corresponding schedule

are recorded. It ends by returning the schedule with the minimum energy con-

sumption.

We also enhance the LAMPS heuristic with the option to shut down processors

and refer to the resulting heuristic as LAMPS+DPM. As in LAMPS, the num-

ber of processors that minimizes the total energy consumption is determined

by iterating over the number of employed processors, and by calculating the

energy consumption for every found schedule. For each number of processors,

the balance between DVS and processor shutdown is determined by scaling

the frequency from the maximum to the minimum frequency required to meet

the deadline. For each frequency, we then use the available slack to shut down

processors, similar to the S&S+DPM heuristic.

The pseudo-code for the LAMPS+DPM heuristic is depicted in Figure 6.6.

114 CHAPTER 6: ENERGY EFF. MULTIP. SCHED. USING DVS AND DPM

In line 1 the heuristics starts by determining the minimum number of required

processors to finish the task graph before the deadline. As in S&S, S&S+DPM,

and LAMPS this is done with a binary search. Then, the graph is scheduled

and evaluated repeatedly. Starting with the minimum number, this is done for

an increasing number of processors, until the makespan of the schedule equals

the CPL. The schedule is evaluated as follows. In line 4 the minimum fre-

quency is calculated, which is rounded up to the next available frequency. As

with S&S+DPM, the inner loop (lines 5–10) iterates over all frequencies that

are sufficient for the schedule to meet the deadline and calculates for each fre-

quency the resulting energy consumption. It finishes by returning the schedule

that results in the lowest energy consumption.

If Tls denotes the time required to perform list scheduling, the time complexity

of the LAMPS+DPM heuristic is given by:

TLAMPS+DPM = log2(Nupb −Nlwb) · Tls + M · Tls · F,

where M is the number of different processor counts (number of iterations of

the repeat loop) and F the number of different voltages. For all benchmarks

finding the optimal configuration never took more than 20 seconds on a 3GHz

Pentium 4. This is mainly due to the fact that the employed scheduling algo-

rithm runs in near-linear time.

6.4.2 LIMIT-SF & LIMIT-MF

In the approaches described above, the schedule is always produced by EDF. It

is known, however, that EDF is not always optimal for multiprocessor schedul-

ing. Furthermore, in our approaches the frequency is always constant through-

out the entire schedule. To investigate if additional energy can be saved by

employing a different scheduling algorithm or by allowing different frequen-

cies, we also define two lower bounds, one for the case with a single fre-

quency (LIMIT-SF) and one for the case where multiple frequencies are al-

lowed (LIMIT-MF).

LIMIT-SF has the following characteristics. First, idle processors are assumed

to consume no energy at all. In other words, only active cycles are consid-

ered when calculating the energy consumption and, consequently, there is no

benefit from or penalty for shutting down processors. Second, the number of

processors is equal to the number of tasks. Since idle processors consume no

energy, using fewer processors will not reduce the energy. Third, the frequency

is scaled down to the optimal frequency if possible to meet the deadline, or

6.5 EXPERIMENTAL RESULTS 115

otherwise as much as possible. No schedule can consume less energy than this

ideal model, provided that the frequency is the same for all active processors

and is constant throughout the schedule.

The difference between LIMIT-MF and LIMIT-SF is that in LIMIT-MF all

tasks are scheduled at the critical frequency. Because of this and since idle

processors are assumed to consume no energy, LIMIT-MF is an absolute lower

bound, even for the case where processors can run at different speeds and

where the frequency may change over time. We note, however, that it may

happen that the schedule produced by LIMIT-MF does not meet the deadline.

Since both LIMIT-SF and LIMIT-MF do not depend on any particular schedul-

ing algorithm, this implies that these results cannot be improved by employing

a different scheduling algorithm than EDF.

6.5 Experimental Results

In this section, we present and compare the results of the different schedul-

ing approaches. We use the same power model as used by [70] and [43], as

explained in Section 6.3. We again emphasize that a processor in sleep state

consumes 50µW and that shutting down and waking up a processor dissipates

483µJ of energy.

6.5.1 Experimental Setup

For the experiments we use task graphs from the Standard Task Graph Set [52]

as in Chapter 5, as well as a task graph for MPEG-1 encoding presented by

Zhu et al. [103]. The MPEG-1 encoding task graph consists of an encoding

sequence of 15 I, B, and P frames, and is depicted in Figure 6.7. The execution

times of these tasks are assumed to be 36.7M, 17.8M, and 73.4M cycles for

I, B, and P frames respectively. We have used the maximum execution times

for the Tennis sequence as presented in [103], scaled to match the maximum

clock frequency of 3.1GHz. The deadline was set at 0.5 seconds for a group of

pictures (GOP) of 15 frames, to match a real-time encoding requirement of 30

frames per second.

Like in Chapter 5, we use the 3 graphs from the Standard Task Graph Set

which were generated from actual applications: fpppp, robot, and sparse. This

set also contains 2700 randomly generated graphs, grouped by the number of

nodes. Each group in this set consists of 180 different graphs. Whereas in

116 CHAPTER 6: ENERGY EFF. MULTIP. SCHED. USING DVS AND DPM

I0 P3

B1 B2

P6

B4 B5

P9

B7 B8

P12

B10 B11 B13 B14

FIGURE 6.7 Dependence graph for processing 15 MPEG-1 frames.

name number of number of critical path total work

nodes edges

fpppp 334 1196 1062 7113

robot 88 130 545 2459

sparse 96 128 122 1920

50 50 66–926 24–447 204–644

500 500 698–24497 67–1941 2563–5530

5000 5000 7132–2491411 62–17386 27009–54010

TABLE 6.2 Employed benchmarks from the Standard Task Graph set [52]

and their main characteristics.

Chapter 5 three randomly generated graphs were used, the experiments for

this chapter were performed for all graphs in this collection. We only present

the results for a limited number of groups in this work, since the results for

graphs of other sizes are comparable. For both the real application graphs and

the groups of random graphs, the number of nodes and edges, the critical path

length, and the sum of all node weights (total work) are listed in Table 6.2.

As in Chapter 5, since the Standard Task Graph Set does not provide dead-

lines, we use deadlines of 1.5, 2, 4, and 8 times the CPL when running at the

maximum frequency of 3.1GHz. It also does not define the unit of the task

weights. Instead, the weights are given as integers in the range from 1 to 300.

Therefore, two different scenarios are considered. In the first scenario, corre-

sponding to rather coarse-grain tasks, a weight of 1 in a task graph implies an

execution time of 3.1 · 106 cycles, which is 1 millisecond when running at the

maximum frequency of 3.1GHz. In the second scenario, corresponding to rel-

atively fine-grain tasks, the same weight implies an execution time of 3.1 · 104

cycles, which at maximum frequency takes 10 microseconds.

6.5 EXPERIMENTAL RESULTS 117

6.5.2 Results for the Standard Task Graph Set

Figures 6.8 and 6.9 depict the relative energy consumption for coarse-grain

and fine-grain tasks, respectively. For each scenario, we show the energy con-

sumption for deadlines of 1.5, 2, 4, and 8 times the CPL. Each figure shows

the results of the four different approaches explained in Section 6.4, as well

as the theoretical limits. Throughout this section, S&S is used as the baseline

against which we compare the other heuristics.

First, we compare the energy consumption of the schedules produced by the

LAMPS heuristic to the energy consumption of the schedules generated by

S&S. Although a similar comparison was already made in Chapter 5, it is re-

peated here because we use a different power model and a partially different set

of benchmarks, and because in this chapter we limit voltage scaling to discrete

levels. Figures 6.8 and 6.9 show that LAMPS improves upon S&S mainly for

less strict deadlines. This can be expected because for tight deadlines (1.5x

the CPL), LAMPS requires the same or nearly the same number of processors

as S&S to meet the deadline, and therefore consumes the same or nearly the

same amount of energy as S&S. In other words, if the deadline is tight, there

is less opportunity to turn off processors. For loose deadlines (8x the CPL), on

the other hand, LAMPS consumes significantly less energy than S&S, simply

because it can employ fewer processors. In this case LAMPS reduces the total

energy consumption by 43% on average compared to S&S with a maximum

of 48%. For fine-grain tasks, depicted in Figure 6.9, the relative differences

between S&S and LAMPS are the same as with coarse-grain tasks, since both

heuristics do not shut down processors. The differences between these results

and the results from Chapter 5 are mostly due to the different power model.

We now compare S&S+DPM to S&S. Because S&S employs a large number

of processors, it consumes a significant amount of static power. Therefore,

S&S+DPM improves upon S&S significantly, by shutting down idle proces-

sors temporarily. The gains, in this case, are considerably larger for coarse-

grain tasks (23% on average for a deadline of 2× the CPL) than for fine-grain

tasks (5% on average for a deadline of 2× the CPL), because in the latter case

the slack is often not large enough to make shutdown beneficial.

S&S+DPM also improves upon LAMPS for coarse-grain tasks. For fine-grain

tasks, however, LAMPS is usually more energy efficient. Generally, the aver-

age length of idle periods in a graph grows with increased granularity. When

these idle periods are not long enough, DPM cannot be used effectively. In

this case it is beneficial to limit the number of employed processors. When

the idle periods are sufficient to make DPM beneficial, as is the case with the

118 CHAPTER 6: ENERGY EFF. MULTIP. SCHED. USING DVS AND DPM

����� ������� ��������� �	�	
��� �	�	
���

�
�

�
�
�

�
�
�
�

��
�
�
�

��
�
�
�

	
�

�	
�

��

��

���

���

���

���

���

���

���

���

���

��
�

��
�
�
��
�
�
��
�

(a) deadline = 1.5× CPL

�
�

�
�
�

�
�
�
�

��
�
�
�

��
�
�
�

	
�

�	
�

��

��

���

���

���

���

���

���

���

���

���

��
�

��
�
�
��
�
�
��
�

(b) deadline = 2× CPL
�
�

�
�
�

�
�
�
�

��
�
�
�

��
�
�
�

	
�

�	
�

��

��

���

���

���

���

���

���

���

���

���

��
�

��
�
�
��
�
�
��
�

(c) deadline = 4× CPL

�
�

�
�
�

�
�
�
�

��
�
�
�

��
�
�
�

	
�

�	
�

��

��

���

���

���

���

���

���

���

���

���

��
�

��
�
�
��
�
�
��
�

(d) deadline = 8× CPL

FIGURE 6.8 Energy consumption relative to S&S for coarse-grain tasks.

6.5 EXPERIMENTAL RESULTS 119

����� ������� ��������� �	�	
��� �	�	
���

�
�

�
�
�

�
�
�
�

��
�
�
�

��
�
�
�

	
�

�	
�

��

��

���

���

���

���

���

���

���

���

���

��
�

��
�
�
��
�
�
��
�

(a) deadline = 1.5× CPL

�
�

�
�
�

�
�
�
�

��
�
�
�

��
�
�
�

	
�

�	
�

��

��

���

���

���

���

���

���

���

���

���

��
�

��
�
�
��
�
�
��
�

(b) deadline = 2× CPL
�
�

�
�
�

�
�
�
�

��
�
�
�

��
�
�
�

	
�

�	
�

��

��

���

���

���

���

���

���

���

���

���

��
�

��
�
�
��
�
�
��
�

(c) deadline = 4× CPL

�
�

�
�
�

�
�
�
�

��
�
�
�

��
�
�
�

	
�

�	
�

��

��

���

���

���

���

���

���

���

���

���

��
�

��
�
�
��
�
�
��
�

(d) deadline = 8× CPL

FIGURE 6.9 Energy consumption relative to S&S for fine-grain tasks.

120 CHAPTER 6: ENERGY EFF. MULTIP. SCHED. USING DVS AND DPM

coarse-grain task graphs in Figure 6.8, the DPM-enabled approach is more ef-

ficient than the approach that only uses DVS but employs the optimal number

of processors.

LAMPS+DPM improves upon LAMPS mostly for coarse-grain tasks. Again,

the main reason for this is that for fine-grain tasks, the slack is often not large

enough to make shutting down worthwhile. With coarse-grain tasks, however,

a significant amount of energy can be saved by shutting processors down tem-

porarily. The improvement of LAMPS+DPM over LAMPS is typically less

than the improvement of S&S+DPM over S&S. This is because in LAMPS

the static dissipation is already reduced by using a smaller number of proces-

sors compared to S&S. For coarse-grain tasks, the maximum improvements by

LAMPS+DPM upon LAMPS are 11% and 14%, for deadlines of 1.5× and 8×
the CPL respectively.

For coarse-grain tasks, the total improvement by LAMPS+DPM upon S&S

is 28% on average, with a maximum of 21% for deadlines of 1.5× the CPL

and a maximum of 52% for deadlines of 8× the CPL. For fine-grain tasks,

LAMPS+DPM improves upon S&S by 23% on average, with a maximum of

10% for deadlines of 1.5× the CPL and a maximum of 50% for deadlines of

8× the CPL.

LIMIT-SF in Figures 6.8 and 6.9 gives an upper limit on the energy savings

using our current single-frequency model. Using LIMIT-SF as the maximum

attainable reduction, it shows that LAMPS+DPM attains more than 91% of

the possible energy reduction with coarse-grain tasks, for all combinations of

benchmarks and deadlines. For fine-grain tasks and strict deadlines (1.5× the

CPL), LAMPS+DPM achieves more than 50% of the potential savings on 54%

of the benchmarks. In this case, the idle periods are not long enough to apply

DPM, while LIMIT-SF assumes that no energy is consumed during these peri-

ods. In other words, LIMIT-SF may be far from the actual lower bound. With

less strict deadlines (2× the CPL), LAMPS+DPM attains more than 53% of

the possible savings on all benchmarks.

In Figures 6.8 and 6.9, LIMIT-MF is an indication for the possible improve-

ments that could be attained by allowing the processors to run at a different

frequency, and by allowing these frequencies to change over time. The results

indicate that there is hardly any room for improvements when the deadline is

relatively loose. In fact, when the deadline is 4× the CPL or larger, the en-

ergy consumed by LIMIT-MF is equal to the energy consumed by LIMIT-SF.

For stricter deadlines, some savings may be attained, but mostly for fine-grain

tasks. In the case of fine-grain tasks with strict deadlines (1.5× the CPL),

6.5 EXPERIMENTAL RESULTS 121

LAMPS+DPM attains on average only 24% of the savings attained by LIMIT-

MF, because the periods of inactivity are often too small to make shutting

down worthwhile. In this case, allowing varying frequencies might result in

some additional savings. However, when the deadline is less strict and/or the

task graph is fairly coarse-grained, shutting down processors becomes worth-

while. For example, using coarse-grain tasks with a deadline of 4× the CPL,

the LAMPS+DPM attains for each benchmark at least 98% of the energy re-

duction attained by LIMIT-MF. In this case, scheduling tasks at different fre-

quencies will not provide a significant improvement. It should be noted that

LIMIT-MF is not aware of any deadline. The actual lower bound may therefore

be much larger, especially for strict deadlines.

To further explain why LAMPS and LAMPS+DPM provide significant energy

savings for certain task graphs, Figure 6.10 depicts the total energy divided by

the total work as a function of the average amount of parallelism. Figure 6.10a

depicts these results for coarse-grain tasks, while Figure 6.10b shows the re-

sults for fine-grain tasks. In both cases, a deadline of 2× the CPL is used. The

total energy has been divided by the total work because there is almost a linear

relationship between them. The average amount of parallelism is defined as

the total work divided by the CPL. A linked list, for example, has an average

amount of parallelism of 1. Each dot represents one task graph, and both fig-

ures depict the results for randomly generated graphs with 1000, 2000, 2500,

and 3000 nodes. In Figure 6.10a, the results for S&S+DPM are barely visible

since they are almost identical to the results produced by LAMPS+DPM and

are hidden below those.

From the figures it can be seen that the energy consumption per unit of work

for S&S increases significantly when the average amount of parallelism be-

comes small. The same is visible for S&S+DPM with fine-grain tasks. This

shows that especially when the average amount of parallelism is small, the

energy consumption will increase when the option to shut down processors is

not available or cannot be used effectively. The reason for this is that S&S

will try to use as many processors as possible, but when the parallelism is low,

they will be idle but continue to consume energy. For fine-grain tasks, the idle

periods are often not long enough to save energy by shutting processors down

temporarily, which is why S&S+DPM with fine-grain tasks consumes signif-

icantly more energy than LAMPS and LAMPS+DPM. For both LAMPS and

LAMPS+DPM, a small amount of parallelism has no significant effect on the

energy consumption per unit of work, as both approaches can decide to use

fewer processors.

122 CHAPTER 6: ENERGY EFF. MULTIP. SCHED. USING DVS AND DPM

� � �
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

����	�

��
�	�

����	�

����	�

����	�

����	�

��
�	�

����	�

����	�

����	�

����	�

�� ����� ������ ��������� �����	��

�����������

�
�
�
�
!
"#
"$
%
$�
�"
&
%
�'

(a) coarse-grain
� � �
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

����	�

��
�	�

����	�

����	�

����	�

����	�

��
�	�

����	�

����	�

����	�

����	�

���������

�
�
�
��
�
��
��
�
�
��
�
�
��

(b) fine-grain

FIGURE 6.10 Energy/total work as a function of the average amount of

parallelism for coarse- and fine-grain tasks. Each dot represents one task

graph.

6.5 EXPERIMENTAL RESULTS 123

Benchmark Consumed energy [J] Number of processors

S&S 18.116 7

LAMPS 13.290 3

S&S+DPM 10.949 7

LAMPS+DPM 10.947 6

LIMIT-SF 10.940 N/A

LIMIT-MF 10.940 N/A

TABLE 6.3 Energy consumption relative to S&S for the MPEG-1

benchmark using various approaches.

When looking closely it can be seen that some dots are clustered to form al-

most a line. These clustered results, especially visible when parallelism is

low, are schedules that employ the same number of processors. For solutions

with the same number of processors, the energy consumption decreases as the

average parallelism more closely approaches the number of employed proces-

sors. Again, this effect is most clearly visible for S&S and S&S+DPM, which

employ as many processors as can effectively be used to exploit parallelism.

6.5.3 Results for MPEG-1

Figure 6.7 depicts the task graph for the MPEG-1 benchmark. The results

from experiments with this benchmark are presented in Table 6.3. Similar

to the previous experiments, these numbers were obtained by scheduling the

task graph using the heuristics described in Section 6.4 and by measuring the

energy consumption using the models described in Section 6.3.

When S&S is used to schedule this graph, it employs as many processors as

can be used to reduce the makespan of the graph, which in this case is 7 proces-

sors. LAMPS, on the other hand, determines that using 3 processors is more

efficient, and is hence able to reduce the energy consumption by about 27%

compared to S&S. S&S+DPM also uses the maximum number of processors,

but being able to shut processors down temporarily, it reduces the energy con-

sumption by 40% compared to S&S. LAMPS+DPM reduces the energy con-

sumption by nearly the same amount as S&S+DPM, albeit using one processor

less. This shows that the periods of slack in the schedule are long enough to

offset the cost of using one additional processor. Furthermore, the results for

S&S+DPM and LAMPS+DPM are extremely close to the lower limits LIMIT-

124 CHAPTER 6: ENERGY EFF. MULTIP. SCHED. USING DVS AND DPM

SF and LIMIT-MF. From this we conclude that it will not be possible to further

reduce the energy consumption by using a different scheduling algorithm or by

allowing processors to run at different and/or changing frequencies.

6.5.4 Results for Different Levels of Static Power

In the previous experiments we have user a power model which assumes that, at

maximum frequency, the dynamic component is approximately twice as large

as the static one. However, several researchers [8, 25] predict that this static

component will increase dramatically, eventually surpassing the dynamic com-

ponent. On the other hand, circuit-level techniques like adaptive body biasing

(ABB) [70] might be used to reduce leakage current, and hence static power

consumption.

In this section, results are presented where the static component of the power

consumption is several times higher or lower. This is done by modifying

the power model to include a scaling factor for the static component. Equa-

tion (6.1) is thus rewritten to:

P = PAC + δ · PDC + Pon,

where δ denotes static power scaling factor, i.e. the amount of static power

relative to the baseline model. Note that this scaling factor is simply meant to

translate the power model to a situation where the static power consumption

is supposed to be δ times higher, and has nothing to do with the scaling of

frequencies and voltages.

Figure 6.11 depicts the dynamic energy consumption and the resulting static

energy consumption for the baseline model as well as for situations with a

static component that is 2 or 4 times higher or 2 or 4 times lower. The total

energy per cycle for each of these situations is depicted in Figure 6.12. When

the static component is 2 times higher than assumed before (Edc ×2), the pro-

cessor already dissipates more power statically than dynamically, even when

clocked at the highest frequency. When the static component is assumed to be

twice as low (Edc /2), the static component is smaller than the dynamic one

for relative frequencies as low as 25%. In both these cases, the critical fre-

quency (i.e. the frequency corresponding to the lowest energy per cycle) stays

close the critical frequency in the baseline model. In fact, because we employ

a limited number of discrete frequency/voltage pairs, the rounded critical fre-

quency is identical for baseline model and these two deviates. When the static

component is scaled up or down by a factor of 4, on the other hand, the critical

frequency does change.

6.5 EXPERIMENTAL RESULTS 125

� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� �

�

���

���

���

��

�

���

������

������

��

������

������

���

������������������

�
�
�
��
�
��
�
�

�
!
"
��
�
�
�#
$
%&

FIGURE 6.11 Energy consumption as a function of the relative frequency

for different levels of static energy consumption.

� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� �

�

���

�

���

�

���

�

������������

������������

�������������

������������

������������

������������ ���!

�
�
�
��
!
��
�
�
"

#
$
�
�
�
�%
&
'(

FIGURE 6.12 Total energy consumption as a function of the relative fre-

quency for different levels of static energy consumption.

126 CHAPTER 6: ENERGY EFF. MULTIP. SCHED. USING DVS AND DPM

Figure 6.13 depicts the energy consumed by the various scheduling approaches

relative to the energy dissipated by S&S when the power is 2 or 4 times higher,

or when it is 2 or 4 times lower than in previous sections. For brevity, the

results of only 2 benchmarks are presented. The other benchmarks behave

similar. Figures 6.13a and 6.13b depict the results for the fpppp application

scheduled for a deadline of 2 times the CPL, for coarse-grain and fine-grain

task graphs respectively. Figures 6.13c and 6.13d depict the same results for

robot. Figure 6.14 depicts similar results for the MPEG-1 benchmark.

Clearly, when the power consumption due to leakage currents increases, the

improvement upon S&S increased for all heuristics. This is expected, since

both DPM as well as the technique to optimize on the number of processors

benefit from a higher static energy component. However, even when the static

component is scaled 4 times higher or 4 times lower, the order between the

employed scheduling approaches remains the same. Again, it can be seen

that in case of coarse-grain task graphs, only optimizing on the number of

employed processors is not sufficient. The energy consumption in this case

can be reduced much further by using DPM. With fine-grain task graphs, on the

other hand, the periods of inactivity are often too small to effectively use DPM.

In this case, it becomes essential to limit the number of employed processors.

In case the static power consumption is significantly lower than the dynamic

one, there is clearly a difference between the energy consumption of LIMIT-

MF and LIMIT-SF. When static power consumption increases, however, this

difference becomes insignificant. From this one can conclude that having pro-

cessors operate at different and/or changing frequencies is an mostly interest-

ing option in case the dynamic power consumption is significantly higher than

the static one. However, this result must be used with care, as both LIMIT-SF

and LIMIT-MF are theoretical limits, and there is no guarantee that these limits

can really be obtained. Furthermore, per-core DVS and frequently changing

frequencies significantly add to the complexity of the design, due to the mul-

tiple clock domains. This can easily offset the benefits of finer grain DVS. A

similar observation is made in recent work by Herbert et al. [34].

6.6 Conclusions

As feature sizes keep decreasing, the contribution of leakage current to the total

energy consumption is expected to increase. Depending on the amount of slack

that remains before the deadline, the amount of parallelism, and the granularity

of the application, voltage scaling as well as shutting down processors can be

6.6 CONCLUSIONS 127

����� ������� ��������� �	�	
��� �	�	
���

� � � � �

��

���

���

���

���

	��

��

���

���

��

����

���������������������������

��
��
��
�
�
��
�
�
��
�

(a) fpppp (coarse-grain)

� � � � �

��

���

���

���

���

	��

��

���

���

��

����

���������������������������

��
��
��
�
�
��
�
�
��
�

(b) fpppp (fine-grain)

� � � � �

��

���

���

���

���

	��

��

���

���

��

����

���������������������������

��
��
��
�
�
��
�
�
��
�

(c) robot (coarse-grain)

� � � � �

��

���

���

���

���

	��

��

���

���

��

����

���������������������������

��
��
��
�
�
��
�
�
��
�

(d) robot (fine-grain)

FIGURE 6.13 Energy consumption relative to S&S for fpppp and robot,

using different levels of static power consumption.

128 CHAPTER 6: ENERGY EFF. MULTIP. SCHED. USING DVS AND DPM

� � � � �

��

���

���

���

���

	��

��

���

���

��

����

�����

������

��������

��������

��������

�������� !"#����$�%&�'��� #

#"
$�
��
(
"
�"
%
"
#&
)

FIGURE 6.14 Energy consumption relative to S&S for MPEG-1, us-

ing different levels of static power consumption.

used to reduce the energy significantly. At the same time, it is important not to

employ too many processors.

By employing a scheduling algorithm with near-linear time complexity, we

developed a reasonably fast heuristic that determines an optimal balance be-

tween voltage scaling, turning off processors, and choosing the correct number

of processors.

For coarse-grain task graphs with long idle periods, DPM was shown to be

more effective than optimizing on the number of employed processors. For

fine-grain task graphs, the idle periods become too small to make DPM effec-

tive. It was shown that, in those cases, optimizing on the number of employed

processors is more effective.

We have shown that our best approach, LAMPS+DPM, reduces the energy

consumption of a parallel MPEG-1 implementation by approximately 40%

compared to S&S. For a set of randomly generated task graphs, LAMPS+DPM

reduces the total energy consumption by up to 21% for tight deadlines and up

to 52% for loose ones compared to the S&S algorithm. For coarse-grain tasks

and a single frequency, LAMPS+DPM attains at least 92% of the possible en-

ergy reduction, i.e., the energy reduction achieved by LIMIT-SF compared to

6.6 CONCLUSIONS 129

S&S. Since LIMIT-SF is independent of the scheduling algorithm, this im-

plies that there is almost no room left for improvement by using other schedul-

ing algorithms than EDF. It was furthermore shown that, even when the static

component of the power consumption is 4 times higher or lower, the proposed

heuristic attains savings close to the limit. This is due to the fact that the heuris-

tic mainly applies DVS when the static power is much lower than the dynamic

power, mainly applies DPM when the static power is more significant, and

only increases the number of employed processors when this reduces the total

energy consumption.

Even when multiple frequencies are allowed, LAMPS+DPM reduces the en-

ergy consumption close to the theoretical limit (LIMIT-MF). For loose dead-

lines (4× or 8× the critical path length), LIMIT-MF consumes the same amount

of energy as LIMIT-SF, and so LAMPS+DPM again attains at least 92% of the

potential savings with coarse-grain tasks. As a result, it will be nearly impossi-

ble to reduce the overall energy consumption further by using other scheduling

algorithms that produce schedules in which different processors can run at dif-

ferent frequencies and in which the frequency can change over time. For more

fine-grain tasks and stricter deadlines, some improvements might be attained

by using multiple frequencies or by using other scheduling algorithms such

as the algorithm proposed by Zhu et al. [103], which maximizes the amount

of useable slack, or the integrated approach described in [56]. We intend to

investigate the impact of these techniques on fine-grain task graphs in more

detail in future research. It should be noted, however, that since LIMIT-MF

does not take the deadline into account, real scheduling approaches will prob-

ably not reach this limit. Consequently, the actual benefit from having multi-

ple frequencies will probably be much less than suggested by this lower limit.

Furthermore, whereas our heuristic runs in (near-linear) polynomial time, em-

ploying more advanced scheduling algorithms can easily increase the running

time of this heuristic to a higher order polynomial or make it exponential. As

stated before in Section 5.2, optimal scheduling using variable voltages has

been proven to be NP-complete in many cases [2, 98, 99].

In future research, we also intend to apply the proposed heuristic to other appli-

cation models, such as periodic independent tasks and dependent task graphs

with cycles. Additionally, we have assumed that tasks have a fixed and a priori

known execution time. Future research should focus on extending the proposed

heuristic to a situation where tasks have a variable or unknown execution time.

These extensions could include approaches to profile parallel applications, as

well as techniques to perform scheduling and make energy reduction decisions

(partially) online.

7
Conclusions

T
his chapter presents a summary of the objectives and achieved results

of this dissertation, and list the main contributions. Finally, it presents

some research directions on energy reduction techniques.

This dissertation presented several techniques to reduce energy consumption

in processors for both the embedded and high-performance market. The fo-

cus was put on two aspects that have growing importance in both research

and industry: the memory subsystem (which is a growing consumer of energy

and cause of delay), and combining voltage scaling and power management

techniques with scheduling interdependent tasks in multiprocessor platforms

(which are becoming increasingly common).

For reducing energy in the memory subsystem, traffic between different mem-

ory levels (especially between on- and off-chip) was considered a significant

source of energy consumption. Furthermore, due to the increasing disparity

between the speed of processors and memories, designers employ increasingly

aggressive techniques in an effort to provide sufficient data to processors to

keep them busy. The observation was made that these efforts often increase

the amount of energy consumed in the memory system, and put significant

stress on the memory bandwidth. One of the objectives in this work, therefore,

was to find ways to reduce the amount of traffic between two cache levels or

between a cache and the main memory. Another part of this work focussed at

131

132 CHAPTER 7: CONCLUSIONS

assisting other existing energy reduction techniques for caches.

For reducing energy in multiprocessor systems, the observation was made that

decreasing feature sizes will significantly change the way how energy is dissi-

pated in CMOS logic. Whereas in the past years the energy consumption was

completely dominated by the dynamic component (i.e.: energy due to switch-

ing between high and low logic levels), in near-future technologies the static

component (i.e.: energy due to leakage in non-ideal transistors) can no longer

be neglected. Due to this change, multiprocessor systems should no longer aim

to employ as much parallelism as possible, since it may be more advantageous

to turn off some processor nodes instead. The main objective in the last two

chapters of this dissertation, therefore, was to research how much energy can

be saved by a scheduling approach that also takes static power consumption

into account.

7.1 Summary and Contributions

This dissertation presents several techniques to reduce energy in the memory

subsystem, as well as techniques to combine multiprocessor scheduling with

energy reduction through slowing or shutting down processors.

Chapter 2 described a hardware technique to efficiently detect conflict misses

in caches with no or limited associativity. This technique was then used to

construct two cache organizations that exploit this information to predict fu-

ture conflict misses. These caches were named the Bypass in Case of Conflict

(BCC) cache and the Sub-block in Case of Conflict (SCC) cache. When a con-

flict is predicted, these two caches do not fetch the whole cache line associated

with the request, but only the requested data. Whereas the BCC cache bypasses

the cache and transfers the requested data only to the proper register, the SCC

cache stores the requested in the cache but invalidates the remainder of the

cache line. By predicting conflict misses, both these caches are able avoid

cache replacements and significantly reduce memory traffic, thereby reducing

energy consumption. While the reduction in memory traffic and energy was

overall higher in the BCC cache than in the SCC cache, it also showed to incur

more cache misses for a number of benchmarks. The difference in perfor-

mance between the BCC and the SCC cache is therefore largely determined by

application behavior. In this chapter, the following contributions were made:

• A technique was presented to detect conflict misses in caches with lim-

ited or no associativity. This technique was based on a component called

7.1 SUMMARY AND CONTRIBUTIONS 133

the Conflict Detection Table (CDT). Using the information supplied by

the CDT, recurring conflict misses could be dealt with in an effective

way.

• The BCC cache was presented, which bypasses the cache on future ref-

erences to conflicting addresses.

• The SCC cache was presented, which only fetches and stores the re-

quired sub-block for conflicting addresses.

• The BCC and SCC caches were shown to decrease the amount of pro-

duced traffic by up to 65% and up to 47%, respectively. This, in turn,

translated to significant energy savings. For both cache organizations,

performance remained comparable to a conventional cache.

Memory copies were found to cause a significant amount of traffic in multi

level memory systems. As a result, programs that make significant use of

memory copies (most notable operating systems) may suffer significant perfor-

mance loss and waste a significant amount of energy. In Chapter 3, a technique

was presented to perform copies of memory blocks efficiently in hardware by

making use of the existing cache infrastructure and introducing a specialized

instruction. By implementing this hardware in multiple memory levels, a tech-

nique was then created to perform these memory copies as close to the source

data as possible. Experimental results showed that this technique attains signif-

icant savings in memory traffic and the number of higher level cache accesses,

without sacrificing performance. Since this is achieved using only few ad-

ditional hardware components, these savings translate to a significant energy

reduction. The contributions made in this chapter are as follows.

• A copy engine was presented, which remained simple by reusing ex-

isting cache infrastructure. A new instruction was proposed to issue

instructions to such copy engines.

• It was shown how these copy engines can be implemented in several

layers of the memory system, thereby reducing traffic between these

layers.

• A technique was presented to allow the hardware to decide dynamically

on the optimal level to perform a memory copy.

• Experiments with a TCP-processing benchmark showed that this tech-

nique reduced memory traffic by up to 94%, leading to a decrease in

energy consumption and an increase in performance of up to 21%.

134 CHAPTER 7: CONCLUSIONS

Several existing techniques reduce energy consumption in caches by reconfig-

uring the cache or by throttling power on parts of the cache at runtime. With

write-back data caches, however, a large part of such a cache may contain dirty

data. As a result, reconfiguration or shutdown is often not possible without first

writing back the contents of the dirty cache lines to next memory level. As a

large percentage of cache lines may contain dirty data, these energy reduction

techniques may be severely limited if there is insufficient room in the write-

back buffer. Chapter 4 presented a split organization called the Clean/Dirty

cache (CD-cache), that is aimed at limiting the number of dirty cache lines.

By limiting the number of dirty cache lines, techniques that perform cache re-

configuration or partial shutdown may be implemented on the major part of the

cache without requiring additional buffers and control logic for writing back

data. It was shown that the proposed cache organization significantly limited

the number of dirty cache lines, while attaining a performance comparable to a

normal write-back cache. In a case study, it was shown how this cache organi-

zation can be used to more efficiently implement energy reduction techniques

like cache decay.

• A cache design named the CD-cache was presented, which stores clean

and dirty data in separate structures.

• It was shown that the CD-cache bounds the number of dirty cache lines

to a hard upper limit, while maintain comparable performance.

• The CD-cache was shown to consume less energy than a normal write-

back cache, by directing a significant number of access to a smaller

cache structure.

• Using a case study, it was shown how the CD-cache can provide a low

complexity solution for dealing with dirty cache lines in energy reduc-

tion techniques such as cache decay. Experimental results showed that,

using the CD-cache instead of a normal write-back cache for cache de-

cay resulted in twice a much energy reduction.

In Chapter 5, it was investigated how dynamic voltage scaling (DVS) can

be used by the scheduler to reduce energy consumption of a multiprocessor

system. For this work, a near-future technology was assumed where, due to

decreasing feature sizes, energy consumption due to leakage currents is ex-

pected to be much higher. It was shown that significant savings could be

attained by optimizing on the number of employed processors. In order to

keep the scheduling algorithm reasonably fast, the presented approach uses

7.1 SUMMARY AND CONTRIBUTIONS 135

the same frequency for all processors and maintains this frequency throughout

the schedule. Furthermore, the task graphs were scheduled using a near-linear

complexity algorithm, which allows a full search over the limited range of

reasonable processor counts. This resulted in the following contributions:

• A heuristic named Leakage Aware MultiProcessor Scheduling (LAMPS)

was presented, which combines multiprocessor scheduling with an en-

ergy reduction technique called DVS, while optimizing on the number

of employed processors.

• By employing a non-optimal but fast scheduling routine and by assign-

ing a single frequency-voltage pair to the whole task graph, LAMPS was

able to compare results for many different processor counts in relatively

short time.

• In a context where frequencies can be scaled on a continuous scale, this

technique showed to reduce energy consumption by 24% for tight dead-

lines and by up to 67% for loose deadlines, compared to an approach

that uses as many processors as possible.

In Chapter 6, the approach presented in Chapter 5 was extended by allowing

the processors to be shut down temporarily, a technique which is referred to as

dynamic power management (DPM). The resulting scheduling technique opti-

mizes on the number of employed processors and the level of voltage scaling,

while using possible opportunities to shut processors down temporarily. This

was again accomplished by using the single frequency model and a near-linear

complexity scheduling algorithm. Furthermore, the results were compared to

lower bounds for both a single frequency model and a model with fine-grain

DVS per processor. It was shown that the presented technique attains savings

close to these limits. In this chapter, the following contributions were made:

• A scheduling heuristic named Leakage Aware MultiProcessor Schedul-

ing with DPM (LAMPS+DPM) was presented, which attempts to find

an optimal combination of DVS, DPM, and the number of processors

that should be employed.

• A lower bound named LIMIT-SF was presented, which indicates the

absolute lower limit for any scheduling approach, assuming a single fre-

quency/voltage pair is used for all processors and tasks.

• A lower bound named LIMIT-MF was presented, which denotes the ab-

solute lower limit for the situation where a different frequency/voltage

pair may be assigned to each task or even to parts of a task.

136 CHAPTER 7: CONCLUSIONS

• Using these lower bounds, it was shown that LAMPS+DPM attains up

to 92% of the potential savings with coarse-grain task graphs.

• It was shown that for most cases employing multiple frequencies or us-

ing a more optimal scheduling approach would provide limited benefit.

7.2 Possible Directions for Future Work

The conflict detection mechanism for caches, proposed in Chapter 2, some-

times suffers from mispredictions. These mispredictions are mostly caused by

the fact that the proposed mechanism can only detect conflicts when the are not

predicted as such, but cannot detect whether predicted conflicts are still cor-

rect. In future work, the ill effects of these misprediction could be decreased

by extending the Conflict Detection Table (CDT) with counters to record the

number of times a conflict was predicted. This would make it possible to reset

an entry after a certain number of predictions, thereby limiting the number of

possible consecutive mispredictions. Furthermore, we intend to compare these

results to similar work, such as the victim cache.

The Dynamic Copy Engine (DCE), proposed in Chapter 3, focusses on reduc-

ing memory traffic due to memory copies. These memory copies are known

to occur significantly in operating system, both for internal operating system

tasks as for I/O demanded by applications. Therefore, it would be interest-

ing to perform experiments with a full-system simulator. This would allow for

more detailed measurements on the attained savings, by simulating full operat-

ing systems and applications in combination with an operating system. Future

work could furthermore focus on how this technique could be applied in the

context of shared-memory multiprocessor systems.

In Chapter 4, the CD-cache was used to efficiently implement cache decay.

The reported energy reductions in this work were limited due to the fact that

cache decay was only implemented in a relatively small L1 cache. Experiments

should be performed to find the possible savings for large on-chip L2 caches.

Furthermore, several other low-power caches that are hindered by dirty cache

lines could be evaluated with this technique. Future research may also include

experiments combining the proposed cache organizations with fault-tolerant

caches.

The heuristics proposed in Chapters 5 and 6 could be extended to include dif-

ferent scheduling approaches, as well as to allow multiple voltage/frequency

pairs. However, it should be noted that this is only beneficial when relatively

7.2 POSSIBLE DIRECTIONS FOR FUTURE WORK 137

fine-grain tasks graphs are used, and that it may not be possible at all to attain

the lower limit. Furthermore, these scheduling approaches should preferably

be performed in polynomial time to allow for optimization on the processor

count. Alternatively, a heuristic may be developed that can efficiently estimate

to optimal processor count. Another interesting options for future research, is

to apply the proposed heuristic to other application models, such as periodic

(independent) tasks. In this work, task scheduling and making decisions on

how to reduce energy were done offline. Future work could focus on develop-

ing techniques to perform these tasks (partially) online, optionally allowing to

deal with variable execution times. Future work may also include evaluation

of these approaches on real hardware.

Bibliography

[1] M. ALVAREZ, E. SALAMI, A. RAMIREZ, AND M. VALERO, Perfor-

mance Impact of Unaligned Memory Operations in SIMD Extensions

for Video Codec Applications, in Proceedings of the International Sym-

posium on Performance Analysis of Systems & Software, 2007, pp. 62–

71.

[2] A. ANDREI, M. SCHMITZ, P. ELES, Z. PENG, AND B. M. AL-

HASHIMI, Overhead-Conscious Voltage Selection for Dynamic and

Leakage Energy Reduction of Time-Constrained Systems, in Proceed-

ings of the Conference on Design, Automation, and Test in Europe,

2004, pp. 518–525.

[3] ARM LTD, ARM11 MPCore. http://www.arm.com/products/CPUs/

ARM11MPCoreMultiprocessor.html.

[4] T. AUSTIN ET AL., SimpleScalar 3.0. http://www.simplescalar.com/.

[5] R. BANAKAR, S. STEINKE, B.-S. LEE, M. BALAKRISHNAN, AND

P. MARWEDEL, Scratchpad Memory: A Design Alternative for Cache

On-Chip Memory in Embedded Systems, in Proceedings of the

International Symposium on Hardware/Software Codesign, 2002,

pp. 73–78.

[6] K. BASU, A. CHOUDHARY, J. PISHARATH, AND M. KANDEMIR,

Power Protocol: Reducing Power Dissipation on Off-Chip Data Buses,

in Proceedings of the IEEE/ACM International Symposium on

Microarchitecture, 2002, p. 345.

[7] L. BENINI AND G. DE MICHELI, Dynamic Power Management:

Design Techniques and CAD Tools, Kluwer Academic Publishers,

Norwell, MA, USA, 1998.

[8] S. BORKAR, Design Challenges of Technology Scaling, IEEE Micro,

19 (4), 1999, pp. 23–29.

139

140 BIBLIOGRAPHY

[9] M. CALHOUN, S. RIXNER, AND A. L. COX, Optimizing Kernel Block

Memory Operations, in Proceedings of the Workshop on Memory

Performance Issues, 2006.

[10] F. CATTHOOR, Energy-Delay Efficient Data Storage and Transfer

Architectures and Methodologies: Current Solutions and Remaining

Problems, Journal of VLSI Signal Processing, 21 (3), 1999,

pp. 219–231.

[11] F. CATTHOOR, K. DANCKAERT, C. KULKARNI, E. BROCKMEYER,

P. G. KJELDSBERG, T. VAN ACHTEREN, AND T. OMNES, Data

Access and Storage Management for Embedded Programmable

Processors, Kluwer Academic Publishers, 2002.

[12] F. CATTHOOR, E. DE GREEF, AND S. SUYTACK, Custom Memory

Management Methodology: Exploration of Memory Organisation for

Embedded Multimedia System Design, Kluwer Academic Publishers,

Norwell, MA, USA, 1998.

[13] F. CATTHOOR, F. FRANSSEN, S. WUYTACK, L. NACHTERGAELE,

AND H. DE MAN, Global Communication and Memory Optimizing

Transformations for Low-Power Signal Processing Systems, in

Proceedings of the VLSI Signal Processing Workshop, 1994.

[14] B. CHALAMALA, Portable Electronics and the Widening Energy Gap,

Proceedings of the IEEE, 95 (11), 2007, pp. 2106 – 2107.

[15] J. CHAPIN, A. HERROD, M. ROSENBLUM, AND A. GUPTA, Memory

system performance of UNIX on CC-NUMA multiprocessors, in

Proceedings of the Joint International Conference on Measurement and

Modeling of Computer Systems, 1995, pp. 1–13.

[16] P. P. CHU AND R. GOTTIPATI, Write Buffer Design for On-Chip

Cache, in Proceedings of the IEEE International Conference on

Computer Design, 1994, pp. 311–316.

[17] T. H. CORMEN, C. E. LEISERSON, AND R. L. RIVEST, Introduction

to Algorithms, The MIT Press and McGraw-Hill Book Company, 1989.

[18] P. J. DE LANGEN AND B. H. H. JUURLINK, Off-Chip Memory Traffic

Measurements of Low-Power Embedded Systems, in Proceedings of the

Workshop on Circuits, Systems and Signal Processing (ProRISC),

2002, pp. 351–358.

BIBLIOGRAPHY 141

[19] , Reducing Traffic Generated by Conflict Misses in Caches, in

Proceedings of the ACM International Conference on Computing

Frontiers, 2004, pp. 235–239.

[20] , Leakage-Aware Multiprocessor Scheduling for Low Power, in

Proceedings of the International Parallel and Distributed Processing

Symposium, 2006.

[21] , Trade-offs Between Voltage Scaling and Processor Shutdown for

Low-Energy Embedded Multiprocessors, in Proceedings of the

International Workshop on Computer Systems: Architectures,

Modeling, and Simulation, 2007, pp. 75–85.

[22] , Memory Copies in Multi-Level Memory Systems, in Proceedings

of the IEEE International Conference on Application-Specific Systems,

Architectures and Processors, 2008.

[23] , Leakage Aware Multiprocessor Scheduling, Journal of VLSI

Signal Processing, 57 (1), 2009.

[24] , Limiting the Number of Dirty Cache Lines, in Proceedings of the

Conference on Design, Automation, and Test in Europe, 2009.

[25] D. DUARTE, N. VIJAYKRISHNAN, M. J. IRWIN, AND Y. TSAI,

Impact of Technology Scaling and Packaging on Dynamic Voltage

Scaling Techniques, in Proceedings of the IEEE International

ASIC/SOC Conference, 2002.

[26] F. DUARTE AND S. WONG, A memcpy Hardware Accelerator Solution

for Non Cache-line Aligned Copies, in Proceedings of the International

Conference on Application-specific Systems, Architectures and

Processors, 2007, pp. 397–402.

[27] K. FLAUTNER, N. S. KIM, S. MARTIN, D. BLAAUW, AND

T. MUDGE, Drowsy Caches: Simple Techniques for Reducing Leakage

Power, in Proceedings of the International Symposium on Computer

Architecture, Washington, DC, USA, 2002, pp. 148–157.

[28] S. V. GHEORGHITA, T. BASTEN, AND H. CORPORAAL, Intra-task

scenario-aware voltage scheduling, in Proceedings of the International

Conference on Compilers, Architectures and Synthesis for Embedded

Systems, New York, NY, USA, 2005, pp. 177–184.

142 BIBLIOGRAPHY

[29] A. GONZÁLEZ, C. ALIAGAS, AND M. VALERO, A Data Cache with

Multiple Caching Strategies Tuned to Different Types of Locality, in

Proceedings of the International Conference on Supercomputing, 1995.

[30] R. GONZÁLEZ, B. GORDON, AND M. HOROWITZ, Supply and

Threshold Voltage Scaling for Low Power CMOS, IEEE Journal of

Solid-State Circuits, 32 (8), 1997.

[31] F. GRUIAN AND K. KUCHCINSKI, LEneS: Task Scheduling for

Low-Energy Systems Using Variable Supply Voltage Processors, in

Proceedings of the Conference on Asia South Pacific Design

Automation, 2001, pp. 449–455.

[32] M. R. GUTHAUS, J. S. RINGENBERG, D. ERNST, T. M. AUSTIN,

T. MUDGE, AND R. B. BROWN, MiBench: A Free, Commercially

Representative Embedded Benchmark Suite, in Proceedings of the

International Workshop on Workload Characterization, 2001, pp. 3–14.

[33] J. L. HENNESSY AND D. A. PATTERSON, Computer Architecture: A

Quantitative Approach, Morgan Kaufmann Publishers Inc., 3rd. ed.,

2003.

[34] S. HERBERT AND D. MARCULESCU, Analysis of dynamic

voltage/frequency scaling in chip-multiprocessors, in Proceedings of

the International Symposium on Low Power Electronics and Design,

2007, pp. 38–43.

[35] H. P. HOFSTEE, Power Efficient Processor Architecture and the Cell

Processor, in Proceedings of the International Symposium on

High-Performance Computer Architecture, 2005, pp. 258–262.

[36] J. HU, M. KANDEMIR, N. VIJAYKRISHNAN, AND M. J. IRWIN,

Analyzing Data Reuse for Cache Reconfiguration, ACM Transactions

on Embedded Computing Systems, 4 (4), 2005, pp. 851–876.

[37] Z. HU, S. KAXIRAS, AND M. MARTONOSI, Let caches decay:

reducing leakage energy via exploitation of cache generational

behavior, ACM Transactions on Computer Systems, 20 (2), 2002,

pp. 161–190.

[38] INTEL CORPORATION, DDR2 Specifications.

http://www.intel.com/technology/memory.

BIBLIOGRAPHY 143

[39] , Intel 64 and IA-32 Architectures Software Developer’s Manual.

http://www.intel.com/products/processor/manuals.

[40] , Intel XScale Technology.

http://www.intel.com/design/intelxscale/.

[41] INTERNATIONAL ROADMAP COMMITTEE, International Technology

Roadmap for Semiconductors, 2007 Edition, Executive Summary.

http://www.itrs.net/Links/2007ITRS/ExecSum2007.pdf.

[42] S. IRANI, S. SHUKLA, AND R. GUPTA, Algorithms for Power

Savings, in Proceedings of the ACM-SIAM Symposium on Discrete

Algorithms, 2003, pp. 37–46.

[43] R. JEJURIKAR, C. PEREIRA, AND R. GUPTA, Leakage Aware

Dynamic Voltage Scaling for Real-Time Embedded Systems, in

Proceedings of the Conference on Design Automation, 2004,

pp. 275–280.

[44] N. K. JHA, Low-Power System Scheduling, Synthesis and Displays,

IEE Proceedings on Computers and Digital Techniques, 152 (3), 2005,

pp. 344–352.

[45] T. L. JOHNSON AND W. W. HWU, Run-Time Adaptive Cache

Hierarchy Management via Reference Analysis, in Proceedings of the

International Symposium on Computer Architecture, 1997,

pp. 315–326.

[46] T. L. JOHNSON, M. C. MERTEN, AND W. W. HWU, Run-Time

Spatial Locality Detection and Optimization, in Proceedings of the

International Symposium on Microarchitecture, 1997, pp. 57–64.

[47] N. P. JOUPPI, Improving Direct-Mapped Cache Performance by the

Addition of a Small Fully-Associative Cache and Prefetch Buffers, in

Proceedings of the International Symposium on Computer

Architecture, 1990, pp. 364–373.

[48] , Cache Write Policies and Performance, in Proceedings of the

International Symposium on Computer Architecture, 1993,

pp. 191–201.

[49] B. JUURLINK, Unified Dual Data Caches, in Proceedings of the

Euromicro Symposium on Digital Systems Design, 2003, pp. 33–40.

144 BIBLIOGRAPHY

[50] G. KAHN, The Semantics of a Simple Language for Parallel

Programming, in Information Processing, 1974, pp. 471–475.

[51] Y. KANG ET AL., FlexRAM: Toward an Advanced Intelligent Memory

System, in Proceedings of the International Conference on Computer

Design, 1999, pp. 192–201.

[52] H. KASAHARA, T. TOBITA, T. MATSUZAWA, AND S. SAKAIDA,

Standard Task Graph Set.

http://www.kasahara.elec.waseda.ac.jp/schedule/.

[53] S. KAXIRAS, Z. HU, AND M. MARTONOSI, Cache Decay: Exploiting

Generational Behavior to Reduce Cache Leakage Power, in

Proceedings of the International Symposium on Computer

Architecture, 2001, pp. 240–251.

[54] S. KAXIRAS, Z. HU, G. J. NARLIKAR, AND R. MCLELLAN,

Cache-Line Decay: A Mechanism to Reduce Cache Leakage Power, in

Proceedings of the International Workshop on Power-Aware Computer

Systems-Revised Papers, 2000.

[55] F. KHUNJUSH AND N. J. DIMOPOULOS, Comparing Direct-to-Cache

Transfer Policies to TCP/IP and M-VIA During Receive Operations in

MPI Environments, in Proceedings of the International Symposium on

Parallel and Distributed Processing and Applications, 2007,

pp. 208–222.

[56] V. KIANZAD, S. S. BHATTACHARYYA, AND G. QU, CASPER: An

Integrated Energy-Driven Approach for Task Graph Scheduling on

Distributed Embedded Systems, in Proceedings of the IEEE

International Conference on Application-Specific Systems,

Architecture Processors, 2005, pp. 191–197.

[57] P. KILLELEA, Web Performance Tuning, O’Reilly & Associates, Inc.,

Sebastopol, CA, USA, 2002.

[58] E. J. KIM, K. H. YUM, G. M. LINK, N. VIJAYKRISHNAN,

M. KANDEMIR, M. J. IRWIN, M. YOUSIF, AND C. R. DAS, Energy

optimization techniques in cluster interconnects, in Proceedings of the

International Symposium on Low Power Electronics and Design, 2003,

pp. 459–464.

BIBLIOGRAPHY 145

[59] N. S. KIM, T. AUSTIN, D. BLAAUW, T. MUDGE, K. FLAUTNER,

J. S. HU, M. J. IRWIN, M. KANDEMIR, AND V. NARAYANAN,

Leakage Current: Moore’s Law Meets Static Power, IEEE Computer,

36 (12), 2003, pp. 68–75.

[60] J. KIN, M. GUPTA, AND W. H. MANGIONE-SMITH, The Filter

Cache: An Energy Efficient Memory Structure, in Proceedings of the

ACM/IEEE International Symposium on Microarchitecture, 1997,

pp. 184–193.

[61] , Filtering Memory References to Increase Energy Efficiency,

IEEE Transactions on Computers, 49 (1), 2000.

[62] A. J. KLEINOSOWSKI AND D. J. LILJA, MinneSPEC: A New SPEC

Benchmark Workload for Simulation-Based Computer Architecture

Research, IEEE Computer Architecture Letters, 1 (1), 2006, p. 7.

[63] J. G. KOOMEY, Estimating Total Power Consumption by Servers in

the U.S. and the World, tech. rep., Lawrence Berkeley National

Laboratory, 2007.

http://enterprise.amd.com/Downloads/svrpwrusecompletefinal.pdf.

[64] C. LEE, M. POTKONJAK, AND W. H. MANGIONE-SMITH,

Mediabench: A tool for evaluating and synthesizing multimedia and

communicatons systems, in Proceedings of the International

Symposium on Microarchitecture, 1997, pp. 330–335.

[65] H.-H. S. LEE, G. S. TYSON, AND M. K. FARRENS, Eager Writeback

- A Technique for Improving Bandwidth Utilization, in Proceedings of

the ACM/IEEE International Symposium on Microarchitecture, 2000,

pp. 11–21.

[66] Y. LEE, K. P. REDDY, AND C. M. KRISHNA, Scheduling Techniques

for Reducing Leakage Power in Hard Real-Time Systems, in

Proceedings of the Euromicro Conference on Real-Time Systems,

2003, pp. 105–112.

[67] F. LIBERATO, S. LAUZAC, R. MELHEM, AND D. MOSS, Fault

Tolerant Real-Time Global Scheduling on Multiprocessors, in

Proceedings of the Euromicro Conference on Real-Time Systems,

1999, pp. 252–259.

146 BIBLIOGRAPHY

[68] C. L. LIU AND J. W. LAYLAND, Scheduling Algorithms for

Multiprogramming in a Hard-Real-Time Environment, Journal of the

ACM, 20 (1), 1973, pp. 46–61.

[69] D. LIU AND C. SVENSSON, Power Consumption Estimation in CMOS

VLSI Chips, IEEE Journal of Solid-State Circuits, 29 (6), 1994,

pp. 663–670.

[70] S. MARTIN, K. FLAUTNER, T. MUDGE, AND D. BLAAUW,

Combined Dynamic Voltage Scaling and Adaptive Body Biasing for

Lower Power Microprocessors under Dynamic Workloads, in

Proceedings of the International Conference on Computer-Aided

Design, 2002, pp. 721–725.

[71] S. A. MCKEE, Reflections on the Memory Wall, in Proceedings of the

ACM International Conference on Computing Frontiers, 2004, p. 162.

[72] M. K. MCKUSICK, K. BOSTIC, M. J. KARELS, AND J. S.

QUARTERMAN, The Design and Implementation of the 4.4BSD

Operating System, Addison-Wesley, 1996.

[73] G. MEMIK, G. REINMAN, AND W. H. MANGIONE-SMITH, Reducing

Energy and Delay Using Efficient Victim Caches, in Proceedings of the

International Symposium on Low Power Electronics and Design, 2003,

pp. 262–265.

[74] M. OSKIN, F. T. CHONG, AND T. SHERWOOD, Active pages: a

computation model for intelligent memory, in Proceedings of the

International Symposium on Computer Architecture, 1998,

pp. 192–203.

[75] J. K. OUSTERHOUT, Why Aren’t Operating Systems Getting Faster As

Fast as Hardware?, in Proceedings of the USENIX Summer

Conference, 1990, pp. 247–256.

[76] D. PATTERSON, T. ANDERSON, N. CARDWELL, R. FROMM,

K. KEETON, C. KOZYRAKIS, R. THOMAS, AND K. YELICK, A Case

for Intelligent RAM, IEEE Micro, 17 (2), 1997, pp. 34–44.

[77] T. PERING AND R. BRODERSON, Dynamic Voltage Scaling and the

Design of a Low-Power Microprocessor System, in Proceedings of the

Power Driven Microarchitecture Workshop, attached to ISCA98, 1998.

BIBLIOGRAPHY 147

[78] P. PETROV AND A. ORAILOGLU, Performance and Power

Effectiveness in Embedded Processors - Customizable Partitioned

Caches, IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 20 (11), 2001, pp. 1309–1318.

[79] T. PIQUET, O. ROCHECOUSTE, AND A. SEZNEC, Minimizing

Single-Usage Cache Pollution for Effective Cache Hierarchy

Management, Tech. Rep. PI-1826, IRISA, 2006.

[80] F. J. POLLACK, New microarchitecture challenges in the coming

generations of CMOS process technologies (keynote address), in

Proceedings of the ACM/IEEE International Symposium on

Microarchitecture, 1999, p. 2.

[81] M. POWELL, S.-H. YANG, B. FALSAFI, K. ROY, AND T. N.

VIJAYKUMAR, Gated-Vdd: a circuit technique to reduce leakage in

deep-submicron cache memories, in Proceedings of the International

Symposium on Low Power Electronics and Design, 2000, pp. 90–95.

[82] M. PRVULOVIĆ, D. MARINOV, Z. DIMITRIJEVIĆ, AND

V. MILUTINOVIĆ, Split Temporal/Spatial Cache: A Survey and

Reevaluation of Performance. IEEE TCCA Newsletter, 1999.

[83] G. QUAN, L. NIU, X. S. HU, AND B. MOCHOCKI, Fixed Priority

Scheduling for Reducing Overall Energy on Variable Voltage

Processors, in Proceedings of the International Real-Time System

Symposium, 2004, pp. 309–318.

[84] G. REINMAN AND N. P. JOUPPI, An Integrated Cache Timing and

Power Model, Tech. Rep. CACTI 2.0, COMPAQ Western Research

Lab, Palo Alto, California, 1999.

[85] M. ROSENBLUM, E. BUGNION, S. A. HERROD, E. WITCHEL, AND

A. GUPTA, The impact of architectural trends on operating system

performance, in Proceedings of the ACM Symposium on Operating

Systems Principles, 1995, pp. 285–298.

[86] T. SIMUNIC, L. BENINI, AND G. D. MICHELI, Energy-Efficient

Design of Battery-Powered Embedded Systems, IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 9 (1), 2001.

[87] STANDARD PERFORMANCE EVALUATION CORPORATION.

http://www.spec.org/.

148 BIBLIOGRAPHY

[88] V. SWAMINATHAN AND K. CHAKRABARTY, Pruning-based,

energy-optimal, deterministic I/O device scheduling for hard real-time

systems, Trans. on Embedded Computing Sys., 4 (1), 2005,

pp. 141–167.

[89] E. TAM, Improving Cache Performance Via Active Management, PhD

thesis, University of Michigan, Ann Arbor, 1999.

[90] D. TARJAN, S. THOZIYOOR, AND N. P. JOUPPI, CACTI 4.0, Tech.

Rep. HPL-2006-86, HP Labs, 2006.

[91] S. THOZIYOOR, N. MURALIMANOHAR, J. H. AHN, AND N. P.

JOUPPI, CACTI 5.3. http://www.hpl.hp.com/research/cacti/.

[92] G. VARATKAR AND R. MARCULESCU, Communication-Aware Task

Scheduling and Voltage Selection for Total Systems Energy

Minimization, in Proceedings of the International Conference on

Computer-Aided Design, 2003, pp. 510–517.

[93] N. VIJAYKRISHNAN, M. J. IRWIN, H. S. KIM, AND W. YE,

Energy-driven integrated hardware-software optimizations using

SimplePower, in Proceedings of the International Symposium on

Computer Architecture, 2000, pp. 95–106.

[94] N. VIJAYKRISHNAN, M. KANDEMIR, M. J. IRWIN, H. S. KIM,

W. YE, AND D. DUARTE, Evaluating Integrated Hardware-Software

Optimizations Using a Unified Energy Estimation Framework, IEEE

Transactions on Computers, 52 (1), 2003, pp. 59–75.

[95] W. A. WULF AND S. A. MCKEE, Hitting the memory wall:

implications of the obvious, SIGARCH Computer Architecture News,

23 (1), 1995, pp. 20–24.

[96] R. XU, D. ZHU, C. RUSU, R. MELHEM, AND D. MOSS,

Energy-Efficient Policies for Embedded Clusters, in Proceedings of the

ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and

Tools for Embedded Systems, 2005, pp. 1–10.

[97] L. YAN, J. LUO, AND N. K. JHA, Combined Dynamic Voltage Scaling

and Adaptive Body Biasing for Heterogeneous Distributed Real-time

Embedded Systems, in Proceedings of the International Conference on

Computer-Aided Design, 2003, pp. 30–37.

BIBLIOGRAPHY 149

[98] C.-Y. YANG, J.-J. CHEN, AND T.-W. KUO, An Approximation

Algorithm for Energy-Efficient Scheduling on A Chip Multiprocessor,

in Proceedings of the Conference on Design, Automation, and Test in

Europe, 2005, pp. 468–473.

[99] S. ZHANG, K. S. CHATHA, AND K. S. CHATHA, Automated

techniques for energy efficient scheduling on homogeneous and

heterogeneous chip multi-processor architectures, in Proceedings of

the Conference on Asia and South Pacific Design Automation, 2008,

pp. 61–66.

[100] W. ZHANG, Replication Cache: A Small Fully Associative Cache to

Improve Data Cache Reliability, IEEE Transactions on Computers, 54

(12), 2005, pp. 1547–1555.

[101] Y. ZHANG, X. S. HU, AND D. Z. CHEN, Task Scheduling and Voltage

Selection for Energy Minimization, in Proceedings of the Conference

on Design Automation, 2002, pp. 183–188.

[102] L. ZHAO, L. N. BHUYAN, R. R. IYER, S. MAKINENI, AND

D. NEWELL, Hardware Support for Accelerating Data Movement in

Server Platform, IEEE Transactions on Computers, 56 (6), 2007,

pp. 740–753.

[103] D. ZHU, R. MELHEM, AND B. R. CHILDERS, Scheduling with

Dynamic Voltage/Speed Adjustment Using Slack Reclamation in

Multiprocessor Real-Time Systems, IEEE Transactions on Parallel and

Distributed Systems, 14 (7), 2003, pp. 686–700.

List of Publications

Journals

1. P. J. DE LANGEN AND B. H. H. JUURLINK, Leakage Aware Multipro-

cessor Scheduling, Journal of VLSI Signal Processing, 57 (1) (2009).

International Conference Proceedings

2. P. J. DE LANGEN AND B. H. H. JUURLINK, Reducing Traffic Gener-

ated by Conflict Misses in Caches, in Proceedings of the ACM Interna-

tional Conference on Computing Frontiers (2004), pp. 235-239.

3. B. H. H. JUURLINK AND P. J. DE LANGEN, Dynamic Techniques

to Reduce Memory Traffic in Embedded Systems, in Proceedings of the

ACM International Conference on Computing Frontiers (2004), pp. 192-

201.

4. P. J. DE LANGEN AND B. H. H. JUURLINK, Leakage-Aware Multipro-

cessor Scheduling for Low Power, in Proceedings of the International

Parallel and Distributed Processing Symposium (2006).

5. P. J. DE LANGEN AND B. H. H. JUURLINK, Trade-offs Between Volt-

age Scaling and Processor Shutdown for Low-Energy Embedded Multi-

processors, in Proceedings of the International Workshop on Computer

Systems: Architectures, Modeling, and Simulation (2007), pp. 75–85.

6. P. J. DE LANGEN AND B. H. H. JUURLINK, Memory Copies in Multi-

Level Memory Systems, in Proceedings of the IEEE International Con-

ference on Application-specific Systems, Architectures and Processors

(2008).

7. P. J. DE LANGEN AND B. H. H. JUURLINK, Limiting the Number

of Dirty Cache Lines, in Proceedings of the Conference on Design,

Automation and Test in Europe (2009).

151

152 LIST OF PUBLICATIONS

National/Local Conferences Proceedings

8. P. J. DE LANGEN AND B. H. H. JUURLINK, Reducing Conflict Misses

in Caches by Using Application Specific Placement Functions, in Pro-

ceedings of the Workshop on Circuits, Systems and Signal Processing

(ProRISC) (2006), pp. 300–305.

9. P. J. DE LANGEN AND B. H. H. JUURLINK, Combining Voltage Scal-

ing and Processor Shutdown to Reduce Energy Consumption in Embed-

ded Multiprocessors, in Proceedings of the Conference of the Advanced

School for Computing and Imaging (2007), pp. 195–202.

10. P. J. DE LANGEN, B. H. H. JUURLINK, AND S. VASSILIADIS, Hand-

Bench: A Benchmarking Suite for Processors Embedded in Handheld

Devices, in Proceedings of the Workshop on Circuits, Systems and Sig-

nal Processing (ProRISC) (2004).

11. P. J. DE LANGEN AND B. H. H. JUURLINK, Off-Chip Memory Traf-

fic Measurements of Low-Power Embedded Systems, in Proceedings of

the Workshop on Circuits, Systems and Signal Processing (ProRISC)

(2002), pp. 351–358.

12. P. J. DE LANGEN AND B. H. H. JUURLINK, Reducing Conflict Misses

in Caches, in Proceedings of the Workshop on Circuits, Systems and

Signal Processing (ProRISC) (2003), pp. 505–510.

13. P. J. DE LANGEN, B. H. H. JUURLINK, AND S. VASSILIADIS, Mi-

croprocessor Scheduling to Reduce Leakage Power, in Proceedings of

the Workshop on Circuits, Systems and Signal Processing (ProRISC)

(2005), pp. 383–389.

Samenvatting

E
nergie verbruik is in toenemende mate belangrijk in verscheidene ge-

bieden van de computerarchitectuur. Niet alleen voor de markt van

draagbare ‘embedded’ computers, maar ook voor desktop machines en

high-end server-faciliteiten is er een alsmaar toenemende vraag naar krach-

tigere computers met een gelijkblijvend of zelfs verminderd energieverbruik.

Voor processoren in draagbare, batterijgevoede apparaten willen gebruikers

meer en meer mogelijkheden en een alsmaar langere levensduur van de bat-

terij. Voor gewone desktop machines en toegewijde server systemen komt de

vraag naar lager stroomverbruik voornamelijk voort uit economische motie-

ven, milieu overwegingen en de vraag naar systemen zonder luidruchtige koe-

ling. Dit proefschrift onderzoekt verscheidene technieken om energieverbruik

van processoren te verminderen.

Een deel van de technieken die in dit proefschrift behandeld worden richten

zich om het verminderen van energieverbruik door het beperken van de hoe-

veelheid data verkeer tussen een processor en extern geheugen. Omdat ge-

heugen een bekende beperkende factor is in computer systemen hebben fabri-

kanten in toenemende mate agressieve technieken moeten toepassen om voor-

uitgang te kunnen boeken. De technieken die in dit proefschrift behandeld

worden zijn gericht op het verminderen van data verkeer met verbeterde of in

ieder geval gelijkblijvende snelheid.

Een ander deel van dit proefschrift is gericht op het verminderen van energie

verbruik door de kloksnelheid van onderdelen van een multiprocessor systeem

te verlagen, in combinatie met het uitschakelen van onderdelen. Multipro-

cessor systemen hebben in de afgelopen jaren in toenemende mate aandacht

gekregen, voornamelijk omdat beperkingen ten aanzien van het te gebruiken

vermogen verhinderd hebben dat de kloksnelheid verder opgevoerd kon wor-

den, en omdat er met parallellisme op instructie niveau steeds minder winst

gehaald kon worden. Vanwege de manier hoe energie gedissipeerd word in

halfgeleider componenten, is het gebruik van meerdere processoren op een la-

gere kloksnelheid een effectieve manier gebleken om de hoeveelheid gebruikte

energie te verminderen. Echter, door het steeds kleiner worden van de com-

ponenten waar processoren van gemaakt worden, is de verwachting dat dit

energie model drastisch zal veranderen in de komende jaren. Sommige tech-

nieken die in dit proefschrift gepresenteerd worden doelen op het verminderen

van energieverbruik van zulke van hedendaagse en toekomstige multiprocessor

systemen.

153

Curriculum Vitae

Pepijn de Langen was born on February 11th 1976 in

Groningen, the Netherlands. He undertook secondary

education at the Praedinius Gymnasium in Groningen.

Thereafter, he studied at the faculty of Electrical Engi-

neering, Delft University of Technology, where he re-

ceived received a Bachelor of Science and a Master of

Science degree.

In 2004, Pepijn started working as a researcher in the

Computer Engineering laboratory of Delft University of

Technology, where he carried out his Ph.D. research under supervision of

Dr. Ben Juurlink. This research was carried out in a project funded by the

Netherlands Organization for Scientific Research (NWO). This dissertation

presents the results of this research.

Pepijn’s research interests include advanced computer architectures, memory

systems, hardware/software co-design, and techniques for reducing power con-

sumption.

155

