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Summary 
The notion of applying methods of static elasticity to the study of 

energy differences in two states of a given structure was extended by 
Starr to yield the solution to problems involving the propagation of 
cracks in shear fields. This technique may be modified to include 
the solution of the problem of the energy release upon the introduction 
of a tear fault, such as the San Andreas fault, into an otherwise homo- 
geneous medium subjected to a uniform shear stress. The idealized 
properties of such a fault are a structure elongated compared with 
its depth and a strike-slip motion along the fault. This configuration, 
by symmetry, may be imaged in the Earth's surface so that the problem 
is reducible to that of a strip fault of infinite length in a homogeneous, 
isotropic, elastic, infinite medium. The medium is subjected to a 
uniform shear stress at infinity and the shear stress is assumed to vanish 
upon the strip. This two-dimensional problem has a vector solution 
rather than a tensor one, and thus it has an analogue in the electrical 
problem of a perfectly conducting strip placed in a uniform electric 
field or that of a strip obstacle placed in a uniform hydrodynamic 
stream field. The stress distribution and the relative motion through- 
out the medium before and after faulting can be obtained. For the 
case of the 1906 San Francisco earthquake, this model yields an energy 
difference of the shear fields before and after faulting of 4 x 1023 ergs. 
This value must exceed the elastic wave energy. 

I. Introduction 
The methods of elastostatics have been applied with some success to the prob- 

lems of rupture in a solid. The general procedure is to compare the solid in two 
states: the state of the solid in a uniform, flawless condition and the state of the 
solid after a crack has been introduced. The procedure is convenient since only 
problems in static elasticity need be solved for the above comparison; no properties 
of the motion of the solid during the formation or extension of the flaw are required. 

Using this general technique, Griffith (1921) obtained a solution for the energy 
released upon the formation of a tensile crack, that is to say one formed at right 
angles to the minimum principal stress. From this elastostatically computed 
energy, Griffith was able to derive conditions for the propagation of the crack. 

Starr (1928) found the energy release and the conditions for the propagation 
of a shear crack, i.e. one formed parallel to the maximum shear stress in a body. 
Starr's geometry was that of a crack in the shape of a long thin strip, the elongation 
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Energy release in earthquakes 45 
being in the z-direction of a Cartesian coordinate system (Figure I), the strip 
having its width dimension parallel to x, and the normal to the plane of the strip 
pointing in the y-direction, The applied stress was the shear stress T ~ ~ .  This 
stress tends to move the faces of the crack parallel to the width or x-dimension. 
The crack is thus eIongated at right angles to the shear direction and the crack 
extends itself in the direction of the shear. 

In  this paper we consider the energy release upon the introduction of another 
type of shear crack, in this case a crack elongated parallel to the shear direction. 

't 

FIG. I .  

The applied stress is the shear stress T~~ for the crack geometry and the coordinate 
system already considered. In  this case all particle motions are parallel to the 
long dimension of the crack. Since this crack is already of infinite length in the 
direction of motion, the displacement conditions at the ends of the crack cannot 
be obtained; hence we have no criteria for the extension of such a crack. We 
do not attempt to indicate the mechanism of origin of such a crack. 

Although originally intended for the problem of the extension of flaws in 
metals, Starr's solution can be directly applied to faulting in the Earth. The 
differences are those of the dimensions of the flaws, the energies of the shear 
fields and the elastic constants of the materials. The model is applicable to normal 
and thrust faults at depth in the Earth. 

The problem considered in this paper is also a model of earth faulting. In 
this case we solve the problem of the strike-slip fault. As will be seen, the plane 
x = o through the centre of the strip and at right angles to it is a plane of zero 
normal stress. Thus we can solve either the problem of a strike-slip fault at great 
depth or one which intersects the surface of the Earth. 

2. Electric-elastic analogy 
Problems in static elasticity, although tensor problems interrelating dilatations 

and rotations, have vector solutions in certain special cases. In this paper we shall 
investigate one circumstance in which tensor elastic problems are reducible to 
vector elastic problems. This reduction is useful because of the wealth of solu- 
tions for problems in electrostatics, whose direct application may be advantageously 
taken to the problems of elasticity if the analogy is formalized. 

Consider a shear field in a homogeneous, isotropic, elastic medium such that 
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46 Leon Knopoff 

the displacement vector U everywhere points in the x-direction. Let A be the 
rotation vector 

A = curlU. (1) 

In the absence of dilatations, i.e. in a pure shear field, the differential equation of 
static elasticity 

reduces to 
(A + 2p) grad div U- p curl curl U = 0, (2) 

curlA = 0. (3) 

h and p are the Lam6 moduli of elasticity. Thus A is derivable from a scalar 
potential 

in which the scalar potential + satisfies Laplace’s equation 

A = -grad+, (4) 

since 
024 = 0, 

divA = o 

from equation (I). Hence the rotation vector A describes both a solenoidal and 
an irrotational field. 

Superficially the vector field A satisfies the same differential equations as does 
the electrostatic field in a charge-free situation. If the vector A can be shown to 
satisfy the same boundary conditions as the electric field vector E then the cor- 
respondence will be complete and the solutions for certain electrostatic boundary 
value problems can be applied to the corresponding elastostatic boundary value 
problems. 

We propose to introduce a surface S, in the elastostatic case, which will act as 
a singular region in the shear field. We shall require that the shear stress vanishes 
everywhere on this surface, 

T~~ = o on S. 

Hence, we require the shear strain eyl = o on S. Now 

euz = t(aU,/az+ aU,/ay). (7) 
But by hypothesis we have a displacement field pointing only in the x-direction. 
Thus 

aUz/ay = o on S. 

A = (au , /~Y ,  -au,/ax, 0). 

(8) 

(9) 

Now 

If now S is assumed to occupy parts of the planes y = constant, then A is normal 
to S on S. This corresponds to the electrostatic boundary condition upon the 
electric field in the vicinity of a perfect conductor. The analogy is now complete. 
In order that A shall never have a z-component, we only solve two-dimensional 
problems so that z is not a variable in the problem. 

It is now an elementary task to determine the remaining properties of the 
analogy. These are given in Table I. n is a unit vector normal to a surface infinite 
in the z-direction; 21 is a unit vector in the z-direction. 
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Energy release in earthquakes 47 

Table I 

E 
Q 

d * 
D Xz, 
E XZ, 
D 

EXn = 
d 

Two-dimensional analogies 

Electric Quantity Elastic Quantity 
Electric field A Rotation vector 
Dielectric constant P Shear modulus 

Potential of rotation 
Displacement vector 

(unidirectional) 

Potential of field d 
Stream function u, 
Rotation of Displacement 7 Stress vector T = T,,x, +~,,,y~ 
Rotation of Electric Field Strain vector e = e,x, +ey,yl 
Displacement z1 X T Rotation of stress 
Surface charge z, X T . n Component of stress 

o Perfect conductor 7 .  n = o Perfectly weak crack 

e 

3. The field around a strip 
As an example of the calculation, consider a uniform shear field at infinity 

and a cut in the finite domain in the shape of a strip of infinite length, of width 
za and occupying part of the plane y = o as shown on Figure I. Let the strip 
extend to infinity in the direction. At infinity, or in the absence of the strip, let 
the displacement be 

u = (o,o,Aoy). (10) 

A = (Ao,o,o). (11) 

The rotation vector in the absence of the strip is 

Thus we have set up the problem of a uniform field perturbed by a strip of infinite 
length whose short dimension is parallel to the unperturbed field. 

This problem, as is well known, is solved in electrostatics or in hydrodynamics 
by a conformal transformation. The potential is (Smythe 1950, p. 92) 

+ = -AoRe(wz-a2)*, (12) 

where w = x+iy. This is seen to satisfy the condition at infinity, since for 
lwl 3 a, + = -A@ leading to A = (Ao, 0, 0 )  at infinity. On the strip, w = x 
where 1x1 < a. Hence, c j  = o on the strip. Thus the strip is an equipotential 
surface and the A lines are everywhere normal to it. 

We are now in a position to solve for several features of the field in the presence 
of the strip. 

3. I The displacement jield. 
From Equation (4) 

A = (- a c j p ,  - a4/ay, 0). (13) 

Comparing equation (13) with equation (9), we see that the Cauchy-Riemann 
conditions are satisfied. Hence U, is orthogonal to c j  in the complex w-plane. 
Thus, if c j  is given by equation (12), the displacement anywhere is 

U, = A0 Im(w2-a2)+. (14) 

In the plane y = 0, 

u, = 0, 

U,= A0 (aZ-x2)* 
1x1 ’ a 
Ix! < a. 
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48 Leon Knopoff 

At the origin, Us = AM. Of course, on the opposite side of the strip, Us = -A@.  
In the plane x = 0, 

Uz = k Ao(y2+a2)+ Y 2 0 .  
This, logically, approaches the value -t Aoy as IyI 3 m. 

We may inquire into the distance from the strip in the plane x = 0, that the 
relative displacement falls to half the value at the crack. The displacement in the 
absence of the strip is Aoy. In the presence of the strip it is Ao(yz+a2)+. The 
relative displacement is 

Ao[(y2+ a2)+-y]. 
At the strip this has the value Aoa. Solving the equation 

(yo2+a2)*-yo = 4 2 ,  (16) 
we obtain a distance yo = 3a/4 for the “half-displacement” point. 

3.2 The strain field 
The only strain components are 

ezz = @U2/ax = *do Im w(w2- a2)-&, (18) 
all other terms in the strain tensor are zero either because of the nature of the 
displacement vector or because of the two-dimensionality of the problem. 

On the plane y = 0, 

e,, = o 1x1 < a 
= -+Aox(x~-&)+ 1x1 > U. 

The first of these two expressions is consistent with the boundary condition (8). 
On the plane x = 0, eez = 0. Thus the surface x = o is a free surface. If 

we wish to consider the present problem as a model of displacement due to faulting, 
the surface x = o may be taken as the free surface of the Earth, and the crack 
y = 0, o < x < a, may be taken as the fault. The total relative displacement 
between the two sides of the fault is 2Aou at the surface of the crack. 

3.3 Energy loss by insertion of the crack 

vicinity of the crack. The energy in a medium having only shear strain is 
We can now inquire into the energy loss by reduction of the stress in the 

W = &A (curl U)Vw 
V s 

integrated over all space where dv is an element of volume and pis the shear modulus. 
Thus the energy difference between the two static states of strain is 

where A is the rotation in the case of the medium in the presence of the crack. 
It is at this stage that the value of the electrical analogy is fully appreciated. If the 
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Energy release in earthquakes 49 
value of A is inserted in equation (19) from the expressions for the potential given 
in equations (4) and (12), the integral to be evaluated diverges. That is to say, it 
leads to an infinite result when integrated over one coordinate and to a zero 
result when integrated over the other coordinate. T o  avoid this singular circum- 
stance two procedures are available and both draw heavily upon experience ob- 
tained in the corresponding electrical problem. Stratton (1941, p. I 18) shows that 
the integral of equation (19) may be modified and written in the form 

A W = i/.~ Ao2dV +&L (A0 - Al)'dv, (20) s 
V, 

V, s 
where Vo is the volume of a conductor inserted into the field and where V1 is the 
volume remaining after this insertion has taken place. A0 is the field distribution 
before the insertion of the conductor; A1 is the field distribution after insertion. 
In the present case A0 = (Ao, 0, 0)  and VO = o since the strip encloses no volume. 
V1 now occupies all space. Thus if dS is an element of area in the x-y plane, the 
energy difference per unit length" is 

where 

and 
AAz = Ao( I - Re w(w2 - a2)-*, 

AA, = A0 Im w(w2- @-a. 

It is now convenient to solve this problem in elliptical coordinates (Stratton, 
PP. 53-54). w e  let 

x = at7 (24) 

y = a ( p -  I)*(I -72)'. (25) 

The element of area is 

After much algebra 

Substituting these quantities into equation (zI), 

+ We use the notation W to represent total energy and E to represent energy per unit length. 
D 
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50 Leon Knopoff 

This integral is convergent. The result of the integration is 

AE = &rpAo2~2 (29) 
per unit length. 

The second technique of obtaining this result is to use the form of equation 
(19) where it is converted to an integral only over the volume of the inserted con- 
ductor. This expression is (Stratton, p. 113) 

where instead of inserting a conducting strip, we insert an elliptical cylinder into 
the region where the new cylinder has a shear modulus p‘ differing from that of the 
surrounding medium p. The field inside the cylinder, A is given by Smythe 
(P. 97) as 

A%’ = Ao(a+b)(a+bp’/p)-l 
(31) A,’ = Az’ = 0. 

The energy difference is 

since the field on the inside of the elliptic cylinder is uniform and parallel to the 
external field &. a and b are the semi-major and semi-minor axes of the cylinder. 
Now allowing the cylinder to become perfectly conducting by allowing the shear 
modulus p‘ to become infinite, 

AE = &r(a + b)aAoZp 

and finally allowing the cylinder to become infinitely thin, the energy necessary to 
insert the strip of width 2u is 

AE = &rdA$p 

per unit length in agreement with the result of equation (29). 

4. Application to the San Francisco earthquake, 1906 

(33) 

Let the San Andreas fault be represented by a plane verticaA crack of length L, 
of infinitesimal width, and of depth to the bottom of the crack a. Before faulting 
let the region be in a uniform shear field U = (0, 0, Aoy) and after faulting let the 
crack now represent a surface of zero shear stress. The surface of the Earth is the 
plane x = 0. The surface trace of the fault shows an offset s = zAw. The energy 
release is &rpA$a2L = ( 1 / 1 6 ) ~ p 2 L .  We neglect end effects due to the termination 
of the fault. For the values (Reid 1910, p. 22) p = 3 x Iolldyn/cm2, s = p,  
L = 435 km, we obtain the energy A W  = 4 x 1023 ergs. This figure must include 
both the seismic wave energy and the energy connected with non-elastic effects 
such as heat and plastic deformation. 

The displacement on the crack is a maximum at the surface of the Earth and 
falls to zero at the lower edge. Thus there is no discontinuity in the shear strain 
at the lower edge. 
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Energy release in earthquakes 5' 
The depth of faulting (i.e. the half-width a of the crack) can be obtained by 

fitting the triangulation observations (Hayford & Baldwin 1908, pp. 133-134) 
to the curve given in equation 15. Assuming, as Reid does, that the motion of the 
Farallon Islands represented a regional offset of the portion of the Earth's crust 
lying to the west of the fault, the 33 points to which the curve is to be fitted are 
tabulated in Table 2. We obtain, by a least squares technique, the curve 

Table 2 

Triangulation data for Sun Francisco Earthquake, I 906 
Number 

of 
Points 

I 0  

I 2  

3 

7 

I 

I 

Distance of 
Stations 
from fault 

1'5 km. 

2 '0 

4.2 

5 *8 

6 '4 

37' 

Average Displacement corrected 
Displacement for 

regional offiet 

1.54 m. I '54 m. 

2 '95 I '17 

0.86 0.86 

2.38 0 a 6 0  

0.58 0.58 

I 478 o (Farallon 1. station) 

where U,, is the offset in metres and y is the distance from the fault in kilometres. 
The plus and minus signs refer to the relative displacements on the two sides of the 
fault. To these values, the regional offset must be added for the stations west of 
the fault. The relative displacement at the fault is thus seen to be 4-5m compared 
to Reid's value of p referred to above. The depth to the bottom of the crack is 
now seen to be 3-2 km, a value considerably less than depths usually assumed for 
California earthquakes and for the San Francisco earthquake in particular. 

It should be noted that the model used here assumes a uniform shear modulus 
everywhere, including the material at great depth in the Earth, and including the 
region very close to the fault. 

Publication No. 90. 
Institute of Geophysics, 

University of California, 
U.S.A.: 

1957 September. 
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