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Abstract: With the prevalence of sensor-rich smartphones, Mobile Crowd Sensing (MCS) is becoming 
an emerging paradigm to perform urban sensing tasks in recent years. In MCS systems, it is important 
to minimize the energy consumption on devices of mobile users, as high energy consumption severely 
reduce their participation willingness. In this article, we provide a comprehensive review of energy 
saving techniques in MCS and identify future research opportunities. Specifically, we analyze the main 
reasons for energy consumption in MCS and present a general energy saving framework named 
ESCrowd that we use to describe the different detailed MCS energy saving techniques. We further 
present how the various energy saving techniques are utilized and adopted within MCS applications 
and point out to their existing limitations which inform and guide future research directions. 
1. Introduction 

Urban sensing is crucial in collecting real-time information and extracting community intelligence in 
a city, including environment information (e.g. air quality, noise), infrastructure status (e.g., missing 
manholes, broken streetlights) and city dynamics (e.g., traffic congestions, the flow of people), etc. 
Traditional urban sensing systems usually rely on specialized infrastructure (e.g., air quality monitoring 
stations, surveillance cameras), which requires a high cost in deployment and maintenance. With the 
prevalence of sensor-rich smartphones, Mobile Crowd Sensing (MCS) [1] becomes a promising 
paradigm, which leverages the mobility of mobile users, the sensors embedded in mobile phones and 
the existing communication infrastructure to accomplish urban sensing tasks. Compared to traditional 
infrastructure-based approaches, MCS can sense large urban regions less costly and more efficiently.  

As Fig.1 shows, in an MCS platform, there are mainly two roles: MCS organizer (or requester) who 
is the person or organization publishing, managing and coordinating the sensing task, and MCS 
workers (or participants) who are the mobile users collect and report sensing data through their mobile 
devices (e.g., mobile phone). The success of MCS depends on if the organizer can recruit large 
numbers of smartphone users as workers to collect mobile sensor data. One of the major concerns of 
the workers is the energy consumption when completing the MCS tasks, which is caused by the raw 
sensor data collection, local data analytics and data transmission to the cloud server. Energy 
consumption has a direct impact on the battery life of a worker’s smartphone. If the energy 
consumption of an MCS task is too high, it will severely reduce the mobile users’ willingness of 
becoming a crowd worker. Therefore, keeping the energy consumption burden placed on workers as 
low as possible is critical to the success of MCS [1,2]. 

In this article, we specifically focus on the energy saving techniques in MCS systems and provide a 
comprehensive review with future research opportunity. We first identify main reasons for energy 
consumption in MCS with key insights or observations. Then, we present the general energy saving 
technical framework by organizing the state-of-the-art studies according to different stages of MCS. 
Subsequently, detailed techniques in the above framework are introduced with the case study of some 
typical MCS applications. Finally, we list the research gaps with future research directions.  



 

Fig.1. Mobile crowd sensing: the basic idea and main roles 

2. Energy Consumption in MCS 

In this section, we first provide the preliminary for general MCS applications, and then present an 
anatomy of the energy consumption issues in MCS applications. 

2.1 Preliminary for Mobile Crowd Sensing 

In Fig.2, we present the typical functioning components of MCS applications, which follows the 
client-and-server architecture. In the client side (i.e., the phone side), raw sensor data are collected on 
devices and processed by local analytic algorithms to produce consumable data for applications. In 
the server side, the consumable data from multiple workers’ devices are sent to the cloud server for 
aggregation and mining. 

We take the MCS-based queue time estimation application named CrowdQTE [3] as an example to 
illustrate the above functionalities and architecture. CrowdQTE utilizes the sensor-enhanced mobile 
phone to monitor and provide real-time queue time information for various queuing locations. When 
people are waiting in a line, the phone side utilizes the accelerometer sensor data and ambient 
contexts to automatically detect the queueing behavior and calculate the queue time. In the server 
side, CrowdQTE organizes data from different phones in a given place (e.g., a specific supermarket) 
into data groups according to the sensing time, then eliminates noisy data from each group, and at last 
calculates the average of valid queue time/condition as the estimation. 



 

Fig.2 The architecture and main functioning components for an MCS application 

2.2 Energy Consumption in MCS: An Anatomy 

Finding main reasons for energy consumption in MCS and analyzing relevant characteristics helps 
us design appropriate strategies for energy saving. Thus, in this section, we present an anatomy for the 
energy consumption1 in MCS with technical challenges. Keeping the functionality of MCS system’s 
mobile phone side in mind, the energy is mainly consumed in the following aspects.  

• Raw Sensing Data Collection Consumption. Raw sensor data sampling is a major source of 
energy consumption in MCS systems. First, the energy efficiency varies dramatically from one 
type of sensor to another. This fact indicates that adopting more energy-efficient sensors can 
reduce the energy consumption in MCS data collection. Second, even for the same type of 
sensor, the data sampling rate has a big impact on the energy consumption. For example, 
different from general crowdsourcing tasks, MCS requires the workers’ physical presence at 
certain locations so that the continuous tracking of workers’ location always leads to high 
energy consumption. However, if we can adjust the sampling rate of localization information 
appropriately (e.g., only collect localization data when the workers are moving), the mobile 
phone’s energy consumption is significantly reduced. In summary, it is important to better 
control the energy consumption in data collection by taking both the type of sensors and 
sampling rate into account.  

• Localized Analytic Consumption. In many MCS applications, the raw sensing data should be 
processed in smartphones to infer higher-level contexts, which is called local analytic in this 
article. The local analytic sometimes brings considerable energy consumption to the mobile 
phone. For example, in an MCS-based queue time estimation system [3], various types of raw 
sensor data (e.g., accelerometer data, GPS locations, and acoustic data) are fused with 
complicated and energy-consuming algorithms to estimate the queuing status then calculate the 
current queue time of a certain location. Therefore, it is a challenge in designing an optimized 
local analytic mechanism to minimize the energy consumption while ensuring the basic 
functionality of the MCS application. 
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 Note that in this article we only consider the energy consumption issue for workers’ mobile phone without 

considering that for the cloud server. 



• Sensing Data Report Consumption. In MCS systems, the sensing data transferred from the 
mobile phone to the cloud server also serves as a major source of energy consumption. There 
are two key insights as follows. First, the type of communication infrastructures that an MCS 
system chooses is an important factor. Fig.3 shows energy consumption comparison of various 
communication infrastructures. For example, transferring data via the 4G/5G network is much 
more energy-consuming than others such as Wi-Fi and Bluetooth. However, these 
energy-efficient networks may not always available. Meanwhile, some MCS tasks require 
real-time data uploading. Therefore, it is a challenge in switching between different networks by 
taking both the application requirement and energy efficiency into account. Second, uploading 
data to the server with some opportunities (e.g., when users place the phone call or use 
applications) can significantly save energy consumption in data transferring. Thus, how to 
detect and take advantage of such opportunities is an important research issue.  

 

Fig.3 Relative view of energy consumption comparison for various communication 
infrastructures: minimum and maximum measurements. 

3. Energy Saving in MCS: Technical Framework 

The lifecycle of MCS consists of four stages, including sensing task assignments, sensing data 
acquisition & inference, sensing data transferring, and sensing data aggregation. In this section, we 
present the overview of state-of-the-art energy saving techniques as a general framework, named 
ESCrowd, which is organized in the perspective of different stages in MCS (see Fig.4). In the 
ESCrowd framework, corresponding techniques are adopted and integrated in each stage to reduce the 
energy consumption. Besides, Fig.4 also illustrates the types of energy consumptions (presented in 
section 2) that each technique can reduce (i.e., the arrow in Fig.4 liking the technique and the type of 
consumption).  

• Energy-aware task assignment. Reducing the number of recruited workers can save the 
overall energy consumption in MCS. Thus, in the task assignment phase, we can select a 
minimal number of workers while ensuring a predefined sensing quality [4,5]. As Fig.4 shows, 
the optimized task assignment approach will reduce overall energy consumption in MCS with 



less collected and uploaded data (i.e., reducing total sensing data collection consumption, total 
local analytics consumption, and total sensing data report consumption). 

• Energy-aware data acquisition & inference. For the raw sensing data collection, the energy 
consumption can be saved in the following ways: 1) utilizing energy-efficient sensors to replace 
traditional sensors that are more energy consuming [8]; 2) dynamically adjusting the sampling 
frequency [9,10]. For the local knowledge inference, techniques such as code offloading or 
remote execution [9] can be utilized to reduce the energy consumption in the smartphone. 

• Energy-aware data transferring. To reduce the energy consumption in sensing data report, 
there are commonly two ways: 1) using relatively low-power wireless networks [12,13]; 2) 
catching the opportunities to upload data when the mobile users place phone calls or use mobile 
applications [14].  

• Energy-aware data aggregation. The high spatio-temporal correlations exist in most urban 
data, e.g., air quality and noise, which provides the basis for high-quality missing data inference. 
Thus, we can select only a small portion of the target area for sensing while inferring the data 
of the remaining unsensed area with high accuracy on the server [15]. This strategy will reduce 
total energy consumption in the smartphone by minimizing the volume of data that needed to 
be collected and reported (i.e., reducing total sensing data collection consumption and total 
sensing data report consumption). 

 

Fig.4  ESCrowd framework overview 

According Fig.4, the energy saving techniques in four stages discussed in the paper are independent 
of each other. However, as implied in Fig.4, energy saving techniques in different stages and the type of 
saved energy are correlated with each other. For example, by using the energy-aware task assignment 
techniques, the total number of assigned tasks is minimized. In this case, both three types of energy 
consumption are saved. In contrast, the energy-aware data transferring only saves the sensing data 
report consumption. 



4. Detailed Techniques 

Section 3 presented the general technical framework for energy saving in MCS. In this section, we 
present some typical studies for each type of technique in this framework with more details.  

4.1 Energy-aware task assignment.  

In order to minimize the overall energy consumption of an MCS task, the research objective 
becomes keeping the energy consumption of each mobile device low and finding the minimal number 
of workers while ensuring a predefined sensing quality. For instance, to minimize the energy 
consumption, [4] proposed a framework to select a minimum number of workers while ensuring the 
required spatial-temporal coverage. The authors in [5] formulated a task allocation problem, whose 
objective is to maximizing k-coverage quality while minimizing energy consumption in MCS task 
allocation. The authors in [6] formulated another MCS task allocation problem, in which the objective 
is to maximize the task quality by given the limited overall energy consumption. The study in [7] 
develops a novel task allocation algorithm by considering the energy consumption, worker’ reputation, 
and budget limitation. 

The above energy-efficient MCS task assignment issues can be formulated as combinatorial 
optimization problems, which attempt to find an optimal solution from a large search space. Intuitively, 
it is easy to think of a brute-force approach, where it can estimate the utility of each possible 
combination so that the optimal one can be obtained. However, the formulated combinatorial 
optimization problems are usually NP-hard, thus the brute force approach is not acceptable when there 
are a large number of workers or tasks. Therefore, existing research works commonly design 
approximation allocation algorithms to achieve the near-optimal solution, and the general process for 
energy-aware MCS task allocation consists of two main components. (1) Utility Estimation: with the 
consideration of task quality and overall energy consumption, this component is for estimating the 
utility of a given set of workers. Usually, the estimation needs the understanding of the workers’ 
mobility pattern so that the historical mobility records profiling and mobility prediction are the basic 
components. (2) Searching Process: the heuristic searching algorithms are adopted to obtain a 
near-optimal solution.  

4.2 Energy-aware data acquisition & inference 

For the raw sensing data collection, the energy consumption is primarily incurred by the sensor itself. 
One possible way is to design novel method to use energy-efficient sensors to replace traditional 
sensors that are more energy to consume. For example, the authors in [8] introduce a novel sensing 
approach which lowers the power requirement for motion sensing by orders of magnitude. The key idea 
is that it uses an ultra-low-power method for passively sensing body motion using static electric fields 
to replace the traditional accelerometer-based methods. Besides, dynamically adjusting the sensing 
frequency (sampling rate) is another important way to reduce the energy consumption in data 
acquisition. Several studies have been proposed to dynamically adjust the sampling frequency to 
conserve power based on either the battery level or users’ movements. For example, the proposed 
methods in [9] detect users’ movements dynamically and adjust the sampling frequency accordingly. 
The key idea behind is that it is inefficient to keep collecting users’ location information when their 
locations have not changed. Thus, at the time when devices are stationary, the corresponding sensors 
should be shut down to save power until any motion is detected. The systems proposed in [10] consider 



how to schedule heterogeneous sensors (e.g., accelerometer, WiFi, and cell towers) to better manage 
the tradeoff between the energy efficiency and sensing data quality. 

For the local knowledge inference, techniques such as cloud offloading [11] can be utilized to reduce 
the energy consumption in the smartphone. For example, observing that in many sensing scenarios the 
location information can be post-processed when the data is uploaded to a server, the authors in [11] 
design a cloud-offloaded solution that allows a sensing device to aggressively duty-cycle its GPS 
receiver and log just enough raw GPS signal for post-processing. 

4.3 Energy-aware data transferring. 

To reduce the energy consumption in data uploading, on way is to use relatively low-power wireless 
networks methods, such as WiFi, to transfer data, instead of 3G/4G. The authors in [12] propose an 
MCS framework, in which data collection mainly depends on the data transmission among mobile 
workers via Bluetooth or WiFi, which significantly save the energy consumption. However, these 
networks may not always available, relying on the opportunities to connect with them often leads to 
delay. Therefore, the authors in [13] propose an MCS framework, named effSense. effSense adopts a 
distributed decision-making scheme to determine the timing and type of network to upload data, which 
consider both the delay tolerance and energy consumption. 

Another alternative for uploading data more energy-efficiently is catching the opportunities when the 
mobile users place phone calls or use mobile applications. One typical work is the Piggyback Crowd 
Sensing (PCS) [14], a system for collecting mobile sensor data from smartphones that lower the energy 
overhead of user participation. Their approach is to collect sensor data by exploiting Smartphone App 
Opportunities, that is, those times when smartphone users place phone calls or use applications. For 
example, [14] shows the energy consumption of microphone and GPS sensing with and without app 
usage at the same time, in which performing sensing while an app is in use requires 43% less 
CPU-related energy during the sampling operation. The reason why the energy cost of sensing can be 
significantly reduced at these times is that the required smartphone components (e.g., CPU or even the 
sensor itself) are already activated from an idle state. To efficiently use these sporadic opportunities, 
PCS builds a lightweight, user-specific prediction model of smartphone app usage, which is used to 
drive a decision engine considering the expected energy/quality trade-offs. 

4.4 Energy-aware data aggregation. 

Inference techniques can be used in aggregation phase to infer missing data from the collected. In 
this way, it will minimize the volume of data that needed to be collected and reported, which 
significantly reduce the total energy consumption in MCS. The authors in [15] propose a sparse MCS 
framework, which intelligently selects only a small portion of the target area for sensing while inferring 
the data of the remaining unsensed area with high accuracy on the server. Note that the data 
aggregation has to be considered together with the task assignment, and the following issues are 
addressed in [15]: 1) Missing-Data Inference: how to infer the missing data of the unsensed cells with 
high accuracy? 2) Optimal Task Assignment: how to select a minimum number of spatio-temporal cells 
for task assignment while ensuring the inferred data quality? To address the missing-data inference 
issue, the authors in [15] transform it into a matrix completion problem and adopt compressive sensing 
based approach to solve it. For the optimal task allocation, it allocates the task to the cells that has the 
highest uncertainty (e.g., largest variance on these inferred values).  



5. Energy Saving in Typical MCS Applications 

As this article gives a taxonomy of the various energy saving techniques, it is interesting to see how 
these techniques can are used be in various MCS applications or frameworks, and Table 1 presents such 
a comparison (Due to the limit in archival references, we give the name and sensing target description 
of the MCS application/framework, so that the readers can easily find the references online).  

First, we can see from Table 1 that the most widely adopted technique is the energy-aware data 
acquisition & inference (e.g., dynamically adjusting the sampling rate or using the low-power sensors) 
and data transferring (e.g., switching to the low-power network), and such techniques can be 
considered for different sensing targets. In fact, no matter what the sensing target is, MCS applications 
usually require the continuous reporting of mobile users’ location information, so that adjusting the 
sampling rate or using the low-power localization sensor should be one of the commonly adopted 
mechanisms. We still take the queue time estimation system CrowdQTE [3] as an example. In order to 
determine if a mobile user is currently located in a certain place, the phone side should continuously 
track each potential worker’s location, which will be quite energy-consuming. Therefore, CrowdQTE 
adopts the following mechanism. First, the system collects and stores the cell ID of each cellular tower 
in which the POI (point-of-interest) is located, and the geographical position of each cell tower. The 
phone-side application gets the current cell ID and calculates the distance between the current location 
and the target POIs. When the current location is far away (e.g., more than 5 KM) from any of the 
target POIs, the system conducts the above operation every 15 minutes. Otherwise, the cell ID based 
localization will be operated every 5 minutes. Second, when the system detects that the participant is 
near a POI, the localization switches to the Wi-Fi based approach. The system will calculate the 
similarity between the Wi-Fi fingerprint between current location and the target POI in this cell. If the 
similarity is less than a threshold, then it considers the participant is inside a specific POI. 

Second, we also notice from Table 1 that the energy-aware data aggregation is usually applied in air 
quality or temperature sensing, because the spatio-temporal correlation of such urban sensing data 
enables the missing data inference. Besides, energy-aware data aggregation and task assignments are 
usually jointly adopted, in which the task assignments collect the most informative sensing data and the 
aggregation phase infers the missing data based on the collected one. For example, CCS-TA [15] is 
MCS-based system which aim collect real-time temperature and air quality measurement in a large city. 
In this system, the city is divided into M subareas (e.g., 1km*1km per subarea) and the entire sensing 
period is divided into N equal-length cycles (e.g., one hour per cycle), thus a total of M*N 
spatial-temporal cells are constructed. The goal of CCS-TA is to obtain accuracy-guaranteed sensing 
data in each spatial-temporal cell. If it recruits worker to collect sensing data for each cell, the total 
energy consumption for the workers would be very high as the city is very large. In this case, it only 
collects the sensing data in the most “informative” cells and deduce the data in the rest ones where the 
sensor reading are not collected. 

 

 

 

 



Table 1  Comparison of Some Typical MCS Applications in Energy Saving 

MCS app & sensing target Energy-aware 

task assignment 

Energy-aware 

data acquisition 

& inference 

Energy-aware 

data transferring 

Energy-aware 

data aggregation 

PEIR (air quality)   ★   

BikeNet(air quality)  ★ ★  

CrowdRecruiter (air quality) ★  ★  

U-Air (air quality) ★   ★ 

CCS-TA (temperature) ★   ★ 

Nericell (road condition)   ★ ★  

CrowdQTE(queue time)  ★   

LineKing(queue time)  ★   

EarPhone(noise level)  ★ ★  

SoundofTheCity(noise level)  ★ ★  

Map++(semantic labeling)  ★   

 

6. Future Research Opportunities For Energy-efficient MCS 

Existing work has proposed various techniques to better control the energy consumption in MCS. We 
next highlight several directions for future research. 

• Jointly considering overall and individual consumption. The existing techniques for energy 
saving in MCS can be divided into two categories based on the objective: the Energy-aware 
task assignment and data aggregation aims at reducing the overall energy consumption of an 
MCS task, while the energy-aware data collection & inference and energy-aware data 
transferring aims at reducing the energy consumption for an individual crowd worker. However, 
to the best of our knowledge, the state-of-the-art research work studies the overall and 
individual energy saving issues separately. In real-world application scenarios, such separation 
has shortcomings. For example, it is not good task assignment solution if the overall energy 
consumption is minimized but some individual workers are assigned with too many tasks. In 
this case, the battery life of the overloaded workers’ mobile devices would become much 
shorter, which is likely to discourage their participation willingness or even make them quit the 
MCS task. We should jointly consider both the overall consumption and the load balance in 
individuals, together with other factors in MCS (such as coverage requirement, budget 
limitation, delay tolerance, etc.). 

• Handling opposing factors in energy saving. Existing work has proposed various techniques 
to keep the energy consumption in MCS as low as possible. However, there are some 
conflicting factors that need to be more carefully considered, that is, reducing one type of 
consumption may bring the extra consumption of another type. For example, there exists a 
conflict between the local analytics and data transferring, because offloading the code of local 
analytics brings the extra consumption in data transferring. In order to achieve the optimal 
energy efficiency, determining which part of the analytic process should be offloaded and 
which should not is the key research challenge. 



• Introducing more personalized mechanisms. Different workers have different preference or 
attitude towards the energy consumption issue. For example, some workers may prefer to 
charge their phone frequently in order to get more incentive rewards, while others only want to 
charge one time a day. Besides, the remaining battery is also an important factor with 
personalized patterns, because the energy would be consumed more severely when the 
remaining battery level is low. Thus, we need to learn the worker’s historical behavior in phone 
usage and predict the remaining battery level in future sensing cycles, which would be helpful 
in worker selection problems. For example, if we can accurately predict that the remaining 
batter of worker u in a sensing cycle (e.g., 6:00pm~7:00 pm), the task assignment algorithm 
would reduce the probability to select worker u in this cycle. 

• Sharing sensing data among multiple tasks. The objective of existing work is common to 
minimize the energy consumption of overall task or individual worker’s mobile device. 
However, with the popularity of MCS paradigm, the same worker usually undertakes multiple 
types of sensing task. Although the sensing phenomenon among these tasks is quite different, 
the required set of sensors usually has an intersection. For example, the queue time estimation 
task in [3] needs to use GPS, accelerometers, and microphones, while noise level monitoring 
task requires GPS and microphones. In this case, the GPS and accelerometers can be shared. 
Therefore, intuitively, sharing sensing data among multiple tasks can reduce the energy 
consumption. However, as different tasks have different requirements data quality and delay 
tolerance, how to jointly optimize multiple tasks with the energy consumption issue in mind is a 
research challenge (e.g., how to collaboratively schedule heterogeneous kinds of sensors). 

7. Conclusion 

In this article, we present a survey of energy saving techniques in mobile crowd sensing. Specifically, 
by organizing the state-of-the-art work in the perspective of the stages in MCS, we present a general 
energy saving techniques framework named ESCrowd. According to ESCrowd, various kinds of MCS 
energy saving strategies are introduced in details. In the end, we point out some future research 
directions that may make the MCS more energy-efficient. 
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