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Abstract—Cache memories have traditionally been designed to
exploit spatial locality by fetching entire cache lines from memory
upon a miss. However, recent studies have shown that often the
number of sub-blocks within a line that are actually used is low.
Furthermore, those sub-blocks that are used are accessed only a
few times before becoming dead (i.e., never accessed again). This
results in considerable energy waste since 1) data not needed by
the processor is brought into the cache, and 2) data is kept alive
in the cache longer than necessary.

We propose the Dead Sub-Block Predictor (DSBP) to predict
which sub-blocks of a cache line will be actually used and how
many times it will be used in order to bring into the cache only
those sub-blocks that are necessary, and power them off after
they are touched the predicted number of times. We also use
DSBP to identify dead lines (i.e., all sub-blocks off) and augment
the existing replacement policy by prioritizing dead lines for
eviction. Our results show a 24% energy reduction for the whole
cache hierarchy when averaged over the SPEC2000, SPEC2006
and NAS-NPB benchmarks.

I. INTRODUCTION

In recent years energy efficiency has become a key design

parameter in computer architecture. While the number of

transistors on a chip has been increasing rapidly, the total

power budget has not. Cache memories, while key to high

performance, consume a significant fraction of total chip

power [1]. As such, designing energy efficient processors starts

with efficient design of such power-hungry components.

Caches reduce average off-chip access latency by keeping

an application’s most used data on-chip. They have been

traditionally designed to exploit both temporal and spatial

locality. Temporal locality is exploited by replacement policies

(e.g., LRU replacement) while spatial locality is exploited by

multi-word cache lines. However, for today’s processors with

a fixed cache line size, energy innefficiency occurs on two

levels: 1) on a cache line level where a line is kept alive in

the cache much longer than after it is last touched, and 2) on

a sub-block level, when parts of a cache line which will never

be used are brought into the cache, and also when active sub-

blocks become dead after a few accesses but are kept alive

until the line is evicted.

Our experiments show that on average the time between

the last access to a cache line and its eviction is 40% of the

lifetime of the line (similar results were observed by [2]).

Looking at the sub-block level, on average only 56% of a

cache line is used (similar results were observed in [3], [4],

[5]). We make the new observation that 95% of sub-blocks

become dead after fewer than four accesses. This implies that

there exists considerable opportunity for energy savings in

traditional cache designs.

Prior work has made attempts at achieving these benefits

by, for example, predicting when a line is last accessed, and

then powering it off [2], [6]. In this paper we show that

doing so on a sub-block basis can significantly improve energy

savings in the cache hierarchy. In fact, by considering sub-

block usage patterns, our mechanism increases the potential for

energy savings compared to a perfect hypothetical mechanism

that turns off an entire cache line immediately after it is last

accessed.

To this end, we propose the dead sub-block predictor

(DSBP) to improve energy efficiency of cache memories.

DSBP uses recent history information to predict which sub-

block(s) will be useful and how many accesses each sub-block

will receive before it becomes dead. DSBP’s main goal is to

reduce dynamic and static energy consumption by bringing

only useful sub-blocks into the cache, and also by turning

off active sub-blocks after their predicted number of accesses.

We also use DSBP to improve the existing cache replacement

policy by prioritizing dead lines (i.e., lines with all sub-blocks

turned off) for eviction. We find that this policy effectively

offsets the additional cache misses DSBP may cause when it

mispredicts the usage pattern of a cache line.

The main contributions of this paper are:

Sub-block usage predictor: We present a mechanism to

predict and allocate only the useful sub-blocks of each cache

line. Unlike prior work, which requires an access to the

prediction table after each cache line access, we access the

predictor structure only when the mechanism is training a new

usage pattern. On average, our mechanism accesses its global

structure on only 60% of the cache memory accesses.

Dead sub-block predictor: Our mechanism also predicts

when each sub-block inside a cache line becomes dead. To

our knowledge, this is the first paper that acts on a sub-block

level, turning off dead sub-blocks and saving 20% energy on

average per cache level compared to a traditional cache design.

Earlier eviction of dead lines: Our mechanism improves the

cache replacement algorithm. The sub-block predictor gives

feedback to the replacement algorithm by introducing dead

lines as future victim lines as soon as they become dead. This

reduces cache line misses by 5%.



Summary of Evaluations: We evaluate our dead sub-block

predictor design on a cache hierarchy consisting of a 32KB L1,

256KB L2, and a 2MB L3. We run the SPEC2000, SPEC2006,

and NAS-NPB [7] benchmarks and find that DSBP reduces

energy consumption of the cache hierarchy by 24% on average

compared to the baseline (without any dead line predictor in

any cache level), and by 5% compared to a technique that

turns off dead lines as predicted by a state-of-the-art dead

block predictor [6].

II. MOTIVATION

We present an example illustrating the need for sub-block

level cache management, and we also present statistics about

cache line usage for different single threaded benchmark

applications. The results are based on experiments running

SPEC2000, SPEC2006 and NAS-NPB [7] with a 32KB L1

cache, 64 byte line size, and 8 byte sub-block size. Further

simulation details can be found in Section V.
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Fig. 1. Scenario with low cache sub-block usage.

During program execution, cache lines typically have low

sub-block usage, as in the case illustrated in Figure 1 where

a program streams through a list of records. Each record

contains several fields and occupies 64 bytes as shown in

Figure 1(a). The program is searching for a specific value

in the ID field of each record, and therefore only that field

is accessed by the processor. However, traditional caches will

bring in all fields of each record as shown in Figure 1(b).

Only the sub-blocks which store the ID field are useful, while

the other sub-blocks remain unused until the line is evicted,

resulting in considerable energy waste.

Figure 2 shows how cache lines are used at the sub-block

granularity for the L1, L2 and L3 caches across multiple

benchmark suites. For example, looking at the leftmost bar,

one can see that 50% of L1 cache lines were evicted with only

one sub-block accessed (for SPEC2000 integer). The average

number of sub-blocks accessed in a cache line for each suite

is presented at the top of each bar. We can therefore conclude

that a significant number of cache sub-blocks that are brought

into the cache are never used, thereby wasting cache energy,

capacity and bandwidth.

Figure 3 shows the number of accesses a sub-block receives

before it is evicted from the L1, L2 and L3 data caches. Each

stacked bar represents the number of accesses accumulated

on each sub-block when a line was evicted. The figure shows

that on average for the L1 data cache, 45% of sub-blocks are

never used, and about 50% of sub-blocks are used between

one and three times. This once again shows opportunity for

energy savings. Sub-blocks that are never used should not be

brought into the cache. Furthermore, most of the active sub-

blocks can be powered off after just a few accesses, saving

even more energy. This holds true for the lower level caches

(L2 and L3) as well.

Figure 4 shows the potential for static and dynamic energy

savings by presenting results for three oracles implemented on

the L1: 1) An oracle dead line predictor which saves leakage

power by turning off cache lines as soon as they are last

accessed. 2) An oracle unused sub-block predictor which saves

both leakage and dynamic power by never bringing and never

turning on unused sub-blocks into the cache. 3) An oracle dead

sub-block predictor, which does everything oracle 2 does and

in addition powers off active sub-blocks as soon as they are last

accessed. The results are normalized to a baseline without any

dead line predictor. Note that these oracles operate without the

use of any additional prediction structures (i.e., they consume

no additional energy and can only save energy) and therefore

truly represent ideal scenarios.
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Fig. 4. Potential for L1 cache energy savings for three oracle predictors.

Oracle 1, the dead line predictor, effectively reduces cache

energy (37% on average) by turning off dead lines as soon as

possible. However, its effectiveness is limited by the fact that

it operates only at a cache line level. Oracle 2, the unused sub-

block predictor, also saves energy (by 21% on average) but not

as much as oracle 1 since it does not power off cache lines or

sub-blocks once they have been installed in the cache. Also

note that oracle 2 is more effective on integer benchmarks than

floating point benchmarks. This can be explained by the fact

that the cache line usage for floating point workloads is very

high as shown in Figure 2, and therefore not much is achieved

by simply not bringing unused sub-blocks into the cache for

these workloads. Oracle 3, the dead sub-block predictor which

subsumes the two previous oracles and in addition turns off

active sub-blocks once they are dead, most effectively reduces

cache energy (by 55% on average). These results show that

significant energy reduction can be achieved by operating at

the sub-block level.
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Fig. 2. 64B Cache line usage on 8B sub-block granularity.
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Fig. 3. Accumulated sub-block accesses before the corresponding cache line eviction.

III. THE DEAD SUB-BLOCK PREDICTOR

This paper proposes the Dead Sub-Block Predictor (DSBP)

for detecting when a given cache line sub-block is dead (i.e.,

will not be accessed again). We use recent history information

stored in a pattern history table to predict usage patterns.

Traditional gated VDD circuit techniques [8] are used to power

off sub-blocks once they are predicted to be dead to save

energy.

Figure 5 shows a traditional sector cache architecture [9],

and the additional cache metadata and Pattern History Ta-

ble (PHT) required by our mechanism. The sector cache

containing tag and data arrays in the left part of the figure

shows how cache lines are divided into sub-blocks. The cache

metadata contains information to guide our predictor. Each

cache metadata line includes the following fields: 1) sub-block

usage counters to store the number of accesses the sub-block

is predicted to receive before it becomes dead, 2) a set of

overflow bits to indicate if the predicted number of sub-block

accesses exceeds the maximum value the usage counters can

hold. If set, the sub-block will remain powered on until the

line is evicted, 3) a train flag to indicate if accesses on that

specific cache line should update the pattern in the PHT, and

4) a PHT Pointer linking a cache line to its respective entry

in the PHT.

The Pattern History Table is used to store previous sub-

block usage patterns. It is indexed by the program counter

(PC) of the load/store instruction that caused the cache miss

and the requested cache line offset (byte within the line) of

the miss address. The key observation behind using the PC

along with the line offset as the index is that a given sequence

of memory instructions often times accesses the same fields

of a record (see the example in Figure 1 Section II). Although

different instances of a record may have different offsets within

the cache line, the number of different offsets of an instance

is bounded [4] [3] [10]. Therefore, the PC-offset combination

provides a high coverage of patterns even with moderately

sized PHTs.

Each entry in the PHT includes: 1) a Pointer flag indicating

that some cache line has a pointer to that specific PHT entry,

2) a valid flag indicating if the entry contains valid data, 3) a

set of usage counters and 4) Overflow bits. The usage counters

and overflow bits are identical to those in the cache metadata

and as you will see are copied from the PHT to the metadata

as our mechanism operates.

The main operations performed by the mechanism during

cache accesses are:

Cache Line Miss: The PHT is searched for an entry matching

the PC and offset of the instruction that caused the miss.

For a PHT hit, the mechanism will copy the PHT’s usage

counter and overflow bits into the cache metadata and only

the sub-blocks predicted to be used are fetched and stored

into the cache line. The pattern in the PHT is kept intact. If

the PHT entry indicates that no other pointer exists to that

entry (pointer flag field zero), the new cache line is linked to

the PHT pattern. In the case of a PHT miss, the train flag is

set, and all usage counter and overflow bits are reset in the

cache metadata. The PHT will reset all the usage counter and

overflow bits and evict the LRU entry to make room for a new

pattern. A PHT pointer is created linking the cache metadata

and the new entry. Since the train flag is set, subsequent

accesses to this line will update the usage counters in the PHT.
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Fig. 5. Cache architecture including cache line sub-block metadata and the Pattern History Table.

Cache Line Hit and Sub-Block Hit: If the train flag is

disabled, the sub-block usage counter in the metadata is

decremented and the sub-block is turned off if its usage

counter and overflow bit are zero. The PHT will be updated

only when the train flag is enabled.

Cache Line Hit and Sub-Block Miss1: The requested sub-

block will be brought inside the cache line and its overflow bit

will be set. If the cache metadata has a valid pointer to a PHT

entry, then the mechanism will increment the corresponding

usage counter in the PHT entry.

Cache Line Eviction: If the cache line contains a valid link to

a PHT entry, the flag which indicates that a valid pointer exists

must be disabled in the PHT. Also, if any of the usage counters

in the metadata are non-zero (indicating that the corresponding

sub-block was accessed fewer than the predicted number of

times) the corresponding usage counters in the PHT entry are

updated by decrementing each counter by the non-zero value.

A. A Working Example

Figure 6 illustrates how DSBP learns and predicts based on

previous usage. In the piece of code present in Figure 6(a), the

program is streaming through a list of records of 64 bytes each,

but is accessing only a single field of the record. Therefore,

just the sub-block starting from the offset value 16 is being

loaded to a register. For this example, the cache and PHT are

initially empty.

Figure 6(b) presents the state of the cache, metadata, and

PHT after the first iteration of the loop. Since there was no

matching entry in the PHT, a new PHT entry is allocated, the

valid bit is set, all the usage counters and overflow bits are

reset, and since no other pointer exists to that PHT entry, a new

pointer will be stored in the cache metadata and the pointer

flag in the PHT entry is set. Because no previous pattern was

available for the prediction (i.e., PHT miss), all sub-blocks are

brought into the cache line. The train flag is also set in order

to capture all the subsequent access to that line and learn the

usage pattern.

Assume that a single access was made to the 3rd sub-

block, the corresponding usage counter in the PHT entry is

incremented to one.

Figure 6(c) shows a cache miss and this time, the predictor

probes the PHT and finds a matching entry. The usage bits

indicate that only the 3rd sub-block will be used, and therefore

only a single sub-block will be brought into the cache. Since

the PHT pointer flag is already set, no new pointer will be

1The term “sub-block miss” applies to the situation where the cache line
is present in the cache (i.e., a matching tag is found), but the requested sub-
block is not. This is in contrast to a “cache line miss” where no matching tag
is found (i.e., the entire line is not in the cache)

generated. After the mechanism copies the usage counters and

overflow bits to the metadata, the data can be used. Once the

sub-block is used, the usage counter will be decremented to

zero and the sub-block will be turned off. Subsequent loop

iterations would operate in exactly the same way.

B. Augmenting the Cache Replacement Policy

We also use our mechanism to improve the traditional LRU

cache replacement policy by prioritizing lines with all sub-

blocks powered off for eviction. If a line has all sub-blocks

powered off, that means our predictor has identified this line as

dead (i.e., will not be accessed again). Evciting dead lines early

before they actually become victim (being at the LRU position)

can reduce the cache miss ratio by letting the not-dead lines

stay longer in the cache. This also offsets the additional sub-

block misses our predictor may cause when it underpredicts

the usage pattern of a cache line.

C. Implementation on Multiple Cache Levels

Our mechanism operates at the sub-block level and therefore

implementing our predictor on first level caches is straightfor-

ward since requests from the processor are also made at the

sub-block level. However, next level caches receive requests

from the previous level at a cache line granularity. Therefore,

in order to implement our mechanism on systems with multi-

level cache hierarchies, miss requests must be forwarded from

one level to the next on a sub-block granularity. This also

implies that our mechanism can be applied to a cache level

only if applied to all previous levels. For example, in a 3-level

cache hierarchy, we could apply our mechanism to just the L1,

both the L1 and L2 but not the L3, or all three levels.

IV. RELATED WORK

Previous work has introduced several line usage predictors

and dead line predictors which were applied to problems such

as reducing static energy consumption, prefetching, and cache

pollution among others.

A. Line Usage Predictors

Chen et al. [4] proposed a Spatial Pattern Predictor (SPP)

to predict cache line usage patterns. The mechanism uses

the program counter (PC) and the referenced data offset to

correlate historical data about line usage in order to predict

future usage patterns of L1 cache lines. The goal of this

technique is to reduce leakage energy by bringing into the

cache just those sectors predicted to be useful. The authors also

introduce a prefetching technique to bring only the predicted

spatial patterns for contiguous groups of up to 512 bytes. SPP

also implements a similar sectored cache with metadata to
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Fig. 6. Working example of DSBP

store cache line usage. However, unlike our predictor, SPP

requires a PHT access for every cache access, and it only

predicts if a given sub-block will be used or not but does not

predict when active sub-blocks become dead.

One may think that line usage predictors like SPP [4]

could be easily extended in order to start predicting dead-sub

blocks. We extended SPP to do just that. However, our results

show that DSBP performs on average 10% better in terms of

energy reduction than the adapted SPP. Moreover, the adapted

SPP increases total cache misses on all cache levels by 20%

on average compared to the baseline without any predictor.

This increase in total cache misses causes a 9% increase in

execution time. The reason why the adapted SPP achieved

poor results is because it uses an algorithm that resets the old

pattern and starts a new one every time a new cache line comes

into the cache so the new patterns can be learned quickly.

However, this allows multiple PHT pointers to the same PHT

entry to simultaneously exist and therefore incorrect patterns

are recorded more frequently.

Our study performs better than previous work by tackling

the energy consumption problem on all levels of the cache

hierarchy, and not only predicts which sub-blocks should be

brought into the cache, but also when active sub-blocks be-

come dead. Moreover, DSBP reduces the number of accesses

to the PHT by updating it only when a new pattern is detected.

B. Counter Based Dead Line Predictor

Kharbutil et al. [5] presented two counter-based mechanisms

(AIP and LvP). The paper indicates that the Live-time Predic-

tor (LvP) delivers higher accuracy with less complexity. LvP

records the number of accesses to a cache line and predicts

the line as dead when the access counter reaches a certain

threshold. The mechanism uses a hash of the PC which caused

the cache miss to index into a table that stores the history

of the number of accesses to previously evicted lines. The

mechanism is used to identify dead lines early, and also to

bypass dead-on-arrival cache lines.

C. Trace Based Dead Line Predictors

Lai et al. [11] [12] introduced the Last-Touch Predictor

(LTP) which uses an execution trace to predict the last touch

to a cache line. The mechanism generates a signature based on

a trace of instructions that access a cache line. By matching

current signatures with previously stored signatures that lead

to dead cache lines, the mechanism can predict when a given

line becomes dead. The goal of this work is to allow the lines

to self-invalidate when their last access is detected. Each cache

line is augmented with 2 extra fields, one to store the signature,

and the other is a single bit indicating whether the line is

predicted dead or not.

Kahn et al. [13] proposed a Skewed Dead Block Predictor

(SDP) to predict dead lines and used these lines as a virtual

victim cache. This skewed predictor is very similar to the LTP

mechanism, but uses two global tables indexed by different

hash functions to reduce the impact of conflicts between them.

D. Time Based Dead Line Predictors

Kaxiras et al. [2] presented a cache decay mechanism which

uses theories from competitive algorithms to create a time-

based strategy. They exploit long dead periods by turning off

cache lines during such periods. This approach aims to reduce

leakage power dissipated by the cache. Once the algorithm

indicates that a decay interval on the order of thousands of

cycles arrives, a hierarchical counter mechanism is adopted to

reduce the bits required for the counters per cache line.

Abella et al. [6] introduced the Inter-Access Time per

Access Count (IATAC) mechanism to predict and turn off

dead lines with the objective of reducing L2 cache leakage

energy. This mechanism predicts a cache line to be dead

when it detects that the line has not received any accesses

for a period greater than the average time between different

accesses. The mechanism keeps track of the average time

between accesses in a global table. To implement this, each

cache line is augmented with a decay counter which is updated

every 1000 cycles and therefore requires an extra adder or

finite state machine for every cache line. We conservatively



TABLE I
BASELINE SYSTEM CONFIGURATION.

Out-of-Order 96-entry reorder buffer; 32-entry load-store queue;
Execution 12 stages; fetch/decode/retire up to 4 instructions,

Core issue/execute up to 8 micro instructions;

Branch Fetch up to 2 branches; 4K-entry BTB;
Predictor 64K-entry PAs predictor;

L1 I and D: 32KB, 8-way, 2-cycle;
On Chip L2:256KB, 8-way, 5-cycle; LLC:2MB, 16-way, 12-cycle;
Caches 64B line size; 8B sub-block size (8 sub-blocks per line);

LRU replacement policy;

On-chip DRAM controller, Open-row;
DRAM 8 DRAM banks, 4KB row buffer per bank;
and Bus Row-buffer hit: 60-cycle, conflict: 180-cycle;

8B-wide core-to-memory bus at 4:1 frequency ratio;

model this overhead as 3% of total cache energy in our

evaluations.

We show that our dead sub-block predictor presents better

opportunities for energy savings than conventional dead line

predictors. The presented results show that DSBP outperforms

previously proposed dead line predictors since it operates

at the sub-block level. Moreover, DSBP is suitable to be

implemented on all cache levels and does not suffer from

negative interference when applied to all cache levels like other

proposals do. DSBP also does not require the high overhead of

previous proposals which constantly update counters for every

cache line.

V. METHODOLOGY

A. Simulation Environment

We use an in-house cycle-accurate x86 processor simulator

for our evaluation. Table I shows the baseline configuration

for the processor, cache memory and main memory system.

For our evaluation, we use a total of 64 benchmarks

from 3 different suites: all (12 integer and 14 floating-point)

benchmarks from SPEC 2000 suite, all (12 integer and 17

floating-point) from SPEC 2006 suite, and all except DC (9)

from NAS-NBP-3.3.1 [7] suite. The SPEC benchmarks were

run using reference input set, and NAS-NBP using size A

input set. Each benchmark was run for 200M representative

instruction slice which was selected with Pinpoints [14]. All

benchmarks were compiled for x86-64 using GCC 4.6.3 or

GFORTRAN 4.6.3 with the -O3 option.

B. Modeling Energy Consumption

In order to improve the energy consumption at a finer

granularity than current cache memories, we turn off sub-

blocks from the cache line using gated VDD circuit techniques

as in [8]. Gated VDD techniques use a transistor to gate the

supply voltage (VDD) of the cache SRAM cells. Previous work

reports that the transition delay of turning on a gated-ground

transistor shared by a 16 byte sub-block is only 0.20 ns (i.e.,

one clock cycle in a 5 GHz microprocessor) [4]. Therefore, we

assume our 8-byte sub-blocks can be powered on in a single

cycle. Furthermore, this single-cycle latency can be hidden

since a sub-block can be powered on while the data being

requested is fetched from the next level in the cache hierarchy.

In order to model the dynamic and static energy savings

due to dead sub-block prediction, we model both the base-

line cache architecture and our proposed mechanism with

CACTI 6.5 [15] at 45 nm technology. To take into account

a sector cache memory, we model a cache with 8 sectors

(i.e., sub-blocks) and the additional bits required to control

the sub-blocks. Since our proposed mechanism requires extra

metadata, the cache lines were also modeled with the extra bits

necessary to support the usage counters, the overflow bits, the

learn flag and the PHT pointer. After modeling the 8 sub-

blocked cache with all the metadata, the CACTI power model

was used to compute the access energy and leakage when all

sub-blocks are enabled.

To compute the energy when just part of the cache line

is turned on, we modeled cache architectures with the same

number of lines but fewer 8-byte sub-blocks (from 1 to 7 sub-

blocks). The energy consumed by these smaller cache lines

is used to model the energy consumption when just a few

sub-blocks in the cache line are enabled.

Gated VDD techniques require a 3% area overhead on the

data array [8]. In order to model this overhead, two extra

bytes (3.1% of line size) were added to the cache line in our

mechanism’s cache tag as the VDD technique overhead.

Turning off sub-blocks inside the cache line can help

reduce the heat from the cache memory sub-system, which in

turn reduces leakage energy[16]. However, the heat reduction

benefits of our mechanism are not modeled in this work.

VI. RESULTS: PREDICTOR MECHANISM EVALUATION

TABLE II
STORAGE OVERHEAD OF THE EVALUATED PREDICTORS.

Predictor Cache Cache Predictor Total
Mechanism Level Metadata Structure Size

L1† 2 KB 2 KB (512 entries) 4 KB
SPP L2 16 KB 2 KB (512 entries) 18 KB

L3 64 KB 2 KB (512 entries) 66 KB

L1 1.1 KB 40 KB (65536 entries) 41.1 KB

LvP L2† 9 KB 40 KB (65536 entries) 49 KB
L3 36 KB 40 KB (65536 entries) 76 KB

L1 1 KB 8 KB (32768 entries) 9 KB

LTP L2† 8 KB 8 KB (32768 entries) 16 KB
L3 32 KB 8 KB (32768 entries) 40 KB

L1 1 KB 8 KB (32768 entries) 9 KB

SDP L2† 8 KB 8 KB (32768 entries) 16 KB
L3 32 KB 8 KB (32768 entries) 40 KB

L1 1.9 KB 72 B (32 entries) 2 KB

IATAC L2† 19 KB 72 B (32 entries) 19 KB
L3 76 KB 72 B (32 entries) 76 KB

L1† 3 KB 3.1 KB (512 entries) 6.1 KB

DSBP L2† 24.5 KB 3.1 KB (512 entries) 27.6 KB

L3† 98 KB 3.1 KB (512 entries) 101.1 KB

† Indicates which cache level the mechanism was originally proposed.

Previous research predicts cache usage patterns or when a

cache line becomes dead. To evaluate our mechanism, we

implemented the following existing predictors: Cache line

usage predictor: SPP [4]. Dead line predictors: LvP [5],

LTP [11], [12], SDP [13], IATAC [6]. These predictors were

proposed to be used for bypassing dead lines or prioritizing

them for eviction. However, in our evaluations we extend their
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Fig. 7. Total energy consumption of the cache sub-system normalized to the baseline.

use to power off the cache lines predicted to be dead. For a

more detailed explanation of each predictor, see Section IV.

The Dead Sub-Block Predictor (DSBP) evaluated in this

paper uses a 512-entry PHT organized as an 8-way set asso-

ciative cache. For the cache metadata described in Section III,

we used 2-bit usage counters per sub-block. Table II shows

the total storage overhead for the predictors evaluated in this

section broken down into cache metadata storage, and global

predictor table storage for each cache level. Despite requiring

the second most storage (134 KB total across all 3 levels),

DSBP saves the most energy due to very accurate usage pattern

prediction, and relatively rare updates to the PHT.

The LvP predictor is the most costly in terms of storage

(166 KB for all 3 levels) but is not as accurate as our mech-

anism since LvP’s global prediction table is indexed using a

hash function which creates some conflicts. The SPP, LTP and

SDP predictors use even less storage but these mechanisms

require an access to their global prediction tables every time a

cache line is accessed or evicted. Therefore, these predictors

consume more dynamic energy compared to our mechanism

due to these extra accesses. Compared to the IATAC predictor,

our mechanism only updates cache line metadata when that

line is accessed whereas IATAC updates metadata for all cache

lines every 1000 cycles consuming more dynamic energy.

A. Energy Savings

Figure 7 presents total energy consumption for each pre-

dictor. The results are shown when the predictors are applied

to each cache level in isolation (if applicable), and also when

applied to multiple levels.

Among the previous work, IATAC, LTP and SDP mech-

anisms achieve the best results (energy reduction of 19%,

15% and 15% respectively) when the mechanism is applied in

isolation to the L3. However, the energy consumption actually

increases when applied to multiple levels. For example, the

IATAC predictor increases energy by 20% (compared to the

baseline) when applied to all cache levels. The reason for this

is that IATAC’s algorithm does not work well for L1 caches

and the mispredictions that occur in the L1 trickle down to

the next level caches and destroy their prediction accuracy

as well. This negative interference between multiple cache

levels destroys the energy saving benefits that occur when the

mechanism is applied in isolation.

The LTP and SDP predictors use a cache line access signa-

ture to predict when a line becomes dead. When implemented

in isolation on the L2 or L3 cache, many accesses are filtered

out by the L1 and therefore the signatures remain mostly

unique. However, when implementing these predictors on the

L1 cache, no filter exists and therefore there are many more

accesses to each cache line. This results in signature conflicts

which in turn reduces the prediction accuracy and makes these

mechanisms unsuitable for L1 caches.

The SPP predictor results show a slight energy increase due

to the high associativity of its PHT. LvP reduces energy but

not by as much as the other predictors due to a high number

of conflicts in the global prediction table.

Finally, DSBP outperforms all of these previous proposals

in terms of energy savings. It improves by 5% even the best

result obtained with IATAC. DSBP is most effective because 1)

it powers off data stored in the cache at the sub-block level,

and 2) it does so with relatively few updates to its global

prediction table (i.e., the PHT).

B. Performance Impact

As shown in the previous section, successfully predicting

dead sub-blocks can significantly reduce cache energy con-

sumption. However, incorrect predictions may introduce a

negative impact on cache performance and actually increase

energy consumption due to extra cache sub-block misses.

Figure 8 shows the total number of cache misses normalized

to the baseline cache architecture.

The result bars shown in Figure 8 are broken down into

cache line misses and sub-block/extra misses. Cache line

misses are accesses where no matching tag entry was found

in the cache (i.e., the entire line is not present in the cache).

Sub-block misses occur when the requested tag is present in

the cache, but the requested sub-block is not available. Note

that true sub-blocks misses can only occur for DSBP and SPP

since they are the only mechanisms that operate at the sub-

block level. For the other mechanisms, it is still possible for

an access to have a matching entry in the tag but that the

entire line in the data store is powered off. We call such

accesses extra misses since they only happened because the

mechanism incorrectly identified a line as dead and powered

it off prematurely.

Figure 8 shows that DSBP reduces the number of cache

line misses since it augments the existing replacement policy

by prioritizing dead lines for eviction. This reduction offsets

some of the additional sub-block misses DSBP causes due to

under predictions (especially for the L3). Even though DSBP

slightly increases the total number of misses compared to the

baseline, the cache miss ratio is increased by less than 1%

(even for the L1 cache). Overall DSBP preserves the level

of performance that the baseline provides while significantly

reducing cache energy.

Figure 9 shows a comparison of normalized execution time
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Fig. 9. Normalized execution time.

for the simulated mechanisms. The execution time correlates

well with the number of misses in the last level cache since

these misses are the most costly in terms of latency. Sub-

block extra misses introduced by the L1 and L2 predictors

can be serviced by the last level cache with minimal impact

on execution time.

As mentioned before, DSBP has a negligible impact on

system performance (less than 1%). This is because the

additional sub-block misses DSBP may cause are largely offset

by the improved replacement policy DSBP offers.

VII. CONCLUSIONS

To our knowledge, our Dead Sub-Block Predictor (DSBP)

is the first proposal to exploit dead cache line prediction at

the sub-block granularity. DSBP is used to reduce energy

consumption in the cache sub-system by loading into the cache

only those sub-blocks predicted to be useful, and turning off

active sub-blocks as they are predicted dead. In addition, the

LRU replacement policy is augmented by prioritizing dead

lines for eviction. This modification reduces the number of

dead lines that remain inside the cache which leads to better

utilization of cache space.

The results in terms of energy consumption shows signif-

icant improvement of 24% on average for the whole cache

hierarchy compared to the baseline. The execution time had a

negligible impact of less than 1% degradation.

We also have future directions for this work. Dead-on-

arrival lines can be filtered with bypassing algorithms using the

information available from our predictor. Also, our mechanism

can be used to design prefetchers that bring into the cache

only those sub-blocks that are predicted to be useful thereby

decreasing the bandwidth demand of systems that employ

aggressive prefetching.
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