
IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MONTH 2004 1

Energy Scalable Universal Hashing
Jens-Peter Kaps,Student Member, IEEE,Kaan Yüksel,Student Member, IEEE,and Berk Sunar,Member, IEEE

Abstract— Message Authentication Codes (MACs) are valuable
tools for ensuring the integrity of messages. MACs may be built
around a universal hash function (NH) which was explored in
the construction of UMAC. In this paper, we use a variation
on NH called WH. WH reaches optimality in the sense that it
is universal with half the hash length of NH and it achieves
perfect serialization in hardware implementation. We achieved
substantial power savings of up to 59% and a speedup of up
to 7.4 times over NH. Moreover, we show how the technique
of multi-hashing and the Toeplitz approach can be combined to
reduce the power and energy consumption even further while
maintaining the same security level with a very slight increase
in the amount of the key material. At low frequencies the
power and energy reductions are achieved simultaneously while
keeping the hashing time constant. We developed formulae for
estimation of the leakage and dynamic power consumptions as
well as the energy consumption based on the frequency and
the Toeplitz parameter t. We introduce a powerful method for
scaling WH according to specific energy and power consumption
requirements. Our implementation of WH-16 consumes only
2.95 µW at 500 kHz. It can therefore be integrated into a self-
powered device.

Index Terms— Universal hashing, provable security, message
authentication codes, scalability, low-power, low-energy.

I. I NTRODUCTION

COMPUTING technology is reaching every corner of
our lives. Mobile communication, personal computation

(e.g. personal digital assistants: PDAs), and portable navigation
devices are just a few examples of the most commonly
known applications. Recent advances in ultra-low-power tech-
nology enabled the development of even smaller, more mobile,
autonomous devices. Piconet [1], RFIDs [2], and “Smart
Dust” [3] are a few examples of this trend. Common to all
these devices is that they communicate wirelessly and their
energy source is extremely limited. Batteries for these devices
are tiny and can supply10 µW for only one day [3]. Moreover,
some of these technologies collect energy from environmental
sources, such as light, heat, noise, or vibration usingpower
scavengers. Scavengers based on micro-electromechanical sys-
tems (MEMS) produce around8 µW [4] relying solely on
ambient vibration. A major application of this technology is
distributed sensor networks.

Protecting the integrity of data is of utmost importance for
many application scenarios. For example, smart dust motes
that are embedded in a bridge could monitor the stress and
inform the authorities in case of emergency. Wireless sensors

This material is based upon work supported by the National Science
Foundation under Grants No. ANI-0112889 and ANI-0133297.

J.-P. Kaps and K. Yuksel are with the Worcester Polytechnic Institute, Elec-
trical and Computer Engineering Department, 100 Institute Rd., Worcester,
MA 01609. E-mail: kaps@wpi.edu and kyuksel@wpi.edu.

B. Sunar is with the Worcester Polytechnic Institute, Atwater Kent Room
216, 100 Institute Rd., Worcester, MA 01609. E-mail: sunar@wpi.edu.

might monitor plant growth, moisture and PH-value on a farm.
In both cases the data is not confidential but its authenticity
and integrity are very important. For this purpose, efficient
Message Authentication Codes(MACs) [5] may be preferable
over digital signature schemes [6] due to their high encryption
throughput and short authentication tags. A disadvantage for
both digital signature schemes and traditional MACs is that
they provide only computational security. This means that an
attacker with sufficient computational power may break the
scheme. More severely, the lack of a formal security proof
makes these schemes vulnerable to possible shortcut attacks.

Universal hash functions, first introduced by Carter and
Wegman [7], provide a unique solution to the aforementioned
security problems. Roughly speaking, universal hash functions
are collections of hash functions that map messages into short
output strings such that the collision probability of any given
pair of messages is small. A universal hash function family can
be used to build an unconditionally secure MAC. For this, the
communicating parties share a secret and randomly chosen
hash function from the universal hash function family, and a
secret encryption key. A message is authenticated by hashing
it with the shared secret hash function and then encrypting the
resulting hash using the key. Carter and Wegman [8] showed
that when the hash function family is strongly universal, i.e. a
stronger version of universal hash functions where messages
are mapped into their images in a pairwise independent
manner, and the encryption is realized by a one-time pad,
the adversary cannot forge the message with probability better
than that obtained by choosing a random string for the MAC.

Black et al. [9] describe a new, provably secure message
authentication code (UMAC), which has been designed to
achieve extreme speeds in software implementations. A hash
function family namedNH underlies hashing in UMAC. In
this paper we improve uponNH in order to make secure hash
functions possible in ultra-low-power devices. We implement
NH with power efficiency guidelines in mind and notice that
its power consumption exceeds our limits by far. Instead of
optimizing the implementation even more and reducing its
power consumption by a fraction we take a different approach.
We identify the main power consumers (i.e. registers, adders)
and carefully remove components one by one. We formulate
the resulting new algorithm (WH) mathematically and prove
that it is still at least as secure asNH. While WH is consuming
an order of magnitude less power thanNH, its leakage power
consumption remains a bottleneck. The leakage power is
proportional to the circuit size which is proportional to the size
of the hash value which in turn is proportional to the security
level. The technique of multi-hashing was introduced [10] to
increase the security level of a given hash function without
changing the size of the hash value at the expense of more
key material. We reverse this procedure to preserve the security

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MONTH 2004 2

level while reducing the size of the hash value and therefore
the leakage power. We use the Toeplitz approach to reduce
the amount of key material needed. The resulting design is
scalable and can be tailored to specific energy and power
consumption requirements without sacrificing security.

The remainder of this paper is organized as follows. In
Section IV we introduceWH, a power optimized version
of NH, with an emphasis on hardware implementation. In
Section V we rigorously prove thatWH is universal. Sec-
tion VI describes how we can further reduce the power
consumption while maintaining the same level of security
by employing the technique of multi-hashing in combination
with the Toeplitz approach. We describe our implementation
of both NH and WH algorithms in Section VII and present
the results in Section VIII. Furthermore, we explain how the
Toeplitz parametert can be used to optimizeWH with respect
to specific energy and power consumption requirements.

II. PREVIOUS WORK

The security aspects of distributed sensor networks have
been reviewed byNAI Labs in [11]. However, this study fo-
cused only on software implementations on current processors
whose energy consumption is far above the amount that can
be supplied by a scavenger circuit. To our knowledge not
much work has been done on improving the performance of
universal hashing in hardware. Ramakrishna published a study
on the performance of hashing functions in hardware based
on universal hashing [12]. However, the main emphasis was
on using hash functions for table organization and address
translation. In an early work Krawczyk [13] proposed new
hash functions from a hardware point of view. This work
introduced two constructions: a CRC-based cryptographic hash
function, and a construction based on Toeplitz hashing where
matrix entries are generated by a Linear Shift Feedback
Register (LFSR). The reference gives a sketch for hardware
implementation, which includes a key spreader. However, it is
difficult to estimate the power consumption of this function
from a sketch. There have been no implementations reported
so far. In the past decade we have seen many new hash
constructions being proposed, constantly improving in speed
and collision probability [9], [14]–[18]. For a survey see
[19]. However, most of these constructions have targeted effi-
ciency in software implementations, with particular emphasis
on matching the instruction set architecture of a particular
processor or taking advantage of special instructions made
available for multimedia data processing (e.g. Intel’s MMX
technology). While such high end platforms are essential
for everyday computing and communications, in numerous
embedded applications (e.g. PDAs, mobile phones) space and
power limitations prohibit their employment.

III. PRELIMINARIES

A. Notations

Let {0, 1}∗ represent all binary strings, including the empty
string. The setH = {HK : A → B}, is a family of hash
functions with domainA ⊆ {0, 1}∗ of sizea and rangeB ⊆
{0, 1}∗ of size b. HK denotes a single hash function chosen

from the set of hash functionsH according to a random key
K ∈ C where the setC ⊆ {0, 1}∗ denotes the finite set of
key strings. In the text we will seth = HK for convenience.

The elementM ∈ A stands for a message string to be
hashed and is partitioned into blocks asM = (m1, · · · ,mn),
where n is the number of message blocks of lengthw.
Similarly the keyK ∈ C is partitioned asK = (k1, · · · , kn),
where each blockki has lengthw. We use the notationH[n,w]
to refer to a hash function family wheren is the number of
message (or key) blocks andw is the number of bits per block.

Let Uw represent the set of nonnegative integers less than
2w, andPw represent the set of polynomials overGF (2) [20]
of degree less thanw. Note that each message blockmi and
key block ki belongs to eitherUw, Pw or GF (2w). Here
GF (2w) denotes the finite field of2w elements defined by
GF (2)[x]/(p), wherep is an irreducible polynomial of degree
w over GF (2). In this setting the bits of a message or key
block are associated with the coefficients of a polynomial. To
illustrate, supposew = 6 andp = x6 + x + 1. Let us see how
two messages (binary bit strings),101101 and100011, can be
multiplied in the Galois Field ofGF (2)[x]/(p). 101101 and
100011 would be mapped intox5+x3+x2+1 andx5+x+1,
respectively. Multiplication of these two polynomials yields
x10 + x8 + x7 + x6 + 2x5 + x4 + 2x3 + x2 + x + 1. This
is equivalent tox10 + x8 + x7 + x6 + x4 + x2 + x + 1
(since2x5 ≡ 0x5 ≡ 0 in GF (2)). Dividing this polynomial
by p and taking the remainder, we obtainx5 + x3 + x2 + x
(corresponding to the bit string101110). Note that this way
carries are eliminated as well. Finally the addition symbol ‘+’
is used to denote both integer and polynomial addition (in a
ring or finite field). The meaning should be obvious from the
context.

B. Universal Hashing

A universal hash function, as proposed by Carter and
Wegman [7], is a mapping from the finite setA with sizea to
the finite setB with sizeb. For a given hash functionh ∈ H
and for a message pair(M, M ′) whereM 6= M ′ the following
function is defined:δh(M,M ′) = 1 if h(M) = h(M ′), and
0 otherwise, that is, the functionδ yields 1 when the input
message pairs collide. For a given finite set of hash functions
δH(M, M ′) is defined as

∑
h∈H δh(M, M ′), which tells us

thatδh(M,M ′) yields the number of functions inH for which
M and M ′ collide. When h is randomly chosen fromH
and two distinct messagesM andM ′ are given as input, the
collision probability is equal toδh(M, M ′)/|H|. We give the
definitions of the two classes of universal hash functions used
in this paper from [19]:

Definition 1: The set of hash functionsH = h : A → B is
said to beuniversal if for every M,M ′ ∈ A whereM 6= M ′,

|h ∈ H : h(M) = h(M ′)| = δH(M,M ′) =
|H|
b

.

Definition 2: The set of hash functionsH = h : A → B is
said to beε-almost universal(ε−AU) if for everyM,M ′ ∈ A
whereM 6= M ′,

|h ∈ H : h(M) = h(M ′)| = δH(M, M ′) = ε|H| .

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MONTH 2004 3

In this definitionε is the upper bound for the probability of
collision. Observe that the previous definition might actually
be considered as a special case of the latter withε being equal
to 1/b. The smallest possible value forε is (a−b)/(b(a−1)).

In the past many universal and almost universal hash fam-
ilies were proposed [9], [14]–[18]. Black et al introduced an
almost universal hash function family calledNH in [9]. The
definition of NH is given below.

Definition 3: ([9]) Given M = (m1, · · · ,mn) and K =
(k1, · · · , kn), wheremi andki ∈ Uw, and for any evenn ≥ 2,
NH is computed as follows:

NHK(M) =

n/2∑

i=1

((m2i−1 + k2i−1) mod 2w)

·((m2i + k2i) mod 2w)

 mod 22w .

In the same paperNH was shown to have a tight bound of
2−w on the collision probability.

IV. W EIGHTED NH-POLYNOMIAL WITH REDUCTION

(WH)

We introduce a new hash function familyWH, as a variation
to the NH construction, which improves uponNH in terms
of power, area and speed. The monomialx(n

2−i)w, which
is constant irrespective of the input, serves to optimize the
hardware implementation (see Section VII-B).

Definition 4: Given M = (m1, · · · ,mn) and K =
(k1, · · · , kn), wheremi andki ∈ GF (2w), for any evenn ≥ 2,
and a polynomialp of degreew irreducible overGF (2), WH
is defined as follows:

WHK(M) =
n/2∑

i=1

(m2i−1 + k2i−1)

· (m2i + k2i)x(n
2−i)w (mod p) .

In this construction message and key blocks are associated
with polynomials overGF (2) as opposed to their integer
counterparts in theNH construction. In a hardware implemen-
tation this completely eliminates the carry chain and thereby
improves all three efficiency metrics (i.e. speed, space, power)
simultaneously: Due to the elimination of carry propagations,
the operable clock frequency (and thus the speed of the
hash algorithm) is dramatically increased. Likewise, the area
efficiency is improved since the carry network is eliminated.
Finally, due to the reduced switching activity, the power
consumption is reduced.

Moreover, the new scheme provides us with shorter authen-
tication tags. The size of the authentication tag is a concern
for two reasons. First, the tag needs to be transmitted along
with the data. Therefore, the shorter the tag, the less power
will be consumed for transmission purposes. Second, the size
of the tag determines the number of flip-flops needed for
storing the tag.NH requires a large number of flip-flops for
the double length hash output. In this construction, the storage
and transmission requirements are improved by introducing a
reduction polynomial of degree matching the block size, and
hence, reducing the size of the authentication tag by half. Note

that one of the main motives [9] of theNH construction was
to eliminate the modular reductions used in the previously
proposed hash families (e.g. MMH proposed in [15], SQUARE
proposed in [18]) since reductions are relatively costly to
implement in software. A modulo reduction involves division
and computation of the remainder. In hardware, however, re-
ductions (especially those with fixed low-weight polynomials)
can be implemented quite efficiently. The reduction becomes
an integral part of the computation and involves only a simple
subtraction at each step (see Section VII-B).

Another point is that while processing multiple blocks, it is
often necessary to hold the hash value accumulated during the
previous iterations in a temporary register. This increases the
storage requirement and translates into a larger and slower
circuit with higher power consumption. We could achieve
perfect serialization via scaling each product of message and
key pairs with a power ofx. In the implementation this
translates into the accumulation of block products in the same
register that holds the hash of the previously processed blocks.
This eliminates the need for an extra temporary register as well
as other control components required to implement the data
path.

V. A NALYSIS

In this section we give the theorem and its proof establishing
the security ofWH.

Theorem 1:For any evenn ≥ 2 and w ≥ 1, WH[n,w] is
universal on n equal-length strings.
The intuition behind this theorem is that whenWH is used as
the hash function, we can mathematically prove and quantify
that the adversary cannot falsify our message with a better
probability than randomly selecting the right hash value from
all possible hashes.

Proof: Let M, M ′ be distinct members of the domain
A with equal lengths. For brevity we denote(m2i−1 +
k2i−1)(m2i + k2i) = mk2i, (m′

2i−1 + k2i−1)(m′
2i + k2i) =

m′k2i and so on. Let M,M ′ be distinct members of the domain
A with equal lengths. We are required to show that

Pr [WHK(M) = WHK(M ′)] = 2−w .

Expanding the terms inside the probability expression, we
obtain

Pr

n/2∑

i=1

mk2i

(
x(n

2−i)w
)

=

n/2∑

i=1

(m′k2i

(
x(n

2−i)w
)

(mod p)

 = 2−w . (1)

The probability is taken over uniform choices of(k1, . . . , kn)
with eachki ∈ GF (2w) and the arithmetic is overGF (2w).
SinceM andM ′ are distinct,mi 6= m′

i for some1 ≤ i ≤ n.
Let m2l 6= m′

2l. For any choice ofk1, . . . , k2l−2, k2l, . . . , kn

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MONTH 2004 4

having

Prk2l−1∈GF (2w)

n/2∑

i=1

mk2i

(
x(n

2−i)w
)

=

n/2∑

i=1

m′k2i

(
x(n

2−i)w
)

(mod p)

 = 2−w (2)

satisfied for all1 ≤ l ≤ n/2 implies (1). Settingy andz as

y =

[
l−1∑

i=1

m′k2ix
(n

2−i)w −
l−1∑

i=1

mk2ix
(n

2−i)w

]
(mod p)

and

z =

n/2∑

i=l+1

m′k2ix
(n

2−i)w −

n/2∑

i=l+1

mk2ix
(n

2−i)w

 (mod p)

we rewrite the probability expression in (2) as

Prk2l−1

[
x(n

2−l)w [mk2l −m′k2l] =

y + z (mod p)
]

= 2−w .

Since x(n
2−l)w is invertible in GF (2w), the equation inside

the probability expression can be rewritten as follows.

k2l−1(m2l −m′
2l) + m2l−1(m2l + k2l)−m′

2l−1(m
′
2l + k2l)

= x−(n
2−l)w(y + z) (mod p)

Solving the equation fork2l−1, we end up with the following

k2l−1 = (m2l −m′
2l)
−1

(
(x−(n

2−l)w)(y + z)

−m2l−1(m2l + k2l) + m′
2l−1(m

′
2l + k2l)

)
(mod p) .

Note that(m2l −m′
2l) is invertible since in the beginning of

the proof we assumed thatm2l 6= m′
2l. This proves that for

any m2l, m′
2l (with m2l 6= m′

2l) and y, z ∈ GF (2w) there
exists exactly onek2l−1 ∈ GF (2w) which causes a collision.
Therefore,

Pr [WHK(M) = WHK(M ′)] = 2−w .

VI. REDUCING THE POWER CONSUMPTION WITH

TOEPLITZ CONSTRUCTION

The power consumed by a VLSI circuit has two compo-
nents: Leakage power and dynamic power. Only the latter
depends on frequency. This means that at lower frequencies the
total power consumption is dominated by the leakage power
consumption. Since this component is directly proportional to
the size of the circuit, we now aim to design a smaller circuit,
and hence, introduce the hash function familyWHT [n,w, t]
(“Toeplitz-WH”) having three parameters, namelyn, w andt.
The additional parametert stands for Toeplitz iteration count,
wheret ≥ 1, and the others are defined as before. DomainA

remains the same whereas the range is nowB = {0, 1}wt. A
function is selected by a keyK of lengthw(n+2(t−1)) bits.
In other words,K is composed of(n+2(t−1)) w bit words.
We haveK = (k1, k2 · · · , kn+2(t−1)), where eachki is aw bit
word. The notationKi..j representsK = (ki, ki+1, · · · , kj).
Then for a message stringM ∈ A, WHT

K(M) is defined as
follows.

WHT
K(M) = (WHK1..n(M), WHK3..n+2(M),

· · · , WHK2t−1..n+2t−2(M)).

The circuit size scales with the data path width, i.e. the
block sizew of the message and the key. Since the collision
probability is equal to2−w (see Section V), reducing the
block sizew will significantly increase this probability and
impair the security of the system. In order to decrease the
collision probability without changing the word size, [9]
uses the technique of multi-hashing [10] in which different
random members of the hash function family are applied to
the message, and the results are concatenated to form the
hash value. We use a similar approach, however, we preserve
the collision probability while reducing the word size. For
instance, to obtain the collision probability of2−w with a
block size ofw/4 bits, each message block is hashed4 times
with independent keys. The computed hash outputs (w/4 bits
each) are then concatenated to form thew bit hash result.
The drawback of this method is that it requires4 times the
key material. As a remedy one can employ the well-known
Toeplitz approach [9], [13], [21] in which shifted versions of
one key rather than several independent keys are used. In this
case, however, since the keys are related to each other, it is
not obvious that the collision probability can be maintained.
In Theorem 2 we prove that the Toeplitz construction forWH
can still achieve the desired result.

Theorem 2:For any w ≥ 1, t ≥ 1, and any evenn ≥
2, WHT [n,w, t] is universal on equal-length strings with
collision probability of2−wt.

Proof: For the sake of brevity we will useWH and
WHT instead ofWH[n,w] and WHT [n,w, t], respectively.
We denote(k2i+2j−3 + m2i−1)(k2i+2j−2 + m2i) = km2i,2j ,
(k2i+2j−3 + m′

2i−1)(k2i+2j−2 + m′
2i) = km′

2i,2j and so on.
Let M and M ′ be distinct members of the domainA with
equal lengths. We are required to show

Pr[WHT
K(M) = WHT

K(M ′)] = 2−wt (3)

We haveM = (m1,m2, · · · ,mn), M ′ = (m′
1, m

′
2, · · · ,m′

n)
and K = (k1, k2, · · · , kn+2(t−1)), wheremi, m′

i and ki are
all w bit words associated with polynomials. Note that the
arithmetic is carried out overGF (2w) with the irreducible
polynomial p of degreew. Next we define the eventEj for
j ∈ {1, · · · , t} as follows.

Ej :
n/2∑

i=1

km2i,2j

(
x(n

2−i)w
)

=

n/2∑

i=1

km′
2i,2j

(
x(n

2−i)w
)

(mod p)

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MONTH 2004 5

We call each term in the summations of theEj a “clause” (e.g.,
(k1 +m1)(k2 +m2)x(n

2−1)w is a clause). Now the probability
in (3) can be rewritten as

Pr[E1 ∩ E2 ∩ · · · ∩ Et] .

Without loss of generality, we can assume thatM and M ′

disagree in the last clause (i.e.,mn−1 6= m′
n−1 or mn 6= m′

n).
Notice that ifM andM ′ agreed in the last clause then each
Ej would be satisfied if and only if it was also satisfied when
that last clause was omitted. Hence, we could truncateM and
M ′ after the last clause in which they disagree, and still obtain
exactly the same set of keys causing collisions.

Now, again without loss of generality, we can assume that
mn−1 6= m′

n−1 because for each iteration ofEj the key is
shifted by two words making the case symmetric. We proceed
by proving that for allj ∈ {1, · · · , t}, Pr[Ej is true |
E1, · · · , Ej−1 are true] = 2−w, implying the theorem.

For j = 1, the claim is satisfied due to Theorem 1. For
j > 1, the eventsE1 through Ej−1 depend only on key
words k1, · · · , kn+2j−4 while Ej depends also onkn+2j−3

and kn+2j−2. By fixing k1 through kn+2j−4 such thatE1

throughEj−1 are satisfied, and fixing any value forkn+2j−3,
we prove that there is only one value ofkn+2j−2 satisfying
Ej . Let

y =
n/2−1∑

i=1

km′
2i,2j

(
x(n

2−i)w
)
−

n/2−1∑

i=1

km2i,2j

(
x(n

2−i)w
)

.

Thus,Ej becomes

Ej : kmn,2j − km′
n,2j = y (mod p) .

Now we are required to prove that

Pr[kmn,2j − km′
n,2j = y (mod p)] = 2−w .

Solving the equation inside the above probability expression
for kn+2j−2, we end up with the following

kn+2j−2 = (mn−1 −m′
n−1)

−1
(
y −mn(mn−1 + kn+2j−3)

+m′
n(m′

n−1 + kn+2j−3)
)

(mod p) .

Note that(mn−1−m′
n−1) is invertible since in the beginning

of the proof we assumedmn−1 6= m′
n−1. This proves that for

anykn+2j−3, mn−1, m′
n−1 (with mn−1 6= m′

n−1) ∈ GF (2w)
there exists exactly onekn+2j−2 ∈ GF (2w) which causes a
collision. Therefore,

Pr[WHT
K(M) = WHT

K(M ′)] = 2−wt .

VII. I MPLEMENTATION

The power dissipation in CMOS devices can be character-
ized by the following formula [22]:

P =
(

1
2
· C · V 2

DD + Qse · VDD

)
· f ·N

︸ ︷︷ ︸
PDynamic

+ Ileak · VDD︸ ︷︷ ︸
PLeakage

(4)

The term PDynamic represents the power required to charge and
discharge circuit nodes as well as the power dissipation during
output transitions. The termsC, Qse, andVDD are technology
dependent [22]. The switching activity, i.e. the number of gate
output transitions per clock cycle, is represented byN , and the
operating frequency byf . The second term PLeakage represents
the static power dissipation due to the leakage currentIleak.
The leakage current is directly determined by the number of
gates and the fabrication technology. For more information
about low-power design see [23]. In order to minimize the
power consumption, we designed our CMOS circuits with the
following rules in mind:
• The number of output transitions has to be minimal.
• The circuit size should be minimized.
• Glitches cause unnecessary transitions and therefore

should be avoided.

A. NH

The algorithm forNH is described in [9]. It is given in this
paper in Definition 3 as

NHK(M) =

n/2∑

i=1

((m2i−1 + k2i−1) mod 2w)

·((m2i + k2i) mod 2w)

 mod 22w .

This leads to the simple functional block diagram shown in
Figure 1. The message and the key are assumed to be split into
n blocks ofw bits. Messages that are shorter than a multiple
of 2 · w are padded. All odd message blocks are applied to
input m1, all even message blocks to inputm2. The blocks
of the key are applied similarly tok1 andk2. The output of
Adder 1 is ma = m1+k1 mod 2w, the output ofAdder 2 is
mb = m2+k2 mod 2w. These are integer additions where the
carry out is discarded. The multiplication results inmout =
ma ·mb. The final adder accumulates alln/2 products.

Adder 1 Adder 2

Multiplier

Adder 3

64 64 64

64 64

128

64

128

m1 k1 m2 k2

ma mb

sum

mout

Fig. 1. Functional diagram forNH

The actual block diagram for the circuit is much more
complex and can be found in Figure 2. As power consumption
is our main concern and not speed, we base our design on
a bit serial multiplier. For each multiplication of twow bit

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MONTH 2004 6

numbers,w partial products need to be computed and added:
mout =

∑w
j=1 ma ·mb[j] · 2j−1.

This decision gives us the ability to use a bit serial adder for
Adder 2 as its resultmb[j] (indicated asmult in Figure 2) can
directly be used by the bit serial multiplier. A bit serial adder
produces one bit of the result with each clock cycle, starting
with the LSB, and it has minimal glitching. However, the
multiplicand ma has to be available immediately. Therefore
we use a simple ripple carry adder to implementAdder 1.
Its main disadvantage is that it takes a long time until the
carries propagate through the adder, causing a lot of glitching
and therefore a high power consumption. However,Adder 1
needs to compute a new result only every 64 clock cycles,
hence its dynamic power consumption is tolerable.

TheBit Multiplier in Figure 2 computes the partial products,
one during each clock cycle. The addition of the partial prod-
ucts is accomplished using a carry-save adder and the Right
Shift Algorithm [24]. This adder uses the redundant carry-
save notation which results in minimal glitching as the carries
are not fully propagated. However, this requires 64 additional
flip-flops to store the carry bits. After one multiplication has
been computed, its result has to be added to the accumulation
of the previous multiplications as indicated byAdder 3 in
Figure 1. Rather than having a separate multiplier and adder,
in the actual implementation we add the partial products of the
next multiplication immediately to the result of the previous
additions. This technique stores the result ofAdder 3 in
the Multiplier thus saving a 128 bit register and a 128 bit
multiplexer.

The carry-save adder has separate data paths for sum and
carry. It can add the partial products of one multiplication
very efficiently. However, after the product is computed it
needs to be re-aligned before the partial products of the next
multiplication can be added to this result. This re-alignment
involves converting the number from carry-save notation to
standard binary notation, i.e, adding the caries to the sum. This
addition is done using a ripple carry adder (Figure 2 shows that
this Ripple Carry Adder has the signalrcasum as output).
Even though the products of the multiplication are 128 bits
wide, the carry is only 64 bits wide, hence the ripple carry
adder is only 64 bits wide. This sum needs to be computed
only after a multiplication has finished, i.e., every 64 clock
cycles. As the result is not needed during the other 63 clock
cycles, we isolate the operands from the ripple carry adder,
hence the adder does not consume power due to switching
activity when its output is not needed. After one multiplication
is completed and the result is re-aligned, the carry registers are
set to zero for the next computation.

B. WH

The design ofWH was conceived by inspecting our imple-
mentation ofNH and removing the main power consumers.
The main drawback ofNH for hardware implementations is
its use of integer arithmetic. Even though we use a carry-save
adder in the multiplier, mergeAdder 3, and use ripple carry
adders with operand isolation on paths that are active only
every 64 clock cycles, the integer adders still consume most of

Bit Multiplier

Carry−Save Adder

64

Operand Isolation

Ripple Carry Adder

Swap

64

128

64 64

128

Multiplexer Multiplexer

128

128 64

6464

64

64

128

R1

Sum Register Carry Register

64

64

Right Shift Register Right Shift Register

Full Adder

64 64

MuxSum Register

Ripple Carry Adder

64

64 64

64128

Swap

128

128

128

Reg.

a

s_sft1 c_in

c_outs_out

s_oi

rcasum

s_sum

s_swap

c_oi

c_null

c_loop

s_loop c_loop

saout sbout

a b

k2

cout

ccin

0

m1 k1

rcasout

ma sout

mult

0

sout

b

cin

m2
Bit Serial Adder

s_loop

Fig. 2. Block diagram forNH datapath

the power. Furthermore, the carry-save adder uses an extra set
of flip-flops to store the carries. The delay of the ripple carry
adder forAdder 1 makes another set of flip-flops necessary.
The bit serial adder stores both inputs in registers for shifting.
All these blocks add up to a significant amount of dynamic
and leakage power consumption. Our goal for designingWH
is to eliminate most of these power consumers.

The first step is to use polynomials overGF (2) instead
of integers. Using such polynomials completely removes the
carries. Therefore the costly adders can be replaced with
simple XOR gates which consume significantly less dynamic
and leakage power. Because of their much shorter delay we do
not need a register afterAdder 1. Also the implementation of
the bit serial adder (Adder 2) becomes much simpler, only one
64 bit shift register is needed. We also replaced the carry-save
adder of theMultiplier and Adder 3 combination with XOR
gates, and thereby removed the whole carry path including
the carry register, the multiplexer, and the ripple carry adder
to realign the sum.

Moreover, we are reducing the result to 64 bits using an
irreducible polynomial. This provides a shorter authentication
tag, reducing the power consumed for its transmission. In our
hardware implementation the iterations of the multiplication
and the reduction operations are interleaved eliminating the
need for extra space to store the partial product. Furthermore,
using low Hamming-weight polynomials the reduction can

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MONTH 2004 7

be achieved with only a few gates and minimal extra delay.
We are performing the modulo reduction after every single
addition. This keeps the reduction circuit simple and the result
is never larger thanw bits. However, theMultiplier andAdder
3 can no longer be merged due to the reduction. This is
expensive as we need to have not just one adder but also
one extra 64 bit register. In order to avoid this penalty we
multiply each product byx(n

2−i)w. This enables us to merge
the Multiplier and Adder 3, eliminating the need for the
register and the adder. These modifications lead to Definition 4
for WH:

WHK(M) =
n/2∑

i=1

(m2i−1 + k2i−1)

· (m2i + k2i)x(n
2−i)w (mod p) .

Note that even though the functional diagram forWH (Fig-
ure 3) differs from the one forNH (Figure 1) only in the
size of the output and the modulo reduction block, the block
diagram ofWH (Figure 4) differs vastly from the one forNH
(Figure 2).

Adder 1 Adder 2

Multiplier

64 64 64

64 64

64

Modulo Reduction

Adder 3

64

64

64

m1 k1 m2 k2

ma mb

mout

sum

Fig. 3. Functional diagram forWH

C. WH with Toeplitz Construction

We have shown in Section VI that it is possible to pre-
serve the security level while reducing the word size if the
message is hashed multiple times with independent keys. The
Toeplitz approach describes how these keys can be generated
efficiently. For our implementation we assume that the circuit,
which generates the messages and the keys, implements this
approach and delivers keys and the appropriate parts of the
message to our hash function implementation.

Figure 4 shows a detailed block diagram forWH depending
on the Toeplitz parametert. We define the word sizew as
64 bits. The block size is the word size divided by the Toeplitz
parametert. The implementation ofWH with a 64 bit word
size, i.e.t = 1, is calledWH-64. The minimum input length
in this case is2 ·w = 128 bits. Half of these bits are applied to
m1 and the other half tom2. The same holds for the key. In

order to achieve the same level of security for a word size of
32 bits we would hash the message twice. Hence, the Toeplitz
iteration countt would be two. The implementation of this
is calledWH-32. In order to hash the same input of 128 bits
WH-32 would need to compute four hashes. The length of the
final output is the same.

XORXOR

64/t64/t 64/t 64/t

Modulo Reduction

Left Shift

64/t+1msft

64/tb

Bit Multiplier Left Shift Register

64/tma 64/tmb

Sum Register

XOR

64/t

64/tsout
64/t

64/ta

m1 k1 m2 k2

0
sin

mult

m_out

m_loop

Fig. 4. Detailed block diagram forWH datapath depending on Toeplitz
parametert

D. Control Logic

The control logic manages the switching of the multiplexers,
loading of the next data set and resetting of the carry registers.
Due to the iterative nature of our multiplier, the control logic
requires a counter. Traditionally, counters are built using a
register and a combinational incrementer. The incrementer
requires long carry propagations which cause glitching and
introduce latency. As the critical delay of the datapath is
minimized in our design to only a few levels of logic, the delay
of an incrementer would create a bottleneck in the control
circuit. Hence, optimization of this unit is critical. Instead of an
integer counter, we use a linear feedback shift register (LFSR)
with 6 flip-flops for NH and WH-64, enhanced to “count”
up to 64. LFSRs have minimal glitching and therefore make
power efficient and fast counters. The control logic forWH-
32 andWH-16 uses the same principle and “counts” only to
32 and 16. The same control logic was used forNH and all
versions ofWH.

VIII. R ESULTS

We used the TSMC0.13 µm ASIC library, which is char-
acterized for power, and the Synopsys tools Design Compiler
and Power Compiler for synthesizing our designs. The results
of the simulations on many input sets were verified with the
Maple package [25] for consistency.

A. NH and WH

Table I shows the results for power, area, and delay
for the hash implementations ofNH and WH, synthesized
for 100 MHz. WH consumes 41% of the dynamic power and

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MONTH 2004 8

TABLE I

COMPARISON OFNH WITH WH AT 100 MHZ

Dynamic Leakage Circuit Delay /

Design Power Power
Energy

Area Speedup

µW % µW % nJ % gates % ns x

NH 1093.9 100 28.1 100 0.72 100 5291 100 9.92 1.0

WH 452.3 41 9.4 33 0.30 41 1701 32 1.35 7.4

33% of the leakage power ofNH while at the same time
consuming only 32% of the area1. WH andNH need the same
number of clock cycles to compute a hash value from the same
input but WH can run 7.4 times faster thanNH. We proved
that WH provides the same level of security.

B. WH with Various Block Sizes

We implementedWH with block sizew of 64 bits (WH-
64), 32 bits (WH-32), and 16 bits (WH-16). Table II shows
the results for power, area, and delay for these hash imple-
mentations, synthesized for operation at 100 MHz .

TABLE II

COMPARISON OFHASH IMPLEMENTATIONS AT 100 MHZ

Dynamic Leakage Circuit Delay /

Design Power Power Area Speedup

µW % µW % gates % ns x

WH-64 452.3 100 9.36 100 1701 100 1.35 1.0

WH-32 217.5 48 4.81 51 873 51 1.31 1.0

WH-16 126.2 28 2.32 25 460 27 0.76 1.8

It can be seen in Table II that the dynamic and leakage
power consumptions as well as the circuit size are reduced al-
most linearly with the block size. We analytically verify these
observations. For simplicity, in our analysis we ignore the
contributions of the control and reduction units to the power
consumption. From the power dissipation formula for CMOS
(Equation 4) we see that the leakage power is proportional
to the number of gates (i.e. areaA) used:PLeak ∝ A. The
area in turn is proportional to the block size, i.e.A ∝ w, and
therefore

PLeak ∝ w .

The dynamic power consumption is proportional to the oper-
ating frequency and the number of logic transitions:PDyn ∝
f N . SinceN ∝ w, the dynamic power consumption scales
with the frequency and the block size as follows.

PDyn ∝ f w

The total power consumptionP = PDyn + PLeak is related
to f andw as

P ∝ w(cf + 1) .

Here c is a fixed constant factor. The energyE consumed
is the total power times the running time:E = P T . Since

1The area is given in terms of two input equivalent NAND gates.

T = w
f , the total energy consumption is related to the block

size and the frequency as

E ∝ w2

(
c +

1
f

)
.

The slight nonlinearity observed in Table II can be explained
by considering the control and the modulo reduction units,
which are the only parts in the circuit that do not scale
linearly with the block size. The size of the modulo reduction
unit depends on the primitive polynomial and can be made
negligible by utilizing a low-Hamming weight polynomial
such as a trinomial. The control unit scales with the logarithm
of the block since an LFSR ofr flip flops may be used to count
through2r − 1 states. This explains why the reduction is not
exactly linear. The critical timing path in all implementations
is from the control logic to the shift register.

C. WH with Toeplitz

Table III shows the power consumptions of three implemen-
tations ofWH. The first one is the standard implementation of
WH with a block size ofw = 64. The other two implemen-
tations are utilizing the multi-hashing technique witht = 2
and 4, and with block sizes ofw = 16 and 32, respectively.
The figures given in Table III represent the power/energy
consumptions of the three hash algorithms for processing the
same amount of input data (i.e. 64 bits).

In the table we observe that both the dynamic and the
leakage power consumptions decrease almost linearly with
increasing multi-hash iteration countt. We observe the same
behavior for all frequencies. On the other hand the energy
consumption stays about the same regardless of multi-hashing
and only increases with decreasing operating frequency. Also
notice that the leakage power remains the same and it becomes
the limiting factor at lower frequencies. One way to reduce
the dynamic power consumption is to lower the operating
frequency. However, this increases the energy consumption as
the leakage power is now consumed over a longer period of
time.

As evident from the table using the Toeplitz approach it
is possible to reduce the power consumed to hashw bits of
data. We next analyze the dependency of power and energy on
the block size, the operating frequency, and the multi-hashing
iteration count. As a first step we definew as a constant block
size of 64 bits. The Toeplitz count ist. In order to achieve
the same security for an implementation with a block size of
w
t the result has to be hashedt times. The effective block
length becomesw′ = w

t . This approach reduces the power

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MONTH 2004 9

TABLE III

COMPARISON OFPOWER AND ENERGY CONSUMPTION

100 MHz 500 kHz 1 kHz

Design PDyn PLeak P E PDyn PLeak P E PDyn PLeak P E

µW µW µW nJ µW µW µW nJ nW µW µW nJ

WH-64 452.3 9.36 461.7 0.30 2.261 9.36 11.62 1.49 4.523 9.36 9.37 599.5

WH-32 217.5 4.81 222.3 0.28 1.087 4.81 5.90 1.51 2.175 4.81 4.82 616.4

WH-16 126.2 2.32 128.6 0.33 0.631 2.32 2.95 1.51 1.262 2.32 2.31 592.9

consumed to hash a block ofw bits independently of the
operating frequency as

P ′Dyn ∝ f w′ = f
w

t
, and

P ′Leak ∝ w′ =
w

t
.

The total power consumption is found as

P ′ ∝ w

t
(cf + 1)

wherec is a fixed constant factor. This is in line with what we
have observed in Table III: The total power consumption is
reduced by a factor oft. This improvement does not come for
free. Since we have nowt blocks of lengthw

t , where each will
be hashedt times, it will take t times longer to compute the
hash ofw bits of data:T ′ = t T = tw

f . However, the energy
remains unaffected:

E′ = P ′ T ′ ∝ w2

(
c +

1
f

)
.

Figure 5 shows how the power consumption of a circuit
depends on its area and the clock speed. The graph is extrap-
olated from simulation data at 100 MHz. It shows clearly that
at low frequencies the power consumption scales linearly with
the area, i.e. the leakage power is the dominant part. At higher
frequencies the dynamic power takes over. The dynamic power
consumption scales linearly with the frequency. Note that the
frequency axis in Figure 5 is logarithmic and only the powers
of ten are shown.

The energy consumption is shown in Figure 6. The axes
have a different orientation than in Figure 5 such that the
frequency is decreasing towards the right and the area is
decreasing towards the left. The frequency axis in Figure 6
is in logarithmic scale. Figure 6 demonstrates that the energy
consumption decreases linearly with increasing frequency.
However, the energy consumption is independent of the area.
This allows us to reduce the circuit size, i.e. increase the
Toeplitz parametert, without any penalty on the energy
consumption. Reducing the circuit size decreases the leakage
power and at low frequencies this has a big impact as shown
in Figure 5. It is now possible to increase the frequency to a
level such that the power consumption is the same as it was
before reducing the area. Looking back into Figure 6, we can
see that the energy consumption is reduced while the power
consumption remained the same. This is a powerful tool for
optimizing this hash function with respect to specific energy
and power consumption requirements.

8
10

12
14

16

Frequency

100150200250300350400 Area

1e–05

2e–05

3e–05

4e–05

5e–05

Power

Fig. 5. Power Consumption

7
8

9
10

11 Frequency

100
150

200
250

300
350

400
Area

0

1e–07

2e–07

3e–07

4e–07

5e–07

6e–07

Energy

Fig. 6. Energy Consumption

a) Equalizing Runtime:We have demonstrated that the
Toeplitz construction provides a drastict-fold reduction in
power consumption and circuit size at the price oft-times
slower hash computation. In order to maintain the runtime
one may decide to increase the operating frequencyt times:
f ′′ = f t. In this arrangement the dynamic power consumption
does not depend ont anymore, only the leakage power does.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MONTH 2004 10

TABLE IV

COMPARISON OFPOWER AND ENERGY CONSUMPTION WITH f ′ = f t

f =100 MHz f =500 kHz f =1 kHz

Design f ′ PDyn PLeak P E f ′ PDyn PLeak P E f ′ PDyn PLeak P E

MHz µW µW µW nJ kHz µW µW µW nJ kHz nW µW µW nJ

WH-64 100 452.3 9.36 461.7 0.30 500 2.261 9.36 11.62 1.49 1 4.523 9.36 9.37 599.5

WH-32 200 435.5 4.81 440.0 0.28 1000 2.175 4.81 7.00 0.89 2 4.350 4.81 4.82 308.4

WH-16 400 505.0 2.32 507.3 0.32 2000 2.525 2.32 4.84 0.62 4 5.050 2.32 2.32 148.5

f ′′ = f t T ′′ = T ∝ w

f

P ′′Dyn ∝ f ′′ w′ = f w P ′′Leak = P ′Leak ∝
w

t

P ′′ ∝ w

(
cf +

1
t

)
E′′ ∝ w2

(
c +

1
t f

)

The most important result of this is that at low frequencies
(i.e. P ′′Dyn ¿ P ′′Leak) the total power consumption as well as
the energy consumption scales with the Toeplitz parametert.

for low frequencies : E′′ ∝ 1
t

w2

f
P ′′ ∝ 1

t
w

for high frequencies : E′′ ∝ w2 P ′′ ∝ w f

Table IV shows that the energy needed to compute the hash
of a 128 bit data block can be reduced without affecting the
runtime. The dynamic power consumption remains roughly
constant as time increases, but the leakage power consumption
is reduced. Note that the header of the table specifies the
frequencyf only. The actual clock frequencyf ′ for WH-64
is equal tof , for WH-32 it is twice higher (t = 2) and for
WH-16 it is four times higher (t = 4).

The only way to reduce the leakage power of a circuit, aside
from using a different technology, is to reduce the circuit size.
Multiple hashing enables us to reduce the circuit size while
maintaining the security level. The amount of additional key
material is reduced through the Toeplitz approach so that this
becomes a viable solution. Table IV shows that at 500 kHz
we can reduce the power and energy consumptions by more
than half and still compute the hash with the same security
and in the same amount of time. This frequency is used
in sensor node implementations [26].WH can operate with
as little as4.8 µW at 2000 kHz. This is in the range of
the power produced by a MEMS scavenger [4]. We would
like to note that we used an ASIC standard cell library to
obtain these results. A full custom IC-design would yield even
higher power savings. We also think that further research could
be done to apply the technique of voltage scaling to both
algorithms to improve the power savings.

IX. CONCLUSION

In this paper, we propose a variation onNH (the underlying
hash function of UMAC), namelyWH. Our main motivation
was to prove that universal hash functions can be employed
to provide provable security in low-power applications. More

specifically, we considered hardware implementations of uni-
versal hash functions with an emphasis on low-power and
reasonable execution speed.

NH produces a hash of length2w and was shown to be2−w-
almost universal. On the other hand,WH reaches optimality
and is proven to be a universal hash function family with
a much shorter hash length ofw. Since its combinatorial
properties are mathematically proven, there is no need for
making cryptographic hardness assumptions or using a safety
margin in practical implementations. In addition, this scheme
is simple enough to allow for efficient constructions.

Our implementation ofWH shows power savings of up
to 59% for dynamic power and 67% for leakage power
consumption. It uses 68% fewer gates and can run 7.4 times
faster thanNH. However, we observed that at lower operating
frequencies, the leakage power constitutes the dominant part
of the overall power consumption. The only way to reduce
the leakage power is to reduce the circuit size. Therefore, we
applied multi-hashing integrated with the Toeplitz approach
to our hash functionWH resulting in the designsWH-32 and
WH-16. Without sacrificing any security we achieved drastic
power savings of up to 90% overNH and reduced the circuit
size by more than 90% to less than 500 gates at the expense
of a very slight increase in the amount of key material.

We presented a powerful method for optimizingWH with
respect to specific energy and power consumption require-
ments. We have shown that with the introduction of multi-
hashing (t times) together with the Toeplitz approach the
circuit size and the power consumption is reduced by a factor
of t while it takes t times longer to compute the hash.
Therefore the energy consumption stays about the same. On
the other hand the operating frequency may be increasedt
times to achieve the hash without increasing the runtime. Then
the dynamic power consumption is increasedt-fold, however,
the leakage power is not affected. Hence, at low frequencies
(i.e. PDyn ¿ PLeak) the total power consumption as well as
the energy consumptions decrease linearly with increasing pa-
rametert. This is a powerful technique to decrease the circuit
size, and the power and energy consumptions simultaneously
while maintaining the hashing speed. The only limiting factor
is the maximum operating frequency.

By designing the new algorithms with efficiency guidelines
in mind and applying optimization techniques, we achieved
drastic power, energy and area savings. Our implementation
of WH-16 consumes only2.95 µW at 500 kHz and uses
only 460 gates. It could therefore be integrated into a self-
powered device. This enables the use of hash functions in

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, MONTH 2004 11

ultra-low-power applications such as “Smart Dust” motes,
RFIDs, and Piconet nodes. By virtue of the security and
implementation features mentioned above, we believe that the
proposed universal hash function together with the Toeplitz
approach will fill an important gap in cryptographic hardware
applications.

REFERENCES

[1] F. Bennett, D. Clarke, J. B. Evans, A. Hopper, A. Jones, and D. Leask,
“Piconet: Embedded mobile networking,”IEEE Personal Communica-
tions, vol. 4, no. 5, pp. 8–15, Oct 1997.

[2] S. Sarma, D. Brock, and K. Ashton, “The networked physical world -
proposals for engineering the next generation of computing, commerce
& automatic identification,” MIT: Auto-ID Center,” White Paper, Oct
2000.

[3] J. Kahn, R. Katz, and K. Pister, “Next century challenges: mobile net-
working for ”smart dust”,” inProceedings of the fifth annual ACM/IEEE
international conference on Mobile computing and networking. ACM,
1999, pp. 271–278.

[4] S. Meininger, J. Mur-Miranda, R. Amirtharajah, A. Chandrakasan, and
J. Lang, “Vibration-to-electric energy conversion,”IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 9, no. 1, pp. 64–76,
Feb 2001.

[5] G. J. Simmons, Ed.,Contemporary Cryptology. IEEE Press, 1992.
[6] W. Diffie and M. E. Hellman, “New Directions in Cryptography,”IEEE

Transactions on Information Theory, vol. IT-22, pp. 644–654, 1976.
[7] J. L. Carter and M. Wegman, “Universal classes of hash functions,”

Journal of Computer and System Sciences, vol. 18, pp. 143–154, 1978.
[8] ——, “New hash functions and their use in authentication and set

equality,” Journal of Computer and System Sciences, vol. 22, pp. 265–
279, 1981.

[9] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway, “UMAC:
Fast and secure message authentication,” inAdvances in Cryptology
- CRYPTO ’99, ser. Lecture Notes in Computer Science, vol. 1666.
Springer-Verlag, 1999, pp. 216–233.

[10] P. Rogaway, “Bucket hashing and its application to fast message authet-
ication,” in Proceedings Crypto ’95, ser. LNCS, D. Coppersmith, Ed.,
vol. 963. Springer-Verlag, 1995, pp. 29–42.

[11] D. W. Carman, P. S. Kruus, and B. J. Matt, “Constraints and approaches
for distributed sensor network security,” NAI Labs, Secutity Research
Division, Glenwood, MD, Technical Report, Sep 2000.

[12] M. Ramakrishna, E. Fu, and E. Bahcekapili, “A performance study of
hashing functions for hardware applications,” inProceedings of the
ICCT ’94 International Conference on Computing and Information,
1994, pp. 1621–1636.

[13] H. Krawczyk, “LFSR-based hashing and authentication,” inAdvances
in Cryptology - CRYPTO ’94, ser. Lecture Notes in Computer Science,
vol. 839. Springer-Verlag, 1994, pp. 129–139.

[14] V. Shoup, “On fast and provably secure message authentication based
on universal hashing,” inAdvances in Cryptology - CRYPTO ’96, ser.
Lecture Notes in Computer Science, vol. 1109. New York: Springer-
Verlag, 1996, pp. 74–85.

[15] S. Halevi and H. Krawczyk, “MMH: Software message authentication
in the gbit/second rates,” in4th Workshop on Fast Software Encryption,
ser. Lecture Notes in Computer Science, vol. 1267. Springer, 1997, pp.
172–189.

[16] P. Rogaway, “Bucket hashing and its applications to fast message
authentication,” inAdvances in Cryptology - CRYPTO ’95, ser. Lecture
Notes in Computer Science, vol. 963. New York: Springer-Verlag,
1995, pp. 313–328.

[17] H. Krawczyk, “New hash functions for message authentication,” in
EUROCRYPT’95, ser. Lecture Notes in Computer Science, vol. 921.
Springer-Verlag, 1995, pp. 301–310.

[18] M. Etzel, S. Patel, and Z. Ramzan, “SQUARE HASH: Fast message
authentication via optimized universal hash functions,” inAdvances in
Cryptology - CRYPTO ’99, ser. Lecture Notes in Computer Science,
M. Wiener, Ed., vol. 1666. New York: Springer-Verlag, 1999, pp.
234–251.

[19] W. Nevelsteen and B. Preneel, “Software performance of universal hash
functions,” inEUROCRYPT’99, ser. Lecture Notes in Computer Science,
vol. 1592. Berlin: Springer-Verlag, 1999, pp. 24–41.

[20] R. J. McEliece,Finite Fields for Computer Scientists and Engineers,
2nd ed. Kluwer Academic Publishers, 1989.

[21] Y. Mansour, N. Nissan, and P. Tiwari, “The computational complexity
of universal hashing,” in22nd Annual ACM Symposium on Theory of
Computing. ACM Press, 1990, pp. 235–243.

[22] S. Devadas and S. Malik, “A survey of optimization techniques targeting
low power VLSI circuits,” in Proceedings of the 32nd ACM/IEEE
Conference on Design Automation, 1995, pp. 242–247.

[23] J. Rabaey and M. Pedram,Low Power Design Methodologies. Norwell,
Massachusetts: Kluwer Academic Publishers, 1996.

[24] B. Parhami,Computer Arithmetic: Algorithms and Hardware Designs.
Oxford University Press, 2000.

[25] K. M. Heal, M. L. Hansen, and K. M. Rickard,Maple V Learning Guide.
New York: Springer Verlag, 1998.

[26] R. Amirtharajah and A. P. Chandrakasan, “Self-powered signal process-
ing using vibration-based power generation,”IEEE Journal of Solid-
State Circuits, vol. 33, no. 5, pp. 687–695, May 1998.

Jens-Peter Kapsreceived his Dipl.-Ing. in Electrical
Engineering from the University of Applied Science,
Munich, Germany in 1996 and his M.Sc. in Electri-
cal and Computer Engineering (ECE) from Worces-
ter Polytechnic Institute (WPI), Massachusetts in
1998. He worked for three and a half years as a
senior engineer for GTE CyberTrust Inc., Needham,
Massachusetts, before returning to WPI in order to
pursue a Ph.D. degree in Electrical and Computer
Engineering. His research interests include ultra-
low-power cryptographic hardware design, computer

arithmetic, efficient cryptographic algorithms as well as computer and network
security. He is a student member of the IEEE Computer Society and
the International Association of Cryptologic Research (IACR) professional
societies as well as Eta Kappa Nu (HKN) International Honor Society for
Electrical Engineers

Kaan Yüksel received the BSc degree in electri-
cal and electronics engineering (EEE) from Middle
East Technical University, Ankara, Turkey, in 2002
and the MSc in electrical and computer engineer-
ing (ECE) from Worcester Polytechnic Institute,
Worcester, Massachusetts, in 2004. He is currently
pursuing the PhD degree. His research interests
include cryptography and information security with
emphasis on message authentication codes, univer-
sal hash functions, extractors and hardware random
number generators. He is a student member of the

IEEE, Eta Kappa Nu (HKN) International Honor Society for Electrical Engi-
neers, and the International Association of Cryptographic Research (IACR).

Berk Sunar received his BSc degree in Electrical
and Electronics Engineering from Middle East Tech-
nical University in 1995 and his Ph.D. degree in
Electrical and Computer Engineering (ECE) from
Oregon State University in December 1998. After
briefly working as a member of the research fac-
ulty at Oregon State University, Sunar has joined
Worcester Polytechnic Institute as an Assistant Pro-
fessor. He is currently heading the Cryptography
and Information Security Laboratory (CRIS). Sunar
received the National Science Foundation CAREER

award in 2002. He organized the Cryptographic Hardware and Embedded
Systems Conference (CHES) in 2004, and is the co-editor of CHES 2005.
His research interests include finite fields, elliptic curve cryptography, low-
power cryptography, and computer arithmetic. Sunar is a member of the IEEE
Computer Society, the ACM, and the International Association of Cryptologic
Research (IACR) professional societies.

