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In this article, we construct forward price curves and value a class of two asset exchange options for
energy commodities. We model the spot prices using an affine two-factor mean-reverting process with
and without jumps. Within this modeling framework, we obtain closed form results for the forward prices
in terms of elementary functions. Through measure changes induced by the forward price process, we
further obtain closed form pricing equations for spread options on the forward prices. For completeness,
we address both an Actuarial and a risk-neutral approach to the valuation problem. Finally, we provide
a calibration procedure and calibrate our model to the NYMEX Light Sweet Crude Oil spot and futures
data, allowing us to extract the implied market prices of risk for this commodity.

1. Introduction

The energy commodity markets are fundamentally different from the traditional financial security
markets in several ways: Firstly, these markets lack the same level of liquidity that the majority of
financial markets enjoy. Secondly, the storage costs of most commodities translate into peculiar price
behavior; some commodities are extremely difficult to store or cannot be stored at all – electricity being
a prime example. Thirdly, partly due to the structural issues surrounding energy price determination,
electricity prices are typically exposed to very high volatility and to large shocks. Finally, commodity
prices tend to have strong mean reverting trends. These stylized empirical facts are well documented in,
for example, Clewlow and Strickland (2000), Carmona and Durrleman (2003), Eydeland and Wolyniec
(2003) and Hull (2005).

The world wide energy commodities markets have created a need for a deeper quantitative under-
standing of energy derivatives pricing and hedging. We contribute to this program firstly by proposing
a two-factor mean-reverting spot price process, both with and without a jump component, and secondly
by carrying out the explicit valuation of spread options written on two forward prices. The spot price
model is similar in spirit to the two-factor model proposed in Pilipovic (1997); however, in that work the
second factor follows a geometric Brownian motion and, therefore, in the long run, the targeted mean
blows up. Instead, we chose the mean-reverting level of the first factor to mean-revert to a second long-
run mean. Our modeling framework can then be viewed as a perturbation on the standard one-factor
mean-reverting approach. This is an appealing approach as the one-factor model has been extensively
studied and approximately fits forward price curves. Adding a perturbation on top of this first order
model allows us to correct some of the deficiencies of the one-factor model while maintaining tractability.
In particular, the second factor perturbation does not change the stationary behavior that the one-factor
model enjoys. We delegate the details of our purely diffusive model, and its relation and differences to
the classical Pilipovic (1997) model, to Section 2.1 and of our jump-diffusion model to Section 4.1.

Much like the financial markets, energy markets are rife with derivative products. However, one product
stands out among the many that are traded over the counter: spread options. These options provide the
owner with the right to exchange a prespecified quantity of one asset for another, at a fixed cost. An
∗The Natural Sciences and Engineering Research Council of Canada helped support this work.
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even more popular option is the spread option on forward prices which allows the holder to exchange two
forward contracts, possibly with differing maturity dates, rather than the commodity. The holder of such
an option receives at maturity T a payoff of

ϕ(F (1)
T,T1

, F
(2)
T,T2

) := max
(
F

(1)
T,T1

− αF
(2)
T,T2

−K , 0
)
. (1)

It is well known that even when the commodity prices are modeled as geometric Brownian motions
(GBMs), no closed form solution exists for K 6= 0. As such, we focus on the zero exchange cost case K = 0
which we succeed in valuing in closed form under our two-factor mean-reversion modeling assumptions.
Given our closed form solutions, the general case K 6= 0 can be valued using either Monte Carlo or PDE
methods with our K = 0 result acting as a control variate.

In a financial markets context, before proceeding to the valuation of derivatives, the objective measure
is transformed to an equivalent risk-neutral measure. However, in the context of energy derivatives, due to
the illiquidity issue, such a measure change is by no means necessary. Therefore, rather than immediately
moving to a risk-neutral valuation procedure, we first present a simple Actuarial valuation approach for
pricing exchange options in Section 2.2. This approach has been adopted by some industry participants
and is justified by assuming that the risks associated with the energy prices are non-diversifiable (see for
example Hull (2005)). Margrabe (1978) first valued exchange options assuming asset prices are GBMs
under the risk-neutral measure and by utilizing a measure change induced by treating one of the assets
as numeraire. However, since commodities are not liquid, their spot prices cannot act as a numeraire.
Nonetheless, we show that there is a closely related measure change which renders the valuation in closed
form even under the Actuarial approach.

Although some industry participants adopt an Actuarial valuation procedure, risk-neutral approaches
are still very popular. In Section 3, we specify a class of equivalent risk-neutral measures which maintains
the structure of the real-world dynamics. This allows us to reuse much of the valuation technology
developed in Section 2.2. Once again, we show that an equivalent measure provides closed form pricing
equations for spread options.

Most energy commodities are adequately modeled by diffusive processes; however, electricity prices
themselves contain sever jumps . Section 4 is devoted to a jump-diffusion generalization of our previous
results appropriate for spark-spread options – exchange options in which a fuel commodity is exchanged
for electricity. Using the affine structure of our two-factor model with jumps, we obtain the forward
prices as a solution to a system of coupled ODEs which we explicitly solve. Furthermore, through
measure changes and Fourier transform methods, à la Duffie, Pan, and Singleton (2000) and Carr and
Madan (1999), we obtain closed form formula for the price of spark-spread options on forwards.

We complete the paper in Section 5 with a calibration procedure that fits the model to spot and
forward prices simultaneously. Calibrating to both spot and forward prices allows us to further extract
the market prices of risk implied by the data. We apply the calibration procedure to the NYMEX Light
Sweet Crude Oil spot and futures data and report on the stability of the implied model parameters as
well as on the implied market prices of risk. Interestingly, the real-world mean-reversion rates are found
to be higher than the risk-neutral mean-reversion rates. Furthermore, the rate of mean-reversion of the
stochastic long-run mean level is lower than the mean-reversion rate of the log-spot price process. We
find that these features are reflected in the market prices of risk themselves.

2. Real World Dynamics and Pricing

2.1. Model Specifications
A quick glance at historical spot prices for energy markets shows that traditional geometric Brownian

motion models, even as a first order model, are inadequate. A successful model must include mean
reversion as an essential feature. For early use of such models see the papers by Gibson and Schwartz
(1990) and Cortazar and Schwartz (1994). These early one-factor models are a good first order model;
however, as energy derivatives will often have maturities extending into months, or even years, such first
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order models require improvement. They invariably cannot match the term structure of forward prices
for example. To this end, Pilipovic (1997) first suggested the two-factor mean-reverting model:

dSt = β(θt − St) dt+ σS St dW
(1)
t , (2)

dθt = α θtdt+ σθ θt dW
(2)
t , (3)

where the two Brownian risk factors are correlated: d[W (1),W (2)]t = ρ dt. In this model, θt represents
the stochastic long-run mean that spot prices St revert to. This additional degree of stochasticity helps
to correct some of the biases that a fixed long-run mean produces. In this parametrization, the mean
reverting level is a geometric Brownian motion and can therefore grow without bound leading to non-
stationary spot price processes. To circumvent this problem, and to assist with obtaining closed form
formulae for spread options, we propose to model the log spot-price with an affine two-factor mean-
reverting process. Much like Pilipovic’s model, the first factor mean-reverts to stochastic level; however,
we ensure that the stochastic mean-reverting level also mean-reverts to a second long-run mean. With
such a parametrization, the distribution of spot-prices is stationary, prices do not grow without bound,
and the model remains within the Affine modeling class.

If the individual assets are driven by a two-factor model, then four driving factors are required to value
spread options – two for each asset. Let {W (i)

t }0≤t≤T and {Z(i)
t }0≤t≤T , with i = 1 or 2, denote these four

Brownian risk factors and F = {Ft}0≤t≤T denote the natural filtration generated by these processes. The
measure P will denote the real-world probability distribution and {Ω,F,P} is used to denote the complete
stochastic basis for the probability space. The spot-prices {S(i)

t }0≤t≤T , with i = 1 or 2, are obtained via
an exponentiation of the driving risk-factors. More specifically, the spot-prices are defined as follows:

S
(i)
t := exp

(
g
(i)
t +X

(i)
t

)
, i = 1, 2 . (4)

Seasonality is an important feature of some commodity prices; we therefore include the seasonality term
g
(i)
t using the following popular ansätz:

g
(i)
t = A

(i)
0 t+

n∑
k=1

(
A

(i)
k sin(2π k t) +B

(i)
k cos(2π k t)

)
. (5)

For calibration stability, n is typically kept small: n = 1 or 2. In our subsequent calculations we leave
g
(i)
t general, assuming only smoothness and differentiability.
To complete the specification of the two-factor model which drives the spot-prices, X(i)

t is assumed to
satisfy the following coupled SDEs:

dX
(i)
t = βi

(
Y

(i)
t −X

(i)
t

)
dt+ σ

(i)
X dW

(i)
t , (6)

dY
(i)
t = αi

(
φi − Y

(i)
t

)
dt+ σ

(i)
Y dZ

(i)
t . (7)

Here, βi controls the speed of mean-reversion of X(i)
t to the stochastic long-run level Y (i)

t ; αi controls the
speed of mean-reversion of the long-run level Y (i)

t to the target long-run mean φi; σ
(i)
X and σ

(i)
Y control

the size of the fluctuations around these means.
To reduce the parameter space, the measure P is chosen such that the following simple correlation

structure is imposed on the Brownian motions:

d[W (1),W (2)]t = ρ12 dt , (8)

d[W (i), Z(i)]t = ρi dt , i = 1, 2 , (9)

and all other cross correlations are zero. This structure allows the main driving factors X(i)
t to be

correlated to one another and their own idiosyncratic long-run mean-reverting processes Y (i)
t , while this

structure forces the long-run reverting factors Y (1)
t and Y (2)

t to have an instantaneous correlation of zero.
It is a straightforward, albeit tedious, matter to generalize this correlation structure.
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The coupled SDEs (6)-(7) can be solved by (i) first solving (7) for Y (i)
t – which is the standard mean-

reverting Ornstein-Uhlenbeck process – to obtain

Y
(i)
t = φi +

(
Y (i)

s − φi

)
e−αi(t−s) + σ

(i)
Y

∫ t

s

e−αi(t−u) dZ(i)
u ; (10)

and then (ii) substituting this result into (6) to solve for X(i)
t while accounting for the correlation and

feedback of Y (i)
t into X(i)

t . After some tedious calculations X(i)
t can be represented as

X
(i)
t = G

(i)
s,t + e−βi(t−s)X(i)

s +M
(i)
s,tY

(i)
s + σ

(i)
X

∫ t

s

e−βi(t−u) dW (i)
u + σ

(i)
Y

∫ t

s

M
(i)
u,t dZ

(i)
u , (11)

where γi := βi

αi−βi
, and G(i)

s,t and M (i)
s,t are the deterministic functions

M
(i)
s,t := γi

(
e−βi(t−s) − e−αi(t−s)

)
, (12)

G
(i)
s,t := φi

(
1− e−βi(t−s)

)
− φiM

(i)
s,t . (13)

Armed with our two-factor model and the solutions (10)-(11), we now focus our attention on the valuation
of spot spread options and defer the valuation of spreads on forwards and model calibration to sections
3.4 and 5 respectively.

2.2. Spot Spread Valuation : An Actuarial Approach
Much like the financial markets, energy markets are rife with derivative products. However, one product

stands out among the many that are traded over the counter: spread options. These options provide the
owner with the right to exchange a specified quantity of one asset for another, at a fixed cost. The holder
of such an option receives a maturity payoff of

ϕ(S(1)
T , S

(2)
T ) := max

(
S

(1)
T − αS

(2)
T −K , 0

)
. (14)

When the cost of exchanging K is set to zero, the option is known as a Margrabe or exchange option
(Margrabe, 1978). Various approximations for the general (spot) spread option, under simple diffusion
processes, have been studied in the literature and the reader is referred to Carmona and Durrleman (2003)
for an excellent overview and further references. In the context of electricity markets, this option is known
as the spark-spread option and α represents the heat rate of a given plant. The heat rate encapsulates
the plant’s profitability by specifying the number of units of the underlying commodity (such as oil or
natural gas) which produces one unit of power – this product is studied in Section 4. If the exchange is
between crude oil and a refined product (such as gasoline) the option is known as a crack-spread option.
Many other specific examples of exchange options exist in the energy sector. In all cases, the exchange
option can be used to hedge against market movements of spot prices or, alternatively, to speculate on
those moves. In either case, a valuation framework is required.

It is difficult and sometimes not viable to store electricity and energy commodities; this results in an
illiquid spot market. Harrison and Pliska (1981) demonstrated that the absence of arbitrage is equivalent
to the existence of a measure, not necessarily unique, under which the relative price process of tradable
assets to the money market account are martingales. Such measures are known as a risk-neutral measures.
However, this conclusion has one important assumption – unrestricted and liquid trading of the underlying
asset. In illiquid (spot) energy markets, it may be dubious to adopt a risk-neutral pricing framework, and
although we ultimately proceed with that program, we first take an Actuarial approach. By assuming
that the risks associated with the energy prices are non-diversifiable, it is possible to justify an Actuarial
approach to pricing derivatives (Hull, 2005) which values an option as its discounted real-world expected
payoff.

Definition. The Actuarial valuation principle assigns the following price to a T -maturity contingent
claim with payoff ϕ(S(1)

T , S
(2)
T ):

Πt,T := P (t, T ) EP
t

[
ϕ
(
S

(1)
T , S

(2)
T

)]
. (15)
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The notation Et[A] represents the expectation of A conditional on the filtration Ft.

Throughout the article we assume the (possibly random) interest rates to be independent from other risk
factors and write the price at time t of a zero-coupon bond maturing at T as P (t, T ).

In the traditional valuation procedure, expectations are taken under the risk-neutral measure Q; here,
however, the relevant measure is the real-world one P. This complicates the problem somewhat. When
the asset and the derivative are tradable, it is possible to use a numeraire change to value the Margrabe
option; in the present context the asset cannot be used as numeraire and the relevant measure is not the
risk-neutral one. Nonetheless, it is possible to adopt a similar strategy; to this end, define the auxiliary
process

H
(i)
t,T := EP

t

[
S

(i)
T

]
. (16)

If the expectation in (16) is computed under a risk-neutral measure, then H(i)
t,T represents the T -maturity

forward price, which motivates us to coin H(i)
t,T the T -maturity pseudo-forward price process. At maturity

this “price” process coincides with the spot-price H(i)
T,T = S

(i)
T allowing the Actuarial value of the exchange

option to be written:

Πt,T = P (t, T ) EP
t

[(
H

(1)
T,T − αH

(2)
T,T

)
+

]
. (17)

The pseudo-forward price process has two other notable properties: (i) its expectation is bounded at all
finite times EP

[
|H(i)

t,T |
]

= H
(i)
0,T < +∞ for all t < T , and (ii) it is a P-martingale. These two properties

allow a normalized version of H(i)
t,T to assist in transforming the measure P into a particularly convenient

measure for pricing. This measure change can, in some sense, be interpreted as being induced by using
the pseudo-forward price process as a numeraire asset. The following Theorem contains one of our main
tools.

Theorem. 2.1 Let {ηt}0≤t≤T denote the Radon-Nikodym process

ηt :=

(
dP̃
dP

)
t

:=
H

(2)
t,T

H
(2)
0,T

. (18)

Then, for any A ∈ FT

P̃(A) = EP[I(A) ηT ] , (19)

and in particular W̃ i
t and Z̃i

t (i = 1, 2) defined by

W̃
(2)
t = W

(2)
t −

∫ t

0

[
σ

(2)
X e−β2(T−u) + ρ2σ

(2)
Y M

(2)
u,T

]
du (20)

Z̃
(2)
t = Z

(2)
t −

∫ t

0

[
σ

(2)
Y M

(2)
u,T + ρ2σ

(2)
X e−β2(T−u)

]
du (21)

W̃
(1)
t = W

(1)
t −

∫ t

0

[
ρ12σ

(2)
X e−β2(T−u)

]
du (22)

Z̃
(1)
t = Z

(1)
t −

∫ t

0

[
ρ1ρ12σ

(2)
X e−β2(T−u)

]
du (23)

are P̃−Wiener processes with correlation structure

d[W̃ (1), W̃ (2)]t = ρ12 dt , (24)

d[W̃ (i), Z̃(i)]t = ρi dt , i = 1, 2 , (25)

and all other cross correlations zero.
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Proof. Given properties (i) and (ii) above and η0 = 1, it is clear that ηt is a Radon-Nikodym derivative
process and equation (19) immediately follows. To demonstrate that W̃ (i)

t and Z̃(i)
t are P̃-Wiener processes

substitute (11) into H(i)
t,T and then compute the expectation explicitly as follows:

H
(i)
t,T = EP

t

[
exp

{
g
(i)
T +G

(i)
t,T + e−βi(T−t)X

(i)
t +M

(i)
t,T Y

(i)
t

+σ(i)
X

∫ T

t

e−βi(T−u) dW (i)
u + σ

(i)
Y

∫ T

t

M
(i)
u,T dZ

(i)
u

}]

= exp
(
g
(i)
T +G

(i)
t,T +R

(i)
t,T + e−βi(T−t)X

(i)
t +M

(i)
t,T Y

(i)
t

)
(26)

Here,

R
(i)
t,T :=

h(t, T ; 2βi)
2

[(
σ

(i)
X

)2

+
(
γiσ

(i)
Y

)2

+ 2ρiγiσ
(i)
X σ

(i)
Y

]
−h(t, T ;αi + βi)

[(
γiσ

(i)
Y

)2

+ ρiγiσ
(i)
X σ

(i)
Y

]
+
h(t, T ; 2αi)

2

(
γi σ

(i)
Y

)2

, (27)

with

h(t, T ; a) := (1− e−a(T−t))/a . (28)

The “Girsanov kernel” can now be read off directly from (26) and the solution for X(i)
t and Y (i)

t given in
(10)-(11). Through Girsanov’s theorem we find that (20)-(23) are P̃-Wiener processes. �

Corollary 2.2 The Actuarial valuation formula (15) can be transformed to

Πt,T := P (t, T ) EP
t

[
ϕ
(
H

(1)
T,T ,H

(2)
T,T

)]
= P (t, T )H(2)

t,T EeP
t

ϕ
(
H

(1)
T,T ,H

(2)
T,T

)
H

(2)
T,T

 . (29)

Proof. Use ηt to change the measure. �

It now remains to compute the expectation appearing in (29) under the transformed measure P̃. Recall
that a processMt is a P̃-martingale if and only if the processMt (dP̃/dP)t is a P-martingale. Consequently,
both Ht,T := H

(1)
t,T /H

(2)
t,T and (dP/dP̃)t are P̃-martingales. This, together with Corollary 2.2, reduces the

Actuarial price of the Margrabe spread option to

Πt,T = P (t, T )H(2)
t,T EeP

t [(HT,T − α)+] (30)

Since Ht,T is a P̃-martingale, its drift under the P̃-measure is zero. Putting this together with equation
(26), we find that Ht,T satisfies the SDE:

dHt,T

Ht,T
= σ

(1)
X e−β1(T−t)dW̃

(1)
t − σ

(2)
X e−β2(T−t)dW̃

(2)
t + σ

(1)
Y M

(1)
t,T dZ̃

(1)
t − σ

(2)
Y M

(2)
t,T dZ̃

(2)
t (31)

This expression clearly shows that Ht,T is a geometric Brownian motion with time dependent (but
deterministic) volatility; consequently, its terminal value can be expressed in terms of its initial value
via HT,T = Ht,T exp (Ut,T ), where Ut,T is a normal random variable with mean equal to − 1

2 (σt,T )2 and
variance equal to (σt,T )2. Here,

(σt,T )2 = EeP
t

[(
σ

(1)
X

∫ T

t

e−β1(T−s) dW̃ (1)
s − σ

(2)
X

∫ T

t

e−β2(T−s) dW̃ (2)
s

+σ(1)
Y

∫ T

t

M
(1)
s,T dZ̃

(1)
s − σ

(2)
Y

∫ T

t

M
(2)
s,T dZ̃

(2)
s

)2


= 2R(1)
t,T + 2R(2)

t,T − 2 ρ12 σ
(1)
X σ

(2)
X h(t, T ;β1 + β2) . (32)
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The deterministic functions M (i)
s,T and R(i)

t,T are as in (12) and (27) respectively. It is now a straightforward
matter to recover the final result of this section – a “Black-Scholes like” expression for the Actuarial price
of the exchange option.

Proposition 2.3 The Actuarial value at time t of the T -maturity exchange option is

Πt,T = P (t, T )
[
H

(1)
t,T Φ(d+ σt,T )− α ·H(2)

t,T Φ(d)
]

(33)

with σt,T as in (32) and d defined as

d :=
log Ht,T

α − 1
2 (σt,T )2

σt,T
. (34)

3. Risk-Neutral Dynamics and Pricing

In complete market settings, there exists a unique equivalent measure which induces the relative price
process of tradable assets to be martingales. This measure is known as the risk-neutral measure Q. In
the present context, the underlying asset is not tradable in the usual sense due to the illiquidity issue
and potentially large storage costs. In the previous section we dealt with this issue by resorting to an
Actuarial valuation procedure and assigned a price equal to the discounted expectation of the terminal
payoff under the real-world measure. However, one can in principle still utilize risk-neutral methodologies
adjusting for the incompleteness of the market settings. Within such incomplete markets there may exists
many equivalent risk-neutral measures; it is the job of the market as a whole, via trading of derivatives,
to decide which measure prevails at any one given point in time. In this next section, we provide a class of
equivalent martingale measures that maintains the structure of our real-world dynamics for asset prices.
These measures are then used to obtain forward prices and value spread options.

3.1. Measure Change
In this section, we introduce a class of risk-neutral measure changes which maintains the real-world

structure of the asset dynamics. The following Lemma introduces the new measure induced by a four
dimensional market price of risk vector.

Lemma 3.1 Let {ζt}0≤t≤T denote the Radon-Nikodym process,

ζt :=
(
dQ
dP

)
t

= E
(∫ t

0

{
λ(1)

u dW (1)
u + ψ(1)

u dZ(1)
u + λ(2)

u dW (2)
u + ψ(2)

u dZ(2)
u

})
, (35)

where E(At) is the Dolean-Dade’s exponential of the process At. Then for any A ∈ FT we have,

Q(A) = EP[A ζT ] . (36)

In particular the following are Q-Wiener processes:

W
(1)

t = W
(1)
t −

∫ t

0

{
λ(1)

u + ρ12λ
(2)
u + ρ1ψ

(1)
u

}
du (37)

Z
(1)

t = Z
(1)
t −

∫ t

0

{
ρ1λ

(1)
u + ψ(1)

u

}
du (38)

W
(2)

t = W
(2)
t −

∫ t

0

{
ρ12λ

(1)
u + λ(2)

u + ρ2ψ
(2)
u

}
du (39)

Z
(2)

t = Z
(2)
t −

∫ t

0

{
ρ2λ

(2)
u + ψ(2)

u

}
du (40)

with correlation structure,

d
[
W

(1)
,W

(2)
]

t
= ρ12 dt , (41)

d
[
W

(i)
, Z

(i)
]

t
= ρi dt , i = 1, 2 , (42)
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and all other cross-correlations zero.

Proof. Decompose the correlated processes into uncorrelated processes and apply Girsanov’s Theorem.
�

Notice that there are no restrictions on the form of the market prices of risk other than the usual
integrability ones. In particular, the drifts under the risk-neutral measure Q are not constrained to the
risk-free rate. This is precisely the effect of incompleteness in the present context. The following Theorem
applies constraints on the market prices of risk such that the risk-neutral dynamics and the real-world
one are of the same form.

Theorem. 3.2 If the market price of risk processes are chosen as follows:

λ
(i)
t = λ(i) + λ

(i)
X X

(i)
t + λ

(i)
Y Y

(i)
t , (43)

ψ
(i)
t = ψ(i) + ψ

(i)
X X

(i)
t + ψ

(i)
Y Y

(i)
t , (44)

subject to the constraints ( (i, j) ∈ {(1, 2), (2, 1)} )

ψ
(i)
X = −ρi λ

(i)
X , (45)

λ(i) + ρ12λ
(j) + ρiψ

(i) = 0 , (46)

λ
(i)
X + ρ12λ

(j)
X + ρiψ

(i)
X = −

(
λ

(i)
Y + ρ12λ

(j)
Y + ρiψ

(i)
Y

)
, (47)

αi = αi − σ
(i)
Y

(
ρiλ

(i)
Y + ψ

(i)
Y

)
, (48)

αi φi =
(
αiφi + σ

(i)
Y

(
ρiλ

(i) + ψ(i)
))

, (49)

βi = βi + σ
(i)
X

(
λ

(i)
Y + ρ12λ

(j)
Y + ρiψ

(i)
Y

)
, (50)

then the risk-neutral dynamics of X(i)
t and Y (i)

t remain within the same class as (6)-(7). In particular,

dX
(i)
t = βi (Y (i)

t −X
(i)
t ) dt+ σ

(i)
X dW

(i)

t (51)

dY
(i)
t = αi (φi − Y

(i)
t ) dt+ σ

(i)
Y dZ

(i)

t . (52)

Proof. Insert the expressions for the Q-Wiener processes W
(i)

t and Z
(i)

t into (6)-(7). Collect similar
terms and equate coefficients. �

This ansätz may seem restrictive; however, even though the risk-neutral dynamics remains within the
same class as the real-world one, the coefficients driving that dynamics may be significantly different.
This flexibility is sufficient for the simultaneous calibration of the risk-neutral and real-world model
parameters, while remaining parsimonious.

3.2. Forward Prices
Since the risk-neutral dynamics of the driving diffusion processes (51)-(52) are of the same form as they

were under the objective measure (6)-(7), the forward price curves can easily be extracted from equation
(26). This is because, within a risk-neutral framework, the forward prices are defined as

F
(i)
t,T := EQ

t

[
S

(i)
T

]
, (53)

the precise risk-neutral analog of the pseudo-forward price defined in (16). All that remains is to change
the P-parameters for the Q-parameters.
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Proposition 3.3 The forward prices associated to commodity i = 1, 2 are given by

F (i)(t, T ) = exp
(
g
(i)
T +R

(i)

t,T +G
(i)

t,T + e−βi(T−t)X
(i)
t +M

(i)

t,T Y
(i)
t

)
(54)

where the expressions for M
(i)

t,T , G
(i)

t,T and R
(i)

t,T are supplied in equations (12)-(13) and (27) respectively
– with the appropriate change of parameters (αi → αi and so on...).

These results can be viewed as an extension of the one-factor model Cartea and Figueroa (2005) study,
albeit without jumps. In section 4, we address the two factor model with jumps.

3.3. Spot Spread Valuation
To value the option under a risk-neutral measure, we follow along the same lines as in Section 2.2.

In the present context, the measure change is the one induced by using the forward price to drive the
measure change. To this end, define a new measure Q̃ via the Radon-Nikodym derivative process(
dQ̃
dQ

)
t

=
EQ

t

[
S

(2)
T

]
EQ

0

[
S

(2)
T

] =
F

(2)
t,T

F
(2)
0,T

. (55)

All steps leading to Proposition 2.3 remain valid in this new context, and rather than repeating them,
we simply quote our final risk-neutral pricing result.

Proposition 3.4 The risk neutral value at time t of the exchange option with maturity T is:

Πt,T = P (t, T )
[
F

(1)
t,T Φ(d+ σt,T )− αF

(2)
t,T Φ(d)

]
(56)

where d defined as

d :=
log Ft,T

α − (σt,T )2

2

σt,T
(57)

and σt,T as in (32) – with all P-parameters replaced by Q-parameters (i.e., αi → αi and so on...).

It is important to note that the market provides quotes for the forward curve F (i)
t,T , i = 1, 2 for a set of

maturities T = {T1, . . . , Tn}. These curves can be used to calibrate the risk-neutral parameters. Once
the model has been calibrated to market data, the resulting pricing rules are just as simple to use as
the Black-Scholes formula for a European option on a single asset. Although the explicit expressions for
the forward prices F (i)

t,T and the effective volatility σt,T are somewhat bulky, they involve nothing more
complex than exponentiation and are therefore very efficient to calculate.

3.4. Forward Spread Valuation
In the previous sections we focused on valuing a spread option based on the future spot prices; however,

a more popular derivative product involves the spread between the forward prices of the two assets
(possibly with differing maturities). Such spreads on forwards pay

ϕ
(
F

(1)
T,T1

, F
(2)
T,T2

)
=
(
F

(1)
T,T1

− αF
(2)
T,T2

)
+

(58)

at the maturity date T where it is implicit that T1 , T2 ≥ T . We can once again use a measure change to
simplify the calculations, this time it is convenient to use the T2-maturity forward price of asset 2, i.e.
F

(2)
t,T2

, to induce a measure change. In particular we define the Radon-Nikodym derivative process(
dQ̃
dQ

)
t

:=
F

(2)
t,T2

F
(2)
0,T2

. (59)

The time t price of the forward spread option is therefore

ΠF
t,T := P (t, T )EQ

t

[(
F

(1)
T,T1

− αF
(2)
T,T2

)
+

]
= P (t, T )F (2)

t,T2
EeQ

t

[
(FT ;T1,T2 − α)+

]
. (60)
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Here, Ft;T1,T2 := F
(1)
t,T1

/F
(2)
t,T2

is the ratio of the two relevant forward prices. In analogy with our earlier cal-
culations, the relative process Ft;T1,T2 is a Q̃-martingale and therefore its Q̃-dynamics is driftless. Follow-
ing along the same arguments as in Section 2.2, it is easy to show that FT ;T1,T2 = Ft;T1,T2 exp{U∗t;T,T1,T2

}
where U∗t;T,T1,T2

is a normal random variable with mean equal to − 1
2 (σ∗t;T,T1,T2

)2 and variance equal to
(σ∗t;T,T1,T2

)2. The explicit form for the variance is

(σ∗t;T,T1,T2
)2 :=

(
γ1σ

(1)
Y

)2

[h(t, T1; 2α1)− h(T, T1; 2α1)]

+
(
γ2σ

(2)
Y

)2

[h(t, T2; 2α2)− h(T, T2; 2α2)]

+
{(

σ
(1)
X

)2

+
(
γ1σ

(1)
Y

)2

+ 2ρ1γ1σ
(1)
X σ

(1)
Y

}[
h(t, T1; 2β1)− h(T, T1; 2β1)

]
+
{(

σ
(2)
X

)2

+
(
γ2σ

(2)
Y

)2

+ 2ρ2γ2σ
(2)
X σ

(2)
Y

}[
h(t, T2; 2β2)− h(T, T2; 2β2)

]
−
{

2
(
γ1σ

(1)
Y

)2

+ 2ρ1γ1σ
(1)
X σ

(1)
Y

}[
h(t, T1;α1 + β1)− h(T, T1;α1 + β1)

]
−
{

2
(
γ2σ

(2)
Y

)2

+ 2ρ2γ2σ
(2)
X σ

(2)
Y

}[
h(t, T2;α2 + β2)− h(T, T2;α2 + β2)

]
−2ρ12σ

(1)
X σ

(2)
X exp

{
−β1(T1 − T )− β2(T2 − T )

}
h(t, T ;β1 + β2) (61)

where, h(t, T ; a) is defined in (28). The pricing equation (60) now reduces to a Black-Scholes like pricing
result.

Proposition 3.5 The risk neutral value at time t of the forward spread option (58) is

ΠF
t,T = P (t, T )

[
F

(1)
t,T1

Φ(d∗ + σ∗t,T )− αF
(2)
t,T2

Φ(d∗)
]

(62)

with (σ∗t,T )2 as in (61) and d∗ defined as

d∗ :=
log Ft;T1,T2

α − 1
2 (σ∗t,T )2

σ∗t,T
. (63)

Not surprisingly, the pricing result is very similar to the one in Proposition 3.4 and reduces to it when
T = T1 = T2.

4. Spot Prices with Jumps

The two factor diffusion model captures the main characteristics of most energy spot prices, however,
it cannot account for the possibility of sudden jumps in the price data. Such behavior is particularly
important for modeling electricity prices and various spreads contingent on electricity and other hedging
assets. The most important example of such option is the so-called spark-spread option which pays(
F

(1)
T,T1

− αF
(2)
T,T2

−K
)

+
at the maturity date T . Here F (1)

t,T1
:= EQ

t

[
S

(1)
T1

]
represents the electricity forward

price, F (2)
t,T2

represents the forward price of the commodity used to generate electricity, and α represents
the heat rate which encapsulates the number of units of energy that the plant produces per unit of
commodity. Notice that the structure of this option allows forward prices of differing maturities to be
used as the underlying. As commented earlier on, closed form solutions, even for the purely diffusion
case, are not accessible for general strike levels; consequently, we limit ourselves to the exchange option
with a strike of zero.

4.1. Model Specification
For brevity, we now focus solely on the risk-neutral valuation procedure, and provide model speci-

fications directly under the risk-neutral measure. Typically, when electricity prices jump they revert
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back to normal levels very quickly. A widely used model specification incorporates jumps and diffusions
simultaneously as follows:

d ln(St) = α(θ − ln(St−)) dt+ σ dWt + dQt . (64)

Regardless of the specification of the jump process Qt, such models suffer from unrealistically large
diffusive volatilities and mean-reversion rates. This occurs because the process must revert very quickly
to normal levels after a large jump, implying a high mean-reversion rate α. This in turn induces an
artificially large diffusive volatility, since otherwise all diffusive components would revert to the mean
extremely quickly and, excluding the jumps, the paths would appear essentially deterministic.

We avoid these problems by splitting the jump component from the diffusion component and modeling
them separately. Specifically, define the (power) spot price by

S
(1)
t := exp

{
g
(1)
t +X

(1)
t + Jt

}
, (65)

where X(i)
t and Y

(i)
t satisfy the usual two-factor SDEs (51)-(52), and the new jump component Jt is

defined via

dJt = −κJt− dt+ dQt , (66)

with Qt a compound Poisson process: Qt :=
∑Nt

1 li, where Nt is a time inhomogeneous Poisson process
with activity rate λ(s), and {li} the set of i.i.d. jump sizes with distribution function Fl(u). Furthermore,
Jt− denotes the value of Jt prior to any jump at time t. The jump component Jt mean-reverts to zero
with rate κ; typically, κ will be quite large because electricity prices revert back to normal very quickly
after a jump. This empirical fact has no direct bearing on the valuation procedure, however, it does
attribute to the manner in which we have split the jump component from the diffusion component. We
allow the activity rate to vary with time to permit seasonality effects in the rate of jump arrivals; however,
we restrict it to be deterministic – it is possible to generalize to stochastic activity rates; however, the
additional modeling flexibility renders the calibration process unstable. Finally, it is well known that
diffusions and jump processes cannot have any instantaneous correlations, while this does not preclude
the jump size from depending on the Brownian risk factors we make the natural assumption that Nt and
{li} are independent of all the Q-Brownian processes.

4.2. Forward Prices
Equipped with this jump-diffusion model, we now derive the forward price F (1)

t,T associated with the

spot S(1)
t . As usual, the forward price is the risk-neutral expectation of the asset price at the maturity

f(t,X(1)
t , Y

(1)
t , Jt) := F

(1)
t,T := EQ

t

[
S

(1)
T

]
= EQ

t

[
exp

{
g
(1)
T +X

(1)
T + JT

}]
. (67)

Rather than computing this expectation directly, we make use of the affine form of the processes along the
lines of Duffie, Pan, and Singleton (2000). Since f is a Q-martingale, it satisfies the zero-drift condition
Af = 0 where A is the generator of the process

(
t,X

(1)
t , Y

(1)
t , Jt

)
. The affine ansätz:

f(t,X(1)
t , Y

(1)
t , Jt) = exp

{
A(t, T ) +B(t, T )X(1)

t + C(t, T )Y (1)
t +D(t, T ) Jt

}
, (68)

with terminal conditions A(T, T ) = g
(1)
T , B(T, T ) = 1, C(T, T ) = 0 and D(T, T ) = 1, reduces the PDE

Af = 0 to the equivalent system of coupled ODEs:

Bt − β1B = 0 , (69)

Ct + β1B − α1C = 0 , (70)

Dt − κD = 0 , (71)

At + α1φ1C +
(σ(1)

X )2

2
B2 +

(σ(1)
Y )2

2
C2 + ρ1σ

(1)
X σ

(1)
Y BC = −

∫ ∞

−∞
λ(u)

(
eD·u − 1

)
dFl(u). (72)

Although rather tedious, standard methods can be used to solve this system and obtain the forward price.
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Proposition 4.1 The forward price for the two-factor jump-diffusion spot process S(1)
t is

F
(1)
t,T = exp

{
A

(1)
t,T + e−β1(T−t)X

(1)
t +M

(1)

t,T Y
(1)
t + e−κ(T−t) Jt

}
, (73)

where the deterministic function M
(1)

t,T is provided in equation (12),

A
(1)
t,T = g

(1)
T +

∫ T

t

λ(s)
(
ϕl

(
e−κ(T−s)

)
− 1
)
ds

− α1γ1φ1

[
h(t, T ;α1)− h(t, T ;β1)

]
+

1
2

(
γ1σ

(1)
Y

)2 [
h(t, T ; 2α1) + h(t, T ; 2β1)− 2h(t, T ;α1 + β1)

]
+

1
2

(
σ

(1)
X

)2

h(t, T ; 2β1) + ρ1γ1 σ
(1)
X σ

(1)
Y

[
h(t, T ; 2β1)− h(t, T ;α1 + β1)

]
, (74)

and ϕl(u) is the m.g.f. of the individual jump sizes li,

ϕl(u) := EQ [eu l1
]

=
∫ ∞

−∞
eu z dFl(z) . (75)

These results can be viewed as an extension of the one-factor model Cartea and Figueroa (2005) study.

4.3. Spark Spread Valuation
We now turn to the pricing of the (exchange) spark spread option with T -terminal payoff

(
F

(1)
T,T1

− αF
(2)
T,T2

)
+

and T ≤ T1, T2 . As usual, the forward prices are expressed as F
(i)
t,T := EQ

t

[
S

(i)
T

]
where S

(1)
t :=

exp
{
g
(1)
t +X

(1)
t + Jt

}
is the two-factor jump-diffusion spot price presented in the previous section and

S
(2)
t := exp

{
g
(2)
t +X

(2)
t

}
is the pure diffusion process of Section 3. We begin our analysis by rewriting

the risk-neutral pricing formula in terms of an equivalent measure induced by the forward price process
of the purely diffusive asset. In particular,

ΠF
t,T := P (t, T ) EQ

t

[(
F

(1)
T,T1

− α F
(2)
T,T2

)
+

]
= P (t, T ) F (2)

t,T2
EeQ

t [(FT ;T1,T2 − α)+] , (76)

where the measure Q̃ is induced by(
dQ̃
dQ

)
t

:=
EQ

t

[
S

(2)
T2

]
EQ

0

[
S

(2)
T2

] =
F

(2)
t,T2

F
(2)
0,T2

, (77)

and we introduced the ratio process Ft;T1,T2 := F
(1)
t,T1

/F
(2)
t,T2

. The process Ft;T1,T2 is once again a Q̃-
martingale; however, because of the presence of the jump component, this fact alone does not allow us
to extract its distribution. Instead, we make use of transform methods. Carr and Madan (1999) were
among the first to illustrate that Fast Fourier transform (FFT) methods can be used to efficiently value
European options. The reader is referred to their work for implementation details and other efficiency
tricks.

The FFT methods require the m.g.f. of the logarithm of the effective stochastic process – in our case
the process Ft;T1,T2 . To this end, define ZT := lnFT ;T1,T2 so that

ZT = A
(1)
T,T1

−A
(2)
T,T2

+ e−β1(T1−T ) X
(1)
T − e−β2(T2−T ) X

(2)
T +M

(1)

T,T1
Y

(1)
T

−M (2)

T,T2
Y

(2)
T + e−κ(T1−T ) JT , (78)

and define the corresponding m.g.f. process

ΨZT
t (u) := EeQ

t

[
eu ZT

]
. (79)
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The process ΨZT
t (u) is clearly a Q̃-martingale; consequently, it satisfies the zero drift conditionAΨZT

t (u) =
0 (for every u where it is defined) where A is the generator of the process

(
t,X

(1)
t , X

(2)
t , Y

(1)
t , Y

(2)
t , Jt

)
under Q̃. Furthermore, since our modeling framework is affine, we employ the ansätz

ΨZT
t (u) := exp

{
A(t, T ) +B(1)(t, T )X(1)

t +B(2)(t, T )X(2)
t + C(1)(t, T )Y (1)

t

+ C(2)(t, T )Y (2)
t +D(t, T ) Jt

}
(80)

ΨZT

T (u) := exp {uZT } (81)

Here, A(t, T ), B(1)(t, T ), B(2)(t, T ), C(1)(t, T ), C(2)(t, T ), and D(t, T ) are all deterministic functions of
time. Note that T1 and T2 have been removed from the arguments for easier readability. Since the bound-
ary condition (81) must hold for all terminal values of the auxiliary processes

(
X

(1)
t , X

(2)
t , Y

(1)
t , Y

(2)
t , Jt

)
,

the deterministic functions must satisfy the induced boundary conditions

A(T, T ) = u
(
A

(1)
T,T1

−A
(2)
T,T2

)
, B(1)(T, T1) = ue−β1(T1−T ),

B(2)(T, T2) = −ue−β2(T2−T ), C(1)(T, T1) = uM
(1)

T,T1
,

C(2)(T, T2) = −uM (2)

T,T2
, D(T, T1) = ue−κ(T1−T ) .

(82)

Expanding the PDE Af = 0, rewriting it in terms of an equivalent system of coupled ODEs and solving
that system (similar to the analysis in Section 4.2) provides the final result.

Proposition 4.2 The transform ΨZT
t (u) := EeQ

t

[
eu ZT

]
is given by

ΨZT
t (u) = exp

{
At,T + u

(
e−β1(T1−t) X

(1)
t − e−β2(T2−t) X

(2)
t +M

(1)

t,T1
Y

(1)
t

−M (2)

t,T2
Y

(2)
t + e−κ(T1−t) Jt

)}
(83)

where M
(i)

t,T is defined in (12),

At,T = u
(
A

(1)
T,T1

−A
(2)
T,T2

)
+
∫ T

t

λ(s)
(
ϕl

(
ue−κ(T1−s)

)
− 1
)
ds

+ u
[
−α1φ1γ1e

−α1(T1−T )h(t, T ;α1) + α2φ2γ2e
−α2(T2−T )h(t, T ;α2)

−
(
γ2σ

(2)
Y

)2

e−2α2(T2−T )h(t, T ; 2α2) + α1φ1γ1e
−β1(T1−T )h(t, T ;β1)

−
{(

σ
(2)
X

)2

+ 2ρ2γ2σ
(2)
X σ

(2)
Y +

(
γ2σ

(2)
Y

)2
}
e−2β2(T2−T )h(t, T ; 2β2)

− α2φ2γ2e
−β2(T2−T )h(t, T ;β2)

− ρ1ρ12γ1σ
(2)
X σ

(1)
Y e−α1(T1−T )−β2(T2−T )h(t, T ;α1 + β2)

+
{

2ρ2γ2σ
(2)
X σ

(2)
Y + 2

(
γ2σ

(2)
Y

)2
}
e−(α2+β2)(T2−T )h(t, T ;α2 + β2)

+
{
ρ12σ

(1)
X σ

(2)
X + ρ1ρ12γ1σ

(2)
X σ

(1)
Y

}
e−β1(T1−T )−β2(T2−T )h(t, T ;β1 + β2)

]
+ u2

[
1
2

(
γ1σ

(1)
Y

)2

e−2α1(T1−T )h(t, T ; 2α1) +
1
2

(
γ2σ

(2)
Y

)2

e−2α2(T2−T )h(t, T ; 2α2)

+
{

1
2

(
γ1σ

(1)
Y

)2

+
1
2

(
σ

(1)
X

)2

+ ρ1γ1σ
(1)
X σ

(1)
Y

}
e−2β1(T1−T )h(t, T ; 2β1)

+
{

1
2

(
γ2σ

(2)
Y

)2

+
1
2

(
σ

(2)
X

)2

+ ρ2γ2σ
(2)
X σ

(2)
Y

}
e−2β2(T2−T )h(t, T ; 2β2)

−
{(

γ1σ
(1)
Y

)2

+ ρ1γ1σ
(1)
X σ

(1)
Y

}
e−(α1+β1)(T1−T )h(t, T ;α1 + β1)
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−
{
ρ2γ2σ

(2)
X σ

(2)
Y +

(
γ2σ

(2)
Y

)2
}
e−(α2+β2)(T2−T )h(t, T ;α2 + β2)

− ρ12σ
(1)
X σ

(2)
X e−β1(T1−T )−β2(T2−T )h(t, T ;β1 + β2)

]
, (84)

ϕl(u) is the MGF of the individual jump sizes (see (75)), and the function h(t, T ; ·) is given in equation
(28).

Now that the transform is explicit, it is possible to use standard Fourier analysis techniques to value the
spread option. Under some mild assumptions on the m.g.f. of jump sizes, it is possible to analytically
continue the m.g.f. to the entire complex plane.

For completeness in the exposition, we remind the reader how the pricing equation (76) appears in
Fourier transformed variables. Firstly,

ΠF
t,T = P (t, T )F (2)

t,T2
EeQ

t [(FT ;T1,T2 − α)+] = P (t, T ) eα F
(2)
t,T2

EeQ
t

[
(eZT−α − 1)+

]
, (85)

where α := ln(α). By introducing η(x) := (ex − 1)+, the expectation in equation (85) reduces to the
product of Fourier transforms

EeQ
t

[
(eZT−α − 1)+

]
=

1
2π

∫ ∞

−∞
η̃(−p) f̃ZT−α(p) dp , (86)

where η̃(p) and f̃ZT−α(p) are the Fourier transforms of η(x) and the probability density of ZT − α,
respectively. It is well known that

η̃(p) :=
∫ ∞

−∞
eipxη(x) dx =

1
p(i− p)

(87)

whenever =(p) > 1. A simple change of variables reveals that

f̃ZT−α(p) :=
∫ ∞

−∞
eipxfZT−α(x) dx = EeQ

t

[
eip(ZT−α)

]
= e−iαp ΨZT

t (ip) . (88)

Putting these results together leads to our final pricing equation – up to a numerical integration.

Proposition 4.3 The price at time t of the exchange option is

Πt,T = P (t, T ) eα F
(2)
t,T2

∫ ∞

−∞

e−iαp ΨZT
t (ip)

−p(p+ i)
dp

2π
, (89)

with ΨZT
t (·) as in Proposition 4.2.

Some final remarks are crucial at this point:

1. In our framework, the price process of a spot exchange option is simply given by setting T = T1 = T2

in equation (89).

2. The integral part of equation (89) seems formidable; however, the coefficients are nothing more
complicated than exponentials and there exists very efficient numerical methods, such as FFT, for
performing the integrals. Therefore, we do not pursue this further, and instead refer the reader to
the monograph by Cont and Tankov (2004) for further information and references on these topics.

3. The market reveals the entire forward curve and, of course, the risk-free zero coupon bond prices.
Before using the valuation formula, the model must be calibrated to these market prices. Once the
parameters are calibrated, then the pricing equation (89) will provide consistent no-arbitrage prices
to the various spread options.
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4. It is possible to repeat this analysis when both assets contain jumps. Needless to say, the resulting
equations will be bulkier (but not fundamentally more complicated), and although the change of
measure will be more subtle, it posses no real problems. However, in real applications, both assets
typically do not contain sudden jumps, as one is usually the raw commodity used to produce
electricity.

5. Some care must be taken to ensure the integration path in (89) remains in the intersection of the
regions =(p) > 1 and where the complex continuation of the function ΨZT

t (z) is analytic in z.
However, for typical jump distributions, such as double exponential and normal, ΨZT

t (z) will be
analytic in the region =(p) > 1, and any simple path lying in =(p) > 1 will do.

5. Model Calibration

In this section, we finally address the issue of parameter estimation. We perform this last step in two
stages. Firstly, in Section 5.1 we provide a detailed review of an efficient method for calibrating the pure
diffusion two-factor model to market futures prices, resulting in the risk-neutral model parameters. We
also describe how jump parameters can be simultaneously estimated from market spot prices. Secondly,
we describe how a method borrowed from interest rate model calibration can be used to estimate the
real-world model parameters from a knowledge of spot and future prices. This simultaneous calibration
of futures and spot prices to the risk-neutral and real-world measures further allows us to extract the
implied market prices of risk. An alternative approach to real-world calibration is to use a well known
Kalman Filter approach. Such approaches do not utilize futures prices data and can be quite useful.
For more details on the calibration of various two-factor models to spot data and further references on
the topic we refer to the work of Barlow, Gusev, and Lai (2004). Section 5.2 concludes with concrete
applications of our statistical methodology to the NYMEX Light Sweet Crude Oil data and some further
comments.

5.1. Methodology
Before proceeding to the calibration process, recall that the log of the forward price associated with

the spot S(i)
t := exp

{
g
(i)
t +X

(i)
t

}
is given by (Section 3.2):

logF (i)
t,T = g

(i)
T +G

(i)

t,T +R
(i)

t,T + e−βi(T−t)X
(i)
t +M

(i)

t,TY
(i)
t (90)

= g
(i)
T +G

(i)

t,T +R
(i)

t,T + e−βi(T−t)
(
logS(i)

t − g
(i)
t

)
+M

(i)

t,TY
(i)
t (91)

:= U
(i)

t,T +M
(i)

t,TY
(i)
t . (92)

Here, the function U
(i)

t,T is introduced to simplify notation. Given the spot price data at time t, U
(i)

t,T is

completely determined, while the last term M
(i)

t,TY
(i)
t depends on the the hidden long-run mean level Yt.

Therefore, a standard nonlinear least-squares optimization cannot be applied directly. Instead, we will
express the hidden factor in terms of the remaining model parameters and obtain an optimal fit to the
observed futures curve at various time points.

Let F (i)∗
tp,T p

q
denote the observed futures prices at tp ∈ {t1, ..., tm} with delivery time T p

q ∈ {T
p
1 , ..., T

p
np
}

and denote by Θ a point in the (risk-neutral) parameter space Ω of our model. For each given quoted
times tp, obtain Y (i)

tp
(Θ) (as a function of the remaining parameters) such that it minimizes the following

sum of squares:

Sum(tp,Θ) :=
np∑

q=1

[
logF (i)

tp,T p
q
− logF (i)∗

tp,T p
q

]2
. (93)
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The optimal Y (i)
tp

(Θ) is easily found to be

Y
#(i)
tp

(Θ) =

∑np

q=1

[
M

(i)

tp,T p
q

(
logF (i)∗

tp,T p
q
− U

(i)

tp,T p
q

)]
∑np

q=1

[
M

(i)

tp,T p
q

]2 . (94)

Substituting this optimal value into the initial sum of squares (93), summing over the range of initial
times {tp} and performing a nonlinear least-squares optimization as follows:

Θ
∗

:= ArgMinΘ∈Ω

m∑
p=1

nm∑
q=1

[
U

(i)

tp,T p
q

+M
(i)

tp,T p
q
· Y #(i)

tp
(Θ)− logF (i)∗

tp,T p
q

]2
, (95)

provides an “optimal fit” of the model to futures prices, therefore obtaining our risk-neutral model
parameters (β, α, φ, σX , σY , ρ). An implementation of this methodology naturally requires both futures
prices and spot prices at the corresponding futures quote times.

It is worth mentioning that this method does not directly extend to jump-diffusion (spot) models
since the coefficients of the Xt and Jt terms in the forward price (73) are unequal. This prevents a
simple factorization into functions that are known given the spot prices and the hidden process Y (1)

t . To
circumvent that problem a standard alternative methodology is to extract the jump parameters from the
spot price data only. Such a calibration can be carried out in two ways: (i) by cutting off all data points
lying below a given level, so that only spikes remains. From these data points one can then infer the value
of the various jump parameters (see for example the discussion in Clewlow and Strickland (2000)); or
(ii) by utilizing particle-filter approaches which generalizes the Kalman filter to non-normal innovations
(see for example Aiube, Baidya, and Tito (2005)). The standard assumption that the calibrated jump
parameters are unchanged when moving to the risk-neutral world is then invoked. Given, the jump
parameters it is now possible to repeat the previous futures price calibration process to obtain the risk-
neutral diffusive components.

We now turn to the real-world P-parameters (β, α, φ, σX , σY , ρ) estimation problem. Since under any
diffusive model for spot prices, a change of measure from the real-world to risk-neutral cannot alter the
volatility structure of the model, from equation (95) we obtain σX , σY and ρ under P. The remaining set
of P-parameters (β, α, φ) are relatively straightforward to obtain. Firstly, we obtain β and φ via linear
regression on the spot price data assuming a mean reverting one-factor model for Xt as a proxy to our
two-factor model. The one-factor mean-reversion level φ becomes, in our model, the stochastic long-run
mean level Yt. Secondly, we perform a similar regression on the estimated hidden process Y #

t which was
obtained by minimizing the error on an individual futures curve basis (see equation (94)). Equation (94)
provides a data set which we can use as an input in a regression to find α. We find this procedure to be
very stable and, as shown in the next section, leads to reliable parameter estimation.

5.2. Some Results: Crude Oil

α β φ α β φ σX σY ρ

0.15 0.31 3.27 0.73 1.07 4.21 33% 63% -0.96
Table 1
The calibrated real-world and risk-neutral model parameters using the NYMEX Light Sweet Crude Oil
spot and futures data for the period 1/10/2003− 25/07/2006.

In this section, we present the calibration results of our two-factor pure diffusion model (Section 3) to
the NYMEX Light Sweet Crude Oil spot and futures data for the period 1/10/2003 to 25/07/2006. In
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Table 1, we report the calibration results for the real-world and risk-neutral parameters. There are a few
notable observations: (i) both real-world mean-reversion rates α and β are significantly larger than the
risk-neutral mean-reversion rates α and β, (ii) The real-world long-run mean-reversion level φ is larger
than the risk-neutral long-run mean φ, and (iii) in both the real-world and risk-neutral measures, the
mean-reversion rates (α and α) of the long-run mean Yt are smaller than the mean-reversion rates (β and
β) of the log-spot Xt.
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Figure 1. The NYMEX Light Sweet Crude Oil spot prices and simulated spot prices based on the
calibration in Table 1.

In Figure 1, we plot the spot price data together with the stochastic long-run mean level Y #
t implied by

the futures prices. For comparison, we also include one simulated sample path based on a simulation of
the prices using the real-world model parameters in Table 1. Figure 2 illustrates the relative root-mean
squared-error (RMSE) for each forward curve using the model parameters reported in Table 1. The
average RMSE per curve is 0.7% with only a few dates having relative errors larger than 1%. Recall that
the model parameters are fixed over all curves, and are not adjusted on a curve by curve basis. With this
in mind, we believe the fit is excellent.

We also investigated the stability of our estimation procedure through time. We calibrated the model
to the first T1 calender days and then to the first T2 calender days and so on. The time periods are
approximately equally spaced at 88 days from 1/10/2003 to 25/07/2006. We report these calibration
results in Table 2. The most stable parameters are the volatility σX of the Xt process, the volatility σY

of the stochastic long-run mean level Yt, the mean-reversion level α of the stochastic long-run mean Yt

and the correlation coefficient ρ. The remaining parameters, although not as unvarying as the previous
four, are well behaved. None of the parameters suddenly explode or tend to zero, and always remain
realistic.

Finally, since we were successful in extracting the real-world and risk-neutral parameters, we further
extract the implied market prices of risk through Theorem 3.2. The evolution of the implied market
prices of risk λ and Ψ are displayed in Figure 3. Interestingly, they are very strongly correlated to one
another, becoming almost indistinguishable after one and a half years. This is due to the high correlation
coefficient of ρ = −0.96. Also, both market prices of risk are negative for essentially the entire time
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Figure 2. The relative root-mean squared-error of each forward curve based on the calibration in Table
1.

period. This is a reflection of the real-world mean-reversion rates (α and β) and real-world long run
mean-reversion level (φ) being higher than the risk-neutral ones ((α, β and φ)). The market therefore
attaches slower reversion rates and lower long run levels than the implied historical levels.

6. Conclusions

We introduced a diffusive two-factor mean-reverting process for modeling spot prices of energy com-
modities. The two-factor diffusive model extends the one-factor mean-reverting model by making the
long-run mean a stochastic degree of freedom which itself mean-reverts to a specified level. We also
generalized the model to incorporate jumps in the price process such as those observed in electricity
prices. To maintain realistic mean-reversion rates and diffusive volatilities we decoupled the jump and
diffusive processes. Given our affine modeling framework, we were successful in obtaining expressions
for the forward price curves in terms of elementary functions. Through a measure changed induced by
the forward price process, our modeling framework allows us to obtain closed form pricing equations for
various spread options. We obtained pricing equations under both an Actuarial and risk-neutral valuation
procedures.

Finally, we provided a method for calibrating both the diffusion and jump-diffusion models to spot and
forward prices simultaneously. This simultaneous calibration procedure further allowed us to extract the
implied market prices of risk. Using the NYMEX light sweet crude oil data set, we demonstrated that the
calibration procedure produces realistic and stable implied risk-neutral and real-world model parameters.
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# Days β α φ σX σY ρ

88 0.38 0.26 3.34 33% 19% -0.97
176 0.52 0.21 3.06 33% 54% -0.79
264 0.62 0.10 2.36 33% 56% -0.73
352 0.61 0.08 1.97 35% 60% -0.64
440 0.52 0.09 2.33 35% 58% -0.71
528 0.43 0.10 2.98 34% 52% -0.95
616 0.34 0.13 3.24 34% 58% -0.96
704 0.31 0.15 3.27 33% 63% -0.96

Average: 0.48 0.12 2.74 34% 57% -0.82
Stdev: 0.13 0.05 0.52 1% 4% 0.14

Table 2
This table shows the evolution of the estimated risk-neutral parameters through time as more recent data
is added to the calibration procedure. The average and standard deviation are reported using 176 days
onwards.
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Figure 3. This diagram depicts the evolution of the implied market prices of risk using the calibrated
real-world and risk-neutral parameters.
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