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Abstract

The nonlinear incompressible Navier-Stokes equations with boundary condi-
tions at far fields and solid walls is considered. Two different formulations
of boundary conditions are derived using the energy method. Both formula-
tions are implemented in both strong and weak form and lead to an estimate
of the velocity field.

Equipped with energy bounding boundary conditions, the problem is ap-
proximated by using difference operators on summation-by-parts form and
weak boundary and initial conditions. By mimicking the continuous analysis,
the resulting semi-discrete as well as fully discrete scheme are shown to be
provably stable, divergence free and high-order accurate.

Keywords: Navier-Stokes equations, incompressible, boundary conditions,
energy estimate, stability, summation-by-parts, high-order accuracy,
divergence free

1. Introduction

The nonlinear incompressible Navier-Stokes equations are regularly used
in models of climate and weather forecasts, ocean circulation predictions
[23, 35, 42], studies of turbulent airflow around vehicles [13, 19], studies
of blood flow [7, 41], analysis of pollution [10, 33] and many others fields.
Various formulations of the incompressible Navier-Stokes model have been
proposed. The velocity-pressure formulation, where the explicit divergence
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relation is omitted, is the most common choice. Popular numerical techniques
to enforce zero divergence for this form include staggered grids [9, 21] and
projections or fractional step methods [38, 18]. Yet another procedure is to
modify the pressure equation [11, 34] or devise boundary conditions [17, 30]
which systematically damp the divergence inside the computational domain.

In this paper we consider the Navier-Stokes equations in the original
velocity-divergence form directly, which bypasses the need for the special
divergence reducing techniques mentioned above. The boundary conditions
are derived in a form that is similar to the characteristic boundary conditions
for hyperbolic problems (and generalized to the compressible Navier-Stokes
equations in [25, 32]). We follow the general procedure for initial boundary
values problems (IBVP) outlined in [26] and define outgoing and ingoing
variables at the boundaries. The latter are specified in terms of the former
and data in order to get an energy estimate.

Two formulations stemming from two different techniques to diagonalize
the boundary terms are presented. In the first formulation, the boundary
conditions are obtained through a non-singular rotation while, in the second
formulation, they are derived directly by an eigenvalue decomposition. Both
formulations are strongly and weakly imposed and we observe that they
naturally come in nonlinear form. We derive general boundary conditions,
but pay particular attention to the specific ones at a solid wall. Furthermore,
it is shown that it is not necessary to provide pressure data in the initial and
boundary conditions to obtain the full solution.

The nonlinear system is discretized in space and time by using difference
operators on Summation-By-Parts (SBP) form [40, 37, 24]. The bound-
ary and initial conditions are weakly imposed with the Simultaneous-Appro-
ximation-Term (SAT) technique [4, 39]. The resulting SBP-SAT approxima-
tion is proved to be stable in both a semi-discrete and fully discrete sense.
The derivation is done for the finite difference version of SBP-SAT, but it is
equally valid for other approximations such as finite volume [28, 27], spec-
tral elements [3, 2], discontinuous Galerkin [12, 8] and flux reconstruction
schemes [15, 5] on SBP-SAT form.

The paper proceeds as follows. In Section 2, we introduce and discuss
the continuous problem and derive boundary conditions. Next, in Section 3,
the general form of boundary conditions are specified to fit a solid wall. In
Section 4 is shown how to impose the boundary condition without involving
the pressure. A comparison discussing the advantages and disadvantages of
the two formulations at far field and solid walls is provided in Section 5. In

2



Section 6, the semi-discrete version of the governing equations and the SAT
terms for the boundary conditions are derived, and stability is proven. The
fully discrete SBP-SAT approximation and a complete stability analysis is
presented in Section 7. Conclusions are drawn in Section 8.

2. The continuous problem

Consider the incompressible Navier-Stokes equations with velocity field u =
(u, v), pressure p and viscosity ε

ut + uux + vuy + px − ε (uxx + uyy) = 0,

vt + uvx + vvy + py − ε (vxx + vyy) = 0, (1)

ux + vy = 0.

By letting v = (u, v, p)T and introducing the matrices

A =

u 0 1
0 u 0
1 0 0

 , B =

v 0 0
0 v 1
0 1 0

 and Ĩ =

1 0 0
0 1 0
0 0 0

 , (2)

the system (1) can be written as

Ĩvt + Avx +Bvy − εĨ (vxx + vyy) = 0. (3)

Next, we rewrite the convection terms in (1) as

Avx =
1

2
(Av)x +

1

2
Avx −

1

2
Axv, Bvy =

1

2
(Bv)y +

1

2
Bvy −

1

2
Byv. (4)

By inserting (4) into (3) and recalling that we are dealing with an incom-
pressible fluid, i.e., Ax +By = (ux + vy)Ĩ = 0, we obtain the initial boundary
value problem for the skew-symmetric form of the incompressible Navier-
Stokes equations

Ĩvt +
1

2
[(Av)x + Avx + (Bv)y +Bvy]− εĨ∆v = 0, (x, y) ∈ Ω, t > 0 (5)

Hv = g, (x, y) ∈ ∂Ω, t > 0 (6)

v = f, (x, y) ∈ Ω, t = 0. (7)

In (6)-(7), g and f are the initial and boundary data, respectively. The
boundary operator H will be specified on ∂Ω such that the correct (minimal)
number and type of boundary conditions are imposed.
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Remark 2.1. The nonlinear terms must be split into skew-symmetric form
for the upcoming discrete analysis. For more details regarding different split-
ting techniques, see [16, 6, 36]. Note that the systems (3) and (5) are sym-
metric which allows for a straightforward use of the energy method.

Remark 2.2. Existence requires that (6) constitutes a minimal set of bound-
ary conditions. This means that the correct (minimal) number of linearly in-
dependent rows in H must imposed. Too few boundary conditions will neither
lead to an estimate nor uniqueness.

Remark 2.3. We consider smooth compatible data and, consequently, smooth
solutions for the problem (5)-(7). Normally, nonlinear well-posedness would
follow as an extension of linear well-posedness through the linearization and
localisation principles, see [20]. However, no explicit bound on the pressure
is derived in this paper, hence we do not refer to the resulting formulation as
well-posed.

2.1. The energy estimate

The energy method and Green’s theorem applied to (5) yield

d

dt
‖v‖2

Ĩ
+ 2ε‖∇v‖2

Ĩ
= BT, (8)

where ‖v‖2
Ĩ

=
∫

Ω
vT Ĩv is a semi-norm that allows for ‖v‖Ĩ = 0 even for

p 6= 0. In (8), BT denotes the boundary term

BT = −
∮

Ω

vT (Anx +Bny) v− 2εvT Ĩ [vxnx + vyny] ds, (9)

where ds =
√
dx2 + dy2 and n = (nx, ny) is the outward pointing unit normal

vector on ∂Ω. To derive an estimate based on (8), we must bound BT.
We start by introducing a change of variables

w =


un
us
p

ε∂nun
ε∂nus

 = Tv, T =


nx ny 0
−ny nx 0

0 0 1
ε∂nnx ε∂nny 0
−ε∂nny ε∂nnx 0

 , (10)
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where un and us denote the outward normal and tangential velocity compo-
nents, respectively, and ∂n = n · ∇ = nx∂x + ny∂y is the normal derivative.
Next, we apply (10) to (9) and rearrange such that BT becomes

BT = −
∮

Ω


un
us
p

ε∂nun
ε∂nus


T 

un 0 1 −1 0
0 un 0 0 −1
1 0 0 0 0
−1 0 0 0 0
0 −1 0 0 0


︸ ︷︷ ︸

An


un
us
p

ε∂nun
ε∂nus

 ds. (11)

We need a minimal number of boundary conditions such that wTAnw ≥ 0.

2.2. Boundary conditions

We follow the roadmap in [26] for IBVP’s and focus on the items:

1. The number of boundary conditions. The boundary term (11) will be
diagonalized using different techniques. The minimal number of bound-
ary conditions is equal to the number of negative diagonal entries.

2. The form of the boundary conditions. The transformed variables associ-
ated to the negative diagonal elements (ingoing variables) are specified
in terms of the ones corresponding to positive diagonal elements (out-
going variables) and boundary data.

3. The strong implementation. The boundary conditions are chosen such
that a negative semi-definite boundary term is obtained for zero bound-
ary data.

4. The weak implementation. The weak imposition of the new boundary
conditions is chosen such that it leads to the same estimate as the
strong imposition augmented with a dissipative boundary term.

2.2.1. The number of boundary conditions using rotations

A symmetric matrix A can be diagonalized by a suitable non-singular
rotation matrix M . The elements of the resulting diagonal matrix, Λ =
MTAM , are not necessarily the eigenvalues of A, but the number of posi-
tive and negative diagonal entries is the same. For more details regarding
diagonalizations with rotations see [32, 26].
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A complete diagonalization of the boundary matrix An in (11) is given
by

ΛM = MTAnM, with rotation M =


un 0 1 −1 0
0 un 0 0 −1
0 0 0 1 0
0 0 1 −1 0
0 0 0 0 1


−1

. (12)

The diagonal matrix and vector of linearly independent rotated variables are

ΛM =
1

un


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −1

 and W = M−1w =


u2
n + p− ε∂nun
unus − ε∂nus

ε∂nun
p− ε∂nun
ε∂nus

 .
(13)

Note that, the matrix ΛM in (13) always has two positive and two nega-
tive diagonal entries. Consequently, the problem (5) requires two boundary
conditions both at an inflow boundary (un < 0) and an outflow boundary
(un > 0).

Next, we write ΛM = diag(Λ+, 0,Λ−), where Λ− and Λ+ contain the
negative and positive diagonal elements, and indicate with W− and W+ the
corresponding variables. In the inflow case we have

W− =

[
u2
n + p− ε∂nun
unus − ε∂nus

]
,W+ =

[
p− ε∂nun
ε∂nus

]
,Λ− =

1

un
I2,Λ

+ = −Λ−,

(14)

while in the outflow case, the signs are flipped and we have

W− =

[
p− ε∂nun
ε∂nus

]
,W+ =

[
u2
n + p− ε∂nun
unus − ε∂nus

]
,Λ− = − 1

un
I2,Λ

+ = −Λ−.

(15)

In both situations , the variable corresponding to the zero eigenvalue is W 0 =
ε∂nun, while W− and W+ are called the in- and outgoing rotated variables,
respectively. With this notation, the quadratic form in (11) can be written

BT = −
∮ [

W+

W−

]T [
Λ+ 0
0 Λ−

] [
W+

W−

]
, (16)

where the variable corresponding to the zero diagonal entry is ignored.
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2.2.2. The number of boundary conditions using eigenvalues

The correct number of boundary conditions can also be obtained by di-
rectly finding the eigenvalues of An in (9), see also [31, 30]. The eigenvalue
problem |An − λI5| = 0 defines a characteristic polynomial equation with
five distinct real roots λ1 < λ2 < λ3 < λ4 < λ5 and eigenvalue matrix
Λ = diag(λ1, ..., λ5), where

λ1,5 =
un
2
∓
√(un

2

)2

+ 2, λ3 = 0, λ2,4 =
un
2
∓
√(un

2

)2

+ 1. (17)

The associated orthonormal basis of eigenvectors is indicated by X = XN
and it leads to the eigenvalue decomposition

An = XΛX
T

= XNΛ(XN)T , where X = −


λ1 0 0 0 λ5

0 λ2 0 λ4 0
1 0 −1 0 1
−1 0 −1 0 −1
0 −1 0 −1 0


(18)

andN−1 = diag(
√

2 + λ2
1,
√

1 + λ2
2,
√

2,
√

1 + λ2
3,
√

2 + λ2
5) contains the nor-

malizing weights of the columns in X.
The diagonal matrix and linearly independent characteristic variables are

ΛX = NΛNT and W = XTw =


λ1un + p− ε∂nun
λ2us − ε∂nus
p+ ε∂nun

λ4us − ε∂nus
λ5un + p− ε∂nun

 (19)

respectively. Next, we introduce W+ = (XTw)+ and W− = (XTw)− given
by

W− =

[
λ1un + p− ε∂nun
λ2us − ε∂nus

]
, W+ =

[
λ4us − ε∂nus

λ5un + p− ε∂nun

]
. (20)

With a slight abuse of notation, we denote by W− and W+ the in- and
outgoing characteristic variables, respectively. The variable corresponding
to the zero eigenvalue is W 0 = p+ ε∂nun.

Note that λ1, λ2 < 0 and λ4, λ5 > 0 for all values of un. This implies that
(as in the previous case) we need two boundary conditions. Moreover, given
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(20) and the diagonal matrices

Λ− =

[
λ1/(2 + λ2

1) 0
0 λ2/(1 + λ2

2)

]
, Λ+ =

[
λ4/(1 + λ2

4) 0
0 λ5/(2 + λ2

5)

]
(21)

we can again rewrite BT in (11) in the diagonal form (16).

Remark 2.4. The number of boundary conditions is independent of the spe-
cific transformation used to arrive at the diagonal form (16), as long as the
resulting variables are linearly independent. This follows from Sylvester’s
low of inertia, see [32, 14] for details. The two specific transformations pre-
sented above (there might be even more) lead to different forms of boundary
conditions, which is the next topic.

2.2.3. The form of the boundary conditions

We start by proving

Proposition 1. The form of boundary condition that bounds (16) cannot
involve the variable corresponding to the zero eigenvalue.

Proof. It suffices to consider the homogeneous case of the form W− = RW++
R0W 0 and inserting it in (16). We find

BT = −
∮

Ω

[
W+

W 0

]T [
Λ+ +RTΛ−R RTΛ−R0

(R0)TΛ−R (R0)TΛ−R0

] [
W+

W 0

]
ds,

which directly implies that R0 must be identical to zero.

The general form of boundary conditions that bounds the right-hand side
in (16) (as well as in (9)) is hence given by

Hv = W− −RW+ = g, (22)

where R is a 2-by-2 matrix and g = (g1, g2)T contains the boundary data.
This is a nonlinear version of the result in [26] for a linear IBVPs.

The formulation (22) decomposes the boundary operator H into

Hv = (H− −RH+)v. (23)

In the rotated formulation, H+ and H− are given by

H+v = (M−1)+Tv = W+, H−v = (M−1)−Tv = W− , (24)
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with M−1 from (12) and T from (10). In particular, for the inflow case

(M−1)+ =

[
un 0 1 −1 0
0 un 0 0 −1

]
, (M−1)− =

[
0 0 1 −1 0
0 0 0 0 1

]
(25)

while in outflow case they are interchanged.
In a similar way, the characteristic variable formulation gives

H+v = (XT )+Tv = W+, H−v = (XT )−Tv = W− , (26)

with X from (18) and

(XT )− =

[
λ1 0 1 −1 0
0 λ2 0 0 −1

]
, (XT )+ =

[
0 λ4 0 0 −1
λ5 0 1 −1 0

]
. (27)

Remark 2.5. The boundary conditions in (22)-(27) are in general nonlinear.

2.3. The implementation procedure

We start with the strong form of the boundary procedure.

2.3.1. The strong implementation

The following proposition is a nonlinear version of the linear result in [26].

Proposition 2. The boundary conditions (22) bounds (16) if

Λ+ +RTΛ−R > 0 (28)

and a positive semi-definite or positive definite matrix Γ exists such that

−Λ− + (Λ−R)[Λ+ +RTΛ−R]−1(Λ−R)T ≤ Γ <∞. (29)

Proof. Consider condition (22) and replace W− with RW+ +g in (16) to get

BT = −
∮

Ω

[
W+

g

]T [
Λ+ +RTΛ−R RTΛ−

Λ−R Λ−

] [
W+

g

]
ds. (30)

By adding and subtracting
∮

Ω
gTΓg ds to (30), where Γ is a positive semi-

definite or positive definite matrix, we find

BT = −
∮

Ω

[
W+

g

]T [
Λ+ +RTΛ−R RTΛ−

Λ−R Γ + Λ−

] [
W+

g

]
ds+

∮
Ω

gTΓg ds. (31)
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Now consider the following matrix decomposition[
Λ+ +RTΛ−R RTΛ−

Λ−R Γ + Λ−

]
= Y TMY, Y =

[
I Z
0 I

]
,

where Z = [Λ+ +RTΛ−R]−1RT and

M =

[
Λ+ +RTΛ−R 0

0 Γ + Λ− − (Λ−R)[Λ+ +RTΛ−R]−1(Λ−R)T

]
. (32)

If (28) holds and we choose Γ such that the lower bound in (29) holds, it
follows that the matrix M in (32) is positive semi-definite and (31) becomes

BT = −
∮

Ω

[
W+

g

]T
Y TMY

[
W+

g

]
ds+

∮
Ω

gTΓg ds ≤
∮

Ω

gTΓg ds. (33)

If in addition, also the upper bound in (29) holds, we have an estimate.

Remark 2.6. In the linear case studied in [26], condition (28) suffices.

Corollary 1. The homogeneous boundary conditions W− = RW+ leads to
a bound for (16) if

Λ+ +RTΛ−R ≥ 0. (34)

Proof. Consider (22) with g = 0. The boundary term (30) becomes

BT = −
∮

Ω

W+T
[
Λ+ +RTΛ−R

]
W+ ds ≤ 0. (35)

2.3.2. The weak implementation

The boundary conditions (22) can also be weakly imposed by adding the
penalty term L(Σ(W− −RW+ − g)) to the right-hand side of (5) yielding

Ĩvt+
1

2
[(Av)x + Avx + (Bv)y +Bvy]−εĨ∆v = L(Σ(W−−RW+−g)). (36)

Here, L is a lifting operator [1] defined such that, for smooth vector functions
φ, ψ ∫

Ω

φTL(ψ) dxdy =

∮
∂Ω

φTψ ds,

holds. In (36), Σ is a penalty matrix to be determined.
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Proposition 3. The weak imposition of the boundary conditions in (36) with

Σ = (H−)TΛ− (37)

leads to an energy estimate if (28) and (29) holds.

Proof. The energy method applied to (36) leads to (8) with two additional
boundary terms

BT = −
∮
∂Ω

[
W+

W−

]T [
Λ+ 0
0 Λ−

] [
W+

W−

]
ds

+

∮
∂Ω

vTΣ(W− −RW+ − g) +
[
vTΣ(W− −RW+ − g)

]T
ds. (38)

The introduction of Σ in (37) such that vTΣ = (W−)TΛ− leads to

BT = −
∮
∂Ω

W+

W−

g

T  Λ+ RTΛ− 0
Λ−R −Λ− Λ−

0 Λ− 0

W+

W−

g

 ds. (39)

The splitting Λ+ RTΛ− 0
Λ−R −Λ− Λ−

0 Λ− 0

 =

−RTΛ−R RTΛ− −RTΛ−

Λ−R −Λ− Λ−

−Λ−R Λ− −Λ−


+

Λ+ +RTΛ−R 0 RTΛ−

0 0 0
Λ−R 0 Γ + Λ−

−
0 0 0

0 0 0
0 0 Γ

 (40)

transforms (39) to

BT =

∮
∂Ω

(W− −RW+ − g)TΛ−(W− −RW+ − g) ds

−
∮

Ω

[
W+

g

]T [
Λ+ +RTΛ−R RTΛ−

Λ−R Γ + Λ−

] [
W+

g

]
ds+

∮
Ω

gTΓg ds. (41)

Clearly, the first term on the right-hand side of (41) is non-positive. The other
two are identical to the ones in (31) obtained with the strong imposition and
lead to (33).
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Corollary 2. The weak imposition of the homogeneous boundary condition
in (36) together with (37) leads to an estimate if (34) holds.

Proof. Consider the homogeneous version of (36), i.e., with data g = 0 and
Σ as in (37). The same procedure as in the proof of Proposition3 leads to

BT = −
∮
∂Ω

[
W+

W−

]T [
Λ+ RTΛ−

Λ−R −Λ−

] [
W+

W−

]
ds.

By adding and subtracting
∮

(W+)T [RTΛ−R]W+ ds, we find

BT = −
∮
∂Ω

(W+)T [Λ+ +RTΛ−R]W+ +

∮
∂Ω

[W− −RW+]TΛ−[W− −RW+]

which is non-positive if (34) holds.

Remark 2.7. The weak imposition produces the same energy rate as the
strong imposition with an additional damping term. A similar term will
appear in the discrete approximation and stabilize it.

2.4. The continuous energy estimate

We have proved that if condition (28) and (29) required in Proposition 2
and 3 hold, the boundary condition (22) yield

d

dt
‖v‖2

Ĩ
+ 2ε‖∇v‖2

Ĩ
≤
∮
gTΓgds. (42)

Time integration of (42) yields the final energy estimate(
‖v‖2

Ĩ

)
t=T

+ 2ε

∫ T

0

‖∇v‖2
Ĩ
≤ ‖f‖2

Ĩ
+

∫ T

0

∮
gTΓg. (43)

Remark 2.8. The relation (43) bounds the velocity field only. Note also that
no initial condition on the pressure is required.

3. Solid wall boundary conditions

For a solid wall, the specific form (22) is most easily derived by seeking
matrices R and S such that

W− −RW+ = S

[
un
us

]
. (44)

Relation (44) defines a system of equations for the elements in S and R. If a
solution exists, the solid wall conditions are obtained by imposing (44) with
zero right-hand side.
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3.1. Solid wall rotated boundary conditions

In the rotated formulation, the sign of un changes the form of W± in (44).
Consider the inflow case for un → 0− and the variables in (14). The system
(44) has the solution

R =

[
1 0
0 −1

]
and S = un

[
1 0
0 1

]
. (45)

We can prove

Proposition 4. The inflow solid wall boundary conditions (44) with R in
(45) leads to an energy bound.

Proof. Consider the boundary conditions in (44) with zero right-hand side.
As proved in Corollary 1 and 2, condition (34) must be satisfied in order to
get an energy bound. From (14) and (45), it follows that

Λ+ +RTΛ−R =
1

un

[
−1 0
0 −1

]
+

[
1 0
0 −1

]T
1

un

[
1 0
0 1

] [
1 0
0 −1

]
=

[
0 0
0 0

]
.

Next, we examine the outflow case for un → 0+ and consider (15). Now
the system defined by (44) has the solution

R =

[
1 0
0 −1

]
and S = un

[
−1 0
0 1

]
, (46)

We conclude with the following result, similar to Proposition 4.

Proposition 5. The outflow solid wall boundary conditions (44) with R in
(46) leads to an energy bound.

Proof. See the proof of Proposition 4.

3.2. Solid wall characteristic boundary conditions

In this formulation, a unique expression for the ingoing and outgoing
variables is given by (20). By solving for S and R in (44) we find

R =

[
0 1
1 0

]
and S =

[
d1 0
0 d2

]
, (47)

where d1 = λ1 − λ5 = −
√
u2
n + 8 and d2 = λ2 − λ4 = −

√
u2
n + 4. We prove

13



Proposition 6. The characteristic form of the boundary conditions at a solid
wall (44) with R in (47) leads to an energy bound.

Proof. From (21) and (47), it follows that condition (34) holds since

Λ++RTΛ−R =

[
λ4

(1+λ24)
0

0 λ5
(2+λ25)

]
+

[
0 1
1 0

]T [ λ1
(2+λ21)

0

0 λ2
(1+λ22)

] [
0 1
1 0

]
=

[
0 0
0 0

]
.

4. External data requirements for the pressure

As stated in Remark 2.8, no initial condition for the pressure is required
for the bound (43). Therefore, it is of interest to investigate if it is possible to
derive matrices R in (22) which remove the pressure also from the boundary
procedure and still obtain an energy estimate.

Consider boundary conditions (22) with the inflow rotated variables in
(14). The set of matrices that removes the pressure from the boundary
conditions is

R =

[
1 r12

0 r22

]
, (48)

which yields W− − RW+ =
[
u2
n − r12ε∂nus, unus − (1 + r22ε∂nus)

]T
. The

coefficients r12 and r22 must be determined such that Proposition 2 and 3
(non-homogeneous case) or Corollary 1 and 2 (homogeneous case) hold. From
(14) and (48), we find

Λ+ +RTΛ−R =
1

un

[
0 r12

r12 −1 + r2
12 + r2

22

]
. (49)

By choosing
r12 = 0 and |r22| ≤ 1, (50)

Λ+ + RTΛ−R has one zero and one non-negative eigenvalue and condition
(34) holds. Similarly, in the outflow case, the same matrix as in (48) yields

W− − RW+ =
[
−u2

n + r12ε∂nus,−unus + (1 + r22ε∂nus)
]T
. As in the inflow

case, condition (50) implies that (34) is satisfied.

Remark 4.1. Note that (50) includes the inflow R in (45) and the outflow
R in (46) derived for the solid wall case in Section 3.1.
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Consider the characteristic variables in (20). The set of matrices

R =

[
r11 1
r21 0

]
(51)

yields

W−−RW+ =
[
un(λ1 − λ5)− r11(λ4us − ε∂nus), un(λ2 − r21λ4) + r21ε∂nus

]T
which does not involves the pressure. From (14) and (48), it follows that

Λ+ +RTΛ−R =

[
λ4

(1+λ24)
+ r2

21
λ2

(1+λ22)
+ r2

11
λ1

(2+λ21)
r11

λ1
(2+λ21)

r11
λ1

(2+λ21)
0

]
. (52)

By choosing
r11 = 0 and |r12| ≤ 1, (53)

Λ+ + RTΛ−R has one zero and one non-negative eigenvalue which implies
that condition (34) holds.

Remark 4.2. Note that also condition (53) includes R in (47) derived for
the solid wall case in Section 3.2.

We conclude that both formulations admit homogeneous energy bounding
boundary conditions which do not include the pressure.

5. Similarities and differences between the two formulations

The two formulations require the same number of boundary conditions
and they both lead to an energy estimate in the homogeneous case. However,
despite the similarities, there are differences which will be discussed below.

5.1. The rotated boundary conditions

The form of the boundary conditions depends on whether there is an
inflow or outflow situation at the boundary. This means that the boundary
procedure must adapt to the time evolution of the solution.

Moreover, since the penalty matrix in (37) and conditions (28), (29) and
(34) depend on the solution, care must be taken when the magnitude of the
normal velocity assumes large or small values. From (14) and (15), it follows
that Λ± = ±I/ |un|. Hence, for |un| → 0, Λ± → ∞, while for |un| → ∞,
Λ± → 0. This indicates that this formulation might be problematic for |un|
small.
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Proposition 7. The boundary conditions (22) in the rotated variable for-
mulation bounds (16) if RTR 6= I for |un| ≥ δ > 0. The bound is obtained
for both the strong and the weak imposition.

Proof. Consider the diagonal matrices in (14) and (15). The lower bound
in (29) becomes Γ ≥

[
I +R(I2 −RTR)−1RT

]
/ |un| . Hence, conditions (28)

and (29) in Proposition 2 and 3 are both satisfied.

For a weak imposition in the solid wall case, the possible problem with a
vanishing normal velocity is removed. To clarify, consider the general penalty
term in (36) with Σ from (34) and g = 0. In the inflow case, we get

Σ(W− −RW+) = (H−)TΛ−S

[
un
us

]
= (H−)T

[
un
us

]
,

where

H−=

[
0 0 1 −1 0
0 0 0 0 1

]
T,

while in the outflow case

Σ(W−−RW+) = (H−)TΛ−S

[
un
us

]
= (H−)T

[
un
−us

]
,

where

H−=

[
un 0 1 −1 0
0 un 0 0 1

]
T.

In both cases, H− is bounded as un → 0±. Hence, the singularities that
would seemingly occur for vanishing un are eliminated.

5.2. The characteristic boundary conditions

The in- and outgoing characteristic boundary conditions have a fixed form
independent of the solution. Furthermore, all the eigenvalues in (17) and the
corresponding eigenvectors in (18) remain bounded for all values of |un|. In
particular, condition (29) is automatically satisfied if (28) holds, which proves
the following relaxed version of Proposition 2

Proposition 8. The boundary conditions (22) in the characteristic formu-
lation bounds (16) if Λ+ + RTΛ−R > 0 holds. The bound holds for both the
strong and the weak imposition.
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Also, in the solid wall case, all the matrices involved in condition (47) are
bounded when un → 0±, which leads to a well-defined formulation.

Remark 5.1. The comparison in Section 5.1 and 5.2 shows that the char-
acteristic formulation is more suitable than the rotated formulation. It is
well-defined for all flow cases and have the same form for all values of un.
In the remaining numerical part of the paper, we will limit ourselves to the
characteristic formulation of boundary conditions.

6. The semi-discrete approximation

To discretize the system (36) in space, we consider an approximation on
SBP-SAT form. In order to make the paper self-contained, we provide a brief
introduction to the SBP-SAT discretization and recommend [40, 37, 24] for
a complete description. As was mentioned in the introduction, we present
the technique using high order accurate finite differences, but the derivation
is valid for all approximations on SBP-SAT form. To derive a semi-discrete
energy estimate, we will mimic the analysis of the continuous case above.

Consider a two-dimensional Cartesian grid of N ×M points with coor-
dinates (xi, yj). The west, east, south and north boundaries are indicated
by b ∈ {W,E,S,N} and the normals at each boundary by nb = (nbx, n

b
y), see

Figure 1.

y

x

nE = (nE
x , n

E
y ) = (1, 0)

nS = (nS
x , n

S
y ) = (0,−1)

nW = (nW
x , nW

y ) = (−1, 0)

nN = (nN
x , nN

y ) = (0, 1)

Ω

Figure 1: Two-dimensional domain showing the outward pointing normals.
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The discrete approximation of a variable v = v(x, y) is a vector of length
N×M arranged as v = (v11, ..., v1M , v21..., v2M , ..., vN1, ..., vNM)T , where vij ≈
v(xi, yj).

The SBP approximation of the spatial partial derivatives of v are given
by

Dxv = (P−1
x Qx ⊗ IM)v ≈ ∂v

∂x
and Dyv = (IN ⊗ P−1

y Qy)v ≈
∂v

∂y
,

where Id is the identity matrix of dimension d and ⊗ denotes the Kronecker
product [14]. The matrices Px,y are diagonal, positive definite and such
that the product (Px ⊗ Py) forms a quadrature rule which defines a discrete
L2 norm ‖v‖2

Px⊗Py
= vT (Px ⊗ Py)v. The operators Qx,y are almost skew-

symmetric matrices satisfying the SBP property

Qx +QT
x = −E0 + EN , Qy +QT

y = −E0 + EM , (54)

where E0 = diag(1, 0, ..., 0) and EN,M = diag(0, ..., 0, 1), with the appropriate
dimensions. The matrix D(a) has the components of the vector a injected
on the diagonal.

6.1. The semi-discrete formulation

Consider the time-dependent vector V = (u(t),v(t),p(t))T and the dis-
crete version of (2)

A =

D(u) 0 INM
0 D(u) 0

INM 0 0

 ,B =

D(v) 0 0
0 D(v) INM
0 INM 0

 , Ĩ3 =

INM 0 0
0 INM 0
0 0 0

 .
(55)

Here, A,B and Ĩ3 are 3NM×3NM matrices while 0 is a NM×NM matrix
of zeros.

With this notation, the semi-discrete SBP-SAT approximation of (36)
becomes

Ĩ3Vt + D̃xV + D̃yV− ε
[
(Ĩ ⊗Dx)

2 + (Ĩ ⊗Dy)
2
]

V = PenBT, (56)

where the skew-symmetric splitting (4) is approximated by the difference
operators

D̃x =
1

2
(I3⊗Dx)A+

1

2
A(I3⊗Dx), D̃y =

1

2
(I3⊗Dy)B+

1

2
B(I3⊗Dy). (57)
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In (56), PenBT is the discrete version of the lifting operator in (36). It can
be decomposed into the sum of four terms corresponding to each boundary
of the square domain, namely PenBT = PenWBT + PenEBT + PenSBT + PenNBT,
where

PenWBT = (I3 ⊗ (P−1
x E0 ⊗ IM))ΣΣΣW (HWV−GW ),

PenEBT = (I3 ⊗ (P−1
x EN ⊗ IM))ΣΣΣE(HEV−GE),

PenSBT = (I3 ⊗ (IN ⊗ P−1
y E0))ΣΣΣS(HSV−GS),

PenNBT = (I3 ⊗ (IN ⊗ P−1
y EM))ΣΣΣN(HNV−GN).

(58)

The matrices HW,E,S,N are the discrete boundary operators related to H in
(6) and GW,E,S,N are vectors containing the boundary data at the appropriate
boundary points. Finally, ΣΣΣW,E,S,N are penalty matrices to be determined.

6.2. The semi-discrete energy estimate

The discrete energy method applied to (56) (multiplying the equation
from the left by VT (I3 ⊗ Px ⊗ Py) and adding its transpose) and the SBP
properties in (54) yield

d

dt
‖V‖2

P̃
+Diss = BT+VT (I3⊗Px⊗Py)PenBT +(VT (I3⊗Px⊗Py)PenBT)T ,

(59)
where Diss = 2ε(‖(I3 ⊗ Dx)V‖2

P̃
+ ‖(I3 ⊗ Dy)V‖2

P̃
). As in (8), ‖V‖2

P̃
=

VT (Ĩ⊗Px⊗Py)V defines a discrete semi-norm such that (59) represents the
discrete energy rate of the velocity field (u,v)T . The notation BT stands
for the discrete boundary term corresponding to (9) in the continuous case.
It contains the four contributions from each boundary of the domain, i.e.
BT = BTW + BTE + BTS + BTN , where

BTW = −VT (I3 ⊗−E0 ⊗ Py)AV + 2εVT (I3 ⊗−E0 ⊗ Py)(Ĩ ⊗Dx)V,

BTE = −VT (I3 ⊗ EN ⊗ Py)AV + 2εVT (I3 ⊗ EN ⊗ Py)(Ĩ ⊗Dx)V, (60)

BTS = −VT (I3 ⊗ Px ⊗−E0)BV + 2εVT (I3 ⊗ Px ⊗−E0)(Ĩ ⊗Dy)V,

BTN = −VT (I3 ⊗ Px ⊗ EM)BV + 2εVT (I3 ⊗ Px ⊗ EM)(Ĩ ⊗Dy)V.

Following the continuous analysis, we will rewrite each term in BT as a
quadratic form similar to (11). First, we project V onto the boundaries by
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Vb = BbV, where

Bb =


E0 ⊗ IM on the west boundary,
EN ⊗ IM on the east boundary,
IN ⊗ E0 on the south boundary,
IN ⊗ EM on the north boundary

(61)

and b ∈ W,E, S,N . Next, the discrete analogue of (10) is

wb =


unb

usb
pb

εDnunb

εDnusb

 = TbVb, Tb =


nbxINM nbyINM 0
−nbyINM nbxINM 0

0 0 INM
εDnbnbx εDnbnby 0
−εDnbnby εDnbnbx 0

 , (62)

where Dnb = nbxDx + nbyDy approximates the normal derivative.
By applying (62) and rearranging, each term in (60) can be written

BTb =− (wb)T (I5 ⊗ P b)


D(unb) 0 INM −INM 0

0 D(unb) 0 0 −INM
INM 0 0 0 0
−INM 0 0 0 0

0 −INM 0 0 0


︸ ︷︷ ︸

Ab
n

wb.

(63)

Here, P b is an operator which approximates a line-integral along boundary
b, namely

P b =


E0 ⊗ Py on the west boundary,
EN ⊗ Py on the east boundary,
Px ⊗ E0 on the south boundary,
Px ⊗ EM on the north boundary.

(64)

Remark 6.1. All matrices in (63) are diagonal, which implies that we are
dealing with NM (the total number of grid points) decoupled quadratic forms,
each associated to a grid point. The operator P b projects the variables onto
boundary b and removes the contributions from the internal grid points.
Hence, the number of non-zero terms in (63) is equal to the number of bound-
ary points.
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Remark 6.1 implies that (63) can be rewritten as

BTb =− (wb)T (I5 ⊗ P b)Anbwb =
∑
l∈b

−(wl)
TP b

ll(Anb)lwl, (65)

where l ∈ b indicates the set of points belonging to the boundary b ∈
W,E, S,N . In (65), wl = (wb)l is the variable at a specific boundary point,
P b
ll is the corresponding diagonal element in P b and (Anb)l is the pointwise

version of An in (11).

6.3. The discrete boundary conditions

We derive the discrete boundary condition by replicating step-by-step the
continuous procedure in 2.2, but limit ourselves to the weak implementation
of the characteristic variable formulation.

6.3.1. The discrete diagonalization

Since all the matrices (Anb)l in (65) have exactly the same structure as An

in (11), they can be diagonalized by the eigenvalue decomposition already
derived in Section 2.2.2. The negative and positive eigenvalues from each
(Anb)l define the vectors λλλb1,2 and λλλb4,5, respectively. Their components are
the pointwise version of (17) on boundary b. The block-diagonal discrete
version of (21) is

ΛΛΛ−,b =

[
D(λλλb1/(2 + (λλλb1)2)) 0

0 D(λλλb2/(1 + (λλλb2)2))

]
, (66)

ΛΛΛ+,b =

[
D(λλλb4/(1 + (λλλb4)2)) 0

0 D(λλλb5/(2 + (λλλb5)2))

]
, (67)

where the division should be interpreted elementwise. Furthermore, let

(X−,b)T =

[
D(λλλb1) 0 INM −INM 0

0 D(λλλb2) 0 0 −INM

]
, (68)

(X+,b)T =

[
0 D(λλλb4) 0 0 −INM

D(λλλb5) 0 INM −INM 0

]
(69)

be the block-diagonal version of (27). We define the discrete in- and out-
going characteristic variables as W−,b = (X−,b)Twb and W+,b = (X+,b)Twb,
respectively. With this notation, (65) becomes

BTb = −
[
W+,b

W−,b

]T
(I4 ⊗ P b)

[
ΛΛΛ+,b 0

0 ΛΛΛ−,b

] [
W+,b

W−,b

]
(70)
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6.3.2. The discrete form of the boundary conditions

Recall that the continuous boundary conditions were imposed in the form
(22) and, hence, we want to construct boundary operators Hb in (58) in a
similar way. Consider (68) and (69) and define the boundary operators

H+,b = (X+,b)TTb(I3 ⊗Bb), H−,b = (X−,b)TTb(I3 ⊗Bb), (71)

with Bb as in (61) and Tb as in (62). These operators project V onto the
boundary b and transform it to the discrete in- and outgoing characteristic
variables, W+,b and W−,b in (70). Hence, the discrete version of (23) on the
boundary b becomes

HbV = H−,bV−RH+,bV = W−,b −RW+,b (72)

where R =
[
R⊗ INM

]
is the block-diagonal version of R in (22). In par-

ticular, the discrete boundary condition at a solid wall (44) is obtained by
choosing R as in (47).

6.4. Stability of the discrete weak implementation

By considering (70) and using (72) in (58), the discrete energy rate (59)
can be rewritten as

d

dt
‖V‖2

P̃
+ Diss = −

∑
e∈{W,E,S,N}

[
W+,b

W−,b

]T
(I4 ⊗ P b)

[
ΛΛΛ+,b 0

0 ΛΛΛ−,b

] [
W+,b

W−,b

]
+

VT (I3⊗P b)ΣΣΣb(W−,b−RW+,b−Gb)+VT (I3⊗P b)ΣΣΣb(W−,b−RW+,b−Gb))T

(73)

which is the discrete analogue of (38). We can now follow the procedure in
the continuous analysis and use similar conditions to get a bound. We choose

ΣΣΣb = (H−,b)TΛΛΛ−,b, (74)

as penalty matrix with ΛΛΛ−,b given in (66), which leads to

d

dt
‖V‖2

P̃
+ Diss = (75)

−
∑

e∈{W,E,S,N}

W+,b

W−,b

Gb

T(I6 ⊗ P b)

 ΛΛΛ+,b RTΛΛΛ−,b 0
ΛΛΛ−,bR −ΛΛΛ−,b ΛΛΛ−,b

0 ΛΛΛ−,b 0

W+,b

W−,b

Gb

 ,
22



which corresponds to (39). By introducing a positive semi-definite matrix
ΓΓΓb and adopting the splitting in (40), the bound for the discrete energy rate
with non-zero data Gb becomes

d

dt
‖V‖2

P̃
+ 2ε

(
‖(Ĩ ⊗Dx)V‖2

P̃
+‖(Ĩ ⊗Dy)V‖2

P̃

)
≤
∑

b∈{W,E,S,N}

(Gb)T (I2 ⊗ P b)ΓΓΓbGb.

(76)

For the characteristic boundary conditions, all the diagonal elements in (66)
and (67) remain bounded for all possible values of the components unb . The
conditions on ΛΛΛ±,b,R for which a bounded ΓΓΓb exists and (76) constitutes a
bound are given in

Proposition 9. The semi-discrete approximation (56) of (36) with penalty
matrix (74) and boundary operators (71)-(72) leads to stability if

ΛΛΛ+,b + RTΛΛΛ−,bR > 0. (77)

Proof. See the proof of Proposition 3 and 8.

In the homogeneous cases, the proof of Corollary 2 proves

Corollary 3. The semi-discrete approximation (56) of (36) with homoge-
neous boundary conditions and penalty matrix (74) leads to stability if

ΛΛΛ+,b + RTΛΛΛ−,bR ≥ 0. (78)

7. The fully discrete formulation

To advance the divergence relation in time, we use the high order accurate
SBP-SAT finite difference technique also in time on (56) and impose the
initial condition (7) weakly. To make the analysis self-contained, we shortly
introduce this procedure and recommend [29, 22] for more details.

Consider a two-dimensional spatial grid with NM points and L time
levels. The fully-discrete approximation of a variable v = v(t, x, y) is a vector
of length LNM arranged as follows

v =


...

[v]k
...

 , [v]k =


...[

v
]
ki

...

 , [v]ki =


...
vkij

...

 , where vkij ≈ v(tk, xi, yj).
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Each vector component vk has length NM and represents the discrete vari-
able on the spatial domain at time level k. The SBP approximation of the
time derivative is

(Dt ⊗ IN ⊗ IM)v = (P−1
t Qt ⊗ IN ⊗ IM)v ≈ ∂v

∂t
,

where Pt and Qt satisfy the same properties as the spatial operators.

7.1. The fully-discrete formulation

Consider the fully-discrete variable V = [V1, ...,Vk, ...,VL]T , where each
Vk = (uk,vk,pk)

T represents the variables on the whole spatial domain at
the k-th time level. The SBP-SAT approximation of (36) including a weak
imposition of the boundary and initial conditions can be written

(Dt ⊗ Ĩ3)V + F(V)V = PenBT + PenTime. (79)

Here, F = blockdiag(F (V0), ..., F (VL)) where the blocks are the nonlinear
spatial differential operators given by

F (Vk) = (D̃x)k + (D̃y)k − ε
[
(Ĩ ⊗Dx)

2 + (Ĩ ⊗Dy)
2
]
, k = 0, ..., L. (80)

The nonlinearity in (80) is due to the form of (D̃x)k and (D̃x)k given in (57).
In (79), PenBT is a vector of penalty terms for weakly imposing the

boundary conditions at each time level, i.e.

PenBT = [(PenBT)0, ..., (PenBT)k, ..., (PenBT)L]T (81)

where each (PenBT)k is the sum of the four boundary penalties given in (58).
Finally, PenTime is the penalty term for weakly imposing the initial condition
given by

PenTime = σt(P
−1
t E0 ⊗ Ĩ ⊗ IN ⊗ IM)(V− f), (82)

where f is a vector of the same length as V containing the initial data at
k = 0.

Remark 7.1. Note that no initial condition is imposed on the pressure in
(82). This is in line with the continuous analysis in Section 2.4.
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7.2. The fully discrete energy estimate

Consider the diagonal matrix P = (Pt⊗I3⊗Px⊗Py) and let ‖v‖2
P = v TPv

be a discrete L2 norm with respect to time and space. We can prove

Proposition 10. The discretization (79) of (36), with spatial penalty terms
(81) satisfying the assumptions of Proposition 9 (or Corollary 3), is stable
with the temporal penalty term (82) and σt = −1.

Proof. We apply the discrete energy method to (79) (multiplying the equa-
tion from the left by V TP and adding its transpose) to get

VTP
[
(Dt +DT

t )⊗ Ĩ3

]
V + VT

(
PF(V) + FTP

)
V = (83)

+ VTPPenBT + (VTPPenBT)T + 2σtV
T
0 (Ĩ ⊗ Px ⊗ Py)(V0 − f),

with Ĩ3 from (55). By applying the SBP property (54) to the temporal differ-
ential operator, the first term on the left-hand side of (83) can be rewritten
as

VTP
[
(Dt +DT

t )⊗ Ĩ3

]
V = VT

(
Bt ⊗ Ĩ ⊗ Px ⊗ Py

)
V = ‖VL‖2

P̃
− ‖V0‖2

P̃
,

(84)

where Bt = D(−1, 0, ..., 0, 1) and ‖Vk‖2
P̃

, k = 0, L, is the discrete semi-norm
at the first and last time level with respect to space.

From (80) and the SBP property (54) applied to the spatial differential
operator, the second term in (83) can be expanded into

VT (PF(V) +F(V)TP
)
V = (85)

2ε
(
‖(Pt ⊗ Ĩ ⊗Dx)V‖2

P + ‖(Pt ⊗ Ĩ ⊗Dy)V‖2
P

)
−BT.

Here, BT is the vector BT = [(BT)0, ..., (BT)k, ..., (BT)L]T , where each
BTk represents the boundary term on the right-hand side of (59) at time
level k. It can be written as the sum of the four contributions coming from
each boundary as in (60). With conditions (77) (or (78) in the homogeneous
cases) satisfied at each time level, (76) follows and consequently

BT + VTPPenBT + (VTPPenBT)T ≤
∑

e∈{W,E,S,N}

(Gb)T (Pt ⊗ I2 ⊗ P b)ΓΓΓbGb.

(86)
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In (86), Gb =
[
Gb

0, ..., G
b
k, ..., G

b
L

]T
contains the boundary data Gb

k on bound-
ary b at time level k, P b is from (64) and ΓΓΓb = blockdiag(Γb0, . . . ,Γ

b
L), where

each Γbk is a bounded positive definite matrix.
By considering (84), (85) and (86), relation (83) becomes

‖VL‖2
P̃
≤
∑

e∈{W,E,S,N}

(Gb)T (Pt⊗I3⊗P b)ΓΓΓbGb+‖V0‖2
P̃

+2σtV
T
0 (Ĩ⊗Px⊗Py)(V0−f).

(87)
Next, we add and subtract ‖f‖2

P̃
to (87) which leads to

‖VL‖2
P̃
≤ ‖f‖2

P̃
+

∑
e∈{W,E,S,N}

(Gb)T (Pt ⊗ I3 ⊗ P b)ΓΓΓbGb

+

[
V0

f

]T [
1 + 2σt −σt
−σt −1

]
⊗ (Ĩ ⊗ Px ⊗ Py)

[
V0

f

]
. (88)

The last term in (88) is negative semi-definite if and only if σt = −1, which
yields

‖VL‖2
P̃
≤ ‖f‖2

P̃
+

∑
e∈{W,E,S,N}

(Gb)T (Pt ⊗ I3 ⊗ P b)ΓΓΓbGb − ‖V0 − f‖2
P̃
, (89)

and we have a bound.

Remark 7.2. Note that (89) is the fully discrete version of the continuous
estimate (43) and the semi-discrete estimate (76) with an additional damping
term due to the weak imposition of the initial condition. As in the continuous
and semi-discrete case, it is a bound for the numerical velocity field only.

8. Conclusions

An investigation on the initial boundary value problem for the incom-
pressible nonlinear Navier-Stokes equations have been presented. The veloci-
ty-divergence formulation of the problem was chosen to ensure a divergence
free solution without additional artificial procedures. The boundary condi-
tions were obtained by considering two different techniques to diagonalize the
boundary terms. In particular, a set of non-singular rotations and a standard
eigenvalue decomposition lead to the rotated and characteristic formulation,
respectively.
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The two forms of boundary conditions were strongly and weakly imposed
and was adapted to far field and solid types of boundaries. Integration in
time and space together with the implementations of the derived boundary
conditions lead to an energy estimate. It was observed that the resulting
boundary conditions were nonlinear. It was also shown that external pressure
data was not required in order to obtain an estimate. A comparison between
the two forms of conditions revealed that the characteristic formulation is
more suitable than the rotated formulation since it is always well-defined
and have the same form at outflow and inflow boundaries.

The numerical discretization of the governing equations using differential
operators on SBP form and SAT penalty techniques for imposing the initial
and boundary conditions was performed by mimicking the analysis of the
continuous problem. The resulting scheme was shown to be stable if the
same conditions and penalty terms as in the continuous case were used. Both
semi-discrete and fully discrete estimates were obtained. The analysis was
carried out for a finite differences approximation but it is valid for all types
of approximations on SBP-SAT form.
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