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It has been shown previously that surface acoustic waves can be efficiently trapped and slowed by
steep ridges on a piezoelectric substrate, giving rise to two families of shear-horizontal and
vertically polarized surface waves. The mechanisms of energy storage and dispersion are explored
by using the finite element method to model surface acoustic waves generated by high aspect ratio
electrodes. A periodic model is proposed including a perfectly matched layer to simulate radiation
conditions away from the sources, from which the modal distributions are found. The ratio of the
mechanical energy confined to the electrode as compared to the total mechanical energy is
calculated and is found to be increasing for increasing aspect ratio and to tend to a definite limit for
the two families of surface waves. This observation is in support of the interpretation that high
aspect ratio electrodes act as resonators storing mechanical energy. These resonators are
evanescently coupled by the surface. The dispersion diagram is presented and shows very low group
velocities as the wave vector approaches the limit of the first Brillouin zone. © 2009 American
Institute of Physics. �DOI: 10.1063/1.3114543�

I. INTRODUCTION

Surface acoustic wave �SAW� transduction by the use of
interdigital transducers1 �IDTs� is a widespread technique for
the electrical transduction in piezoelectric materials. SAWs
are elastic waves that propagate along a material surface with
most of their energy density concentrated at the surface.2 In
most practical cases, for example, for the design of classical
resonators, filters, and sensors,3–5 only the electrical proper-
ties of the IDT are of interest. In these applications SAWs are
generated by IDTs with limited electrode height such that the
SAW mode properties do not differ appreciably from those
of a free or a fully metallized surface, except for the periodic
aspects of wave propagation. For instance, propagation re-
mains only slightly dispersive and the polarization of surface
waves is relatively unaltered. In Ref. 6, however, it was
shown theoretically by a finite element method �FEM�/
boundary element method algorithm that the SAW properties
are significantly changed when high aspect ratio �HAR� elec-
trodes are used instead. Multimode SAW propagation was
found and up to a tenfold slowing of the SAW phase velocity
was obtained. These results were confirmed by experiments.7

Recently, related work has been performed using the finite
element and finite difference time domain method as well as
experiments to show how band gaps and resonances change
for increasing stub height in a plate with a periodic stubbed
surface.8,9

The FEM/boundary element method is widely used for
obtaining the harmonic admittance10 as well as the harmonic
displacements under the electrodes of a periodic infinite ar-
ray of electrodes on a piezoelectic substrate.6,11,12 An alter-

native method is to use directly the FEM with appropriate
periodic boundary conditions.13 The difficulty in this case,
however, is to account for the semi-infinite nature of the
substrate, which can result in oversized meshes and then im-
practical calculations. Here we introduce a full finite element
model of a piezoelectric, anisotropic material to simulate the
HAR electrodes utilizing periodic boundary conditions. A
perfectly matched layer �PML� is employed at the bottom to
absorb the acoustic and electric disturbances propagating
away from the surface.14–17 With this model it is possible to
obtain the mode shape of all the resonances for the periodic
structure such that it can be explained how the vibration of
the surface interacts with the electrode for the different
modes. We then use the model to calculate the mechanical
energy stored in the electrode compared to the mechanical
energy in the total structure in order to explain why the phase
velocity is slowed down for increasing electrode aspect ratio.
Finally, the dispersion and group velocity of the different
modes are reported.

II. THE ACOUSTIC MODEL

A two dimensional �2D� periodic model of an electrode
array on the surface of a piezoelectric material is used. The
unit cell and the computational domain are illustrated in Fig.
1. The electrode consists of nickel �Ni� and is placed on a
substrate of Y+128 cut lithium niobate, LiNbO3. Material
constants for lithium niobate are taken from Ref. 18, and for
nickel, Young’s modulus E=200 GPa and Poisson’s ratio �
=0.31 are used. The width of the electrode is a and the
height is h. The parameter p=2a is the acoustic period in the
problem and is of the order of a few microns in applications.
The SAW is generated by applying an alternating electricala�Electronic mail: mbd@mek.dtu.dk.
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potential to the HAR electrodes. This is modeled by applying
a positive potential to the electrode in the unit cell and then
using periodic boundaries with opposite sign. As the metal is
supposed to be perfectly conducting, the electrical potential
needs only to be applied at the interface between Ni and
LiNbO3. To prevent reflections of the SAW from the bottom,
a PML �Ref. 14� is applied as illustrated on Fig. 1. In Ref.
15, PMLs are introduced for time-harmonic elastodynamic
problems and are extended to piezoelectric materials in Refs.
16 and 17. The PMLs have the property that the mechanical
and electrical disturbances are gradually absorbed in the lay-
ers before they reach the outer boundaries. In this way there
are no reflections that can disturb the propagation of the
SAW.

The applied electric potential will introduce mechanical
deformations in the solid by the inverse piezoelectric effect
and the behavior of the piezoelectric material is described by
the following model as found in Ref. 19. A time-harmonic
electric potential

V�xj,t� = V�xj�ei�t, �1�

with the angular frequency �, is applied to the electrode. The
mechanical strain Sij and the electric field Ej are given by the
expressions

Sij =
1

2
� 1

� j

�ui

�xj
+

1

�i

�uj

�xi
� and Ej = −

1

� j

�V

�xj
, �2�

where ui are the displacements and xi are the coordinates.
Note that the Einstein notation is not applied in the expres-
sions in Eq. �2�. The parameter � j is an artificial damping at
position xj in the PML. As the PML is added at the bottom of
the structure only �2 is different from 1 and is given by the
expression

�2�x2� = 1 − i�2�x2 − xl�2, �3�

where xl is the coordinate at the interface between the regular
domain and the PML and �2 is a suitable constant. There is
no damping outside the PMLs and here �2=1. A suitable
thickness of the PML as well as the value of �2 must be
found by calculations such that both the mechanical and
electrical disturbances are absorbed before reaching the outer
boundaries. However, the absorption must also be suffi-
ciently slow as reflections will occur at the interface between
the regular domain and the PML if their material properties
are not comparable. The mechanical stresses Tjk and the elec-
tric displacement Di both depend on the strain and the elec-
tric field according to the constitutive relations

Tjk = c̃jklm
E Slm − ẽijk

T Ei, �4�

Di = ẽijkSjk + �̃ij
S Ej , �5�

where c̃jklm
E are the elastic stiffness constants, ẽijk are the

piezoelectric stress constants, and �̃ij
S are the permittivity

constants. The materials are, in general, anisotropic, and as it
is only possible to generate the SAW by the inverse piezo-
electric effect in certain directions the material tensors have
to be rotated. This is indicated by the tilde above the material
tensors. The rotation is done according to Euler’s transfor-
mation theory as explained in Ref. 20. Here the relation be-
tween the original directional vector rj and the rotated vector
r̂i is given by

r̂i = aijrj , �6�

where aij is the transformation matrix given by the Euler
angles �1, �2, and �3, where the crystal axes are rotated
clockwise about the x3-axis, then the x2-axis, and finally the
x3-axis again. The material property matrices can then be
transformed by the transformation matrix aij and the Bond
stress transformation matrix Mijmn �the derivation procedure
of Mijmn is defined in Ref. 20� as follows:

c̃ijkl
E = MijmnMklpqcmnpq

E , ẽijk = ailMjkmnelmn and �7�

�̃ij
S = aikajl�kl

S .

The governing equations give the stresses by Newton’s sec-
ond law and the electric displacement from Gauss law,

1

� j

�Tij

�xj
= − ��2ui and

1

� j

�Di

�xj
= 0, �8�

where � is the density of the material. Note again that the
Einstein notation is not applied in Eq. �8�.

FIG. 1. The geometry of the unit cell with periodic boundary conditions and
period p. The electrode consists of nickel and has the height h. The substrate
is lithium niobate and a PML is placed at the bottom. The electric potential
Vp is applied at the interface between the electrode and the substrate.
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Both mechanical and electrical boundary conditions
must be specified to solve the problem. Considering the me-
chanical conditions, the upper surface is stress-free and the
bottom is clamped,

streess free surface: Tjkmk = 0, �9�

clamped surface: ui = 0, �10�

where mk is the normal unit vector pointing out of the sur-
face. At the upper surface, there are no charges and therefore
electric insulation occurs, meaning that the normal compo-
nent of the electric displacement is zero. At the bottom of the
domain it is assumed that the electric potential is zero,
whereas at the interface between the electrodes and the sub-
strate the potential is Vp. The electrical boundary conditions
are summarized as follows:

electrical insulation: Dimi = 0, �11�

zero potential: V = 0, �12�

applied positive potential: V = Vp. �13�

Periodic boundary conditions must be induced for ui and ui,j

as well as for V and V,j at the boundaries �l and �r, see Fig.
1. When ul represents these quantities on the left boundary �l

and ur the quantities on the right boundary �r, the induced
periodic boundary conditions take the form

ur�xj� = ul�xj�e−ik2p, �14�

where k is the phase propagation constant of the SAW.21

When looking at the case with an alternating electric poten-
tial, k=	 /2p is used.

The piezoelectric problem is solved by a plane formula-
tion obtained by setting Si3 and E3 as well as Ti3 and D3

equal to zero. The governing equations �8� are solved simul-
taneously to find the dependent variables u1, u2, u3, and V.
The model with the PML described above is directly imple-
mented in the partial differential equation application mode
of COMSOL MULTIPHYSICS, which is a commercial finite ele-
ment program.22 Second order Lagrange elements are used
for all dependent variables.

III. RESULTS

In this section, results are presented for the periodic
model of the HAR electrodes.

A. Polarization of HAR IDT modes

One HAR electrode with periodic boundary conditions is
considered. The computational domain is illustrated on Fig. 1
where p=1.4 
m is used for definiteness. A harmonic elec-
tric potential of Vp=1 V is applied to excite the device and
the resonance frequencies are found by integrating the de-
flections along the substrate surface for a frequency range.
The first six modes are examined. Three of the modes are
found to be mainly polarized in the shear-horizontal �SH�
direction and the other three modes to be mainly vertically
polarized �VP�. In Fig. 2, the half phase velocity fp �where
f =� /2	 is the frequency� of these six modes is plotted ver-

sus the aspect ratio of the electrode h /2p and the polarization
types are indicated. It is seen that the phase velocity is de-
creasing with increasing aspect ratio for all the modes. The
decrease gets bigger for decreasing mode number, and for
mode 1 fp is decreased up to 15 times. These modes and
their polarization as well as the phase velocity dependence of
increasing aspect ratio are in fine agreement with the results
presented in Ref. 7, where the modes were found by a com-
bined FEM/boundary element method algorithm. The SH
and VP bulk wave limits are marked in Fig. 2 as well and the
modes do not appear above these limits as they are dissipated
to the bulk.

One advantage of using a pure finite element model is
that it is easy to plot the displacement fields in the entire
structure. Examples are given in Fig. 3 where the deflections
u1, u2, and u3 in the x1-, x2-, and x3-directions are plotted for
the six modes for h /2p=1. These plots clearly show that all
modes of the structure are, in fact, the combination of a
vibration in the electrode and of a surface wave in the sub-
strate. The first five modes are fully confined to the surface,
whereas mode 6 is leaking into the substrate. The different
scaling on the color bars on Fig. 2 indicates the dominant
polarization directions for the six modes. In order to clarify
these polarizations, a plot for each mode is made in Fig. 4
where the deformations u1 and u2 in the x1- and x2-directions
are plotted with a scaling factor to emphasize in-plane defor-
mations, and the deflection u3 in the x3-direction is indicated
by the color bar. The plots are focused on the electrode and
the regular part of the substrate. The observed modal shapes
explain why more and more modes appear in the structure as
the aspect ratio increases. When SH-type modes are consid-
ered, which are mainly polarized in the x3-direction, it is
observed that the mode shapes in the electrode in this direc-
tion are of increasing order for increasing mode number,
such that SH1 has a mode shape of order 1, SH2 has one of
order 2, and SH3 has one of order 3. The same is found for
the modes of VP type where VP1 has a mode of order 1, VP2
has a mode of order 2, and VP3 has a mode of order 3 in
both the x1- and x2-directions. Thus, for larger aspect ratios,
more modes can exist as the electrode is allowed to vibrate
with modes of higher order.
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FIG. 2. �Color online� Half of the phase velocity fp as function of h /2p for
the six first modes for kp=	 /2. The polarization types are indicated along
with the limits for the bulk waves.
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B. Mechanical energy storage

To explain the slowing down of the wave velocity, the
mechanical energy distribution in the structure is calculated.
The mechanical energy is the sum of the stored strain and
kinetic energy and the mechanical flux flowing into the PML
at the bottom. Expressions for these quantities are given, for
instance, in Ref. 20. The fraction of the mechanical energy in
the electrode compared to the total mechanical energy in the
structure is plotted in Fig. 5. Here it is observed that the

energy is more confined to the electrode for increasing aspect
ratio. The electrode thus acts as a mechanical resonator,
which slows down the SAW velocity because of mechanical
energy storage. For modes of the same type, the fraction of
mechanical energy in the electrode tends to the same value
for increasing aspect ratio. The SH types tend to a value
around 0.97, which is larger than the limit for the VP types,
about 0.93. The fact that the limits do not reach 1 explains
that the wave is still �slightly� propagating or rather coupled
from one electrode to the other by surface waves. If the
energy was fully trapped then the surface waves would not
propagate at all. For increasing aspect ratios the modes are
more and more clean cantilever vibrations in the electrode
and the only energy left in the substrate is what connects the
cantilever modes to the substrate. Modes of the same polar-
ization type deflect in the same direction in the substrate, so
the stiffness in the substrate for these modes is the same.
This explains why modes of the same type tend to the same
energy ratio. The observation that the limit for SH is bigger
than the limit for VP is not obvious as SH waves as, e.g.,
Love waves or leaky-SAW penetrates deeper in the substrate
than Rayleigh waves. However, it indicates that the effective
mechanical stiffness at the surface is bigger for the VP
modes than for the SH modes. This is also confirmed when
comparing the rotated stiffness constants in these directions.

C. Dispersion and group velocity of HAR IDT
modes

A dispersion diagram can be obtained by plotting the
frequency as a function of the propagation constant or wave
vector. Dispersion tells if the phase velocity is dependent on
frequency and is important to know in order to describe
propagation in the periodic structure. The normal Rayleigh
wave excited by conventional thin electrodes is almost dis-
persionless and will give a straight line in the diagram just
below the straight line corresponding to the slowest shear
bulk wave.10 The dispersion properties for HAR electrodes
are different as illustrated at Fig. 6 where half the phase
velocity fp is plotted as function of kp �where the propaga-
tion constant k comes from expression �14�� for h /2p=1.
When the wave vector approaches the X point of the Bril-

FIG. 3. �Color online� The deflections u1, u2, and u3 at resonance with
h /2p=1 and kp=	 /2. All deflections are normalized to Vp=1 V. �a� Mode
1, �b� mode 2, �c� mode 3, �d� mode 4, �e� mode 5, and �f� mode 6.

FIG. 4. �Color online� The deflections in the structure for each of the six
modes at resonance with h /2p=1 and kp=	 /2 normalized to Vp=1 V. The
deflections u1 and u2 are given with an arbitrary scaling factor and u3 is
given by the color bar for all six modes.
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h /2p for the first six modes. The propagation constant is kp=	 /2. The limit
for the SH-type modes is 97% and the limit for the VP-type modes is 93%.
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louin zone, all bands become flatter and flatter, which means
that the group velocity tends to zero. Then the elastic energy
is almost not propagating and is mostly stored in the HAR
electrodes. In Fig. 6 the straight lines for the Rayleigh wave
as well as the lines for the SH and VP bulk waves are indi-
cated. It is seen that the bands for the SH modes and the VP
modes stop at their bulk limits as the waves are dissipated
into the bulk material. In the dispersion region following the
lowest bulk shear velocity �or Rayleigh SAW� there is an
interaction between the Rayleigh SAW and the discrete me-
chanical modes of the HAR electrodes. When moving away
from this line, the interaction between the resonators and
SAW reduces �flatband� and the substrate mostly plays the
role of a connecting medium for the HAR resonators. The
dispersion diagram also shows that there exist 11 modes out-
side the Brillouin zone limit X. The deflections of these ad-
ditional modes get insignificant when approaching the X
point limit and here only the six resonant modes are found in
practice to respect the electrical condition and the periodic
boundary conditions at the same time. Also in experiments
with such structures, only the six resonant modes will be
found for alternating electrical potential excitation.7 Other
values of kp could be selected by using more than two fin-
gers per wavelength in the IDT. For instance, kp=2	 /3 and
kp=	 /2 would be obtained with three or four fingers per
wavelength, respectively.

The group velocity is calculated from the band diagram
by the expression

vg =
��

�k
. �15�

The results are shown on Fig. 7 where vg is plotted as func-
tion of kp. The group velocity tends to zero for all 11 modes
when the wave vector approaches the point X. This means
that the velocity of information carried by groups of waves
of similar frequencies in the HAR electrodes tends to zero.
What is remarkable here is that close to zero group velocity
can also be obtained for wave vectors away from the Bril-
louin zone boundary. This property is more pronounced for
modes with smaller orders and is equally true for SH and VP
modes.

IV. CONCLUSION AND FURTHER WORK

This paper elaborates on how to model SAWs generated
by high aspect ratio electrodes. It is explained how SAWs
propagating in HAR electrode arrays can be computed by
employing a 2D model of a piezoelectric, anisotropic mate-
rial where reflections at the bottom are avoided by a PML.
Results are presented for a unit cell with one HAR electrode
with periodic boundary conditions. The first six resonant
modes are studied and the phase velocity is found to de-
crease up to 15 times with increasing height. By plotting
deflections in all three directions for each mode, it is shown
that the movement consists of a combined SAW in the sub-
strate and vibration in the electrode. Three of the modes are
mainly polarized in the SH direction and the three other
modes are mainly VP. The deflection plots show that the
reason for more and more modes to exist is that for increas-
ing mode number the mode shapes have increasing order.
The ratio of mechanical energy confined to the electrodes
compared to the total mechanical energy is calculated and
increases for increasing electrode height. This indicates that
the electrode acts as a mechanical resonator, slowing down
the SAW velocity because of mechanical energy storage. The
modes of SH type go to the same limit around 0.97 and the
modes of VP type go to a limit around 0.93. The band dia-
gram for the structure is calculated and shows strong disper-
sion for the 11 existing modes where the bands get flatter and
flatter when reaching the X point of the first Brillouin zone.
Finally, the group velocity is calculated for the 11 modes and
shown to tend to zero when reaching the X point for all the
modes.

Further work includes the consideration of finite HAR
SAW resonators, where mechanical energy storage would be
used to avoid leakage outside the transducer. We are also
considering using HAR IDTs for efficient acousto-optical in-
teractions in planar optical waveguides.
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