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1. Introduction. Magnetoelastic waves appear in a conducting elastic medium as a

result of the interaction of elastic disturbances with electromagnetic waves [10]. In this

paper we discuss initially the basic equations and study the magnetoelastic waves in a

perfectly conducting medium. As in the case of linear, homogeneous and isotropic elasti-

city, there exist three mutually orthogonal elastic waves propagating in the medium.

Nevertheless, the existence of a constant magnetic field alters the phase velocities as well

as the polarization vectors of the three elastic waves. The three phase velocities are all

different and only one of the three polarization vectors is orthogonal to the direction of

propagation. Therefore there is one transverse wave and the other two waves form

arbitrary (in general) angles with the direction of propagation.

In the sequel we prove that the total energy as well as the energy of the transverse

wave are conserved.

The question of equipartion of energy is studied next. The asymptotic form of equipar-

tion of energy was first observed by Lax and Phillips [8] and the corresponding finite

form by Duffin [5], Other results on equipartion of energy are discussed in [1, 2, 4, 6, 7,

9], 11]. In [3] the author proved that for elastic waves with compact initial support the

kinetic energy becomes equal to the strain energy after some finite time proportional to

the radius of the smallest sphere that contains the support of the initial data. An analo-

gous result is proved in this paper. For magnetoelastic waves in a perfectly conducting,

linear, homogeneous and isotropic medium, equipartion occurs between the kinetic and

the sum of the strain plus the "interaction" energies. The "interaction energy" is the

part of the total energy that depends on the existence of the magnetic field and vanishes

when the magnetic field disappears. For initial data with compact support the above

form of equipartion of energy is attained in finite time, while for initial data with finite

energy the equipartion occurs asymptotically. It is also proved that the same equiparti-

tion results are true for the transverse wave whose energy is conserved.

2. Basic equations. Let the space [R3 be filled with an isotropic and homogeneous

elastic material which can propagate electromagnetic waves as well. Assume that a

constant magnetic field H is applied throughout and that the medium has infinite electric

conductivity. According to the general theory of magnetoelasticity [10], the displacement

field u(x, t) and magnetic field h(x, t) satisfy the coupled system of partial differential

* Received September 5, 1980. The author wants to express his appreciation to Mr. Demitrios Tjanetis for his

help with the long calculations.
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equations

h = V x (u x H) = H • Vu — HV • u, (1)

pu„ = pV2u + (X + /i)V(V • u) + ^ (V x h) x H, (2)

where p is the mass density, k and p the Lame constants and p0 the magnetic permeabil-

ity of the medium.

Choose a coordinate system xh i = 1, 2, 3, so that H = (0, 0, H) where H = |H |. Let

u(i;, t) = (2n) 3/2 u(x, t)eix i d3x (3)
' R3

and

h(^, t) = (2n)~3/2 h(x, t)eix'5 d3x (4)
• R3

be the Fourier transforms of u and h respectively. By Fourier transforming Eqs. (1) and

(2) we obtain

h = — (>[(a • H)u — (a • u)H] (5)

putt = — pr2u — (A + p)r2aa • u

H)h-(H-hW (6)

where

\ = rot = r(a1; a2, a3), |a|=l- (7)

Substituting h from (5) into (6) and setting

,.2 ... f1 ,.2 _ A + 2/i 2 _
vs — ~ Vp — , Va — , (8-iU)

p p 4np

2 + r2M • u = 0 (11)

we obtain the system of ordinary differential equations

d2u

dt

where the dyadic M is given by

Ml = vj aa + u2(i - aa) + u2[aa + a2 I - a3(ax3 + x3a)]. (12)

Here

D = XjXi + x2x2 + x3x3 (13)

is the identity dyadic and xl5 x2, x3 are the base vectors of the Cartesian coordinate

system. The term that is proportional to vj is due to presence of the external magnetic

field H. The constants vs, vp and va represent the phase velocity of a transverse wave, the

phase velocity of a longitudinal wave and the Alfven velocity, respectively.

Let the displacement u and the velocity u, have initially compact support, and assume

that R is the radius of the smallest sphere that contains the supp u0 and the supp ul5
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where

u„(x) = u(x, 0), ut(x) = u,(x, 0). (14-15)

The Fourier transforms of the initial data are given by

u0(S) = 0), u1(^) = ut(^0). (16-17)

3. Magnetoelastic waves. The following theorem asserts that along each direction

there are three plane waves that propagate with different phase velocities. These three

waves are mutually orthogonally polarized; one of them is transverse and the other two

form an arbitrary angle with the direction of propagation.

Theorem 1. The solution of the system (11)—(12) that satisfies the initial conditions

(16), (17) is given by

"(0= I w,(r) =
. A sin(Ai rt)

u0 cos^rf) + ut
hr (18)

where

k\ = vl + vW3, (19)

^2 = i(v2p + Vs + v2a) + i[(v2p - v2 + v2a)2 - 4v2a2(v2 - t;s2)]1/2, (20)

^3 = i(fp + V2 + V2) - $[(v2p - V2 + V2)2 - 4v2ccl(v2p - V2)]112, (21)

e; — c{/1 cf |, (=1,2,3, (22)

Ci = (a2» -«i. 0). (23)

K-,s2)(l-a|)
Ci [ ^1? ^2? ^3 / 2 ,,2\_2 . .,2 3), < = 2,3. (24)

(v2p - t'l)oc| + V2 - A,

Proof. The proof is based on the laborious task of finding the eigenvalues and the

corresponding eigenvectors of the dyadic

(v2p - v2 + vjyxl + v2 + v2aal (v2p - v2 + v2)!*!d2 (vp - v2)at a3

(v2 - v2 + v2)a:a2 (fp ~ v2 + v2)ccj + v2 + v2al (v2 - v2)a2cc3

(vp — v2)a1oc3 (v2 — v2)a2c(3 (v2 - v2)aj + v2_

(25)

The eigenvalues of M are the A2, i = 1, 2, 3 and their square roots give the character-

istic speeds (phase velocities) of the three waves w;, i= 1, 2, 3. The corresponding

eigenvectors ef, i = 1, 2, 3, give the polarization vectors of these waves. Note that the

symmetry of W implies that the eigenvalues are real and the eigenvectors are mutually

orthogonal. Since Xf >0, i = 1, 2, 3, we deduce that all the phase velocities are real.

When the constant magnetic field is absent, i.e. when H = 0, then va - 0 and Theorem 1

takes the following simple form.

Theorem 1'. The solution of the system (11) where

M = VpCta + u2(0 — aa) (26)
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that satisfies the initial conditions (16), (17) is given by

sin(Airt)
u(t) - aa u0 cos(A°rt) + Uj

+ (0 - aa)
„ sin^/t)

u0 cos(A°rt) + Ui (27)

where

= k\ = vs. (28)

Theorem 1' states that there is a longitudinal wave moving with phase velocity vp and a

doubly degenerate transverse wave moving with phase velocity i;s, i.e. the well-known

elastic waves.

The wave wx is polarized along the et direction and since ex • a = 0 we conclude that

Wj is a transverse wave. The other two waves wf, i = 2, 3, are polarized along e;, i = 2, 3

and they are neither transverse nor longitudinal. Therefore, there are three mutually

orthogonal polarized plane waves propagating along every direction, each one with different

phase velocity, one of them being transverse.

In particular, if the direction of propagation a is orthogonal to the applied constant

magnetic field H, i.e. if oc3 = 0, then (19)—(21) give

= k\ = Vs, A22 = v2p + vl (29)

and from (22)-(24) we obtain that

e2 = a (30)

while the e1; e3 vectors form a plane perpendicular to the direction of propagation.

Therefore, for propagation perpendicular to the magnetic field, the w, and w3 waves are

transverse waves, the w2 is a longitudinal wave, and the magnetic field increases only the

phase velocity of the longitudinal wave.

For propagation along the direction of the magnetic field, i.e. for oc3 = l(aj = a2 = 0)

we obtain

X\ = k\ = v2s + vl, X\ = v2p (31)

so the polarization vector e2 becomes parallel to the propagation vector a, and the other

two directions of polarization el5 e3 form a plane perpendicular to the propagation

vector a.

Therefore, for propagation along the direction of the magnetic field the w, and w3

waves are again transverse waves and the w2 wave is longitudinal. The magnetic field, in

this case, increases only the phase velocity of the transverse waves.

Summarizing, when the propagation vector is either perpendicular or parallel to the

direction of the magnetic field, there are always two transverse and one longitudinal

wave, just as in the case where no magnetic field exists. The magnetic field increases the

phase velocities of the perpendicularly polarized waves, always by the same amount,

proportional to the intensity of the magnetic field.

The above conclusions hold for plane magnetoelastic waves propagating in the parti-

cular direction a. For the general case we define the n-wave by

un(x, t) = [w„(^, t)]v (x, f), i = 1, 2, 3 (32)
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where w„ is given by (18) and [ ]v indicates the inverse Fourier transform operator.

4. Energy theorems. We first prove conservation of energy for the magnetoelastic

equation (l)-(2).

Theorem 2. Let u(x, t) be a solution of Eq. (2). If the Cauchy data u0, Uj correspond to

finite energy, i.e. if u0 e [//X(1R3)]3 and Uj e [L2(1R3)]3, then for each t > 0 we have

||u,|J+^(V»:V») + i±^|V-«r+g|h|!£(<) =

where

Vu : Vu

d3x = £(0), (33)

-1 M-
i,j=L\dxj)

Hence the total energy is conserved.

Remark. The first three terms in the integrand correspond to the sum of the kinetic

and the strain energy of elastic waves. The last term is due to the presence of the

magnetic field and may be interpreted as an "interaction energy" between elastic and

electromagnetic waves.

Proof. Following the standard technique multiplying Eq. (2) by u, we obtain the

well-known identities

"u'-u» = !(f I"'!2)' (34)

- nu, • V2u = - V • [n(Vu) • u,] + Vu : Vu j, (35)

- (A + /i)ut • V(V • u) = -V • [(A + /i)(V • u)ut] + jt{^~ | V • u|2J. (36)

We also have that

V • [h x (H x u,)] = (H x u() • (V x h) - h • V x (H x u,)

= (V x h) • (H x u,) + h • V x (u, x H)

= [(V x h) x H] • u, + h • j [V x (u x H)] (37)

which in view of (1) gives the identity

- ^ u< ' [(v x h) * H]

+ (38)

Adding up Eqs. (34), (35), (36) and (38) and using (2), we obtain

d_

dt
?H*+|(V»:V») + ̂ |V-.,p+g|h|> 1 , ^

"s,'v)

= V fi(Vu) ■ u, + (^ + n)(V • u)u( + ^h x (H x u,)
47T

(39)
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where e(t) is the energy density.

Integrating (39) over a sphere of radius R, using the Gauss theorem and the fact that

for each t > 0, u(t) e [/f2]3 and u,(f) e [L2]3, we see that the surface integral vanishes as

R -* oo and we obtain

F,Lei')d'x (40)

E(t) — constant = £(0), t> 0 (41)

where £(0) is the initial total energy. This shows conservation of energy and completes

the proof.
By Parseval's theorem one can evaluate the energy integrals using the Fourier trans-

form of the solution. Eq. (33) takes the form

E(t) = K(t) + S(t) + I(t) = K{ 0) + S(0) + 1(0) = £(0) (42)

where the kinetic energy K(t), the strain energy S(t), and the interaction energy /(f) are

given by

K(t)=f P- |ut|2 d3x=\ f |uf|*d3f, (43)
JR3 ^ JR3 ^

S(t) = j
J(R3

^(Vu:Vu) + ^Jf |V-u|2 d3x

= [ ^r[vl\»\2 + (v2P-Vs)\u • u\2]d3/;, (44)

j(0=f £lhl2^
J o7T"R3

„2„2

"R3 2

respectively. Similarly at t = 0 we have

= ( ^r^-[a3 |"|2 + |at * u|2 — 2a2Jx3 • u|2] d3£, (45)

X(0)=f P- |u,|2 d3x = \ f|utfd't, (46)

S(0)=fJ (U

' R3 ^ R3

d3x^ (Vu0 : Vu0) + | V • u01

= [ I ™o I2 + (Pi ~ v?) Ia ' "o |2] d3Z, (47)

/(°)=[ ^ |h(x, 0)|2 d3x = [ [a3 | u0 |2 4- | a • u0 |2 — 2a3 | x3 • u012] d3^.
o7T ^ ftp3 Z

(48)

Note that the interaction energy vanishes when va = 0 (i.e. H = 0). We also define the
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n-kinetic energy by

K„(0 = j f |u?|2d3x, (49)

the n-strain energy by

S,:„w - J
J0J3

~ (Vu": Vu") + ~~2^~ IV * u"|2 d3x, (50)

and the n-interaction energy by

/.(<)-{ (so
IR3 OTl

where

h" = Vx(u"x H) (52)

and u" is given by (32). The n-energy is defined by

E„(t) = Kn(t) + Sn(t) + In(t); (53)

then

E(t)=ZEn(t). (54)
n = 1

The next theorem asserts that the total energy of the transverse wave u1 is conserved.

Theorem 3. Under the hypotheses of Theorem 2

£i(t) = K^t) + S^f) + /i(t) = constant, t > 0, (55)

where the subindex 1 indicates that in the formulae u is replaced by wx as given by (18).

Proof. By Parseval's theorem we can evaluate the energy Ex using the Fourier trans-

form of u1. The transverse wave wt is given by

wj = ejej

where

, sin(X.rt)
u0 cos^rr) + Uj —

Axr
(56)

X\ = v\ + v*aj, e1 = (af + ocl) 1/2(a2, -otj, 0). (57)

Since a • = x3 • Wi = 0 the total energy of W! is given by

Ei(0 = f ? [ I w„|2 + vy | Wl |2 + t>2r2af | w, |2] d^. (58)
JR3 /

Substituting Wj from (56) into (58), we obtain finally that

Ei(t) = [ ^[Afr2|e!-Uo|2+ |e, -UjI2]^ (59)

for each t > 0. Hence the total energy of the wave is independent of time.

Corollary: Under the hypotheses of Theorem 2, the sum of the total energy of the two

oblique waves w2 and w3 is conserved.
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Proof. The proof is a straightforward consequence of Theorems 2 and 3.

The following two lemmas are fundamental for the proof of Theorem 4 below.

Lemma 1. Let /: [R3 -* IM be an absolutely integrable function of compact support and

assume that /(x) = 0, | x | > R. Let /: [R3 -»€ be the three-dimensional Fourier trans-

form of/(x). Define the iterated integral

C(t)=f | /(£) |2 cos(2r | i; |) d3£ = I' °°HC( | \ | )cos(2t | J; |) d 11; |, (60)

ff«(|S|) = |^|2 fdcp C\f\2 sine dd, (61)
*0

where (| % |, 9, <p) are spherical coordinates in the ^-space. Then Hc is an even function of

| \ |, and C(t) = 0 for t > R.

Lemma 2. Let ff be as in Lemma 1 and let g, g be another such pair. Define the iterated

integral

S(t) = ( Im(j§*)(i;)sin(2t | % |) = [ *H,( \ % | )sin(2t | \ \) d \ % \, (62)
J R3 J 0

tfs(|i;|) = |^|2 \ 2"dcp flm(Jg*)Sm6dd, (63)
•'o o

where * denotes complex conjugate. Then Hs is an odd function of | ̂  |, and S(t) = 0 for

t > R.
The proofs of Lemmas 1 and 2 can be found in the proof of Theorem 1 in [5] and are

based on the following corollary to the Paley-Wiener theorem.

Proposition. Let H(z) be an entire function of exponential type c which is absolutely

integrable on the real line. Then the support of the Fourier transform of H is contained in

[-c, +c].

Proof. See [5].

We state and prove next the finite equipartition of energy theorem.

Theorem 4. Let u(x, t) be a solution of Eq. (2) satisfying the initial conditions (14)—(15).

Assume that u0, ux are infinitely smooth with compact support and that

supp u0(x) <= S(0; R), supp Uj(x) <= S(0; R) (64)

where

S(0; K) = {xe R3| |x| < R}.

Then

K(t) = S(t) + l(t) = ±£(0), t > R/v0 (65)

where K(t) is the kinetic energy, S(t) is the strain energy and /(f) the interaction energy

given by (43), (44) and (45), respectively, £(0) is the total energy of the initial data and

v0 = min{^l5 A2, , | — X2 \, | ̂ 2 ~ ^31 > I ̂ 3 — ̂ 1 I }■ (66)
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Proof. Using (18), we obtain after some tedious calculations the following expressions

which contain either terms independent of t or terms that depend on t through sine and

cosine:

l«r(t)|2 = 2I&1I2 + ̂ r Z ^le; - "o|2
2 ■•=,

3

2lei • «i|2k • u0|2 cos(2A,rt)+ Z
i = 1

- Z V Re[(ei • "o)(ei • ut)]sin(2/li«), (67)
i = 1

|u(0|2 = i|«o|2+^;I Yf le.'-uj2

3

+ Z
i - 1

i|ei' "°|2 Ie<" * "11 cos(2/lirf)

+ Z j- Re[(ef • u0)(ei • uf)]sin(2A,rt), (68)
i = 1 Air

1 ^ 1
|« • u(0|2 = ila • "o|2 + 2^2 z la • e;|2 Ie< • "ll

+ \ Z la • e.-l2
z i = 1

le." * uo| -j2p|e,-ui| cos(2A,rt)

+ - Z ^ ^ Re[(ei • "o)(ei ' u1)*]sin(2Ai/-f)
' 1=1 Ai

1 3
+ 9 Z (a • e;)(a • ej)

Z i, j = 1

I
• j(ei * u0)(e, • Uo)*[cos((lf + kj)rt) + cos((/li - kj)rt)}

+ (C| U^Jr2 [cos((Aj - kj)rt) - cos((Af + Xj)rt)]

+ J~r Re((e; ' "o)(ej' u1)*)[sin((Ai + Xj)rt) + sin((Ai - /l>t)]j, (69)

1*3 -u|2=i|x3 -U0|2+^2 .Z J2 lX3 • e,- |2 I e, * U! |2

+ \ Z lx3 - e.-l2
L i = 2

lei-«o|2-^p le« * "il2 cos(2A;rt)

+ - z ^Xa ^ Ret(e. • "o)(ei • Ui)*]sin(2Airt)
r i=2

+ \ Z (x3 • e;)(x3 • e,)
L i, j—2

i*j
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* j(e; • «o)(e,- ' u0)*[cos((A, + Xj)rt) + cos((l, - Xj)rt)]

+ ~ [cos((A; - lj)rt) - cos((A, + lj)rt)]
AiAjr

+ j;r Re^e;' ' "i)*)[sin((/li + *i)rt) + sin((/li - ^)rf)]j- (70)

Substituting (67), (68), (69), (70) in (43), (44), (45) and applying Lemma 1 to terms that

are proportional to cosine and Lemma 2 to terms that are proportional to sine, we

obtain for each t > R/v0 the following:

fZ. •'[n. 3 L

3
2

IUi I2 + r2 Z ti\ei • "o d?L (71)

s(0 = ir P"2 2 I A 12 i V I ^ 1 I
l»o|2 + J I i 2

r i = 1 Af2 •' IR3 2

I ( 2 2\I . 12 | VP ~ VS y l®'ei| |ei'"l|
+ (1;p_I;Jla Uo| H ~2 L J 2

' i = 1 A:i= 1

2.,2

d3Z, (72)

2 J

2 I* 12 , V le' ' fil!2
<*3 | "0 I +72 Z

1=1r2 A,2

1 ^ | oc • e, |2 | e, * Uj |2
+ la -»o|2+3 I ,2

r i=i A,

?*2I* u |2 2a3 v (x3 • e,.I2 |e, • uj2
- za3 | x3 uq | 2 A 12

r i = 2
d^. (73)

If we set

| i ̂* K3 ■
Z A? I ei • «o|2

1=1

/I 1 _
, i, I e, • flj I2 . , 2. i, la • e,-|2 |e; • U! I2

®? Z ' ~2 + («£ - v') Z J —T1 —
i= 1 Ai i=l Ai

2 £ lei ' «l|2 , V la " ei|2!ei * "ll2
a3 I J2  + I  J~2 

1 = 1 Ai i = 1 Ai

d% (74)

d3L (75)

,i = f pA
' -Is 2

— 2<X3 Z "L~"3 * C' |2 I C' ' |2
Af

d% (76)

then

K(t) = ±K(0) + tA°K, (77)

S(t) = 15(0) + Mi, (78)

I(t) = i/(0) + \A\, (79)

where X(0), S(0) and /(0) are given by (46), (47) and (48), respectively. The indices 0, 1 in

A%, A$, A) indicate that A°K depends on u0 and A) on fij.
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If we add Eqs. (77), (78) and (79) we obtain

K(t) + S(t) + I(t) = *(K(0) + S(0) + /(0)) + i(A°K + A1s + Aj) (80)

which in view of (42) becomes

E(0) = iE(0) + UA°k + Ah + A}) (81)

A°k + Als + A) = £(0). (82)

Therefore we have

£*(0) + S°(0) + /°(0) = A°k + A\ + A}, (83)

where 7^(0), S°(0), 7°(0) equal 7C(0), S(0), 7(0) respectively, the indices 1, 0 indicate the

dependence of 7^(0) on fij and the dependence of S°(0), /°(0) on u0. The relation (83)

can be written as

S°(0) + /°(0) -A% = Aj + A\ - Kl(0) (84)

where the left-hand side of (84) depends on u0 and the right-hand side depends on ut.

Hence both sides of (84) equal to the same constant which is independent of u0 and Uj.

By choosing u0 = 0 the above constant is shown to be zero. Therefore,

A% = S°( 0) + 7°( 0), (85)

Al + A) = K^O). (86)

From (77), (78), (79), (82), (85) and (86) we finally obtain for each t > R/v0

K(t) = }K(0) + i(S( 0) + 7(0)) = jE( 0) (87)

and

S(t) + 7(f) = i(S(0) + 7(0)) + }K( 0) = iE( 0) (88)

which give the relation (65). This completes the proof of the theorem.

The next theorem states the corresponding asymptotic equipartition of energy.

Theorem 5. Let u be as in Theorem 4 and assume that u0 e ^(R3)]3 and

U! e [7?(IR3)]3. Then

lim K(t) = lim (S(t) + 7(f)) = ^£(0). (89)
t~* + oo t-+ + oo

Proof. The proof is the same as the proof of Theorem 4. The time-dependent terms in

the expressions for K(t), S(t) and 7(f) tend to zero as t -> + oo by the Riemann-Lebesgue

lemma.

Theorem 6. Under the hypotheses of Theorem 4 it is true that

Kl(t) = S,(t) + 1,(1) = iEM t > R/X, (90)

where Ku Su 7t and £t are given by (49), (50), (51) and (53), respectively.

Proof. Substituting (56) in the expressions (49), (50) and (51) and using Lemmas 1
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and 2 we obtain for t > R/X j

X1(t) = ^f |[Ajr2|ei • u0|2 + |et • Uj|2] d3£, (91)
Z. J tni Z.

MO-i/ £Z ^3 Z

MO-U
L. J n

!3

,2
2 1 A 12 , I A 12

Vs |el • «o| +UZ2 lel " Ull

2 2
Pr Va

A\r

as |e, • u0|2 +
Xfr2

d3{, (92)

(93)

or, in view of (19) and (59), we obtain (90).

Theorem 6 asserts that the transverse wave u1, whose total energy is conserved

(Theorem 3), attains equipartion between its kinetic and strain plus interaction energy

for t > K/lj.
Theorem 7 below is the asymptotic analogue of Theorem 5, restricted to the trans-

verse wave u1.

Theorem 7. Under the hypotheses of Theorem 5 it is true that

lim Kt(t) = lim (Sj(t) + 1,(1)) = K(0). (94)
t~* + oo t~* + oo

Proof. Use, in place of Lemmas 1 and 2, the Riemann-Lebesgue lemma.
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