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Abstract: Distributed energy resources aggregators (DERAs) are permitted to participate in regional
wholesale markets in many counties. At present, new market players such as aggregators participate
in China’s power market transactions. However, studies related to market trading strategy have
mostly focused on centralized wind power and PV generation units. Few studies have been conducted
on the decision-making strategies for DERAs in China’s power market. This paper proposes an
auxiliary decision-making model for distributed energy systems to participate in the day-ahead
market with more reasonable trading strategies. Firstly, the Gaussian mixture model (GMM) is
used to deal with the uncertainties of wind power and photovoltaic (PV) output in the distributed
energy system. Secondly, the information gap decision theory (IGDT) is used to deal with the
uncertainty of price fluctuations in the spot electricity market. Thirdly, according to the different risk
preferences of the DERAs facing market price fluctuation, the robust decision model and opportunity
decision-making model in the day-ahead market are constructed, respectively. Finally, to deal with
the irrational behavior of the DERAs’ perception of “gain” and “loss” with market risks in China’s
two-tier market environment, the prospect theory and the marine predator’s algorithm (MPA) are
employed to obtain a day-ahead trading decision scheme for DERA. The analyses show that RDES
with robust preference can withstand greater price volatility in the day-ahead market; they will
reduce the bidding expectations and increase the system operating cost to improve the achievability
of the expected revenue. However, DERAs under the opportunity strategy is more inclined to sell
electricity to the market and offset system operating costs with revenue. The proposed model can
provide strategic reference for DERAs with different risk preferences to bid in day-ahead market and
can improve the level of aggregators’ participation in electricity trading.

Keywords: distributed energy resources aggregator; day-ahead transaction strategic; information
gap decision theory; marine predators algorithm

1. Introduction

At present, there is much research on the strategy of centralized wind power and PV
generation units participating in the power wholesale market and retail market at home and
abroad. On the contrary, due to the imperfect market-oriented mechanism of distributed
trading in China, distributed resources are mainly connected to the grid with fixed on-grid
pricing, so there is little research on the strategy of participating in power trading for
DERAs in China. Most of the related research on distributed energy systems focuses on
the design of trading mechanism of RDES with new subject participation. For example,
P2P or P2G transaction mode design of shared energy storage or shared energy storage
with multiple agents in DERS [1,2], demand response service mode analysis based on
intelligent contract [3], P2P transaction research with electric vehicles [4], etc. The research
on the trading strategy of distributed resources mainly focuses on the operation strategy of
independent wind and PV generation units, microgrids [5,6] or virtual power plants [7,8],
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and so on, which is the basis for the decision-making of trading declarations. However,
this kind of research ignores the risk preference of decision makers in the complex market
environment and the subjective psychological factors facing risks. Therefore, it is necessary
to study the power transaction assistant decision-making problem of DERAs in depth.

A large number of scholars carried out research on the bidding strategies of power
generation enterprises focusing on traditional energy, such as thermal power, around 2002,
and the bidding strategies that were mainly applied included cost analysis [9], electricity
price forecast [10], optimal method [11], and game theory [12]. At the same time, based on
block chain technology and experimental economics, some scholars studied the bidding
strategy and bidding trading system of power producers through the methods of EWA
algorithm [13], repast algorithm [14], agent [15,16], MAS [17], and so on. However, the
output of wind power and PV has randomness and volatility, and the unreasonable bidding
power in the day-ahead market will be assessed for deviation in the day-ahead balance
market [18]. According to China’s spot pilot program’s current policy, new energy will be
fully consumed in all provinces, and new energy organizations will employ the method
of quoting without quotation, resulting in a significant link between new energy output
and spot market pricing. The amount of fresh energy produced will have an impact on
the spot market price. Simultaneously, the prediction of new energy output will influence
the formation of trade decision plans of other market entities in the day-ahead and day-in
markets, finally resulting in changes in the revenue of market participants in the spot
market. At this stage, research on the uncertainty of wind power output and market
price fluctuation is generally based on probability statistics analysis, generating a random
fluctuation scenario analysis based on probability distribution function or describing based
on historical scenarios [19,20]. However, this type of method needs to rely on a large
number of data deduction to improve the accuracy of fitting, and the generation of typical
scenarios for uncertain factors is limited; therefore, it is difficult to obtain the fluctuation
range of uncertain factors [21]. However, the construction of the power spot market in
China is in the early stage, especially the pilot construction of distributed trading is still in
its infancy; therefore, the market transaction data is not sufficient. Therefore, how to obtain
a scientific bidding strategy in the condition of limited market information is an urgent
problem to be solved by market players in the current market development stage, and it is
also a problem that must be faced by the pilot construction of distributed trading.

The IGDT [22] is a nonprobability statistical approach to deal with uncertainty, which
does not need fuzzy membership function analysis or a probability distribution test for
uncertain information, but only needs to analyze the gap of uncertain factors. Therefore, it
can well describe the uncertainty of the power system and the power market. The IGDT is
widely used in power systems. Soroudi [23] et al. modeled the uncertainty of the distributed
generation output in the distribution network and obtained the optimal generation output
combination through the IGDT model. Mavalizadeh [24] used the IGDT model to deal
with the uncertainty of wind power and power price, and the uncertainty of distributed
generation and node load, respectively, and at the same time constructed a robust recovery
model. Moreover, some scholars have also conducted IGDT modeling for joint optimization
of wind power output and virtual power plant scheduling, respectively [25–28]. In addition
to its application in power system optimization, the IGDT has also made a beneficial
attempt in power trading. Mazzi [29] assumed that the market members are the recipients
of the market price and then declared the price based on the marginal operating cost of the
unit; Y. Shen [30] and Li [31] et al. determined the declared power based on the operating
arrangement of the unit on this basis. Zhao [32] et al. conducted a robust model based on
IGDT for power allocation in the spot power market, which provides a risk-averse tool for
power generation companies to make power allocation decisions with different expected
returns. Considering the influence of the uncertainty of the market clearing price on the
decision-making of power selling companies, Tang L [33] et al. established a decision-
making model of power selling companies in bilateral contract and spot transaction mode
based on IGDT, which provides a reference for power selling companies to participate in
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power transactions. However, most of the above research focuses on the single decision-
making preference of the united whole, without considering the impact of individual
risk preference differences within the system on the unified decision-making. With the
development of RDES, the system will present the characteristics of multi-investors in the
future. It is very difficult for RDES to determine the trading strategy based on the single
risk preference of aggregators. Therefore, research on the influence of the risk preference of
different trading agents on RDES’s trading decision is of great significance to promote the
sustainable development of the system

At present, new energy is given priority for full consumption in China’s dual-track
market environment, and new energy is only quoted in market transactions, not fully
market-based transactions, resulting in more uncertainties and more complex market sce-
narios for market players to participate in market transactions. For new energy entities, how
to make optimal decisions in the complex market environment has become an important
issue in promoting the construction of new power systems. There is a lot of psychological
evidence that people usually consider problems not in terms of total wealth but in terms of
winning or losing. Different from the expected utility function theory in decision-making
theory, prospect theory holds that it is difficult for decision makers to satisfy the hypothesis
of a completely rational person in reality and their risk preference will change with the
change of objective factors. Therefore, some scholars have applied prospect theory to deal
with the subjective gain and loss preferences of Prosumers in distributed energy trading
decisions [34]. Etesami, S.R. et al. used prospect theory to build a stochastic game model for
the energy management of a smart grid [35]. The above research can effectively deal with
the irrational decision-making behavior of decision makers in the uncertain environment.

According to research on both domestic and international electricity trading, the dual-
track market mechanism, price volatility, distributed energy output uncertainty, and others
are the main factors that affect the RDES’s ability to develop a rational trading strategy
and participate in the spot market. This research proposes a decision-making model for
RDES to engage in day-ahead trading with an eye toward these crucial elements. First,
in order to address the uncertainty of new energy output, the GMM is used to create
typical scenarios of wind and solar output and load, and information gap theory is used to
address the uncertainty of market-price fluctuation the day before. In order to explain the
changes in income brought by various risk preferences, the robust decision-making model
and opportunity decision-making model of day-ahead market transactions, respectively,
are constructed, taking into account the DERA’s attitude of avoiding and chasing market
price risks. Thirdly, the decision-making of the day-ahead transactions for aggregators
in distributed energy systems is constructed based on the characteristics of China’s dual-
track market, using prospect theory to deal with aggregators’ irrational behavior under
the perception of risk gain and loss, combined with the robust strategy and opportunity
strategy scenarios proposed by the IDGT model. To decide the ultimate trading strategy,
model the ocean hunting algorithm to acquire the most effective utility function in the
two scenarios of the aggregator’s recent statement of winning the bid and not winning
the bid. Finally, this paper compiles the model by using Python, which is the mainstream
programming tool at present, and verifies the rationality of the model proposed in this
paper by using the spot pilot data of a province in China. The research framework of this
paper is shown in Figure 1.

This paper builds a day-ahead trading decision model of a regional distributed energy
system considering the risk preference behavior of the subject, which solves the problem,
to some extent, wherein the current research does not consider the behavior preference of
the distributed energy subject and the irrational behavior of a regional distributed energy
system participating in electricity trading. The following are the key contributions:

(1) At present, most of the methods to deal with uncertain problems are based on proba-
bility and statistical analysis methods, which require a large amount of data. However,
China’s electricity market construction is in the primary stage and there are few mar-
ket transaction data. Therefore, this paper uses the GMM and IGDT to effectively
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deal with the uncertainty of new energy output and price fluctuations in the spot
market. Meanwhile, to address the issue of the GMM easily convergent to the local
optimal solution, this paper employs Spearman as the distance calculation formula
based on the traditional algorithm, which effectively reduces the probability of the
local optimal solution.

(2) The majority of recent papers only run robust models to develop decision schemes;
this paper adds opportunity decision models on this basis, which can provide a basis
for trading decisions for DERAs with different risk preferences given that DERAs
with different risk preferences will exhibit risk-averse or risk-chasing behavioral
characteristics in the face of market risks.

(3) Based on the characteristics of China’s dual-track market, this paper employs prospect
theory to examine the probability and utility value of aggregators’ perceptions of
“gain” and “loss” under various settlement methods, and then, solves them using the
MPA optimizer to determine the optimal utility strategy. The difficulty of the algo-
rithm’s local optimal solution is decreased, and the model solving effect is enhanced,
allowing the best utility strategy to be identified.
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day-ahead market considering risk preference behaviors.

2. Uncertainty Treatment of System Supply and Demand and Market Price Fluctuation
2.1. Uncertainty Treatment of System Supply and Demand Fluctuation

In this section, the historical data of wind power output, PV output, and load are clus-
tered using the GMM. The expectation-maximization (EM) algorithm is used to calculate
typical scenarios and scenario probabilities of supply demand for RDES. The strategy can
be transformed from uncertainty scenarios to certainty scenarios. We can use this model to
select the scenario with the highest probability from many uncertain new energy scenarios
as a typical scenario to aid decision-making and provide a foundation for trading schemes
with varying risk preferences in the following.

The GMM assumes that the input samples are distributed Gaussian with k unknown
parameters. Samples with the same distribution are grouped into a single class. The GMM
fits k mixed Gaussian distributions using the EM algorithm to obtain the mean µj and
covariance ε j(1 ≤ j ≤ k) of each distribution. The specific steps are as follows [36]:
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Step 1: initialize the parameters µj and ε j of k multivariate Gaussian distributions, assuming
that each mixture element has a diagonal matrix.
Step 2: iterate over all sample points and calculate the probability γi,j of the jth Gaussian
distribution of the sample points xi(i = 1, 2, . . . , m), as shown in Formula (1).

γi,j = p(xi|zi = j) =
1

(2π)
d
2
∣∣ε j
∣∣ 1

2
· exp

(
−1

2
(

xi − µj
)T

ε j
−1(xi − µj

))
(1)

where p(·) is the probability function, zi denotes the class to which xi belongs, and d is the
dimension of xi.
Step 3: the updated values µj

′ and ε j
′ of the Gaussian distribution parameters µj and ε j are

obtained according to Formulas (2) and (3).

µj
′ =

∑m
i=1 γi,jxi

∑m
i γi,j

(2)

ε j
′ =

∑m
i=1 γi,j(xi−µj

′)(xi−µj
′)T

∑m
i γi,j

(3)

Step 4: repeat steps 2 and 3 until all Gaussian parameters converge.
Step 5: using the calculated Gaussian parameters, all samples are traversed, and the samples
are classified into the class with the maximum probability γi,j.

Compared to the circular cluster of K-means, the GMM can present elliptical clusters
due to the use of mean and standard deviation. At the same time, the GMM contains the
concept of probability, which can realize that a data point belongs to multiple clusters,
while the data points of K-means generally belong to only one cluster. However, the GMM
also has some disadvantages, such as that it will easily converge to local optimal solutions,
so the literature generally combines the GMM with other models for clustering.

2.2. Uncertainty Treatment of Market Price Fluctuation

China’s electricity spot market is still in its early stages of development. The price
mechanism of China’s distributed energy trading market requires improvement, and the
trading data are insufficient to accurately describe the impact of market price fluctuations
on trading decisions. Therefore, considering that the IGDT model does not need to rely on
large-scale data for probabilistic statistical analysis, this paper employs the IGDT model
to deal with the uncertainty of market price fluctuations in the case of limited market
information to provide a scientific foundation for RDES to participate in power trading-
assisted decision-making.

Typically, the IGDT model consists of three parts, which are the system model, the un-
certainty model [37], and the performance requirement [38] or implementation requirement.

The uncertainty of the spot wholesale market price is modeled using the IGDT’s
uncertainty processing model, as shown in Formula (4).{

τ ∈ 0(α, τ̂)

0(α, τ̂) =
{

τ : |τ−τ̂|
τ̂ ≤ α

}
∀α ≥ 0

(4)

where τ̂ is the forecast electricity spot market price, and α is the deviation between the
predicted and the actual value of the price.

To reflect the decision effects under different risk preferences, IGDT is used to develop
a robust optimization model and an opportunity optimization model. The robust optimiza-
tion model seeks the greatest possible range of market price fluctuations while ensuring
that the decision outcome is not less than expected, as expressed in Formula (5).

α̂(Q, cR) = max
{

α : maxτ∈0(α,τ̂)C(Q, τ) ≤ cR, cR = c0(1 + βR)
}

(5)
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where Q is the purchasing power of the DERA, cR is the robustness transaction cost
threshold, c0 is the transaction cost of the system under a deterministic scenario, and γR is
the robustness factor: that is, the robust model cost deviation factor. When the market price
fluctuates within the information gap interval, the larger the robustness factor γR is, the
more robust the decision scheme is and the higher the transaction cost is.

Corresponding to the robust function, the IGDT chance model can be expressed as
Formula (6).

α̂(Q, cO) = min
{

α : minτ∈0(α,τ̂)C(Q, τ) ≤ cO, cO = c0(1− βO)
}

(6)

where cO is the opportunity transaction cost threshold of the regional system. γO is the
opportunity factor, which can also be interpreted as the opportunity model cost deviation
factor. When the market price is outside the information gap interval, the transaction
cost of the DERA will be lower than the threshold γO of opportunity cost. The smaller
the opportunity factor is, the greater the chance the decision maker may achieve the
desired goal.

3. Day-Ahead Trading Decision Model of DERAs Based on IGDT and Prospect Theory

The operation of the spot pilot in China has revealed that the spot market has the
characteristics of short clearing time, large price fluctuation, and rapid change of supply
and demand in the market, which will directly affect the rationality of market subjects’
decision-making and improve the risk of enterprise operation. As a result, market players
must consider these risk variables while making preparations. At the same time, China is a
dual-track market with illogical market transactions [39]. The risk preferences of market
players must be addressed. Different trading strategies can adapt to the market’s rapid
changes depending on risk preferences. Currently, the majority of risk strategy research is
conducted in a pure rational or pure market environment. In order to make more effective
decision-making plans, this paper constructs robust and opportunity risk preferences, and
on that basis, introduces prospect theory to account for decision makers’ subjective feelings
in a complex market environment. The decision-making behavior of distributed energy
system operators is more in line with reality, according to their incomplete rationality.

3.1. The Optimal Model of Day-Ahead Trading Decisions of DERAs
3.1.1. Objective Function

The objective function of a DERA’s day-ahead trading strategy is shown in Formula (7).

min
T

∑
t=1

Ct = min
T

∑
t=1

(τDA,t·Pbuy,t + CG,t ++CVM,t − τDA,t·Psell,t) (7)

where Ct indicates the total operating cost of the DERA’s participation in the day-ahead
market, τDA,t is the day-ahead market price, and Pbuy,t and Psell,t represent the power
purchased and sold in the day-ahead market, respectively. CG,t indicates the fuel gas cost,
as shown in Formula (8). CVM,t indicates the operation and maintenance cost of each type
of unit, as shown in Formula (9).

Where τDA,pre,t is the predicted value of the clearing price at time t in the day-ahead
market, α is the fluctuation range of the price uncertainty parameter, satisfying α ≥ 0.

CG,t = ρ·
(

Fg,t + Fb,t
)
= ρ·

(
Pg,t

Lhvng·ηg
+

Hb,t

Lhvng·ηb

)
(8)

where ρ represents the unit fuel price. Fg,t and Fb,t represent the fuel consumption of the
gas turbine and gas boiler in time t, respectively. Pg,t is the power generation of the gas unit
at time t. ηg is the power generation of the gas turbine. Hb,t is the thermal power of the
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gas boiler at time t. ηb is the efficiency of the gas boiler. Lhvng is the low-level heat value of
natural gas.

CVM,t = Pg,t·Cg,vm,t + Hwhb,t·Cwhb,vm,t + Hb,t·Cb,vm,t + Hac,t·Cac,vm,t + PCH,t
·CCH,vm,t + (Pchr,t + Pdis,t) ·Cbt,vm,t

(9)

where Cg,vm,t indicates the operation and maintenance cost of the gas turbine, and
Hwhb,t is the thermal power of the waste heat boiler, which is calculated as shown in
Formulas (10) and (11). Cwhb,vm,t and Cb,vm,t are the operation and maintenance costs of
preheating the boiler and gas boiler respectively. Hac,t is the suction chiller power, and
Cac,vm,t is the suction chiller operation and maintenance cost. PCH,t is the electric chiller
power, and CCH,vm,t is the electric chiller operation and maintenance cost. Pchr,t, Pdis,t, and
Cbt,vm,t are the charging power, discharging power, and cost of stored energy, respectively.

Hwhb,t = Hg,t·ηwhb (10)

Hg,t =
Pg,t·

(
1− ηg − ηL

)
ηg

(11)

3.1.2. Constraints

The power output and power balance constraints for each type of resource in the
system are shown in Formulas (12) and (13).

(1) PV
0 ≤ PPV,t ≤ PPV,max (12)

(2) Wind power
0 ≤ PWind,t ≤ PWind,max (13)

where PWind,r,t is the actual output of wind power.
(3) Micro gas turbines (MT)

(1) Equipment output constraint

ug,tPmin
g ≤ PG,t ≤ ug,tPmax

g (14)

where Pmax
g and Pmin

g are the maximum and minimum output of equipment g,
respectively, and ug,t is a binary variable indicating the operating state of MT
g. The operating state is taken as 1, otherwise, it is taken as 0.

(2) Equipment start-stop constraints

(uo f f
g,t − uon

g,t)×
∣∣ug,t−1 − ug,t

∣∣ = ug,t−1 − ug,t (15)

uo f f
g,t + uon

g,t ≤ 1 (16)

where uon
g,t and uo f f

g,t , respectively, represent the startup and shutdown state

variables of MT g at time t. In the startup state, uon
g,t takes 1 and uo f f

g,t takes 0. In

the shutdown state, uon
g,t takes 0 and uo f f

g,t takes 1.
(3) Climbing power constraint

− DRg ≤ Pg,t − Pg,t−1Pg,t−1 ≤ URg (17)

where URg and DRg are the up-climbing rate and down-climbing rate of
equipment g, respectively.
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(4) Rotate alternate constraint

RU,g,t = min
{

URg,
(

Pmax
g,t − Pg,t

)}
(18)

RD,g,t = min
{

DRg,
(

Pg,t − Pmin
g,t

)}
(19)

(5) Gas fired boiler
Hb,t ≤ Hb,max (20)

where Hb,t and Hb,max are the thermal power and a maximum power of the
gas boiler, respectively.

(6) Electrochemical energy storage

Wmin
i ≤Wi,t ≤Wmax

i (21)

0 ≤ Pi,chr
t ≤ Pi,max

i ∗Ui,chr
t (22)

0 ≤ Pi,dis
t ≤ Pi,max

i ∗Ui,dis
t (23)

Ui,chr
t + Ui,dis

t ≤ 1 (24)

where Wmin
i and Wmax

i are the minimum and maximum energy storage capacity
of energy storage equipment i, respectively. Ui,chr

t and Ui,dis
t are the binary state

variables indicating the charging and discharging of energy storage equipment
i. In the charging state, Ui,chr

t takes 1 and Ui,dis
t takes 0, which is the opposite

when discharging.
(7) Suction chiller

Qac,t = Hac·COPac (25)

where Qac,t is the cooling power of the suction chiller, Hac is the input thermal
power, and COPac is the efficiency of the electric refrigerator.

(8) Electric chiller
QCH = PCH ·COPCH (26)

0 ≤ PCH ≤ PCH,Max (27)

where QCH and PCH are the electric chiller output and input power, respec-
tively. COPCH is the electric chiller performance coefficient. PCH,Max is the
maximum input power of the electric chiller.

(9) Transaction constraints with the main network

0 ≤ Pbuy,t ≤ Ubuy,tPbuy,max (28)

0 ≤ Psell,t ≤ Usell,tPsell,max (29)

Ubuy,t + Usell,t ≤ 1 (30)

where Pbuy,t and Psell,t are the purchasing power and selling of the DERA
to the main network at time t. Considering the capacity limitation of the
transmission network, Pbuy,max and Psell,max are the maximum values of the
power interacting with the system with the external grid. Ubuy,t and Usell,t
indicate the binary variables of the DERA power purchase and sale states,
which ensures that the aggregator does not purchase and sells power at time t.
When purchasing electricity, Ubuy,t takes 1 and Usell,t takes 0, and the opposite
is true when selling electricity.

(10) Power balance constraints of system operation

Ppv,t + Pwt,t + PG,t + Pdis,t + Pbuy,t − Psell,t = PCH,t + Pchr,t + PL,t (31)
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Hb,t + Hwhb,t = Hac,t + HH,t/ηhe (32)

Hac,t·COPac + COPCH ∗ PCH,t = QC,t (33)

0 ≤ QC,t ≤ Qmax (34)

HH,t ≤ Hmax (35)

Hb,t ≤ Hb,max (36)

where PL,t, HH,t, and QC,t are the load of electricity, heat, and cold at time t,
respectively. Pdis,t and Pchr,t are energy storage discharge power and charging
power, respectively. PCH,t is the electric chiller input power. ηhe is the heat
exchange coefficient. COPCH is the cooling efficiency of the electric chiller.
Qmax is the maximum cold demand of the RDES.

3.2. Decision-Making Model of a DERA Participating in the Day-Ahead Trading Based on IGDT

The DERA is the power trading agent of the entities in the system and has the decision-
making power over the system operation. Therefore, the DERA only needs to make
decisions according to its risk preference in power trading, without considering the risk
appetite of the subjects in the system. The robust model of the IGDT represents the
maximum risk of hedging market price fluctuations without going above the expected cost
level. The robustness factor βR reflects the strength of the decision maker’s hedge against
the risk of price fluctuation. Therefore, the robust model of a DERA’s trading decision in
the day-ahead market based on the IGDT model is shown in Formula (37).

maxPQ,t ατ

s.t.



maxατ

(
∑T

t=1 Ct

)
≤ (1 + βR)C0

Formulas (12)–(36)
τDA,t = τDA,pre,t + ατ ·τDA,pre,t

τDA,t ≥ max
(
τDA,min, (1− ατ)τDA,pre,t

)
τDA,t ≤ min

(
τDA,max, (1 + ατ)τDA,pre,t

)
(37)

Similarly, the opportunity model of the IGDT represents a trading strategy that seeks to
minimize market price volatility at no higher than the expected cost level. The opportunity
factor βO reflects the degree of risk-seeking by the decision maker. Then, the day-ahead
trading decision opportunity model is shown in Formula (38).

minPQ,t ατ

s.t.



minατ

(
T
∑

t=1
Ct

)
≤ (1− βO)C0

Formulas (12)–(36)
τDA,t = τDA,pre,t − ατ ·τDA,pre,t

τDA,t ≥ max
(
τDA,min, (1− ατ)τDA,pre,t

)
τDA,t ≤ min

(
τDA,max, (1 + ατ)τDA,pre,t

)
(38)

where ατ is the range of market price fluctuations, βR and βO are the cost deviation coeffi-
cients of the robust model and opportunity model, respectively, which can be interpreted as
risk tolerance. C0 is the operating cost of the DERA participating in the day-ahead market
under the deterministic scenario. T is the total number of periods. τDA,min and τDA,max are
the highest and lowest clearing prices in the day-ahead market, respectively.

In the IGDT model, robust bidding agents are risk-averse in their decision-making.
When the system needs to purchase power, it prefers to obtain a more robust decision
by increasing the cost. Therefore, the IGDT robust bidding model can achieve the worst
scenario of market price fluctuation using an optimization method under the given cost
expectation, where all possible costs obtained by decision makers are not higher than their
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expected costs. On the contrary, opportunistic bidding subjects are risk speculative in their
decision-making, and they are more willing to pursue the minimum possible cost under
high risk and make more aggressive decisions. Therefore, the IGDT opportunistic-bidding
model can realize the scenario of using optimization methods to find the minimum market
price fluctuation under a given cost expectation. When the market price varies within the
range of opportunity fluctuation, the minimum cost that the decision maker can achieve is
its expected cost.

3.3. Day-Ahead Trading Decision Model of the DERA Based on Risk Perception

Prospect theory is one of the decision theories proposed by Daniel Kahneman and
Tversky, professors of psychology at Princeton University, U.S. [40]. Prospect theory
suggests that decision makers ultimately judge the merit of a decision solution based on
the deviation between the strategy optimization outcome and the expectation, rather than
the strategy optimization outcome itself. In an uncertain environment, on the one hand,
decision makers are risk averse in the face of gains and risk adverse in the face of losses. On
the other hand, they are more sensitive in the face of a small probability of occurrence than
in the face of a large probability of occurrence. Therefore, based on the different reference
points, decision makers have different perceptions of “gain” or “loss” when faced with the
same benefit or cost due to different expectations.

In the dual-track market environment, it is assumed that a DERA trades electricity
through the wholesale market-trading center. If it is successful in market trading, it will be
settled at the market price, while if it is unsuccessful, it will be settled at the benchmark
electricity price. According to the deviation between the market price and the benchmark
price for settlement, the DERA considers the winning and nonwinning bids to determine
the declared power and declared tariff of the main grid. In this paper, prospect theory
is used to describe the perceived “gain” or “loss” of the DERA in terms of winning and
losing bids.

(1) Power purchase decision model based on prospect theory

According to the IGDT model in Section 3.2, the range of market price fluctuations
and trading strategies under the day-ahead robustness and opportunity scenarios at time t
can be obtained. In this section, the cost paid by the benchmark feed-in tariff settlement
method is used as the reference benchmark, and then, the expected cost of aggregators can
be expressed as Formula (39).

C0,t = τFIT,t·Pbuy,t (39)

where C0,t is the transaction cost of the DERA settled through the grid company at the bench-
mark tariff. τFIT is the fixed on-grid price. Therefore, the perceived deviation of the DERA’s
day-ahead transaction cost from the expected cost is shown in Formulas (40) and (41).

∆Ct = C0,t − C(xk)t (40)

C(xk)t =

{
τDA,t·Pbuy,m,t Pbuy,m,t > 0

C0,t Pbuy,m,t = 0
(41)

where C(xk)t is the day-ahead transaction power purchase cost function of the DERA in
decision scheme k, which considers two cases of winning bid and not winning bid; Pbuy,m,t
denotes the winning electricity quantity in the market.

The value function reflects the DERA’s subjective value perception of the cost de-
viation ∆Ct. When the cost of electricity purchase is lower than the expected cost, that
is, when ∆Ct ≥0, the decision maker is “gaining” and tends to avoid risks; on the op-
posite end, it belongs to “losing”, and the value function of cost deviation is shown in
Formulas (42) and (43).

v(C(xk))R :

{
v(C(xk))R

+ = (∆Ct)
a ∆Ct ≥ 0, Pbuy,m,t > 0

v(C(xk))R
− = −γ(−∆Ct)

b ∆Ct < 0, Pbuy,m,t > 0
(42)
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v(C(xk))R :

{
v(C(xk))R

+ = (∆Ct)
a ∆Ct ≥ 0, Pbuy,m,t = 0

v(C(xk))R
− = −γ(−∆Ct)

b ∆Ct < 0, Pbuy,m,t = 0
(43)

where v(C(xk))R is the value function of the power purchase cost deviation of the aggrega-
tor under robust or opportunistic strategy; a and b are the risk preference coefficient and
risk aversion coefficient, respectively.

According to the calculation results of the IGDT model, the market price fluctuation
range α can be obtained. To simplify the solution process, it is assumed that the day-ahead
market price obeys the normal distribution N(Eτ,t, στ,t) in the fluctuation range, where Eτ,t
and στ,t represent the mean and variance of the market price at time t, respectively. Then,
considering the different relationship between market price and benchmark electricity
price, the probability of the occurrence of gain-perception and loss-perception events is
determined.

(1) The market price is lower than the benchmark price

As the decision maker takes the benchmark electricity price as the reference value for
settlement, when the market price is lower than the benchmark price, if the subject does not
win the bid in the market, it is the same as expected and there is no risk perception. Acqui-
sition perception exists if and only if the subject wins the bid. At this time, the probability
of the acquisition perception of the DERA’s power purchase is shown in Formula (44).

k+ = F(τmax)− F
(
τ′
)

(44)

where F(·) is the probability of the event under a normal distribution. τmax is the maximum
value of the predicted clearing electricity price, and τ′ ‘is the declared electricity price of
scheme k.

Thus, the weight function of the perceived corresponding probability of power pur-
chase is shown in Formula (45).

ω(k)+ =
[k+]θ[

k+θ + (1− k+)θ
]1/θ

(45)

where ω(k)+ is the probability weight function corresponding to the acquisition perception
of DERAs in different decision scenarios; θ is the risk attitude coefficient corresponding to
acquisition perception.

(2) Market price is higher than the benchmark electricity price

When the market price is higher than the benchmark price, if the subject does not
win the bid in the market, it will be the same as the expected level and will not show risk
perception. If the subject wins in the market, it will show the “loss” perception. In this case,
the probability of the “loss” perception event of the DERA’s power purchase is shown in
Formula (46).

k− = F(τmax)− F
(
τ′
)

(46)

where F(·) is the probability of events under normal distribution; τmax is the maximum
value of predicted clearing electricity price; τ′ is the declared electricity price of scheme k.

Thus, the probability weighting function of the perceived corresponding power pur-
chase is shown in Formula (47).

ω(k)− =
[k−]δ[

k−δ + (1− k−)δ
]1/δ

(47)

where ω(k)− is the probability weight function of the DERA’s perceived loss under different
decision scenarios, and δ is the attitude risk factor of loss.
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Based on the value function and probability weight function, the prospect theory
model of the DERA’s day-ahead power purchase decision is constructed, and the integrated
utility prospect value of each decision option is solved separately. The optimal utility
function of the day-ahead power purchase decision is shown in Formula (48).

maxUk = v(xk)
+·ω(k)+ + v(xk)

−·ω(k)− (48)

where Uk is the integrated prospect value corresponding to the kth strategy.

(2) Power sale decision model based on prospect theory

The expected revenue of the aggregator is shown in Formula (49).

B0,t = τFIT,t·Psell,t (49)

where B0,t is the trading revenue of the DERA when the grid company purchases electricity
with the benchmark price. Therefore, the perceived deviation between the DERA’s day-
ahead trading income and the expected income is shown in Formulas (50) and (51).

∆Bt = B(xk)t − B0,t (50)

B(xk)t =

{
τDA,t·Psell,t Psell,t > 0

B0,t Psell,t = 0
(51)

where B(xk)t is the day-ahead trading revenue function of the DERA in decision scheme k,
and the winning and nonwinning cases are considered, respectively.

The value function reflects the DERA’s subjective value perception of the revenue
deviation ∆Bt. When the income from electricity sales is higher than the expected income,
that is, when ∆Bt ≥0, the decision-making subject is “gaining” and has a tendency to avoid
risks; on the opposite end, it is “losing”, and the value function of revenue deviation is
shown in Formulas (52) and (53).

v(B(xk))R :

{
v(B(xk))R

+ = ∆Bt
a ∆Bt ≥ 0, Pbuy,m,t > 0

v(B(xk))R
− = −γ(∆Bt)

b ∆Bt < 0, Pbuy,m,t > 0
(52)

v(B(xk))R :

{
v(B(xk))R

+ = ∆Bt
a ∆Bt ≥ 0, Pbuy,m,t = 0

v(B(xk))R
− = −γ(∆Bt)

b ∆Bt < 0, Pbuy,m,t = 0
(53)

where v(B(xk))R is the deviation value function of the electricity sales income of aggregators
under the robust or opportunistic strategy. a and b are the risk preference coefficient and
risk aversion coefficient, respectively.

(1) Market price is higher than the benchmark electricity price

When a DERA plays the role of selling electricity at time t, if the market price is higher
than the benchmark electricity price and the subject fails to win the bid in the market,
it is the same as the expected income and there is no risk perception. The perception of
acquisition exists if and only if the subject wins the bid. At this time t, the probability of
obtaining a perception of DERA electricity sales is shown in Formula (54).

k+ = F
(
τ′
)
− F(τmin) (54)

where F(·) is the probability of the events under normal distribution; τmax is the minimum
value of predicted clearing electricity price; τ′ is the declared electricity price of scheme k.

Thus, the probability weight function of the perceived corresponding probability of
electricity sales is shown in Formula (55).
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(2) The market price is lower than the benchmark price

When the market price is lower than the benchmark electricity price, if the subject fails
to win the bid in the market, it will not show risk perception, and if the subject wins in the
market, it will show the “losing” perception. The occurrence probability of the “losing”
perception event of DERA is shown in Formula (55).

k− = F
(
τ′
)
− F(τmin) (55)

Therefore, the probability weighting function of electricity sales probability perceived
as loss is the same as Formula (47).

Similarly, the optimal utility function of the day-ahead electricity selling decision is
shown in Formula (48).

3.4. Solution to the Day-Ahead Transaction Decision-Making Model of a DERA Based on MPA

In this paper, the IGDT is used to build a robust model and an opportunistic model,
both of which are two-layer optimization models. To obtain the trading strategy, the upper
layer model is used to solve the uncertainty of market price fluctuation, and the lower layer
model is solved to minimize the day-ahead transaction cost. Given the model’s complex
constraints, the MPA is used in this paper to solve the problem

The MPA is a novel meta-heuristic optimization algorithm proposed by Afshin Fara-
marzi et al. in 2020. The MPA optimization is performed in three stages: initialization stage,
optimization stage, and FADs or eddy current effect stage [10]. The specific optimization
process of the MPA is as follows [11]:

(1) Initialization phase. Set the algorithm parameters and initialize the prey position
within the search range, as shown in Formulas (56)–(65):

X0 = Xmin + rand(Xmax − Xmin) (56)

where Xmax and Xmin denote the range of prey search space, and rand() is a random
number within [0, 1].

(2) Optimization stage. The optimization phase is divided into the early iteration, middle
iteration, and late iteration [41]. In the early iteration, the number of iterations is less
than 1/3 of the maximum number of iterations, the predator is faster than the prey, a
global search is performed, and the prey is updated by Brown’s random wandering.{

stepsicei = RB ⊗ (Elitei − RB ⊗ preyi)
preyi = preyi + P·RB ⊗ stepsicei

ter < 1
3 max_Iter

(57)

where stepsice is the step size, RB is a normally distributed Brownian wandering
random vector, Elitei is the elite matrix constructed by the top predator, preyi is a prey
matrix with the same dimension as the Elitei, ⊗ is the item-by-item multiplication
operation, P takes 0.5, and R is a uniform random vector on [0, 1]. N is the population
size, and Iter and max_Iter denote the current and maximum number of iterations,
respectively.

In the middle of the iteration, the current iteration is less than 2/3 of the maximum.
The population is divided into two parts. The prey does levy motion and is responsible for
the exploitation of the algorithm in the search space. The predator does Brownian motion,
is responsible for the exploration of the algorithm in the search space, and gradually shifts
from exploration to exploitation of the strategy [42].

At the end of the iteration, the current iteration is greater than 2/3 of the maximum
iteration number, which mainly improves local exploitation, the predator wanders based
on the levy, and it is slower than the prey.
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{
stepsicei = RL ⊗ (RL ⊗ Elitei − preyi)

preyi = Elitei + P·CF⊗ stepsicei
Iter > 2

3 max_Iter
(58)

where RL is a random vector of levy distribution and CF = (1− Iter/max_Iter)2Iter/max_Iter

is the adaptive parameter used to control predator movement compensation.

(3) Fish aggregation devices (FADs) or eddy current effect. This strategy typically alters
the disorientation behavior of ocean predators, allowing the MPA to overcome the
premature convergence problem and avoid falling into local extremes during the
optimization search [43].

preyi =

{
preyi + CF[Xmin + RL ⊗ (Xmax − Xmin)]⊗U, r ≤ FADs
preyi + [FADs(1− r) + r](preyr1 − preyr2), r > FADs

(59)

where FADs is the influence probability, which is set to 0.2, U is the binary vector, r is
the random number within [0, 1], and r1 and r2 are the random indexes of the prey
matrix, respectively. The solution process is shown in Figure A1.

For the solution of the prospect theory model, the expected cost obtained by IGDT
solving and the range of market price fluctuations that satisfy the expected cost is first
used as inputs to the model. Subsequently, the value functions corresponding to the
robust decision and the opportunistic decision are discovered. Then, the probability weight
functions under the two decision options are calculated, and the prospect value of each
option is determined. Finally, the strategy with the highest prospect value is chosen as the
DERA’s best decision solution. Figure 2 depicts the solution process.
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4. Case Analysis
4.1. Basic Data and Scenario Settings

(1) Basic Data

In this section, the RDES containing MT, distributed wind power, PV, and industrial
and commercial users is used as an example for simulation analysis. The maximum power
load of RDES is 2.5 MW, the maximum cooling load is 1 MW, and the maximum heating
load is 1MW. The specific technical and economic parameters of each type of subject are
shown in Tables 1 and 2.

Table 1. Technical and economic parameters of the micro gas turbine.

Maximum
Output Power

(MW)

Minimum
Output Power

(MW)

Efficiency
(%)

Energy
Loss Rate

(%)

Climbing
Speed

(MW/h)

Gas Price
(CNY/m3)

1 0.2 80 10 0.5 3.24

Table 2. Technical and economic parameters of wind and solar storage and electric chiller.

Equipment
Maximum

Output
Power (MW)

Minimum
Output

Power (MW)

Efficiency
(%)

Climbing
Speed

(MW/h)

Operation and
Maintenance Cost

(CNY/MWh)

Wind power 1 0 - 0.6 110
PV 2 0 - 1.5 80

Energy storage 0.2 0.04 95 0.2 20
Electric chillers 1 0 95 - 30
Suction chiller 1 0 70 - 30
Gas fired boiler 1 0 73 - 20

In addition, the operation and maintenance cost of MT is 168.5 CNY/MWh, the low
calorific value of natural gas is 9.7 MJ/m3, and the conversion efficiency of the waste heat
boiler is 75%.

Considering that the proposed model considers both uncertainty factors and the
decision maker’s preference behavior for risk, a 24-point decision scheme is selected to
simulate the day-ahead trading model of the DERA to improve the solution efficiency.

First, this section selects the 92-day historical output curves of distributed wind power
and PV in the summer of a province in China, and uses the GMM algorithm to screen the
typical scenarios of wind power and PV unit outputs, as shown in Figures A3 and A4.
The bold lines in Figures A3 and A4 are the scene clustering results obtained by the GMM
method. Table 3 shows the probability of each scenario.

Therefore, the expected output scenarios of distributed wind power and PV are
obtained as inputs to the IGDT model based on the occurrence probability of each type of
scenario, as shown in Figure A2.

Table 3. Probabilities of ten sets of wind and PV power scenarios.

Wind Power Scenarios Probability PV Power Scenarios Probability

1 0.0109 1 0.0543
2 0.0217 2 0.0326
3 0.0109 3 0.0217
4 0.1304 4 0.4239
5 0.4891 5 0.0761
6 0.0326 6 0.0761
7 0.0543 7 0.0870
8 0.1957 8 0.0543
9 0.0217 9 0.0978
10 0.0326 10 0.0761
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Similarly, the GMM algorithm was used to obtain typical data of various RDES loads
from the historical data of power, heat, and cooling loads of an industrial park in central
China, as shown in Figure 3.

Energies 2022, 15, x FOR PEER REVIEW 17 of 28 
 

 

 

Figure 3. The daily cooling, heating, and power load of the RDES. 

 

Figure 4. Forecasted day-ahead market price. 

Table 4. Case study scenarios. 

Number Scenario Description 

Scenario 1 

It is assumed that the actual clearing price of the day-ahead market and the 

actual output of wind power and PV in RDES are both predicted values: that 

is, the decision scenario without considering the effect of uncertainty factors. 

Scenario 2 
Consider RDES’s robust risk appetite and opportunistic risk appetite for mar-

ket price fluctuations. 

Scenario 3 
Based on Scenario 2, consider the subjective behavioral impact of DERA’s 

perceived “gain” and “loss” decisions in the dual-track market environment. 

4.2. Analysis of Day-Ahead Trading Strategy of Aggregators Based on the IGDT 

The usefulness of the model provided in this research is validated in this part using 

two common trading methods. First, the DERA’s core day-ahead trading decision system 

is built on the deterministic scenario. Second, the IGDT model proposes the DERA day-

ahead trading decision scheme for market information uncertainty. 

(1) Analysis of day-ahead trading strategies for DERAs under a deterministic scenario 

Figure 3. The daily cooling, heating, and power load of the RDES.

In this section, a spot pilot historical liquidation price in China is selected as the
database, and the input data is processed based on the simulation results of the market
price prediction model, and the day-ahead predicted market price can be obtained, as
shown in Figure 4.
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(2) Scene Settings

The subjective decision-making behavior of DERAs and different scenarios are con-
sidered to obtain the final power purchase strategy, and then, the effectiveness of the
proposed model is analyzed. The scenarios include deterministic scenarios, uncertainty
scenarios with supply and demand fluctuations, and RDES’s power purchase strategies
under multiple uncertainty scenarios with supply, demand, and market price fluctuations.
The case study scenarios are shown in Table 4.
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Table 4. Case study scenarios.

Number Scenario Description

Scenario 1
It is assumed that the actual clearing price of the day-ahead market and the actual
output of wind power and PV in RDES are both predicted values: that is, the
decision scenario without considering the effect of uncertainty factors.

Scenario 2 Consider RDES’s robust risk appetite and opportunistic risk appetite for market
price fluctuations.

Scenario 3 Based on Scenario 2, consider the subjective behavioral impact of DERA’s perceived
“gain” and “loss” decisions in the dual-track market environment.

4.2. Analysis of Day-Ahead Trading Strategy of Aggregators Based on the IGDT

The usefulness of the model provided in this research is validated in this part using
two common trading methods. First, the DERA’s core day-ahead trading decision system is
built on the deterministic scenario. Second, the IGDT model proposes the DERA day-ahead
trading decision scheme for market information uncertainty.

(1) Analysis of day-ahead trading strategies for DERAs under a deterministic scenario

Assuming that DERAs can predict accurately the uncertainty of market price and
new energy unit output in day-ahead trading, the trading scenario under a deterministic
scenario can be obtained by solving the day-ahead trading optimization model of DERAs
in Section 3.1, as shown in Figure 5.
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In Figure 5, the horizontal axis indicates the period time, and the vertical axis indicates
the purchase and sale power of the DERA. When the system supply is less than the demand,
the DERA needs to purchase electricity from the wholesale market, as shown in the green
bar graph. On the contrary, when the system supply exceeds the demand, the system
surplus will be traded online, as shown in the brown bar graph. As can be seen from the
figure, RDES sells power to the main grid at 1:00, 3:00–5:00, and 11:00–15:00, which occurs
mainly due to the large generation of wind and PV units. In other hours, the DERA needs
to purchase power from the main network. The maximum purchasing power is 0.99 MW,
and the minimum operating cost is 9011.38 CNY. The operation of each electric price of
equipment is shown in Figure 6.
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(2) Analysis of IGDT decision of the DERA considering risk preference of day-ahead
market price fluctuation

In this section, the IGDT model is solved by using the MPA. The population size is
100, and the maximum number of iterations is 8000. The simulation model is implemented
through Python 3.7. When the robust factor is taken as 0.6 and the expected cost is
9252.86 CNY, by solving the IGDT robust model, a robust strategy of DERAs participating
in day-ahead trading can be obtained, as shown in Figure 7.
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Figure 7 shows that the strategy of decision makers with robust preference is different
from the strategy in the determined scenario. At 2:00, 3:00, 5:00–6:00, 10:00, and 12:00–17:00,
electricity is sold to the market and is purchased from the market at other times. In
the robust scenario, the cost of power purchase for the system is 4961.21 CNY, and the
revenue from power sales is 1020.41 CNY. Compared with the deterministic scenario, when
choosing the power purchase and sale strategy, customers choose to sell power at the higher
market price to ensure their basic returns. Meanwhile, from the power purchase and sale
strategies of deterministic and robust scenarios, it can be obtained that the strategy of RDES
is formulated based on the system generation capacity. At this time, the operation of each
piece of equipment in the system is shown in Figure 8.
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Similarly, when the opportunity factor is taken as 0.2 and the expected cost is 5983.65
CNY, the cost of power purchase from the system to the main network is 6906.26 CNY,
and the revenue from power sales is 736.634 CNY. At this time, the minimum deviation of
the market price fluctuation is 0.62365. The day-ahead trading strategy for opportunistic
DERAs is shown in Figure 9.
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In the opportunity strategy scenario, the DERA receives revenue from selling electricity
in the day-ahead market at 2:00–4:00, 12:00–13: 00, 15:00–16:00, and 24:00. At other times,
the DERA needs to purchase electricity from the market due to system balance constraints.
Compared to the robust strategy scenario, the DERA prefers to purchase electricity at a low
price in the day-ahead market to reduce the cost and obtain potential benefits under the
opportunity strategy. Under the robust strategy, the DERA chooses to increase the quantity
of electricity sold and increase its revenue. The above data verifies that DERAs under the
opportunity strategy prefer potential profit from price fluctuation risk. The system’s output
of each unit under the opportunity strategy is shown in Figure 10.
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4.3. Analysis of Day-Ahead Trading Strategy of Aggregators under Different Factor Scenarios

To explore the influence of different robustness and opportunity factors on the DERA’s
day-ahead decision, the robust and opportunity strategies of DERAs under different desired
goals are analyzed below by varying the values of the robustness and opportunity factors,
as shown in Figures 11 and 12, respectively.
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Figure 11. Robust decisions for DERA along with the robust factors.

The robust decision scenarios of DERAs corresponding to different robust factors are
shown in Figure 11, where the horizontal coordinate indicates the time in the day-ahead
market and the vertical coordinate indicates the power purchase and sale strategy adopted
by the DERA.

The opportunity strategy reflects the risk-chasing characteristics of the DERA, and the
opportunity factor affects the range of trading decisions made by the DERA. By varying the
range of values of the opportunity factor, the range of trading strategies and opportunity
deviations under different risk characteristics of DERAs can be obtained. To verify the
strategy variation under different opportunity scenarios, the opportunity factors are taken
as 0.1, 0.3, 0.5, 0.7, and 0.9, respectively. The trading strategies under different opportunity
factors are shown in Figure 12.
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Figure 12. Opportunity decisions for DERA along with the opportunity factors.

The opportunity strategy emphasizes market participants’ preference for opportunity
gains from price fluctuations. As the opportunity factor is gradually increased, the DERA’s
risk preference for the day-ahead market gradually increases and the system’s cost of
operation is gradually reduced. At the same time, the DERA believes that the price
volatility has also become greater. Compared to the robust strategy, the DERA under the
opportunity strategy is more inclined to sell electricity to the market and offset system
operating costs with revenue.

4.4. DERA Decision Analysis Based on Prospect Theory

At present, there are two main ways for RDES to interact with the power grid in
China. The first one is that the DERA participates in the spot market, and the trading
center will aggregate the liquidated power and settle the liquidated power according to the
market price. The second one is that the grid will purchase the remaining unliquidated
power of RDES according to the feed-in tariff of 0.55 CNY/kWh. According to a provincial
day-ahead market data situation, the day-ahead market price fluctuation deviation obeys
the normal distribution N(Eτ,t, στ,t), where Eτ,t and σ τ,t represent the mean and variance
of market price at time t, and the declared price step takes 0.005 CNY. According to the
experimental determination of Kahneman and Tversky [40], the risk preference coefficient
a is taken as 0.88. The risk aversion coefficient b is taken as 0.67, and θ and δ are taken as
0.61 and 0.67, respectively. The sensitivity coefficient γ of the DERA to loss and gain is
taken as 1.25.

According to the IGDT scenario analysis, when the robustness factor is taken as 0.6,
the expected cost is 9252.86 CNY and the minimum deviation of predicted market price
fluctuation is 0.62365. Based on this scenario, the value of ω(k) and v(xk) under the
perception of loss and gain of the DERA in the day-ahead market can be obtained, and
then, the optimal utility offer strategy under the robust strategy can be obtained, as shown
in Figure 13.

In Figure 13, a positive decision variable indicates that the DERA purchases electricity
in the day-ahead market and a negative number indicates power sales. When purchasing
electricity, if the market price is higher than the benchmark price, the DERA is more
willing to increase the declared price, reduce the winning bid and increase the purchased
electricity to reduce the system operating cost. When selling electricity, if the market price
is higher than the benchmark price, the DERA is more willing to lower the declared price
and increase the winning bid to reduce the electricity purchased by the power grid, thus
increasing the system’s revenue from electricity sales.
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When both the robustness factor and the opportunity factor are taken as 0.6, the opti-
mal offer strategy for DERA participation in the day-ahead market under the opportunity
strategy space can be obtained. The bidding strategy is shown in Figure 14.
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4.5. Discussion

As evidenced by the preceding chapters’ outcomes, when the supply and demand
are in balance, the system will optimize the output of operating units according to the
current price and demand of the external market. When the market price in the day-ahead
decreases, the DERA will choose to sell or purchase electricity by judging the difference
between its generation cost and the revenue from electricity sales. This phenomenon
also proves that the day-ahead market price affects demand, reflecting the role of market
mechanisms for optimal resource allocation.

The size of the robustness factor has an impact on the strategy of purchase and sale
strategy, but the overall trend is similar. The change of robustness factor also affects the
DERA’s power purchase and sale strategy. By changing the value in the robustness factor,
the upper and lower limits of the robustness deviation of the DERA’s bidding strategy can
be obtained. The robust optimization model can satisfy the optimal decision in the worst
environment. Therefore, in the robust scenario, RDES can withstand greater price volatility
in the day-ahead market, but the robust model is conservative, so the DERA will reduce the
bidding expectations and increase the system operating cost to improve the achievability
of the expected revenue.
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For the opportunity strategy considering the DERA’s psychological behavior, the
DERA’s forecasted market price will be lower than the benchmark tariff. Under the
opportunity strategy, when the DERA participates in the day-ahead market as a power
buyer, the DERA mainly adopts the strategy of declaring lower prices than the predicted
market price to improve the winning rate and reduce the power purchase cost at the catalog
tariff. On the contrary, when participating in the day-ahead market as a power producer,
it will increase the declared price, reduce the winning rate, and prefer to settle at the grid
catalog tariff, thus realizing higher revenue from electricity sales.

The trading-assisted decision model put forth in this paper can accomplish the fol-
lowing through the aforementioned case study: The GMM assists aggregators in better
analyzing potential power-out scenarios and minimizing the effects of power-out uncer-
tainty. The opportunity strategy and robust strategy produced by the IGDT model, in
addition, further explain how the aggregator’s strategy changes under various risk levels
and the return curve produced by such changes, assisting market participants with various
risk preferences in creating reasonable trading strategies. The aggregator can create a
reasonable proportion strategy of guaranteed acceptable electricity and market telephone
electricity against the backdrop of China’s dual-track market by calculating the benefit
function of various strategies based on the prospect theory to achieve the best overall
benefit.

5. Conclusions

This paper presents a trading assistant decision-making model for distributed energy
systems participating in the spot market based on an analysis of the key influencing factors
of regional distributed energy systems. It emphasizes the influence of new energy output
uncertainty, the market subject risk preference, and the dual-track market environment on
the aggregator’s trading behavior decision-making. These are the precise contents:

First, in order to lessen the impact of price volatility and new energy output uncertainty
on trading choices, the Gaussian mixture model and IGDT model are applied.

Second, the robust strategy model and opportunity strategy model are constructed,
respectively, taking into account the risk preferences of various aggregation quotients. The
return curve under various strategies can serve as a tactical foundation for decision makers
who are exposed to various types of risk.

Finally, the maximum utility strategy of day-ahead market transactions under the
dual-track market environment is produced, providing a tactical foundation for distributed
energy systems to engage in electricity transactions more effectively. This approach success-
fully addresses the subjective behavior elements of decision makers under the dual-track
market environment.

The auxiliary decision model suggested in this paper can assist market participants in
better adapting to spot trading in the context of a dual-track market, enhance distributed
energy participants in developing more sensible trading decision-making schemes, and
serve as a useful benchmark for developing spot market rules utilizing distributed energy
trading. The market types for distributed energy participation will also diversify as dis-
tributed energy building picks up speed. In the future, it is necessary to deeply study
the combination scheme of multiple market varieties for distributed energy transaction
decision-making.
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See Figures A1–A4.
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