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The excited state dynamics and relaxation of electrons and holes in the photosynthetic reaction
center of photosystem II are simulated using a two-band tight-binding model. The dissipative
exciton and charge carrier motions are calculated using a transport theory, which includes a strong
coupling to a harmonic bath with experimentally determined spectral density, and reduces to the
Redfield, the Förster, and the Marcus expressions in the proper parameter regimes. The simulated
third order two-dimensional signals, generated in the directions −k1+k2+k3, k1−k2+k3, and
k1+k2−k3, clearly reveal the exciton migration and the charge-separation processes.
© 2010 American Institute of Physics. �doi:10.1063/1.3493580�

I. INTRODUCTION

Charge separation in the core of pigment-protein
reaction-center �RC� complexes is the first energy conversion
step in photosynthesis. The subsequent electron transfer
across a thylakoid membrane of chloroplasts triggers a pro-
ton transfer reaction, creating a charge gradient that drives a
chain of chemical reactions, leading eventually to the stable
storage of solar energy.1 Photosystem II �PS-II�, which is the
most abundant photosynthetic complex in Nature,2 is respon-
sible for water splitting. Its 2.9 Å resolution RC structure
shows two branches of pigments, D1 and D2, each made up
of two chlorophyll molecules �Chl� and one pheophytin
�Phe�, and other pigments that are separated from these six
core pigments either energetically or spatially.3 All six chro-
mophores are tightly packed within an �303 Å3 volume and
show strong �50–200 cm−1� resonant exciton interactions.

The Frenkel exciton model has often been used to de-
scribe collective electronic excitations in molecular
complexes.4 This model and the system-bath coupling has
been parametrized for PS-II by Raszewski et al. using a nu-
merical optimization algorithm, which yields good agree-
ment with linear optical properties.5 A more elaborate spec-
tral density of the system-bath coupling was used by
Novoderezhkin et al.

6 by employing 48 vibrational bath
modes extracted from low-temperature fluorescence line-
narrowing data. The extended model includes charge transfer
�CT� states coupled to other molecular excitations. It can
adequately describe absorption, fluorescence, and Stark spec-
trum, which depend only on singly excited states. Despite the
extensive studies of electron separation and transfer time
scales, the primary charge-separation site in PS-II RC is still
not clearly identified: several radical pair �RP� evolution sce-

narios fit the existing experiments.7 The model parameters
were refined6 by including fluorescence and Stark spectros-
copy data. The strong dependence of the Stark spectrum on
CT states helped determine some of the parameters.

The absorption spectrum is not very sensitive to the CT
states. This is to be expected since the isolated CT states
carry no oscillator strength from the ground state. This selec-
tion rule is broken by mixing the CT with the Frenkel exci-
ton states, leading to a weak absorption of the CT state. Due
to large static dipole of a CT state, the Stark spectrum is
sensitive to electron transfer. However, for the same reason,
CT states are strongly coupled to the medium causing large
broadening, which makes them harder to resolve.

An optical excitation creates an electron-hole pair local-
ized on the same chromophore. In the CT state, they reside
on different molecules. Charge separation from a molecular
excited state corresponds to a quantum transition between a
molecular excited state and a CT state. The above phenom-
enological hybrid �Frenkel+CT exciton� model misses some
characteristics of CT states, such as electron-hole Coulomb
interaction, electron affinities, and ionization energies, as
well as fermionic properties of electrons and holes. There-
fore, it cannot be directly used to compute double-exciton
states.

In this paper, we develop a tight-binding two-band
model for the core RC complex of PS-II and use it to simu-
late the energy-transfer and charge-separation dynamics.
We account for strong CT state coupling with the bath by
using a modified Redfield rate expression for the energy and
charge hopping, which treats diagonal fluctuations
nonperturbatively.8 Closed expressions are derived for the
third order optical signals with Gaussian lineshapes that ac-
count for static inhomogeneities of the system without the
need to sample the ensemble realizations explicitly. The sig-
natures of CT states in various two-dimensional �2D� optical
signals are identified.
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II. TIGHT-BINDING TWO-BAND HAMILTONIAN FOR
EXCITON AND CHARGE-TRANSFER DYNAMICS

We consider an aggregate where each chromophore has
two frontier orbitals: the highest occupied molecular orbital
�HOMO� and the lowest unoccupied molecular orbital
�LUMO�.9 Neglecting spin, each chromophore then has four
states: the ground state �0�, where the HOMO is occupied
and the LUMO is not; the negatively charged electron state
cm

† �0�, where both are occupied; the positively charged hole
state dm

† �0� �both unoccupied�; and a single electron-hole pair
�Frenkel excited� state cm

† dm
† �0�, when HOMO electron is

transferred to the LUMO. The model is shown in Fig. 1. The

operators, ĉm
† and d̂n

†, create an electron on site m and a hole

on n, respectively �ĉm and d̂n are the corresponding annihi-
lation operators�. They satisfy the Fermi commutations

	ĉm, ĉn
†
 = ĉmĉn

† + ĉn
†
ĉm = �mn, �1�

	d̂m, d̂n
†
 = d̂md̂n

† + d̂n
†
d̂m = �mn. �2�

We adopt the following tight-binding Hamiltonian for elec-
trons and holes in the monopole approximation, used in
semiconductor optics. It neglects quartic electronic exchange
terms,10,11

ĤS = �
m,n

tmn
�1�

ĉm
†

ĉn + �
m,n

tmn
�2�

d̂m
†

d̂n + �
mn

m�n

Wmn
�f� ĉm

†
d̂m

†
d̂nĉn

− �
mn

Wmn
�c� ĉm

†
d̂n

†
d̂nĉm +

1

2 �
mn

m�n

Vmn
�1�

ĉm
†

ĉn
†
ĉnĉm

+
1

2 �
mn

m�n

Vmn
�2�

d̂m
†

d̂n
†
d̂nd̂m. �3�

The Hamiltonian parameters are as follows. t
mn

�1� �t
mn

�2�� is the
electron �hole� hopping rate between LUMO �HOMO�
orbitals, V

mn

�1� =V�e���rm−rn�� is the electron-electron Coulomb
repulsion between molecules m and n, V

mn

�2� =V�h���rm−rn�� is
the hole-hole Coulomb repulsion between molecules m and
n, W

mn

�f� is the dipole-dipole type resonance interaction
between two excitons on sites m and n, and finally
W

mn

�c� =V�eh���rm−rn�� is the Coulomb attraction energy
between the electron and the hole.

The system is further coupled to a harmonic phonon bath
described by a Hamiltonian,

ĤB = �
�

w��b̂�
†
b̂� + 1/2� , �4�

where w� is the frequency of the phonon mode � and b̂�
† �b̂��

are the creation �annihilation� boson operators,

�b̂�, b̂��

† � = b̂�b̂��

† − b̂��

†
b̂� = ����

. �5�

The electron and hole energies fluctuate due to �linear� cou-
pling with the bath

ĤSB = �
�
��

m

f�,m
�1�

ĉm
†

ĉm + �
m

f�,m
�2�

d̂m
†

d̂m�b̂�
† + b̂�� . �6�

Here, f�,m
�1� and f�,m

�2� are the coupling strengths between the
electron and the hole orbitals at site m and the bath coordi-
nate. To describe the optical response, we couple the system
to a classical external optical �electric� field

ĤSF = − �
m

��m
�

d̂mĉm + �mĉm
†

d̂m
† � · E�t� . �7�

This dipole interaction can only create an electron-hole pair
�exciton� on the same molecule: the CT states are dark.

The total Hamiltonian is given by

ĤT = ĤS + ĤSB + ĤB + ĤSF. �8�

The lowest manifold of single �one electron and one hole�

excited states will be denoted by �emhn�� ĉm
† d̂n

†�0�. The
Hamiltonian matrix elements for these states are

�emhn�ĤS�ekhl� = �nltmk
�1� + �mktnl

�2� + �kl�mn�1 − �mk�Wmk
�f�

− �mk�nlWmn
�c� . �9�

This includes the state energies �diagonal part�

�emhn�ĤS�emhn�= t
mm

�1� + t
nn

�2�−W
mn

�c� and the off-diagonal cou-
plings. The Coulomb interaction potential is defined for
charge pairs, i.e., W

mn

�c� =e2�4��0�rm−rn��−1, when m�n. W
mm

�c�

is the intrinsic property of a molecule under consideration.
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FIG. 1. Tight-binding model of molecular aggregates. Two molecules are
shown. First row: the ground �0� state. Second row: excitation of molecule 2
corresponds to creation of hole and electron on that molecule. Third row:
CT state corresponds to creation of hole on molecule 2 and an electron on
molecule 1. Electrons are marked by solid circles and holes by open circles.
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States where the electron and the hole reside on the same

molecule, ĉm
† d̂m

† �0�, represent molecular excitations. The
Frenkel exciton model is thus recovered by neglecting the
charged molecular states, where the electron and hole reside
on different molecules. Each molecule is then a two-level
system and the molecular transition energy is �m= t

mm

�1� + t
mm

�2�

−W
mm

�c� and the intermolecular interaction is Jmn=W
mn

�f� .

We next turn to the doubly-excited two electron-hole

pair manifold, �emenhkhl�� ĉm
† ĉn

†d̂k
†d̂l

†�0�. A complete basis set
is obtained by using the constraints m�n and k� l �note that
m=n and k= l are excluded by Pauli blocking�. This gives
�N�N−1� /2�2 double-pair states with the following
Hamiltonian matrix elements:

�emenhkhl�ĤS�em�
en�

hk�
hl�

� = �t
mm�

�1�
�nn�

+ t
mn�

�1�
�nm�

+ t
nm�

�1�
�mn�

+ t
nn�

�1�
�mm�

��kk�
�ll�

+ �t
kk�

�2�
�ll�

+ t
kl�

�2�
�lk�

+ t
lk�

�2�
�kl�

+ t
ll�

�2�
�kk�

��mm�
�nn�

+ �Vmn
�1� + Vkl

�2� − Wmk
�c� − Wml

�c� − Wnk
�c� − Wnl

�c���mm�
�nn�

�kk�
�ll�

+ �W
mm�

�f�
�nn�

��mk�ll�
+ �ml�kl�

� + W
nm�

�f�
�mn�

��nk�ll�
+ �nl�kl�

���m�k�

+ �W
mm�

�f�
�nn�

��mk�lk�
+ �ml�kk�

� + W
nm�

�f�
�mn�

��nk�lk�
+ �nl�kk�

���m�l�

+ �W
mn�

�f�
�nm�

��mk�ll�
+ �ml�kl�

� + W
nn�

�f�
�mm�

��nk�ll�
+ �nl�kl�

���n�k�

+ �W
mn�

�f�
�nm�

��mk�lk�
+ �ml�kk�

� + W
nn�

�f�
�mm�

��nk�lk�
+ �nl�kk�

���n�l�
. �10�

The singly excited,

�e� = �
mk

�mk,eĉm
†

d̂k
†�0� , �11�

and doubly excited,

�f� = �
mn

m�n

�
kl

k�l

	�mn��kl�,fĉm
†

ĉn
†
d̂k

†
d̂l

†�0� , �12�

eigenstates are calculated by diagonalizing the corresponding
blocks of the Hamiltonian matrix.

III. MODELING THE ENERGY AND ELECTRON
TRANSFER

All bath-induced relaxation and transport properties of
our model are determined by the following matrices of spec-
tral densities:12

C�
�11�

mm,nn�
� = ��
�

f�,m
�1�

f�,n
�1� ���
 − w�� − ��
 + w��� ,

�13�

C�
�12�

mm,nn�
� = ��
�

f�,m
�1�

f�,n
�2� ���
 − w�� − ��
 + w��� ,

�14�

C�
�22�

mm,nn�
� = ��
�

f�,m
�2�

f�,n
�2� ���
 − w�� − ��
 + w��� .

�15�

These satisfy C��
�=−C��−
�. Here, the pairs of indices
denote energy �diagonal� fluctuations of the local states. For
an infinite number of bath degrees of freedom, the spectral
density is a smooth function.

We shall transform these matrices into the eigenstate ba-
sis, thus mapping the local correlations to correlations of
fluctuations of the exciton eigenstates. The single-exciton
manifold is described by a tetradic spectral density
C�e4e3,e2e1

�
�. Fluctuations involving the double-exciton
states have the spectral densities C�e1e2,f1f2

�
� and
C�

f1f2,f1�f2�
�
�. Fluctuations of eigenstate transition energies,

C�
ee,e�e�

�
�, cause pure dephasing, and the fluctuations of
couplings, C�

ee�,e�e
�
�, are responsible for the energy and

charge transport. The double-exciton fluctuations are respon-
sible for the broadening of transitions involving the double-
exciton states. The transformation between the real space and
the eigenstate fluctuation spectral densities is given in the
Appendix.

To describe exciton dephasing and transport, and the cor-
responding optical response in the eigenstate basis, we intro-
duce two auxiliary bath functions. The first is the lineshape
function,

gab,cd�t� =� d


2�

C�ab,cd�
�


2 �coth��
/2��1 − cos�
t��

+ i sin�
t� − i
t� , �16�

where the indices abcd run over the manifolds g, e, and f

and �= �kBT�−1. Its second derivative,

g̈ab,cd�t� � M̄ab,cd
�+� �t� =� d


2�
C�ab,cd�
�

��coth��
/2�cos�
t� − i sin�
t�� ,

�17�

is the correlation function of fluctuations.12

Transport in the single-exciton manifold will be de-
scribed by the Pauli master equation13
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ee = − Kee,eeee + �
e�

e��e

Kee,e�e�
e�e�

. �18�

The energy and charge transport rates can be calculated by
including diagonal fluctuations nonperturbatively using the
cumulant expansion. Off-diagonal fluctuations are treated us-
ing second order perturbation theory. The transfer rate be-
tween an initial e� and a final e state �e�e�� is obtained by
assuming bath thermal equilibrium with respect to the initial
state8

Kee,e�e�
= 2 Re�

0

�

d�Fee�
��� , �19�

where

Fee�
��� = F

ee�

�0� ����g̈ee�,e�e��� − �ġe�e,e�e�
��� − ġe�e,ee���

+ 2i�e�e,e�e�
��ġe�e�,ee�

��� − ġee,ee�
���

+ 2i�ee�,e�e�
�� �20�

and

F
ee�

�0� ��� = exp�− i
ee�
� − gee,ee��� − ge�e�,e�e�

���

+ ge�e�,ee��� + gee,e�e�
���

− 2i���e�e�,e�e�
− �ee,e�e�

�� . �21�

Here,

�ab,cd =� d


2�

C�ab,cd�
�



�22�

is a reorganization-energy matrix. The diagonal elements of

the rate matrix are given by Kee,ee=�
e�

e��e
Ke�e�,ee.

Detailed balance ensures thermal equilibrium at long times.
When the diagonal and off-diagonal fluctuations are
uncorrelated, we get Kee,e�e�

/Ke�e�,ee=exp���e�
−�e

− ��e�e�,e�e�
−�ee,ee���kBT�−1�.

This model uses the rotating-wave-approximation
�RWA� �also known as the secular approximation� for the
density matrix evolution. It has been shown that the nonsecu-
lar terms are responsible for the temperature-dependence of
the absorption spectrum.14,15 Nonsecular density matrix dy-
namics has been recently observed in conjugated polymers.16

We have shown that the nonsecular terms are the source of
the quantum transport.17,18 In this paper, we invoke the RWA
and focus on the overall peak pattern of CT states. Quantum
electron transport can be included as was done in Ref. 18.

Equations �19�–�21� interpolate between several theories
that are obtained as limiting cases. Consider weakly interact-
ing donor �d� and acceptor �a� molecules. The system eigen-
states are then direct products of the donor and acceptor
states. We denote Uee�

= �e�HSB�e��, where e and e� run over a

or d states. Uee�
is still a bath operator. Weak donor and

acceptor coupling is characterized by the thermally averaged
correlation function g̈ad,da�t�= �Uad�t�Uda�0��. The lineshape
functions gaa,aa�t�� �Uaa�t�Uaa�0��, gdd,dd�t�� �Udd�t�Udd�0��,
and gaa,dd�t�� �Uaa�t�Udd�0�� describe fluctuations of transi-
tion energy of acceptor, donor, and the correlation between

the two, respectively. ġaa,ad�t�� �Uaa�t�Uad�0�� �and other
similar terms in Eq. �20�� characterize the correlation be-
tween the transition energy fluctuations of the acceptor and
the fluctuations of donor-acceptor coupling.

We first neglect diagonal fluctuations and assume that
the off-diagonal donor-acceptor couplings are very slow
�static�

g̈ad,da = �Uad�2. �23�

Here, ġaa,ad, ġaa,dd, and ġaa,aa vanish. Substituting this into
Eqs. �19�–�22�, we get

Fad��� = �Uad�2e−i
ad�. �24�

This second order perturbative rate expression implies en-
ergy conservation �Fermi’s golden rule in the case of the
single acceptor state�

Kdd,aa
�G� = Kaa,dd

�G� = 2��Uad�2��
ad� . �25�

Note that the correlation function �17� depends on tem-
perature. To include realistic bath spectral properties for off-
diagonal fluctuations at finite temperature, we have to use
Eq. �17� instead of Eq. �23�. Neglecting diagonal fluctuations
in Eq. �20�, we get

Fad��� = Fad
�0����g̈ad,da��� = g̈ad,da���e−i
ad�. �26�

Upon substituting Eq. �17� into Eq. �26� and then into rate
expression �19�, we obtain the Redfield formula19

Kaa,dd
�R� = C�ad,da�
ad��coth��
ad/2� − 1� . �27�

The overdamped Brownian oscillator spectral density,

C�ad,da�
� = 2�ad,da

�



2 + �2 , �28�

is often used for describing energy transport between delo-
calized exciton eigenstates, weakly perturbed by environ-
ment fluctuations: � is the bath relaxation time and � is the
reorganization-energy matrix.12

Next, we consider the Förster model for energy transfer
between the donor and the acceptor molecules with electro-
static interactions.20 We assume that their transition energy
fluctuations are independent. The intermolecular coupling is
given by Eq. �23�. The transition energy and coupling fluc-
tuations correspond to the diagonal and off-diagonal ele-
ments of the lineshape functions in Eq. �19�. In this expres-
sion, we only need the following elements: gaa,aa, gdd,dd, and
gad,da=gda,ad; all other combinations of indices vanish. We
then have

Fad��� = Fad
�0�����Uad�2 �29�

and

Fad
�0���� = exp�− i
ad� − gaa,aa��� − gdd,dd��� − 2i�dd,dd�� .

�30�

Substituting these relations into Eqs. �19�–�21�, we obtain
the Förster rate formula:21,22

Kad
�F� = �Uad�2� d


2�
Aa�
�Fd�
� . �31�
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Here,

Aa�
� =� d� exp�i�
 − �a�� − gaa,aa���� �32�

and

Fd�
� =� d� exp�i�
 − ��d − 2�dd,dd��� − gdd,dd
� ����

�33�

are the acceptor absorption and donor fluorescence line-
shapes, respectively, normalized to unit area. The symmetry
g���=g��−�� ensures that Aa�
� and Fd�
� are real.
Equation �31� is commonly applied by using experimental
normalized absorption and emission spectra, and the inter-
molecular coupling is calculated using the dipole-dipole
model between transition densities.

The electron transfer theory of Marcus23 is another spe-
cial case of Eq. �19�. It is obtained by assuming a single
classical Gaussian bath reaction coordinate and parabolic do-
nor and acceptor potentials for the reaction coordinate, as
shown in Fig. 2. The ground, donor, and acceptor potential
surfaces are Ugg=wq2

/2, Udd=�
d

�0�+w�q−qd�2
/2, and Uaa

=�
a

�0�+w�q−qa�2
/2, respectively; q is dimensionless taken to

be zero at the ground state equilibrium �other quantities are
defined by Fig. 2�. We define the donor �d=e� in Eq. �19��
reorganization energy as �d��e�e�,e�e�

=wqd
2
/2 and the ac-

ceptor �a=e� as �a��ee,ee=wqa
2
/2. 
ad=�a−�d, �a=�

a

�0�

+�a, and �d=�
d

�0�+�d in Eq. �21� are defined with respect to
the ground state equilibrium q=0. These � parameters rep-
resent optical absorption/emission reorganization energies
with respect to the ground state. �ee,e�e�

��aa,dd and gee,e�e�

�gaa,dd characterize the correlated donor and acceptor state
energy fluctuations around the equilibrium of the ground
state.

Consider the fluctuations along the reaction coordinate
�q in Fig. 2. The fluctuations of the ground state around the
ground state equilibrium �q→0� are �Ugg=0, the donor state

fluctuations are �Udd=−wqd�q, and the acceptor state �Uaa

=−wqa�q. We define the correlation functions

��Uaa�t��Uaa�0�� = w2qa
2��q�t��q�0�� �34�

and

��Uaa�t��Udd�0�� = w2qaqd��q�t��q�0�� . �35�

The lineshape functions and the reorganization energies are
proportional to these correlation functions, and we get
gaa,aagdd,dd=gaa,dd

2 and �aa,dd���a�d.
The Marcus electron transfer rate is obtained by assum-

ing Gaussian fluctuations along the reaction coordinate. This
corresponds to the overdamped Brownian oscillator spectral
density �Eq. �28�� in the slow fluctuation limit24 for the di-
agonal fluctuations. We then get gaa,aa�t�=kBT�at2, gdd,dd�t�
=kBT�dt2, and gaa,dd�t�=kBT��a�dt2. Substituting these line-
shape functions into Eq. �19�, we obtain

Fad��� = Fad
�0�����Uad�2 �36�

and

Fad
�0���� = exp�− i
ad� − kBT��M��2 − 2i���d − ��a�d�� ,

�37�

where ��M�=�a+�d−2��a�d is a reorganization energy for
the electron transfer, defined as the energy of the donor po-
tential at the position of acceptor bath configuration along
the reaction coordinate, ��M�=w�qa−qd�2

/2. Equation �19�
now becomes a Gaussian integral that can be carried out,
leading finally to the celebrated Marcus rate:

Kad
�M� = 2��Uad�2� 1

4���M�kBT
�1/2

exp�−
���M� − �G�0��2

4��M�kBT
� .

�38�

Here, �G�0�=�d−�a− ��d−�a� is the free energy difference
between equilibrium positions of electron donor and acceptor
potential surfaces.

The above derivation assumes positively correlated
energy fluctuations of the acceptor and donor states. Such
correlation is obtained when the equilibrium configuration of
electron donor qd and of acceptor qa satisfies qdqa�0 �the
ground state potential equilibrium is at q=0�. In general, we
have ��M�=�a+�d+2���a�d, where �=1 for positively
correlated energy fluctuations of d and a and �=−1 for
anticorrelated fluctuations.

IV. HAMILTONIAN PARAMETERS FOR THE
REACTION CENTER OF PS-II

The single-exciton Hamiltonian and bath parameters for
the PS-II reaction center have been obtained using evolution-
ary optimization by Novoderezhkin and Raszewski.5–7,25,26

We used the model in Ref. 6, which includes an experimen-
tally determined bath spectral density. We also used addi-
tional information from Refs. 5, 25, and 26.

We have simulated the energy and charge transport in
the PS-II RC core consisting of six chromophores �see Fig.
3� in two branches D1 and D2. Two chlorophyll molecules,
PD1 and PD2, make the special pair. Two accessory chloro-

FIG. 2. Ground state, donor, and acceptor state potentials along the reaction
coordinate. �a and �d are defined with respect to the ground state. �a=�a

−�
a

�0� and �d=�d−�
d

�0� are optical absorption reorganization energies. �G�0�

and ��M� used in Marcus theory are defined with respect to equilibrium of
the donor and the acceptor states.
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phylls, AccD1 and AccD2, and two pheophytins, PheD1 and
PheD2, are in close proximity to the special pair. We neglect
two distal chlorophyll molecules considered in Ref. 6 since
they interact only weakly with the core and do not perturb its
excited state dynamics. Our model includes all molecular
excitations of the 6 molecules. For CT states, we allow the
electron to reside on any of the D1 branch molecules. The
hole is allowed to reside on PD1, PD2, and AccD1. The CT
state AccD1

+ PD1
− is excluded since its dipole points in the op-

posite direction to the observed electron transfer. Altogether
we thus have 12 single-exciton states �6 molecular excita-
tions and 6 CT states�. The molecular excitation energies are
given by

�m � �emhm�ĤS�emhm� = tmm
�1� + tmm

�2� − Wmm
�c� . �39�

For the electron-hole Coulomb interaction, we take

Wmn
�c� =

ke

�rm − rn� + �
, �40�

where ke=e2�4���0�−1 and � is a cut-off parameter, which
represents screening, induced by finite charge-density distri-
bution at short �down to zero� distances. We set �=1.3 for the
medium dielectric constant. For chlorophyll molecules,
�=9 Å was estimated from the length of the conjugated area
of Chl and Phe.

The exciton parameters obtained in Ref. 6 determine the
molecular excitation energies and the one CT state energy.
We have converted them to the orbital parameters of the
present model. However, the Frenkel exciton Hamiltonian
does not fully specify the tight-binding model: to get the
electron and hole hopping parameters and the electron and
hole orbital energies, we made some additional assumptions
as outlined below.

References 5, 25, and 26 give the following primary CT
�radical pair� states: RP1=AccD1

+ PheD1
− and RP2=PD1

+ PheD1
− .

The RP1 state energy �RP1 is estimated in Ref. 6 to be inside
the exciton band, while the energy of RP2 is not determined.
According to Ref. 25, the free energy difference between
RP1 and RP2 was estimated as 25 meV �200 cm−1�. We thus
take �RP2=�RP1−200 cm−1. This information becomes suffi-
cient to determine all diagonal parameters for the D1 branch.
We denote the following Coulomb interaction energies:
W�0�=ke�

−1 is the CT pair stabilization energy �Coulomb
energy within a molecule�, WRP2

�c� =ke��RPD1
−RPheD1

�+��−1

and WRP1
�c� =ke��RPheD1

−RAccD1
�+��−1, where RPheD1

is the
mass center of N atoms of PheD1 molecule and the same is

assumed for other molecules central coordinates. These are
Coulomb energies between PD1 and PheD1, and PheD1 and
AccD1, respectively. From Eq. �39�, we have

�RP1 = tPheD1,PheD1

�1� + tAccD1,AccD1

�2� − WRP1
�c� , �41�

�RP2 = tPheD1,PheD1

�1� + tPD1,PD1

�2� − WRP2
�c� . �42�

We can now relate the hole energies tAccD1,AccD1

�2� and tPD1,PD1

�2�

to tPheD1,PheD1

�1� . Using excitation transition energies of D1
branch molecules P, Acc, Phe, and value of W�0�, we get all
electron and hole level energies of the D1 branch as a func-
tion of tPheD1,PheD1

�1� . This parameter provides an absolute en-
ergy reference point, all optical properties are given in terms
of electron-hole pairs. The D2 branch energies are taken to
be the same as D1. The hole energies are obtained from the
molecular exciton energies.

The off-diagonal elements tmn define the electron and
hole hopping energies, which determine the couplings be-
tween neutral excitations �denoted by AccD1

� � and CT states.
In Ref. 6, the coupling of RP1 to an exciton state is assumed
to be 35 cm−1. We let the electrons and holes hop between
all available states. The electron and hole orbital wave func-
tions vary exponentially with distance,

tmn
�1� = tmn

�2� = A exp�− �rm − rn�/� . �43�

We assumed A=350 cm−1 and =4.5 Å, which is half the
molecular size �, gives AccD1

� and RP1 coupling of 34 cm−1.
The resulting single-exciton Hamiltonian is given in Table I.

To determine the system-bath coupling, we start with the
model of Ref. 28, which assumes that each molecular exci-
tation �and CT states� is coupled to its own independent bath,
consisting of 48 high-frequency underdamped modes and a
single overdamped low-frequency mode. We extend it to our
tight-binding Hamiltonian as follows. We assume that the
electron and hole levels of different molecules fluctuate in-
dependently. The spectral densities can then be written as
C�

�11�
mm,nn�
�=�mnd�11�C�
�, C�

�12�
mm,nn�
�=�mnd�12�C�
�,

and C�
�22�

mm,nn�
�=�mnd�22�C�
�, where C�
� is given by Eq.
�D2� of Ref. 28 and is shown in Fig. 3. By taking d�11�

=d�22�=0.8 and d�12�=−0.3, we find that all molecular exci-
tation transition energies fluctuate according to C�
� and all
CT states have a spectral density 1.6C�
�.6

Equation �10� defines the double-exciton states and their
fluctuation properties are given by Eqs. �A2� and �A3�. The
double-exciton basis set is constructed out of the allowed
electron-hole configurations taking into account that each or-
bital can only accommodate one electron �Pauli blocking�.
This yields the 41 double-exciton states listed in the supple-
mentary material.29

The single- and the double-exciton eigenstates were ob-
tained by numerical diagonalization of the corresponding
Hamiltonian blocks, and the spectral densities were trans-
formed to the eigenstate basis. The exciton transport and
charge transfer rates for single-exciton eigenstates were cal-
culated using Eqs. �19�–�22�.
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P
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scheme

0 200 400 600 800 1000 1200 1400 1600 1800

10
1

10
2

10
3

10
4

ω / cm-1

C
"(
ω
)
/
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bath spectral density

FIG. 3. Left: the RC of PS-II. Transition dipoles are represented by arrows.
Right: the bath spectral density used in the simulations �Refs. 6 and 7�.
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V. OPTICAL 2D SIGNALS WITH INHOMOGENEOUS
BROADENING

2D optical signals represent the response of the system
to three ultrashort chronologically ordered laser pulses with
wavevectors k1, k2, and k3: k1 comes first, followed by k2,
and then k3. The third order signals are generated in the
�k1�k2�k3 directions. The three time intervals between
pulses, t1, t2, and t3, serve as the control parameters. Various
contributions to the third order response function may be
observed by signals in different directions. We first consider
the photon echo kI=−k1+k2+k3. The 2D spectrum is ob-
tained by performing two-dimensional Fourier transform
with respect to the first and third intervals �t1→�1 and t3

→�3; all time delays between pulses are positive� and the
second time interval, t2, is varied as a parameter. This
rephasing 2D signal shows correlations of single excitons
between absorbed, �1, and emitted, �3, energies, exciton
transport takes place during t2. A different nonrephasing sig-
nal is obtained along kII=k1−k2+k3 �in experiment the sig-
nal direction is kept the same as in kI, but pulses 1 and 2 are
interchanged�. The 2D signal is again obtained by the Fourier
transform t1→�1 and t3→�3, respectively. Finally, we con-
sider the double-quantum coherence signal in the direction
kIII=k1+k2−k3. Here, the Fourier transform can be made in
two ways: either t1→�1, t2→�2, holding t3 as a parameter,
or t2→�2, t3→�3, holding t1 as a parameter. In this signal
the �2 axis shows double-exciton resonances and their dis-
tribution between single excitons on �1 or �3 axes.30 These
signals have been described in Ref. 12.

The 2D signals were calculated by summing over vari-
ous system-field interaction configurations �Liouville space
pathways� in the eigenstate basis.12,31 Equations �141�–�153�,
�166�, and �179� of Ref. 12 were used to calculate the time
domain third order response functions and Eq. �13� for the
time domain linear response function. We assume Gaussian
pulses with 14 500 cm−1 central frequency and 20 fs full
width at half maximum �fwhm�. The pulse envelopes, E�
�,
were included in the 2D signals32 by extending Eq. �42� of
Ref. 12. The absorption spectrum was calculated using Eq.
�268� of Ref. 12. The signals calculated this way will be
denoted homogeneous: S

kI

�hom�, S
kII

�hom�, and S
kIII

�hom� for the 2D

signals and �
A

�hom� for the absorption. Uncorrelated diagonal
disorder in transition energies was included in Ref. 6 to
simulate inhomogeneous broadening �static fluctuations�.
This involves numerical statistical averaging of the final sig-
nal over the fluctuations. However, the protein-induced elec-
trostatic fields should have long correlation distance, longer
than the intermolecular distances in the RC core. In that case
the molecular transition energies are more likely to experi-
ence correlated fluctuations. For Gaussian statistics, such
fluctuations can be accounted for by a cumulant expansion
technique with a line-broadening function g�t�=�e

2t2
/2; here,

�e denotes the variance of fluctuations. For fully correlated
fluctuations of molecular transition energies, we get in the
eigenstate basis for all single excitons,

g
ee,e�e�

�inh� �t� = 1
2�e

2
t2. �44�

For the double-exciton transitions, we then similarly get
g

ee,f f

�inh� =2g
ee,e�e�

�inh�
�t� and g

f f ,f�f�

�inh� =4g
ee,e�e�

�inh�
�t�. The total third or-

der 2D time domain signal including inhomogeneous broad-
ening is finally given by

SkI
�t3,t2,t1� = SkI

�hom��t3,t2,t1�exp�−
�e

2

2
�t1 − t3�2� , �45�

SkII
�t3,t2,t1� = SkII

�hom��t3,t2,t1�exp�−
�e

2

2
�t1 + t3�2� , �46�

SkIII
�t3,t2,t1� = SkIII

�hom��t3,t2,t1�exp�−
�e

2

2
�t1 + 2t2 + t3�2� .

�47�

Numerical Fourier transforms were performed on the time
domain signals to get 2D spectra as described above. The
absorption spectrum is given by

�A�
� =
1

�2��e

� d
1�A
�hom��
1�exp�−

�
1 − 
�2

2�e
2 � .

�48�

We used �e=51 cm−1, which gives inhomogeneous absorp-
tion linewidth of 80 cm−1 fwhm.6 This approach consider-

TABLE I. Single-exciton Hamiltonian in �cm−1� calculated using 2.9 resolution structure parameters �Ref. 3� �Protein Data Bank �PDB� database file
3BZ1.pdb�. The intermolecular W

mn

�f� dipole-dipole interactions were computed using transition dipole directions taken from Ref. 27 and transition amplitudes
��Chl�=4.4D and ��Phe�=3.4D.

P1
� P1

−P2
+ P2

� Acc1
−P1

+ Acc1
−P2

+ Acc1
� Acc2

� Phe1
−P1

+ Phe1
−P2

+ Phe1
−Acc1

+ Phe1
� Phe2

�

P1
� 15 190

P1
−P2

+ 63.7 19 744.7
P2

� 160 63.7 15 180
Acc1

−P1
+ 37.8 0 0 19 083.3

Acc1
−P2

+ 0 37.8 23.7 63.7 19 543.2
Acc1

� 4.78 0 �39.6 37.8 23.7 15 000
Acc2

� �50.4 0 17.9 0 0 15 15 130
Phe1

−P1
+ 11.1 0 0 34 0 0 0 14 920

Phe1
−P2

+ 0 11.1 6.46 0 34 0 0 63.7 15 237.3
Phe1

− Acc1
+ 0 0 0 0 0 34 0 37.8 23.7 15 120

Phe1
� �3.02 0 5.42 0 0 65.9 �3.09 11 6.46 34 15 050

Phe2
� 4.39 0 �5.67 0 0 �2.86 60.9 0 0 0 0.65 15 060
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ably reduces the computational cost since explicit averaging
over fluctuations is not necessary.

VI. SPECTROSCOPY OF THE CT STATES

All calculations were performed at 77 K. The simulated
absorption spectrum of the PS-II RC shown in Fig. 4 has a
strong peak at �15 000 cm−1 and a higher-energy wing at
16 000 cm−1 caused by underdamped bath modes. The main
exciton band has a higher-energy shoulder reflecting a
double-peak structure of the dimeric RC special pair. It is
important to note that the bath significantly shifts the absorp-
tion peaks with respect to the vertical transitions, 
eg=�e.
The absorption reorganization energies are �200 cm−1. The
calculated reorganization energies for all exciton states �Eq.
�22�� are shown in Fig. 4 as well. Few eigenstates have very
large reorganization energies. These are mostly localized on
the CT states. The eigenstates with smallest reorganization
energies are mostly Frenkel excitons. The stick spectrum,
embedded in the figure, shows the reorganized energies, �e

−�ee,ee. The shoulders at 14 100 and 14 400 cm−1 are mostly
CT states, while the strongest peak is made of several over-
lapping exciton bands. The spectra of PS-II RC calculated
using the Frenkel exciton model by neglecting the CT states
show that CT states affect the area below 15 000 cm−1. They
amplify the peak at �14 800 cm−1 and are responsible for
the 14 100 and 14 400 cm−1 shoulders. Indeed, the peaks at
14 100 and 14 400 cm−1 are absent for the Frenkel exciton
model.

Figure 5 shows the simulated exciton population and
charge transfer dynamics according to Pauli master equation
between 10 fs and 1 ps calculated using the rates of Eq. �19�.
The figure reveals tightly coupled dynamics in the RC core:
all populations redistribute within 10–500 fs. This leads to
thermal equilibrium where the population accumulates in a
CT state �state 6�. The final thermal equilibrium does not
exactly match the Boltzmann distribution for the reorganized
energies �e−�ee,ee since we include correlations between the
diagonal and the off-diagonal fluctuations via functions
ġee,ee�

, which affect the transport rates. A comparison with
the Frenkel exciton model, where CT states are excluded
�Fig. 5�, shows that CT states do not strongly alter the energy

relaxation time scale in the core RC. The entire complex,
including CT and Frenkel excitons, participates in the charge
separation.

We next present the 2D signals for the pulse polarization
configuration xxyy: k1 and k2 are y polarized, k3 and the
detector have x polarization. This is one of the three primary
tensor components yielding the orientationally averaged sig-
nal for an isotropic solution. The amplitude of the single
interaction configuration is

���4 · x���3 · x���2 · y���1 · y��

= 4��4 · �3���2 · �1� − ��4 · �2���3 · �1�

− ��4 · �1���3 · �2� . �49�

We define the signal as the normalized imaginary
�absorptive� parts of the calculated inhomogeneous signals,

S = 10 Im�S�/S�N�, �50�

where S�N� is a real normalization constant. All 2D spectra
are then plotted using the nonlinear scale,

arcsinh�S� = ln�S + �1 + S
2� �51�

which reveals both strong and weak features: for �S��1,
arcsinh�S��S and arcsinh�S���S�S�−1�ln�2�S�� otherwise.
The color code is shown in the figures.

The 2D kI spectra are shown in Fig. 6. The main exciton
resonances appear at 14 500–15 500 cm−1, resembling the
absorption. Peaks are elongated along the diagonal due to
inhomogeneous broadening. At zero delay, blue diagonal
peaks denote the fundamental exciton transitions. Only one
diagonal peak can be clearly resolved. The 14 100 cm−1

peak represents the primary CT state since it is not present in
the corresponding simulations without CT states �middle col-
umn�. The broad high-energy �16 000 cm−1 wing does not
appear on the diagonal of the 2D spectrum, but it is mapped
on the off-diagonal cross-peak regions along �1 and �3.

In the right column of Fig. 6 we display the correspond-
ing 2D difference spectrum of the full model and the Frenkel
exciton model normalized to its maximum. CT states

CT CT CT

CT

FIG. 4. Left: simulated absorption spectra of PS-II RC core at 77 K. Solid
black—full model; dotted black—model without CT states. Red curve—
square root of pulse power spectrum E�
� used in nonlinear optical signal
simulations. Vertical lines denote positions of single excitons after reorga-
nization. Contributions of CT states to these eigenstates �from left to right�
are 0.94, 0.98, 0.63, 0.07, 0.35, 0, 0.03, 0, and 0. Right: the single-exciton
eigenstates below 18 000 cm−1 and their reorganization shifts; three addi-
tional dark CT states at �19 000 cm−1 are not shown. Exciton eigenener-
gies, �e, and reorganization-energy shifts, �e−�ee,ee, are shown.
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FIG. 5. Exciton population dynamics when all states are initially equally
populated, ee=1 �the three high-energy, �19 000 cm−1 CT states are not
shown�. The states are numbered by their energy �e; color code is the same
as in Fig. 4.
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strongly influence the exciton band as seen at 0 fs delay. At
later times, the different relaxation results in a vertical peak
distribution. The positive peaks at the diagonal around
15 000 cm−1 show that in the Frenkel model the energy re-
mains in this area at long time. In the full model, the energy
is transferred to lower-lying CT states below the diagonal
��3�14 000 cm−1�.

We mark three regions on the diagonal �A–C� and one
cross-peak region �B-C�. These correspond to the two exci-
ton bands and the CT state. In Fig. 7 we show the time
evolution of these regions. The diagonal regions grow stron-
ger. Peaks A and B change most strongly on an absolute
scale. However, the relative change of these areas with re-
spect to their initial amplitudes is different: A changes by
30%, B changes by 24% and C changes by 146%. All peaks
do grow and the internal redistribution of energy between the
regions is as follows: A and B �Frenkel exciton bands� decay
into C �CT exciton�. The absolute peak growth is related to
the pulse-envelope since the pulse is centered at
14 500 cm−1. The CT peak C is poorly resolved on the di-
agonal, similar to the absorption. The dynamics in the B-C
cross-peak region is a significantly new feature not available
from linear optical techniques, which reveals the charge-
separation process.

To trace the origin of the 2D peaks, in Fig. 8 we plot
separately the three contributions: ground state bleaching
�GSB�, excited state emission �ESE�, and excited state ab-

sorption �ESA�. The corresponding Feynman diagrams are
shown on the right. ESE is much weaker than the GSB or
ESA. This is because the absorption and emission frequen-
cies are different due to the Stokes shift induced by under-
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according to Eq. �51� and normalized �Eq. �50�� as follows: for left and
middle columns, S�N� is the maximum at zero delay time; for the right
column, S�N� is the maximum of each signal.
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FIG. 7. Time dependence of integrated amplitudes in regions A–C and their
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damped bath modes. Since our optical pulses are centered at
the single exciton frequencies, they select mostly GSB and
ESA. GSB weakly depends on the t2 delay time. ESE shows
t2 dependent broadening of the main exciton band and Fren-
kel exciton population decay into CT state reflected in the
cross-peak B-C region. ESA has an opposite sign than ESE
and GSB and a different time evolution. It shows buildup of
the cross-peak region above the diagonal. The ESE, GSB,
and ESA overlap and the total signal shows strong interfer-
ence.

The excited state absorption �yellow-red peaks� below
the diagonal in the total signal contains remarkably strong
features. These are different from our previous simulations
on the Fenna–Mathews–Olson complex33,34 and the PS-I
photosystem.35 We find very strong positive peaks below the
diagonal line with or without the CT states. This ESA feature
is related to the underdamped bath modes, which were not
included in our earlier simulations. The bath induces large
reorganization energies. Thus, the absorption and the fluores-
cence frequencies are shifted. This shows up in the differ-
ence between the ground state absorption and the excited
state absorption frequencies.

The kII �nonrephasing� signal is displayed in Fig. 9. Its
lineshapes are oriented antidiagonally. Otherwise, the kII

spectrum features are similar to kI. However, the ESA creates
a strong positive diagonal peak at 14 700 cm−1. This peak
survives in the Frenkel exciton model with no CT states as

the excitons relax during t2. In the CT state model, that peak
slowly decreases with t2 as the CT states are populated. The
difference spectrum of the kII signal �right column� shows a
complex pattern resulting from extensive overlaps of the
positive and negative features. The strongest features are at
��1��15 000 cm−1. Positive and negative features arise
when CT states are depleted or added to the intensity of the
signal. The peaks around �3�14 000 cm−1 are clear fea-
tures of the CT states and trace the charge separation process.

In Fig. 10 we show the GSB, ESE, and ESA contribu-
tions to the total kII signal and their Feynman diagrams.
Again, the ESE contribution is relatively weak due to the
finite pulse bandwidth. The t2 dynamics in different compo-
nents is not that well resolved as in kI since all lineshapes are
much broader. The total signal thus reflects strong interfer-
ence between these various contributions. However, the in-
terference filters out most of the static features and the B-C
cross-peak region shows buildup of amplitude with t2 even
more clearly than in the kI signal.

The double-exciton dynamics is monitored by the
double-quantum coherence �2QC� signals �kIII�. Figure 11
shows two types of 2QC signals. Four-to-six double-exciton-
related peaks are clearly seen. As shown earlier, double-
exciton peaks, which are delocalized between single-exciton
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product states dominate the 2D spectra30 since the underlying
system is made of two-level molecules. The CT states do not
change this picture since they have no transition dipole mo-
ment. The strongest peaks lie within the main exciton band
close to the dashed line, which marks �2=2�1 or �2=2�3.
CT states again show up in the �1 ,�2 plot as additional
peaks especially at �1=14 100 cm−1. Signatures of CT
states in the �2 ,�3 plot are less visible. The difference spec-
trum shows the sensitivity of the spectrum to the CT states
and helps determine the specific peaks related to the CT
states: they span the whole exciton band and may not be
isolated opposite from kI and kII.

In Fig. 12 we display the two pathways contributing to
the 2D peaks in kIII and their Feynman diagrams. Again, the
total signal contains positive and negative contributions with
extensive overlap. The most prominent peaks show up in the
main Frenkel exciton area ��1=14 500–15 000 cm−1�, indi-
cating that double excitons in this region are highly delocal-
ized between the Frenkel excitons and the CT states.

VII. SUMMARY AND DISCUSSION

In this paper, we have simulated three third order two-
dimensional spectra of the PS-II RC core complex. These
cover all possible exciton density matrix evolution pathways,
induced by three weak laser pulses. The simulated 2D signals
show clear signatures of charge transfer. These are usually
weak in absorption since CT eigenstates only borrow oscil-
lator strength from molecular excitations. However, the
cross-peaks are amplified in the 2D spectra by other strong
diagonal peaks, making CT transitions easy to resolve. The
CT cross-peak amplitudes allow one to monitor the charge-
separation process and its time scale, and may help identify
the primary CT state configuration when comparing to ex-
periments. The double-quantum-coherence signal contains a

complex pattern of interfering contributions. It shows strong
couplings inside the core of RC of the PS-II through delo-
calization of double-exciton eigenstates.

Several novel theoretical developments were used in the
simulations. First, we have incorporated charge transfer
states into the molecular complex model. Frenkel excitons,
CT states, their couplings, and the double-exciton manifold
are defined microscopically. The tight-binding model re-
quires more information about the system than contained in
the Frenkel exciton model. These parameters include mo-
lecular HOMO and LUMO wave functions and the corre-
sponding charge distributions. These may be readily obtained
from ab initio simulations. Here, we compiled the parameter
set using previous model simulations.

The second important feature is the interplay of under-
damped and overdamped bath modes. This has been used
previously in the modeling of linear optical signals and trans-
port rates. The effect of one underdamped vibrational mode
of a two-level electronic system in 2D spectroscopy has been
analyzed.36 However, how the underdamped bath vibrations
affect the 2D optical signals of an excitonic aggregate is an
open question. We find that absorption bands coming from
vibrational high-energy transitions affect the off-diagonal
�cross-peak� regions and do not appear on the diagonal. This
is interesting since it allows one to determine the origin of
optical absorption transitions: electronic transitions appear
on the diagonal in the 2D spectra, while additional vibra-
tional bands appear on the off-diagonal region.

Previous studies accounted for the inhomogeneous
broadening by using uncorrelated diagonal disorder. This ap-
proach is very well suited for extended molecular aggregates
in solutions. The protein environment is the main cause of
static inhomogeneities in photosynthetic aggregates. How-
ever, since proteins extend over distances longer than the
distances within pigment molecules in the RC core, all inho-
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mogeneities are expected to show some degree of correla-
tion. Here, we assumed completely correlated fluctuations,
where static energy shifts of all molecules are identical.
Energy gaps between different excitons in the same band are
not affected by such shifts. This model therefore does not
affect intraband exciton dephasing and transport rates.

The applicability of uncorrelated vs. correlated disorder
models depends on the system under consideration. For
small compact aggregates embedded in large proteins, the
correlated disorder model may be applicable. For a large
bulk system, we expect the uncorrelated disorder model to
hold. However, more advanced models should define the cor-
relation distance so that the degree of correlation depends on
how far are the molecules from each other, as was done in
Refs. 37 and 38. Determining the correlation distance in ex-
citonic aggregates is an interesting topic for future studies.

In the case of fully correlated Gaussian diagonal disor-
der, the compact time-domain expressions �Eqs. �45�–�47��
apply. This approach avoids the explicit ensemble averag-
ings. Our simulated features in 2D signals show typical di-
agonally elongated peak shapes, which signify inhomoge-
neous broadening. The spectral dynamics with the third, t2,
axis is not affected by the correlated disorder.

It is important to note that a homogeneous peak may
show elongations in 2D plots as well. This happens since the
shape of an absorptive part of the peak, made of two Lorent-
zians �one along one axis and the other along the other axis�,
has single sign in one diagonal direction and it shows two
sign flips across that diagonal. However, the absolute value
signal �Re2+Im2� has a symmetric crosslike feature, which

has no elongation along the diagonal. Inhomogeneities in-
duce additional diagonal elongation, which is larger than the
elongation of the homogeneous signal, when the inhomoge-
neous broadening is large. Our simulations �not shown� re-
veal that the inhomogeneities-induced elongation shows up
even in the absolute value plot.
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APPENDIX: TRANSFORMATION OF THE SPECTRAL
DENSITIES

Here, we provide expressions that transform the spectral
densities defined in Eqs. �13�–�15� into the eigenstates basis
and connect local energy correlations to correlations of the
fluctuations of exciton eigenstates.

For the single-exciton manifold, we have

C�e4e3,e2e1
�
� = �
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Fluctuations of the eigenstate transition energies,
C�

ee,e�e�
�
�, cause pure dephasing, and the induced fluctua-

tions of couplings, C�
ee�,e�e

�
�, are responsible for energy
and charge transport. The correlated single and double-
exciton fluctuations are
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Finally, the double-exciton fluctuations are given by
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