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Analysis of the Vlasov-Maxwell equations from the perspective of turbulence cascade clarifies the
role of electromagnetic work, and reveals the importance of the pressure-strain relation in generating
internal energy. Particle-in-cell simulation demonstrates the relative importance of the several en-
ergy exchange terms, indicating that the traceless pressure-strain interaction “Pi-D” is of particular
importance for both electrons and protons. The Pi-D interaction and the second tensor invariants
of the strain are highly localized in similar spatial regions, indicating that energy transfer occurs
preferentially in coherent structures. The collisionless turbulence cascade may be fruitfully explored
by study of these energy transfer channels, in addition to examining transfer across spatial scales.

Introduction. Turbulence is characterized by transfer
of energy from large to small scales where dissipation
occurs. This cascade process, fundamental in hydrody-
namics [1], magnetohydrodynamics [2] and fluid plasma
models [3], may be analyzed using phenomenological ap-
proaches [4], scale-to-scale transfer [5, 6], and rigorous
third order laws [7–9]. Here we are concerned with the
nature of cascade in collisionless plasmas, especially at
scales in which kinetic processes dominate [52]. The col-
lisionless cascade has been studied in various simplified
approaches, such as spectral phenomenologies [10, 11],
and gyrokinetic approximations [12, 13]. Fourier scale fil-
tering has been employed to study the electrostatic “free
energy” cascade [14] in gyrokinetics, and associated nu-
merical models [15]. Other simplifications assume that
linear modes, e.g., kinetic Alfvén waves or whistler modes
[11, 16–18], dominate the nonlinear couplings. Here we
adopt a different approach in which we analyze ideal en-
ergy transfer in the full Vlasov-Maxwell system, without
reliance on specific mechanisms, modes, or fluid simpli-
fications. This Letter begins such study by identifying
the relevant channels of energy transfer. Using kinetic
plasma simulation, we evaluate the relative strength of
these transfer channels and demonstrate their concen-
tration in spatial coherent structures. This provides a
perspective of cascade and dissipation, without the need
to select specific dissipative processes.

Energy balance. The mean-field velocity distribution
f = f(x,v, t) of the plasma species α, with mass mα,
depends on position x, velocity v and time t, and obeys

the Vlasov equation

∂tfα + v · ∇fα +
F

mα
· ∇vfα = 0. (1)

Absent external forces, the force on particles with charge
qα is F = qα (E + (v/c×B)), with E and B determined
by Maxwell’s equations. The sources for electric field E

and magnetic field B are the charge density ρ and (total)
electric current density j.
The number density of species α is nα =

∫

fα (x,v, t) dv, while the corresponding total kinetic en-
ergy is Eα = 1

2
mα

∫

v2fα (x,v, t) dv. The first two veloc-
ity space moments of the Vlasov equation are a conti-
nuity equation ∂tρα + ∇ · (ραuα) = 0, and a momen-
tum equation ∂t (ραuα) + ∇ · (ραuαuα) = −∇ · P α +
nαqα (E + uα/c×B), for each species α. The time rate
of change of the total kinetic energy in the species α obeys
[19, 20]

∂tEα +∇ · (Eαuα + P α · uα + qα) = nαqαuα ·E. (2)

In the above expressions, the mass density is ρα =
mαnα, the fluid flow (bulk) velocity is uα =
n−1

α

∫

vfα (x,v, t) dv, the pressure tensor is P α =
mα

∫

(v − uα) (v − uα) fα (x,v, t) dv, and the heat flux

vector is qα = 1

2
mα

∫

(v − uα)
2 (v − uα) fα (x,v, t) dv,

each of these for the species α.
Decomposing the total energy Eα into average and ran-

dom parts facilitates the understanding of heating pro-
cesses. On defining the fluid kinetic energy of species
α as Ef

α = 1

2
ραu

2

α and the thermal (random) energy as



2

Eth
α = 1

2
mα

∫

(v − uα)
2
fα (x,v, t) dv, it is evident that

Eα = Ef
α +Eth

α . Multiplying the momentum equation by
uα results in the fluid flow energy equation:

∂tE
f
α +∇ ·

(

Ef
αuα + P α · uα

)

= (P α · ∇) · uα + nαqαuα ·E. (3)

Substituting Eq. 3 into Eq. 2 we obtain [19, 20]

∂tE
th
α +∇ ·

(

Eth
α uα + qα

)

= − (P α · ∇) · uα. (4)

Finally, from Maxwell’s equations, the electromagnetic
energy Em = 1

8π

(

B2 +E2
)

, obeys:

∂tE
m +

c

4π
∇ · (E ×B) = −j ·E (5)

where j =
∑

α nαqαuα is the total electric current den-
sity. Integrating Eqs. 3, 4, and 5 over the entire volume,
and invoking periodic (or isolating) boundary conditions,
we find that

∂t〈E
f
α〉 = 〈(P α · ∇) · uα〉+ 〈nαqαuα ·E〉, (6)

∂t〈E
th
α 〉 = −〈(P α · ∇) · uα〉, (7)

∂t〈E
m〉 = −〈j ·E〉. (8)

where 〈· · · 〉 denotes a spatial average.

〈Eth
α 〉 ✲

✛

−〈(Pα · ∇) · uα〉
〈Ef

α〉 ✲

✛

〈jα ·E〉
〈Em〉

FIG. 1: Available routes for energy conversion in collisionless
plasma turbulence. 〈Eth

α 〉 is thermal (random) energy; 〈Ef
α〉

is fluid flow energy; 〈Em〉 is electromagnetic energy density.
α labels each species. Brackets indicate volume average.

The above energy balance equations are elementary
consequences of the Vlasov equation. From a turbulence
perspective, they indicate how the cascade converts en-
ergy from one form to another, but do not include either
large scale sources or small scale sinks. Fully accounted
for are all wave particle interactions that can convert fluc-
tuation energy into internal energy. The Vlasov system is
an ideal model, lacking small corrections that lead to en-
tropy production [21], so we do not address whether this
conversion becomes irreversible. Theory, computations,
and observations [22, 23] indicate that departures from an
ideal description occur at small spatial scales, e.g., at the
Debye scale, and in localized regions of space associated
with coherent structures [24–26]. Coherent structure for-
mation itself is driven by ideal nonlinear couplings [27]
and consequently Vlasov channels for energy transfer are
instrumental in creating the path to dissipation.
From Eq. (2), changes in particle kinetic energy are

due to jα ·E where the electric current density of species
α is jα = nαqαuα. This term contributes to Eq. (6), but
not Eq. (7). Therefore all work done on particles by the
electromagnetic field changes only the particle fluid en-
ergy. Accordingly, from Eq. (7), the random component

of particle energy is not directly modified by jα ·E. In-
stead, changes of random energy take place only through
the term (P α · ∇) · uα, which exchanges energy between
the fluid kinetic energy Ef

α of species α and the thermal
(random) energy Eth

α of the same species.
To emphasize these distinct roles, the channels of en-

ergy conversion are shown in Fig.(1). The pressure tensor
is usefully decomposed into the (isotropic) scalar p that
remains when collisions are present, and a deviatoric part
Πij that may be large for low collisionality plasmas. Ac-
cordingly, the pressure interaction is

− (P · ∇) · u = −pδij∂jui − (Pij − pδij)∂jui

= −pθ −ΠijDij , (9)

where p = 1

3
Pii, Πij = Pij − pδij , θ = ∇ · u and

Dij =
1

2
(∂iuj + ∂jui)−

1

3
θδij . The term involving p is the

pressure dilatation, familiar in ordinary fluid and MHD,
and found to be important in compressible cascades [28–
31]. We refer to the term involving the traceless tensor
Π as the “Pi-D” interaction, emphasizing that we treat
it in the general case here, evaluating it directly from nu-
merical simulations, without invoking collisional closures
[32]. In collisional cases it is possible to find a closure re-
lating Pi-D term to velocity gradients, so that this term
is replaced by viscosity terms. Consequently Pi-D can be
viewed as “collisionless viscosity”.

time (Ωi

1
)

0 50 100 150 200
0

0.2

0.4

0.6

0.8 ∫ 0

t
 <pθ>

(e)
 dt

∫ 
0

t
 <pθ>

(p)
 dt

∫ 0

t
 PiD

(e)
 dt

∫ 
0

t
 PiD

(p)
 dt

FIG. 2: Cumulative time-integrated values of pressure di-
latation and Pi-D internal energy-producing terms for pro-
tons and electrons. Arrow indicates time of detailed analysis.
Slopes are proportional to corresponding dissipation rates.

To demonstrate the relative importance of these en-
ergy transfer channels, we employ a kinetic simulation
using the P3D code [33]. We note that the PIC algorithm
includes numerical limitations (including irreversible dis-
sipation) related to finite particle number. While these
associated departures from pure Vlasov solutions scale in
a physically reasonable way [34], a direct Vlasov solution
would be preferable, but at the present time is compu-
tationally prohibitive [35] for large system sizes. A 2.5
dimensional L× L periodic geometry, with 2D wavevec-
tors and 3D velocity and magnetic field vectors enables a
high spatial resolution, 81922 grid points, and a large sys-
tem size L = 102.4di. The simulation used 300 particles
of each species per cell and ∼ 4×1010 total particles. The
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ion to electron mass ratio is mi/me = 25. The ion beta
is βi = 0.1; and the electron beta is βe = 0.1; the uni-
form magnetic field is B0 = 5 directed out of the plane.
All quantities are normalized to reference values: density
nr = 1, magnetic field Br = 1 and proton mass mi = 1.
Length is normalized to the ion inertial length di, and

velocity to the Alfvén speed vAr = Br/ (4πminr)
1/2

.
The run shown here is a decaying initial value problem,
starting with uniform density (n0 = 1) and temperature
(T0 = 1.25). Initial velocity and magnetic fluctuations
are transverse to B0, with a prescribed spectrum for wave
numbers 2 ≤ |k| ≤ 4 (see [36] for details). The data were
low-pass filtered to remove noise.

global average electrons protons

p-dilatation: 〈−pθ〉 0.0018 0.00075

Pi-D: 〈−ΠijDij〉 0.0045 0.0016

〈jα ·E〉 0.0052 0.0016

TABLE I: Volume integrated quantities related energy trans-
fer and computed from the 2.5D undriven PIC code near the
time of maximum mean square current density. Quantities
listed are in the code units v3Ard

−1

i . Values of jα and E time
averaged over an electron gyroperiod are used in computing
〈jα ·E〉 to eliminate very high frequency oscillations.

Strength of energy channels. The time histories of (in-
tegrated) global volume averages of pressure dilatation
−p∇ · u and the Pi-D interaction term −ΠijDij (sepa-
rately for α = protons and electrons), are shown in Fig.
2. Table I shows instantaneous values of these quantities
as well as the electromagnetic work jα · E at the time
of analysis around t = 205Ω−1

i , shortly after the mean
square current reaches its maximum.
One observes that the Pi-D term is larger than the

pressure dilatation for protons and electrons. The global
average of the electromagnetic work, jα·E, is comparable
to the Pi-D term for the two species, 0.0016 (v3Ard

−1

i )

for protons and 0.0052 (v3Ard
−1

i ) for electrons. All three
terms, −p∇ ·u, Pi-D, and jα ·E, can be locally + or −,
with a net positive average due to a slight asymmetry of
the distribution.
Coherent Structures and intermittency. Activity in

these energy transfer channels is distributed nonuni-
formly in real space. Fig. (3) shows spatial contour maps
of the Pi-D terms, separately for protons and electrons.
The first thing to notice is that the larger values (of both
signs) are concentrated in small scale structures. Many
such concentrations are sheet-like regions along what ap-
pears to be the boundaries of interacting magnetic flux
tubes. This is reminiscent of the patterns of intense elec-
tric current density in MHD [37, 38] and in plasma tur-
bulence [25]. In decaying turbulence, these are regions of
enhancements of kinetic activity [39, 40]. In addition, the
maps of the proton term −Πp

ijD
p
ij and the electron term

−Πe
ijD

e
ij are very similar in position and shape. This is

reminiscent of the finding [24], that in turbulence, proton
currents collapse to a few ion inertial scales, while elec-
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FIG. 3: Contour maps of Pi-D terms−Πα
ijD

α
ij for (a) electrons

(α = e) and (b) protons (α = p) normalized to respective root
mean square values. Both display concentrations into small
subvolumes, in sheet-like structures. There is remarkable sim-
ilarity in proton and electron cases. Conversion between flow
energy and internal energy is strong in these structures. The
global average is positive corresponding to generation of in-
ternal energy.

tron scale current sheets collapse to still finer scales (e.g.,
de), often forming inside the proton current structures.
The spatial concentration of the Pi-D due to cascade

provides a pathway for coherent structures to contribute
to plasma dissipation, i.e., degeneration of energy in fluid
scale fluctuations. Presumably transfer to still smaller
scales leads to non-Vlasov collisional effects that provide
entropy increase and heating. Here, due to the PIC al-
gorithm, heating at small scales is due to finite particle
number (see however [34]).
An overall view of the collisionless cascade emerges

in this way: An MHD cascade creates strong current
sheets that in turn generate localized small scale vortices
[41, 42]. During the cascade electromagnetic work, j ·E,
is done on particles, at locations concentrated near coher-
ent current structures [26]. In the large Reynolds num-
ber limit, nearby vortices are stretched to planar sheet-
like structures that have equal parts symmetric & anti-
symmetric velocity stresses. The traceless pressure tensor
Πij interacts with the symmetric velocity stress [43] at
these locations to distort distribution functions [39, 40],
producing anisotropic heating [42, 44] and other kinetic
effects. This also explains (see also [42]) the strong cor-
relation between proton heating and vorticity [45, 46].
The remarkable connections between coherent struc-

tures and energy conversion are further clarified by ex-
amining the spatial concentration of Pi-D in compari-
son with symmetric velocity stress, vorticity, and cur-
rent density. Natural measures of these are the normal-
ized second (tensor) invariants, for the symmetric trace-
less stress, QD = 1

2
DijDij/〈2DijDij〉; for the vorticity,

Qω = 1

4
ω2/〈ω2〉 and for the mean square total current

density, Qj = 1

4
j2/〈j2〉. To portray the spatial corre-

lations among these quantities, Fig. (4) compares the
electron Pi-D map with contour maps of QD, Qω and
Qj. One sees that these quantities are concentrated in
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FIG. 4: (left to right) Pi-D term for electrons; QD and Qω for electron flow, and Qj from total current density.

very similar spatial regions. This intermittency was com-
pletely absent in the specified initial data. Therefore the
observed coherent structure is a consequence of the tur-
bulent cascade.
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FIG. 5: Conditional averages of (a)electron Pi-D term and
(b)proton Pi-D term. In both cases the conversion of internal
energy by the Pi-D terms is concentrated in coherent struc-
tures generated by the turbulence. For electrons, vorticity
and symmetric stress are both important. For protons, sym-
metric stress is the most important; for signed vorticity effect,
see [42, 46].

Conditional averages. The striking correlation seen in
Fig. (4) is quantified by computing conditional averages.
Fig (5) shows conditional averages of the Pi-D terms, the
rate of production of internal energy, −ΠijDij , separately
for protons and electrons. The conditions are based on
values of QD, Qω and Qj . For example, to compute
〈−Πe

ijD
e
ij |Qj〉, one averages the electron Pi-D including

only values occurring at spatial positions at which the
mean square total electric current density (Qj) exceeds a
selected threshold. The Figure confirms that, for both
electrons and protons, elevated levels of −ΠijDij are
found in regions with enhanced vorticity (consistent with
earlier reports [42, 46]) and in regions of enhanced sym-
metric stress. In contrast, averages of Pi-D conditioned
on total current density remain fairly constant for pro-
tons, and slightly decrease for electrons. Note that val-

ues of Pi-D for protons are even more elevated in regions
of large symmetric stress than in regions of large (mean
square) vorticity. These conditional variations of Pi-D
provide important constraints on understanding mecha-
nisms of plasma heating.

Discussion & Conclusions. In this Letter we have ex-
amined new directions for studying turbulence cascade in
Vlasov-Maxwell system that describes the ideal dynamics
of a weakly collisional plasma. In analogy to the Euler
equations for ideal fluids, the Vlasov is a lossless mean
field description, describing the cascade in a large sys-
tem, without reference to the collisional effects at finer
spatial and temporal scales.

From the Vlasov equation, the major contributors to
conversion of energy are the species dependent j · E,
the species dependent pressure dilatation −p∇ · u and
the species dependent “Pi-D” term −ΠijDij . The Pi-D

terms and pressure dilatation are the only couplings in
the Vlasov Maxwell system that can generate internal en-
ergy. Accordingly, the electromagnetic work terms only
exchange energy with the fluid flow energy of the various
species. This elementary property of the Vlasov system
has evidently not been fully appreciated as a guideline
for analysis of collisionless turbulence.

Of some significance, is that the contributions of the off
diagonal terms of the pressure tensor, through the Pi-D
terms, are found empirically to be larger than the con-
tributions of the (diagonal) pressure dilatation term. In
addition we find that all pressure-stress terms, including
Pi-D, become highly localized in space due to turbulent
cascade, similar to the localization found previously for
electromagnetic work on particles (j ·E), for the vortic-
ity, and for electric current density. A further remarkable
result is that several types of coherent structures occur
in similar but not identical [42] positions and patterns
in space. This implies that a strong dynamical coupling
exists between energy conversion and both velocity and
magnetic stress tensors, even in collisionless plasmas.

The results presented here suggest an emerging picture
of the energy channels that lead to dissipation in low col-
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lisonality plasma turbulence: The larger MHD-scale non-
linearities are reasonably well understood [5, 31, 47] and
drive scale-to-scale transfer, with a net transfer to small
scales. As the cascade transfers energy to smaller scales,
the dynamics progressively generates coherent structures
[25], as observed here. Within these structures, one
finds a concentration of all channels of energy conver-
sion. Magnetic energy, at scales approaching proton ki-
netic scales, is converted into both proton flows, and elec-
tron flows. This process is highly associated with local
current density [23, 25]. Pressure dilatation and pressure-
symmetric stress interactions (pressure dilatation and
Pi-D) take over at that point and convert energy from
these flows into internal energy. Vorticity distorts the
distribution functions [35, 39, 40, 42, 44] while pressure-
symmetric stress interactions convert these flows into in-
ternal energy.
We note that this description of the pathways to dis-

sipation in a Vlasov plasma appears to be quite general,
and may, presumably, be applied to Whistler or Kinetic
Alfvén wave turbulence [17, 22], or more geneal cases.
The sequence of energy transfer channels described above
is also reminiscent of the structure of heating mechanisms
invoked in reconnection studies [48, 49]. However, the
approach suggested here does not require a focus on any
particular wave or mechanism.
These results provide guidance for pursuing additional

study of dissipation in space and astrophysical turbu-

lence. The statistical properties of these new types of
correlated intermittent structures warrant further study,
while scale-decomposition [6, 15, 30, 31] of energy trans-
fer and exchange will reveal cascade properties in the ki-
netic range of plasma turbulence. Deeper understanding
of energy transfer channels will be useful in interpreting
results from space missions, including the ongoing MMS
and Cluster missions, the upcoming Solar Probe Plus and
Solar Orbiter mission, and the planned THOR mission.
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