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We explore excitonic energy transfer dynamics in a molecular dimer system coupled to both

structured and unstructured oscillator environments. By extending the reaction coordinate master

equation technique developed by Iles-Smith et al. [Phys. Rev. A 90, 032114 (2014)], we go beyond

the commonly used Born-Markov approximations to incorporate system-environment correlations

and the resultant non-Markovian dynamical effects. We obtain energy transfer dynamics for both

underdamped and overdamped oscillator environments that are in perfect agreement with the numer-

ical hierarchical equations of motion over a wide range of parameters. Furthermore, we show that

the Zusman equations, which may be obtained in a semiclassical limit of the reaction coordinate

model, are often incapable of describing the correct dynamical behaviour. This demonstrates the

necessity of properly accounting for quantum correlations generated between the system and its

environment when the Born-Markov approximations no longer hold. Finally, we apply the reaction

coordinate formalism to the case of a structured environment comprising of both underdamped

(i.e., sharply peaked) and overdamped (broad) components simultaneously. We find that though an

enhancement of the dimer energy transfer rate can be obtained when compared to an unstructured

environment, its magnitude is rather sensitive to both the dimer-peak resonance conditions and

the relative strengths of the underdamped and overdamped contributions. C 2016 AIP Publishing

LLC. [http://dx.doi.org/10.1063/1.4940218]

I. INTRODUCTION

Since the first observations of coherent signatures in

photosynthetic systems,1–4 determining whether such effects

play a functional role in promoting efficient and robust

excitonic energy transfer (EET) across pigment-protein

complexes has been a driving force for the field of quantum

biology.5–7 Theoretical work on the subject quickly identified

that purely coherent energy transport is insufficient to explain

the high efficiencies and rates observed.8–10 For resonant

systems, this is due to the inherent reversibility of coherent

dynamics, while biased systems become localised in the

site basis when the inter-site energy difference is greater

than the tunnelling energy, thus reducing exciton transport.

These difficulties may be circumvented when noise processes

induced by an external environment are also present, providing

mechanisms for rapid and efficient EET.8–15

However, accurately accounting for the effects of the

external environment in photosynthetic systems is a daunting

theoretical prospect. Strong coupling between the system

and its environment leads to the accumulation of significant

system-environment correlations that may be present even

a)Electronic mail: Jakeilessmith@gmail.com
b)Electronic mail: ahsan.nazir@manchester.ac.uk

within the steady-state.16–19 In addition to the (often low

frequency) continuum, the environmental spectral densities

of pigment-protein complexes are generally structured; that

is, there are specific underdamped vibrational modes of the

environment that couple strongly to the excitonic degrees

of freedom. There is now increasing evidence to suggest

that these underdamped modes are an important contributing

factor to the long-lived coherences observed in photosynthetic

systems,20–38 as well as links between the quantum mechanical

nature of these vibrational modes and enhanced transfer

rates.25,37,39,40

A multitude of powerful computational methods have

been developed to deal with the difficulties faced in modelling

strongly dissipative quantum systems. Examples include the

hierarchical equations of motion (HEOM),41–46 density matrix

renormalisation group (and related) techniques,25,36,47,48

and those based on the path integral formalism.49–52 All

can converge to numerically exact results in specific

circumstances. In contrast, despite their attraction in terms of

simplicity, intuitive physical insight and efficiency, standard

(e.g., Redfield) master equations are often invalid in regimes

relevant to molecular complexes due to their limitation to

weak system-environment couplings.53,54 Though procedures

such as the polaron transformation can be used to broaden the

range of validity of Redfield master equations,55–63 they may

0021-9606/2016/144(4)/044110/13/$30.00 144, 044110-1 © 2016 AIP Publishing LLC
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FIG. 1. Schematic of the reaction coordinate mapping, showing a two-level-

system (TLS) coupled directly to an oscillator environment (left), which is

mapped to a TLS coupled to the reaction coordinate (RC) plus a residual bath

(right).

again be restricted, for example, to situations in which the

high-frequency environmental response dominates.57,64–66

Recently, a master equation approach based on the

reaction coordinate (RC) model (see Fig. 1) was introduced

to describe the dynamical behaviour of a system coupled

to an environment with strong low-frequency components,

leading to long environmental correlation times.18 Here,

a collective coordinate of the bath67–76 is incorporated

into an enlarged effective system Hamiltonian. This allows

for the derivation of a second-order master equation for

the dynamics of the reduced system and RC, accurately

describing the system dynamics even in the presence of strong

system-environment correlations and extended environmental

memory. Apart from its conceptual simplicity, the reaction

coordinate master equation (RCME) is attractive due to the

additional insight that it provides beyond the system, into both

the environmental dynamics and the generation of system-

environment correlations.18

In this work, we shall employ the RCME to investigate

EET in a molecular dimer system beyond weak system-

environment coupling. We shall show that over the broad

regimes considered, the RC model captures all important

system-environment correlations for EET in the presence of

both underdamped and overdamped environments, agreeing

perfectly with numerically exact data generated using the

HEOM.42–45 Furthermore, we demonstrate that the RC

model significantly outperforms the closely related Zusman

equations,70,73,77 a set of drift-diffusion equations often used

to describe tunnelling processes in molecular systems, which

we derive from the RCME in a semiclassical limit. We also

examine the role that a structured environment may play in

the dimer energy transfer dynamics. This is achieved in a

consistent and non-perturbative manner by incorporating an

underdamped mode into the system Hamiltonian using the

RC formalism, while the broad background environment is

described using a second overdamped RC. We show that

the presence of structure in the spectral density can enhance

the EET rate in specific regimes, in particular when the

characteristic frequency of the underdamped environment

coincides with the excitonic resonance of the molecular dimer.

However, there are also large regions of parameter space where

no enhancement is to be expected.

The paper is organised as follows. In Section II, we

define the molecular dimer Hamiltonian and outline the RC

mapping. In Section III, we formulate the RCME, from which

we also derive the well-established Zusman equations.70,73,77

In Section IV, we explore the dynamics of the model for

both overdamped and underdamped environmental spectral

densities using the RCME and Zusman equations, which

we benchmark against the HEOM technique. In Section V,

we extend our discussion to a structured environment, with

a particular focus on the effect of environmental structure

on the rate of energy transfer between the dimer sites. We

summarise in Section VI and present further details of the

Zusman equations in the Appendix.

II. SYSTEM HAMILTONIAN AND THE REACTION
COORDINATE MAPPING

We consider energy transport in a molecular dimer

system, each site of which has an excited state |X j⟩ ( j = 1,2)

with an associated energy ε j, and ground state |0 j⟩. The

two sites are coupled to each other via a transition dipole

interaction, with strength ∆, and to separate harmonic

environments, leading to a Hamiltonian of the form (where

we set ~ = 1),

H =


j

ε j |X j⟩⟨X j | +
∆

2
(|X102⟩⟨01X2| + |01X2⟩⟨X102|)

+


j

|X j⟩⟨X j |


k

f j,k
(

c†
j,k
+ cj,k

)

+


j,k

ω j,kc†
j,k

cj,k .

(1)

Here, c†
j,k

and cj,k are, respectively, the creation and

annihilation operators for the kth mode of the environment

at site j, and f j,k is the corresponding coupling strength. To

simplify the analysis, we assume that the couplings between

each site and its environment are identical, then rotate the

coordinate system such that the two sites couple directly to a

single bath within the single excitation subspace spanned by

the basis {|1⟩ = |X102⟩, |2⟩ = |01X2⟩}. Restricting ourselves to

the single exciton subspace allows us treat the dimer as an

effective two level system (TLS), and we can then write the

Hamiltonian in spin-boson form

HSB =
ϵ

2
σz +

∆

2
σx + σz



k

fk
(

c̃†
k
+ c̃k

)

+


k

νk c̃†
k
c̃k, (2)

where ϵ = ϵ1 − ϵ2, c̃k =
1
2
(c1,k − c2,k), and fk = f1,k/

√
2. We

have also introduced the Pauli operators, σz = |1⟩⟨1| − |2⟩⟨2|

and σx = |2⟩⟨1| + |1⟩⟨2|. We can characterise the system-

bath interaction by introducing the spectral density, JSB(ω)

=


k | fk |
2δ(ω − ωk), which is a measure of coupling strength

weighted by the environmental density of states.

Given that our Hamiltonian is now in spin-boson form, the

derivation of the RCME proceeds as in Ref. 18, which we shall

summarise here for completeness. To move beyond the weak-

coupling limit appropriate to Born-Markov (e.g., Redfield)

master equations, we apply a normal mode transformation to

Eq. (2), incorporating a collective environmental degree of

freedom into a new effective system Hamiltonian. Following

the method outlined by Garg et al.,69 we define a collective

mode of the environment, known as the RC, which couples

directly to the TLS. The RC is in turn coupled to a residual

harmonic environment, as can be seen schematically in Fig. 1.
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This leads to a Hamiltonian of the form

HRC = HS + HI + HB + HC, (3)

with

HS=
ϵ

2
σz +

∆

2
σx + λσz

�
a† + a

�
+Ωa†a,

HI=
�
a† + a

�

k

gk
(

b†
k
+ bk

)

,

HB=


k

ωkb†
k
bk,

HC=
�
a† + a

�2 

k

g2
k

ωk

,

where the collective coordinate is defined such that

λ
�
â† + â

�
=



k

fk
(

c̃†
k
+ c̃k

)

. (4)

In Eq. (3), we have added a term, HC, quadratic in the position

operator of the RC, which removes the renormalisation

of the mode potential due to friction.73 We have also

defined new creation and annihilation operators, b̂†
k

and

b̂k, respectively, for the residual bath. This couples directly

to the RC and is characterised by a new spectral density,

JRC(ω) =


k |gk |
2δ(ω − ωk).

To describe the action of the residual bath on the RC, we

need to relate this spectral density to the original spin-boson

spectral density JSB(ω). To do so, we replace the TLS with

a classical coordinate q subject to a potential V (q).69,72 By

considering the Fourier transformed equations of motion for

the coordinate, both before and after the mapping, we gain

expressions of the form18

K̃(z)q̃(z) = −Ṽ ′(q), (5)

where tildes refer to Fourier transforms and prime denotes

the derivative with respect to q. For example, after the RC

mapping, the Fourier space operator may be written as

K̃(z) = −z2 +
2λ

Ω

L(z)
Ω2 + L(z) , (6)

with L(z) = −z2 − 4Ωz2
 ∞

0

JRC(ω)

ω(ω2−z2)
dω. Finally, the spin-

boson spectral density may be related to JRC(ω) using the

Leggett prescription,78

JSB(ω) =
1

π
lim
ϵ→0+

Im
�
K̃(ω − iϵ)

�
. (7)

In the following, we shall study two spectral densities relevant

to EET systems, the underdamped (UD) and overdamped

(OD) Brownian oscillator forms

JUD
SB (ω) =

αUDΓω
2
0
ω

(ω2
0
− ω2)2 + Γ2ω2

(8)

and

JOD
SB (ω) = αODωc

ω

ω2 + ω2
c

. (9)

By choosing the RC spectral density to have the form

JRC(ω) = γω exp (−ω/Λ) and using Eq. (7) in the limit that

Λ→ ∞, we find the relation

JSB(ω) =
4γωΩ2λ2

(Ω2 − ω2)2 + (2πγΩω)2
. (10)

Thus the mapping described above is exact for the under-

damped spectral density when Ω = ω0, λ =
√
παUDω0/2, and

γ = Γ/2πω0. We can also recover the overdamped spectral

density by choosing γ such that ωc ≪ Ω, where the RC

coupling strength and frequency satisfy

ωc =
Ω

2πγ
and αOD =

2λ2

πΩ
. (11)

Fig. 2 gives illustrative examples of the spectral densities

defined in Eqs. (8) and (9), demonstrating that in comparison to

the broader overdamped limit, the underdamped case displays

a sharp peak centred about the characteristic frequency ω0. A

combination of the two will be used in Section V below to

represent a structured spectral density, arising from coupling

of the dimer to both its background continuum environment

and a specific lossy mode of vibration.

III. DYNAMICAL EVOLUTION IN THE RC MODEL

By mapping the spin-boson Hamiltonian of Eq. (2) to

the RC form given in Eq. (3), we are now in a position to

proceed with the dynamical description of our dimer system.

We shall consider two related approaches. In the first, we

derive the full RCME (a quantum master equation) for the

reduced dynamics of both the dimer and the RC, while in the

second, we apply further approximations in order to derive

a set of partial differential equations (PDEs), known as the

Zusman equations.

A. Reaction coordinate master equation

We consider a second-order master equation for the

reduced state of the RC and TLS, ρ(t). This accounts for

the TLS-RC coupling exactly, while treating interactions with

FIG. 2. Example spectral densities considered in

this work: (a) overdamped spectral density with

ωc = 53 cm−1 and πα = 2 cm−1; (b) underdamped

spectral density with πα = 2 cm−1, Γ= 20 cm−1, and

ω0= 220 cm−1.
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the residual environment perturbatively to second order. This

treatment will be valid when the coupling between the mapped

system and the residual environment is weak or when the

residual environment correlation time is short. From Eq. (3),

moving into the interaction picture with respect to HS + HB,

we may write the Born-Markov master equation as54

∂ρI(t)

∂t
= −i [HC(t), ρ(0)]

−
∞

0

dτ trB [HI(t), [HI(t − τ), ρI(t) ⊗ ρB]] , (12)

where ρB = e−βHB/trB{e−βHB} is the reduced state of the

residual bath, which is assumed to remain in thermal

equilibrium at temperature T = 1/β (for kB = 1). This

assumption is justified when the coupling between the residual

bath and the composite system is small or the residual bath

correlation time is very short. By following the derivation

outlined in Ref. 18, we may write the Schrödinger picture

master equation for the combined TLS and RC as

ρ̇(t) = −i [HS, ρ(t)]

− γ
∞

0

dτ

∞

0

dω ω cosωτ coth
βω

2

�
Â,
�
Â(−τ), ρS(t)

��

− γ
∞

0

dτ

∞

0

dω cosωτ
�
Â,
��

Â(−τ),HS

�
, ρ(t)

	�
, (13)

where we have defined Â = â† + â.

The complexity of the system Hamiltonian makes gaining

an analytic expression for the interaction picture operators

difficult. However, by simply truncating the space of the

collective coordinate up to n basis states, i.e., limiting

ourselves to n excitations in the RC, we can numerically

diagonalise HS. This approach leads to the set of basis states

|ϕ j⟩ which satisfy the relation HS|ϕ j⟩ = ϕ j |ϕ j⟩, allowing us to

write the interaction picture operators as

Â(t) =

2n


j,k=1

Ajkeiω jk t |ϕ j⟩⟨ϕk |, (14)

where Ajk = ⟨ϕ j |â
† + â|ϕk⟩ and ω jk = ϕ j − ϕk. We can now

evaluate the time and frequency integrals in Eq. (13) to give

∂ρ(t)

∂t
= −i [HS, ρ(t)] −

�
Â, [ χ̂, ρ(t)]

�
+
�
Â,
�
Ξ̂, ρ(t)

	�
, (15)

where we have defined the rate operators

Ξ̂ =
π

2

2n


j,k=1

γω jk Ajk |ϕ j⟩⟨ϕk |, (16)

χ̂ =
π

2

2n


j,k=1

γω jk coth
βω jk

2
Ajk |ϕ j⟩⟨ϕk |, (17)

and assumed the imaginary parts (i.e., Lamb shifts) to be

negligible. Eq. (15) thus captures the interaction between the

TLS and RC non-perturbatively, while the residual bath is

treated in a purely Markovian fashion.

B. Zusman equations

From the RCME given in Eq. (13), we can derive a set

of drift-diffusion PDEs by way of further approximations.

Specifically, the interaction picture operators in Eq. (13) are

expanded using the Caldeira-Leggett approach,54,69,70,79 in

which the system evolution is assumed to be much slower

than that of the environment, giving

Â(t) = e−iHSt ÂeiHSt ≈ Â + it
�
HS, Â

�
. (18)

By inserting this approximate form into Eq. (13), we can

evaluate the frequency and time integrals. We then move

to a phase-space representation for the master equation by

way of the Wigner transformation, leading to a generalised

Fokker-Planck equation in Klein-Kramers form80

∂Ŵ

∂t
+HŴ + (iZ −Ω2x)

∂Ŵ

∂p
+ p

∂Ŵ

∂x

= πγΩ
∂

∂t

(

pŴ +
1

β

∂Ŵ

∂p

)

, (19)

where Ŵ =


i j Wi j(x,p, t)|i⟩⟨ j |, with i, j = 1,2. The Wigner

function is defined as

Wi j(x,p, t) =
1

2π

∞

−∞

dx ′e−i px
′


i, x +
x ′

2

�����
ρ
�����
x − x ′

2
, j



, (20)

where x and p are the phase-space coordinates of the RC. For

brevity, we have defined the superoperators in Eq. (19) as

HŴ = i

(ϵ +
√

2Ωλx)σz + ∆σx,Ŵ

, (21)

Z ∂Ŵ

∂p
=

i
√

2Ωλ

2



σz,
∂Ŵ

∂p



. (22)

In its current form, Eq. (19) remains challenging to solve.

We may simplify it, however, by eliminating the momentum

coordinate in the differential equation. We do this by assuming

that the RC momentum remains in thermal equilibrium at

all times, which is valid in the high friction limit. This

enables us to expand the Wigner function in terms of Hermite

polynomials, resulting in a hierarchy of equations (a detailed

account of this derivation can be found in the Appendix). By

taking terms that are first order in the inverse friction (η−1,

where η = πγΩ), we acquire a set of drift-diffusion equations,

commonly referred to as the Zusman equations,

∂µ11(t, x)

∂t
=

1

2πγΩ

∂

∂x

(

1

β

∂µ11(t, x)

∂x
+ (Ω2x +

√
2Ωλ)µ11(t, x)

)

+ i∆(µ12(t, x) − µ21(t, x)), (23)

∂µ22(t, x)

∂t
=

1

2πγΩ

∂

∂x

(

1

β

∂µ22(t, x)

∂x
+ (Ω2x +

√
2Ωλ)µ22(t, x)

)

− i∆(µ12(t, x) − µ21(t, x)), (24)
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∂µ12(t, x)

∂t
=

1

2πγΩ

∂

∂x

(

1

β

∂µ12(t, x)

∂x
+Ω2xµ12(t, x)

)

+ 2i(
ϵ

2
+
√

2Ωλx)µ12(t, x) + i
∆

2
(µ11(t, x) − µ22(t, x)), (25)

∂µ21(t, x)

∂t
=

1

2πγΩ

∂

∂x

(

1

β

∂µ21(t, x)

∂x
+Ω2xµ21(t, x)

)

+ 2i(
ϵ

2
+
√

2Ωλx)µ21(t, x) − i
∆

2
(µ11(t, x) − µ22(t, x)), (26)

where µi j(t, x) describes the time evolution of both the TLS

and the RC with respect to the phase-space variable x. We can

then extract the time evolution of the TLS population [ρ11(t)]

and coherence [ρ12(t)] using

ρ11(t) =

∞

−∞

µ11(t, x)dx and ρ12(t) =

∞

−∞

µ12(t, x)dx.

The Zusman equations describe a mode in the high friction

limit and are based on approximations that amount to

a semiclassical treatment of the RC, in which quantum

correlations between the RC and dimer are neglected.

One may extend their validity by considering higher order

terms. However, the equations quickly become unwieldy and

computationally impractical in the low friction limit. Thus,

we shall restrict ourselves to the first-order equations here.

IV. SYSTEM DYNAMICS

To explore the system dynamics using the RCME

[Eq. (15)], we assume that the dimer and RC are initially

uncorrelated at time t = 0, with the RC in a thermal state

and an excitation localised at dimer site 1 (unless otherwise

stated). That is, ρ(0) = Z0
−1|1⟩⟨1| ⊗ exp

�
−βΩa†a

�
, where

Z0 = tr
�
exp

�
−βΩa†a

�	
. For the Zusman equations, this gives

the boundary condition

µ11(0, x) = 2



tanh
(

βΩ

2

)

π
e
−Ω tanh

(

βΩ
2

)

x2

, (27)

while µ22(0, x) = µ21(0, x) = µ12(0, x) = 0. We shall compare

the dynamical behaviour predicted by the RCME and Zusman

equations, solved numerically,81,82 for the overdamped and

underdamped spectral densities in turn. This will be

benchmarked against the HEOM. As the HEOM are derived

from the original (i.e., unmapped) Hamiltonian of Eq. (2), the

appropriate initial state is an excitation localised at site 1 with

the environment in a multimode thermal state at the same

temperature as defined in the RC case.

A. Overdamped spectral density

In Figs. 3(a) and 3(b), we compare the short time

population dynamics of site 1 as predicted by the RCME (solid

curves), Zusman equations (open points), and the HEOM

(solid points). We consider an overdamped environment and

take parameters representative of a subset of the Fenna-

Matthews-Olson complex.83 We find excellent agreement

between the RCME, Zusman equations, and the HEOM at

both weak and strong couplings to the environment in this

regime, capturing the transition from coherent to incoherent

FIG. 3. ((a) and (b)) Comparison of the dimer site

population dynamics ρ11(t) calculated from the RCME

(solid curves), Zusman equations (open-points), and the

HEOM (solid-points) for the coupling strengths indi-

cated and T = 300 K. (c) Steady-state population in

the dimer eigenstate basis (upper eigenstate, ρee(t))

as a function of system-environment coupling strength

for all three theories and the canonical equilibrium

state (dotted-dashed). (d) Variation of the dimer eigen-

state population ratio against inverse temperature for all

three theories. The other parameters are ∆= 200 cm−1,

ϵ = 100 cm−1, and ωc = 53.08 cm−1.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  192.38.90.17 On: Thu, 02 Jun

2016 10:57:16



044110-6 Iles-Smith et al. J. Chem. Phys. 144, 044110 (2016)

energy transfer.55 It is evident that by including the RC into

the system Hamiltonian, we are able to faithfully represent

all relevant system-environment correlations in the dimer

evolution. Moreover, for this overdamped spectral density,

the residual environmental influence is sufficiently strong to

suppress significant oscillations in the RC degrees of freedom.

We are therefore in the high friction limit, and the Zusman

equations are expected to provide a good description of the

system dynamics on transient time scales.

1. Non-canonical equilibrium states
and the dynamical generation of correlations

Nevertheless, the semiclassical approximations inherent

within the Zusman treatment still manifest themselves on

longer time scales, as demonstrated in Figs. 3(c) and

3(d). Here, we see that they cannot correctly capture the

equilibration behaviour of the system in the long-time

limit. For example, at a temperature of T = 200 K, the

Zusman equations clearly do not lead to the correct steady-

state population in the excitonic basis (i.e., the eigenbasis

of ϵ
2
σz +

∆

2
σx), even for very weak system-environment

coupling strengths. Interestingly, with increasing coupling

strength (or decreasing temperature), the steady-states derived

from both the RCME and the HEOM deviate noticeably from

the canonical thermal state; that is, the state

ρSth
=

e−β(
ϵ
2
σz+

∆

2
σx)

ZC

, (28)

where ZC = trS



e−β(
ϵ
2
σz+

∆

2
σx)



. As shown in Ref. 18, this

is a consequence of significant and long lasting correlations

accumulated between the system and environment at both

weak and strong couplings, with the result that the canonical

thermal state no longer describes the true equilibrium state

of the system. Though such steady-state correlations are

correctly captured through the RCME, they are not in the

Zusman equations. Hence, we find that it is necessary to

retain a full quantum treatment of the dimer-RC interaction

within the RCME to accurately describe our system over all

time scales. In fact, the steady-state of the RCME may be

compactly expressed as a canonical thermal state with respect

to the full RC Hamiltonian

ρ(t → ∞) = e−β(
ϵ
2
σz+

∆

2
σx+λσz(a†+a)+Ωa†a)

ZNC

, (29)

where ZNC = tr



e−β(
ϵ
2
σz+

∆

2
σx+λσz(a†+a)+Ωa†a)



. On tracing

over the RC or TLS, this represents a non-canonical dimer

equilibrium state or a non-thermal environmental state,

respectively. The former may be benchmarked against the

HEOM and proves to accurately capture deviations in

the steady-state of the dimer due to system-environment

correlations.18 Of course, the influence of correlations is also

dependent on the temperature of the bosonic environment.

Fig. 3(d) demonstrates that at very large temperatures,

the steady-states obtained from the RCME, the HEOM,

and the Zusman equations begin to agree, converging

towards the canonical thermal state. Here we enter a

regime in which the quantum correlations shared between

the system and environment are suppressed, such that the

semiclassical approximation is adequate to describe the

dimer behaviour even at relatively strong system-environment

coupling.

System-environment correlations also have important

consequences for probing the dynamics in EET systems.

For example, consider a system that is initially in (quasi)

equilibrium with its surrounding environment, before being

perturbed by an external field. Naïvely, one might assume

that the initial state of the system in this situation should

FIG. 4. Top: Excitonic upper eigenstate population dy-

namics, ρee(t), for a system initiated in its canonical

thermal state given in Eq. (28). The solid curve is cal-

culated with the RCME and the points are obtained from

the HEOM. The dashed lines represent the non-canonical

system steady-state given by tracing over the RC in

Eq. (29). Bottom: The corresponding real and imaginary

parts of the coherence in the dimer excitonic eigenba-

sis calculated using the RCME (solid) and the HEOM

(points). The other parameters are ωc = 53.08 cm−1,

∆= 200 cm−1, ϵ = 100 cm−1, and T = 300 K.
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be the canonical thermal state with respect to the internal

system Hamiltonian. Our previous arguments, however,

demonstrate that this assumption may be misleading in

the context of our molecular dimer system, as shown

explicitly in Fig. 4. Here, we consider the dynamical

evolution of the dimer in its excitonic eigenbasis, when the

system is initiated in the canonical thermal state given by

Eq. (28). We see that the subsequent dynamics can display

coherent oscillations in the dimer eigenbasis and even the

generation of excitonic coherences, before relaxation to an

equilibrium state that differs from the initial thermal state.

Note that this is true even when the equilibrium state is

close to the canonical state, as in the left panels of the

figure.

Behaviour of this kind is markedly different to that

expected from less sophisticated master equation techniques

in which the system-environment coupling is treated

perturbatively. Often, such approaches lead to a complete

absence of dynamical evolution in the dimer eigenbasis for a

system initialised in a canonical thermal state, since Eq. (28) is

the expected equilibrium steady-state when the environmental

influence is a weak perturbation.

B. Underdamped spectral density

We shall now move on to discuss the impact of an

underdamped spectral density on the EET dynamics of our

FIG. 5. Dimer site population dynamics for an underdamped spectral density

with (top) ω0= 40 cm−1, παUD= 20 cm−1, and (bottom) ω0= 220 cm−1,

παUD= 10 cm−1. In the main plots, we compare the RCME (solid curves)

and HEOM (points), while results from the Zusman equations are shown

in the insets. Dashed lines denote the non-canonical steady-state values

(reached on a very slow time scale for the top plot). The other parameters

are ∆= 200 cm−1, ϵ = 100 cm−1, Γ= 10 cm−1, and T = 300 K.

dimer. The resultant complex system dynamics have particular

relevance to EET in the presence of structured environments,

where the system may be strongly coupled to specific

lossy modes that dominate regions of the pigment-protein

vibrational spectrum.

In the main plots of Fig. 5, we compare the population

and coherence dynamics obtained from the RCME (solid

curves) to the HEOM (points) for both low and high

frequency underdamped spectral densities, where Zusman

predictions are shown in the inset and non-canonical steady-

state values are also indicated (dashed lines). In both

cases, we see that the Zusman equations completely fail

to capture the correct behaviour, which may be attributed

to the dynamical response of the RC itself. Considering,

for example, the low frequency spectral density, when

one compares the RC frequency (Ω = 40 cm−1) to the

friction acting on the mode (η ≈ 5 cm−1, obtained from the

mapping) we find that the RC is weakly damped. Hence,

the limits taken to derive the Zusman equations are invalid,

i.e., the momentum of the RC does not remain in thermal

equilibrium in this regime. This is shown explicitly in Fig. 6,

where we plot the dynamical evolution of the RC posi-

tion ⟨x̂(t)⟩ = tr{ x̂ρ(t)}, and momentum ⟨p̂(t)⟩ = tr{p̂ρ(t)},

defined as

x̂ =



1

2Ω
(a† + a) and p̂ = i



Ω

2
(a† − a). (30)

We see pronounced oscillations at several frequencies in both

the RC position and momentum, which are gradually damped

at long times, equilibrating to non-zero values consistent with

the state given in Eq. (29).

FIG. 6. The RC position (main) and momentum (inset). Top: ω0= 40 cm−1

and παUD= 20 cm−1. Bottom: ω0= 220 cm−1 and παUD= 10 cm−1. Other

parameters are the same as in Fig. 5.
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FIG. 7. Fourier transform of the RCME population dynamics in Fig. 5, demonstrating the presence of multiple oscillation frequencies. Left: ω0= 40 cm−1.

Right: ω0= 220 cm−1.

The disagreement between the Zusman equations and

the RC model is further exacerbated when the under-

damped spectrum is tuned close to the dimer resonance,

ζ =
√
ϵ2 + ∆2 ≈ 223 cm−1. As can be seen in Fig. 6(b), the

RC now undergoes even larger amplitude oscillations. In

this case, the Zusman equations are completely unable to

capture the dynamical behaviour of the system, predicting

only rapid oscillations in the dimer population. The RCME,

on the other hand, shows excellent agreement with the

HEOM for both short and long times, capturing perfectly

the population dynamics of the dimer. In both the low and

high frequency cases, the dimer dynamics displays complex

beating behaviour, with multiple oscillation frequencies. From

the RC formalism, we have a clear interpretation for this

behaviour in terms of the strong oscillations experienced by

the collective coordinate of the environment, which in turn

leads to modulations of the TLS dynamics.

This is shown explicitly in Fig. 7, where we have taken

the Fourier transform of the population dynamics given in

Fig. 5, that is,

S(ω) = Re



∞

0

dteiωt (ρ11(t) − ρ11(t → ∞))

. (31)

Here, we have subtracted the steady-state population, ρ11(t →
∞), to remove a δ-function contribution. For the lower

frequency underdamped environment (left plot), we see the

presence of two specific frequencies in the spectrum, one at the

RC mode frequency (ω0 = 40 cm−1) and the other at the dimer

splitting (ζ ≈ 223 cm−1). When the characteristic frequency

of the spectral density approaches the dimer splitting (right

plot), we see further structure in the oscillation spectrum, with

the emergence of additional peaks. Again, we may explain

this by appealing to the physical intuition gained from the RC

model. In this case, the environmental response, and thus RC

splitting, lies close to the resonant frequency of the dimer,

leading to an effective enhancement of the interaction between

the dimer and RC. As a result of the enhanced coupling, the

spectrum of the system cannot be associated to the bare

frequencies of the dimer and RC, but rather to the eigenstates

of the composite system. Hence, we see a double peak

structure about ω ∼ 220 cm−1, split by the RC-dimer coupling

strength 2λ = 66 cm−1. This is reminiscent of the vacuum

Rabi splitting observed in cavity QED systems, in which the

eigenstates of the system are the light-matter entangled dressed

states.84

The presence of multiple oscillation frequencies in the

population dynamics has important implications for a number

of ongoing experiments on EET systems. In particular, the

discussion above demonstrates that it is not straightforward

to assign electronic and vibrational frequencies in situations

where underdamped modes are present, as one must also

account for the coupling between the molecular dimer and

any such modes, which leads to the formation of vibronic

states.

As a final remark, we can show that the RC model for

an underdamped spectrum convergences to the overdamped

case in regimes where Γ,ω0 ≫ 1. We do this by defining a

cut-off frequency in the underdamped spectrum asωc = ω2
0
/Γ,

which sets the energy scale of the overdamped spectrum in

the appropriate limit. Using this definition, we fix Γ = ω2
0
/ωc

and consider the underdamped spectrum for increasing ω0

as demonstrated in Fig. 8. Here we see a smooth transition

between the underdamped and overdamped regimes, with the

two agreeing well at large ω0.

V. STRUCTURED ENVIRONMENTS

Having established the validity and potential for physical

insight of the RCME when applied to overdamped and

underdamped environments separately, in this section, we

explore how a structured environment impacts upon the energy

transfer rate in a molecular system. To do this in a consistent

manner, we shall consider the dynamics of a dimer coupled to a

broad background environment described by an overdamped

spectral density, with structure incorporated via a second

underdamped environment with peak centred around ω0. We

shall model both environments using the RC mapping outlined

previously, extracting an independent RC for each, allowing

us to rigorously account for dissipation on the underdamped

mode. Furthermore, our enlarged system (see left plot of

Fig. 9) naturally captures the vibronic nature imparted on the

dimer by both the underdamped and overdamped components

of the environmental spectrum.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  192.38.90.17 On: Thu, 02 Jun

2016 10:57:16



044110-9 Iles-Smith et al. J. Chem. Phys. 144, 044110 (2016)

FIG. 8. Left: Underdamped (curves) and overdamped (points) spectral densities for several environmental frequencies. Right: The population dynamics

associated to these spectral densities. Here, we see a smooth transition from the underdamped (curves) to overdamped (points) regime for increasing ω0.

The parameters are the same as Fig. 5, with Γ=ω2
0
ω−1

c and πα = 100 cm−1.

FIG. 9. Left: Schematic of the RC model for a structured environment with underdamped (UD) and overdamped (OD) components, each coupled to their

own residual environment. Right: The structured spectral density at various reorganisation energies of the overdamped contribution. The underdamped RC has

frequency ω0= 100 cm−1, with Γ= 20 cm−1 and παUD= 2 cm−1.

The Hamiltonian describing the system and environments

may be written as

HST = HD + σz

2


i=1



k

f
(i)

k
(ci,k + c†

i,k
) + HB, (32)

with HB =


k

ω
(i)

k
c†
i,k

ci,k and HD =
ϵ
2
σz +

∆

2
σx. The two

environments are characterised by the spectral densities

Ji(ω) =


k

| f
(i)

k
|2δ(ω − ω(i)

k
), (33)

with J1(ω) = JOD(ω) and J2(ω) = JUD(ω). The combination of

these terms leads to an effective spectral density with a broad

background, given by the overdamped component, and a sharp

peak associated to the underdamped contribution. Illustrative

examples are given in the right hand plot of Fig. 9.

We shall assume that the two environments are initially

uncorrelated with one another (e.g., in a thermal state) but are

able to generate correlations through interactions mediated by

the dimer. This allows each environment to be mapped to the

RC model independently. Applying the mapping, we obtain

the system Hamiltonian

HS =
ϵ

2
σz +

∆

2
σx + σz



i

λi

(

a†
i
+ ai

)

+


i

Ωia
†
i
ai, (34)

with a1 (a2) the annihilation operator of the RC associated

with the underdamped (overdamped) environment. Each RC

then couples to an independent residual environment, giving

the interaction Hamiltonian

HI =


i

(

a†
i
+ ai

)


k

g
(i)

k

(

b†
i,k
+ bi,k

)

. (35)

Here, bi,k (b†
i,k

) is the annihilation (creation) operator

for the kth mode of each residual environment (i = 1,2),

which are characterised by the spectral densities J̃i(ω)

=


k |g
(i)

k
|2δ(ω − ω(i)

k
) = γiω. The parameters describing the

RCs can then be found in terms of the original spectral

densities using the relations given in Section II.

By following the RCME derivation for each independent

environment, we obtain an equation of motion describing the

dynamics of the dimer TLS and both RCs

∂ρ(t)

∂t
= −i [HS, ρ(t)]

−


i

( �
Âi, [ χ̂i, ρ(t)]

�
+
�
Âi,

�
Ξ̂i, ρ(t)

	� )
, (36)

with Âi = (a†
i
+ ai), and the rate operators χ̂i and Ξ̂i defined

in analogy to the single RC case in Eqs. (16) and (17).

We shall now focus on a quantitative analysis and

comparison of the dimer EET rate for both structured and
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unstructured environments. In regimes for which the dimer

splitting is greater than the tunnelling rate (in this case

ϵ = 100 cm−1 and ∆ = 40 cm−1), we can do so by defining a

rate using the classical equations83

dP1(t)

dt
= −k1→2P1 + k2→1P2,

dP2(t)

dt
= k1→2P1 − k2→1P2.

(37)

Here, P1 (P2) is the population at dimer site 1 (2) and k1→2

(k2→1) is the transfer rate between sites 1 and 2 (2 and 1).

These equations lead to purely exponential decays of the dimer

populations, thus neglecting all coherent contributions in the

energy transfer dynamics. Though a coarse approximation,

this procedure gives insight into the overall transfer rate and

is accurate in regimes where the tunnelling between sites is

weak and coherent dynamics is consequently suppressed.

We first consider the case of a single overdamped

environment.83 In Fig. 10 (top), we plot the inter-site transfer

rate as a function of the reorganisation energy calculated

from the RCME (solid curve), the HEOM (points), and a

Redfield master equation (dashed curve) in which the system-

environment coupling is treated perturbatively.54 We see that

the RCME perfectly captures the smooth peak in the rate

predicted by the HEOM as the reorganisation energy is

increased. As has previously been shown,57,83 Redfield theory

FIG. 10. Variation in dimer inter-site energy transfer rate k1→2 for increasing

reorganisation energy. Top: Predictions from the RCME (solid curve), the

HEOM (points), and weak-coupling Redfield theory (RT, dashed curve) for

a single overdamped environment. Both the RCME and HEOM predict a

smooth peak in the rate at intermediate reorganisation energy, whereas the

Redfield master equation fails to capture the correct behaviour for all but

the weakest coupling strengths. Bottom: RCME predictions for a single

underdamped environment for several characteristic frequencies ω0, with

Γ= 20 cm−1. Notice that the largest transfer rates occur for ω0= 100 cm−1,

which is close to the resonance of the dimer TLS. Other parameters are

ϵ = 100 cm−1, ∆= 40 cm−1, ωc = 53 cm−1, and T = 300 K.

fails even to qualitatively capture this behaviour, plateauing at

large reorganisation energies. We may also explore the transfer

rate in the presence of a single underdamped environment

using the RCME. As shown in Fig. 10 (bottom), much like

the overdamped example, the EET rate in the underdamped

case shows a peak at some intermediate coupling strength,

the position and height of which are highly dependent on

the characteristic frequency of the environment. Specifically,

the transfer rate reaches its maximum when the peak of the

underdamped spectrum approaches the resonance of the dimer

(ζ ≈ 108 cm−1 here). As was discussed in Sec. IV B, when

the dimer and the RC are close to resonant, the vibronic states

of the composite system play a significant role in the system

dynamics. In this case, they act to increase the number of

pathways available for energy to be transferred between the

two sites of the dimer,85 thus enhancing the EET rate.

Given that an increase in the rate may be obtained for

an underdamped spectrum, it is natural to ask under what

circumstances this remains true for a structured environment

in which a broad overdamped background is also present (as is

likely in any real system). We explore this in Fig. 11, where we

set the underdamped contribution to a constant reorganisation

energy, while the coupling to the overdamped environment

is varied. Here, we see that the when the overdamped part

of the environment is relatively weakly coupled to the dimer,

FIG. 11. Enhancement of the dimer transfer rate due to environmental

structure. The reorganisation energy of the underdamped component is kept

constant at παUD= 2 cm−1 and several frequencies ω0 are considered, while

the reorganisation energy of the overdamped component is increased. Top:

Intersite transfer rate as a function of overdamped reorganisation energy. For

comparison, we have also included the transfer rate for a single overdamped

environment. Bottom: Corresponding transfer enhancement, defined as the

ratio of the rate with environmental structure to that of the single overdamped

environment. For both plots, the dimer and overdamped parameters are the

same as Fig. 10. The underdamped environments have Γ= 20 cm−1 and

T = 300 K.
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the presence of the underdamped structure can significantly

enhance the EET rate even at a temperature of 300 K. As

expected, this is particularly apparent when the underdamped

environment is close to the dimer resonance, decreasing as

it is tuned away. Again, the enhancement is due to the

underdamped environment increasing the number of transfer

pathways generated by the manifold of vibronic states. When it

is tuned away from resonance, the effective coupling between

the dimer and the underdamped RC is reduced, thus decreasing

the amount of vibronic states that can be explored by the

composite system, and consequently reducing the rate of

EET. Note, however, that at large overdamped reorganisation

energies, the enhancement is suppressed regardless of the

underdamped frequency, and the transfer rate follows that of

a single overdamped environment. This is true even when

the underdamped component can still be clearly discerned

within the spectral density (see Fig. 9) and is simply a

consequence of the overdamped environment becoming the

dominant influence, such that the underdamped vibronic states

have little effect even for a resonant mode. Thus, the presence

of one or more well-resolved modes within the spectral density

is not in itself sufficient to imply a vibronic enhancement of

the dimer EET rate.

VI. SUMMARY

In summary, we have shown that the RCME provides a

powerful, informative, and intuitive method for describing

EET in molecular dimers — and more generally open

quantum systems — for regimes in which the environmental

correlation time is long. It allows access to information on the

system, its environment, and their correlations. Moreover, it

greatly outperforms the closely related semiclassical Zusman

equations. This demonstrates that not only is the RC mapping

important to capture the correct system behaviour but also that

one must properly account for the correlations dynamically

generated between the dimer and its environment through the

RC. These correlations lead to complex system population

dynamics comprising of multiple oscillation frequencies,

which we interpret as feedback from the environmental

collective mode. They also persist into the steady-state,

pushing both the system and its environment away from

their respective canonical equilibrium states in the long time

limit.

We have applied the RC model to describe the behaviour

for overdamped, underdamped, and structured vibrational

environments. In particular, we find that the presence of

structure within the environment is capable of increasing

the rate of EET between the dimer sites. This enhancement

is dependent upon the energy scale of the underdamped

vibrations within the environment, reaching its peak when

they lie close to the dimer excitonic resonance as should be

expected. Nevertheless, even for such resonance conditions,

there are also regions of parameter space in which the

structured environment offers no advantage in terms of

an increased transfer rate, and the dynamics follows that

determined by the broad overdamped background. It would

thus be extremely interesting to apply the RCME to analyse

such subtleties in larger molecular systems, with the aid of

a suitable truncation scheme to limit the required number of

basis states.
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APPENDIX: THE ZUSMAN EQUATIONS

In this Appendix, we shall give further details on

the derivation of the Zusman equations. Starting from the

Caldeira-Leggett master equation in Wigner space, we have86

Ωπγ
∂

∂p

(

pŴ +
1

β

∂Ŵ

∂p

)

=
∂Ŵ

∂t
+HŴ + iZ ∂Ŵ

∂p

+ p
∂Ŵ

∂x
−Ω2x

∂Ŵ

∂p
, (A1)

where we have defined the superoperators

HŴ = i


(

ϵ

2
+ κx

)

σz +
∆

2
σx,Ŵ


,

Z ∂Ŵ

∂p
=

iκ

2



σz,
∂Ŵ

∂p



.

(A2)

We aim to simplify this equation of motion by removing

the momentum coordinate, in particular by assuming that

the momentum of the RC remains in thermal equilibrium

throughout the evolution of the system.

To eliminate the momentum coordinate from Eq. (A1),

we shall use the procedure outlined by Coffey,86 and

originally formulated by Brinkman for the case of a Brownian

oscillator.87 We expand the Wigner function in terms of

Hermite polynomials

Ŵ = e−µ
2/4

∞


n=0

Dn(µ)φ̂n(x, t), (A3)

where we have rescaled the momentum coordinate such

that µ =
√
βp. The function φ̂(x, t) is a two-by-two matrix

describing the electronic dependence of the Wigner function

and Dn(µ) is the set of orthogonal Weber functions, which are

given by

Dn(y) = 2−n/2e−y
2/4Hn

(

y
√

2

)

,

where Hn(z) are the Hermite polynomials. The Weber

functions satisfy the following relations:

Dn+1(y) − yDn(y) + nDn−1(y) = 0, (A4)

∂yDn(y) +
y

2
Dn(y) − nDn−1(y) = 0, (A5)
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∂yDn(y) −
y

2
Dn(y) + Dn+1(y) = 0, (A6)

∂2
yDn(y) +

(

n +
1

2
− y2

4

)

Dn(y) = 0, (A7)

∞

−∞

Dn(y)Dm(y)dy = n!
√

2πδm,n. (A8)

Substituting these expressions into the phase-space master

equation given in Eq. (A1), and integrating over our scaled

momentum coordinate µ, we obtain the Brinkman hierarchy

∂φ̂m

∂t
+H φ̂m +

1
√
β

(

∂φ̂m−1

∂x
+ (m + 1)

∂φ̂m+1

∂x

)

+


βΩ2xφ̂m−1 + πγΩmφ̂m −


βZφ̂m−1 = 0. (A9)

We also define the differential operators

J = −
√
β

η

(

1

β

∂

∂x
+Ω2x − iZ

)

,

JD = −
1

η
√
β

∂

∂x
,

(A10)

which allows us to write

1

η

(

˙̂φm +H φ̂m

)

+ mφ̂m = J φ̂m−1 + (m + 1)JDφ̂m+1,

where η = πγΩ quantifies the friction acting on the mode.

We now move to Laplace space with respect to the time

coordinate, using the transformation

ϕ̃n = ϕ̃n(x, s) =

∞

−∞

φ̂n(x, t)e
−stdt, (A11)

which leads to the relation

∂φ̂n

∂t

LT
=⇒ sϕ̃n − φ̂n(x,0). (A12)

For a mode initially in a thermal state, the initial conditions

of the system are entirely determined by φ̂0(x,0), such that

φ̂n(x,0) = 0 for n > 0, leading to the following hierarchy of

equations in Laplace space:

1

η

�
sϕ̃0 + φ̂0(x,0) +H ϕ̃0

�
= JDϕ̃1,

1

η
(sϕ̃1 +H ϕ̃1) + ϕ̃1 = J ϕ̃0 + 2JDϕ̃2,

1

η
(sϕ̃2 +H ϕ̃2) + 2ϕ̃2 = J ϕ̃1 + 4JDϕ̃3,

...

We can close these equations by assuming ϕ̃3 = 0 (which is

consistent with keeping terms to leading order in η−2) and

hence solve for ϕ̃0. Inverting the equation for ϕ̃2,

ϕ̃2 =
J ϕ̃1

1
η
(s +H ) + 2

, (A13)

and substituting this into the equation for ϕ̃1 gives

ϕ̃1 =
J ϕ̃0

1
η
(s +H ) + 1 +

2JDJ
1
η (s+H )+2

, (A14)

which leads to the equation

1

η

�
sϕ̃0 + φ̂0(x,0) +H ϕ̃0

�

=
JDJ ϕ̃0

1 + 1
η
(s +H ) +

2JDJ
1
η (s+H )+2

.

In the very large damping limit, the friction coefficient η is

much larger than any other scale. Hence, we can keep terms

only to leading order in the inverse friction η−1, giving

sϕ̃0 + φ̂0(x,0) +H ϕ̃0 = ηJDJ ϕ̃0. (A15)

Inverting the Laplace transform, we therefore have

∂φ̂0

∂t
= −i


(

ϵ

2
+ κx

)

σz +
∆

2
σx, φ̂0


+ ηJDJ φ̂0. (A16)

Finally, we can decompose φ0 in terms of the dimer states,

such that φ̂0 =
2

i, j µi j(x, t)|i⟩⟨ j |, where µi j(x, t) describes an

element of the dimer density matrix and is dependent on

the RC position. Substituting into Eq. (A16), we obtain the

Zusman equations

∂µ11(t, x)

∂t
=

1

2πγΩ

∂

∂x

(

(Ω2x + κ)µ11(t, x) +
1

β

∂µ11(t, x)

∂x

)

+ i
∆

2
(µ12(t, x) − µ21(t, x)), (A17)

∂µ22(t, x)

∂t
=

1

2πγΩ

∂

∂x

(

(Ω2x + κ)µ22(t, x) +
1

β

∂µ22(t, x)

∂x

)

− i
∆

2
(µ12(t, x) − µ21(t, x)), (A18)

∂µ12(t, x)

∂t
=

1

2πγΩ

∂

∂x

(

1

β

∂µ12(t, x)

∂x
+Ω2xµ12(t, x)

)

+ i(ϵ + 2κx)µ12(t, x) + i
∆

2
(µ11(t, x) − µ22(t, x)), (A19)

∂µ21(t, x)

∂t
=

1

2πγΩ

∂

∂x

(

1

β

∂µ21(t, x)

∂x
+Ω2xµ21(t, x)

)

+ i(ϵ + 2κx)µ21(t, x) − i
∆

2
(µ11(t, x) − µ22(t, x)). (A20)

To solve the Zusman equations, we need to specify initial

conditions. If we assume that the system starts in the excited

state and the mode in a thermal state ρth =Z0
−1 exp{−βΩa†a},

then the only non-zero variable will be µ11(x,0). Hence, the

thermal state in Wigner space may be written as

Wth =
2 tanh

(

βΩ

2

)

π
e
− tanh

(

βΩ
2

)

(Ωx2+ 1
Ω
p2)

. (A21)

We then integrate over the momentum coordinate to attain the

initial condition
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µ11(x,0) =

∞

−∞

dpWth(0, x,p),

= 2



tanh
(

βΩ

2

)

π
e
−Ω tanh

(

βΩ
2

)

x2

, (A22)

while µ12(x,0) = µ21(x,0) = µ22(x,0) = 0 for all x.
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