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Energy Transfer Properties of Nonlinear
Systems in the Frequency Domain

Z Q) Lang and S A Billings

Department of Automatic Control and Systems Engineering
The University of Sheffield, Mappin Street,
Sheffield, S1 3JD, UK

Abstract: In this paper, an analysis of the energy transfer properties of
nonlinear systems in the frequency domain is studied based on a new
concept known as Nonlinear Output Frequency Response Functions
(NOFRFs). The new concept allows the analysis to be implemented in a
manner similar to the analysis of linear systems in the frequency domain,
and provides great insight into the mechanisms which dominate the
nonlinear behaviour. The new analysis 1s also helpful for the design of
nonlinear systems in the frequency domain.

1 Introduction

Linear systems are in general relatively easy to analyse, have provided a basis
for the development of the majority of control system design and signal processing
methods, and are widely accepted by practitioners in many different fields. However,
there are certain types of qualitative behaviour such as the generation of
superharmonics, subharmonics, and chaos that linear models cannot exhibit (Pearson
1994). In the cases where these are dominant or significant system behaviours,
nonlinear models are required to describe the system, and nonlinear system analysis
methods have to be applied to investigate the behaviour. The term superharmonic
generation refers to the generation of higher harmonic terms when a system is subject
to a sinusoidal input. This phenomenon is the simplest and most common of the three
mentioned above and is directly related to the frequency domain energy transfer in
nonlinear systems considered in the present study.

It 1s well known that in linear systems the possible output frequencies at steady
state are exactly the same as the frequencies of the input. This concept has been
widely applied in various engmeering disciplines to address system analysis and
design issues. For example, a common feature in the design of many mechanical and
civil engineering systems is that the dynamic amplification is minimised by designing
the systems’ natural frequencies to be outside the range of the main loading
frequency spectra. This is based on the assumption that the dominant behaviour of the
systems is linear.

In the nonlinear system case, however, a distinct frequency domain property is
that the output frequencies at steady state are often richer than the frequencies in the



input. The generation of superhamonics is a typical example of this phenomenon. A
more complicated example is that when the system input is composed of several
frequency components such as, e.g., the frequency components at angular frequencies
®,,®,,o,, the corresponding output frequencies at steady state could include the

original input frequencies: @, @, a; harmonics 2w, 2w,,2@,,...; intermodulations:
o, —o,, 0, —w,, ...; and many others. Some energy of the input signal is therefore
transferred from the input frequency modes to modes at other frequency locations.

This energy transfer phenomenon has been observed i many practical systems
in electronic, mechanical, civil, and materials engineering (Szczepanski and
Schaumann 1989 and 1993, Popovic et al. 1995, Neyfeh and Neyfeh 1994, Wilhem,
et al. 1999). In offshore structures, for example, the phenomenon 1s apparent in three
different effects; slow drift motion, springing, and ringing (Davies et al 1994,
Nesteyard 1993, Jefferys and Raincy 1994, Remery and Hermans 1972, Hsu and
Blenkamn 1972). The common feature of these effects is that the energy of the system
input (wave movement) is transferred from the frequency modes in the input to the
output (motion of the structure) frequency locations which are either below or above
the input frequency band. The study of nonlinear phenomena is therefore of
considerable practical significance, and not accounting for the nonlinear behaviour at
the design stage may prove to be troublesome if not catastrophic (Nayfeh and Nayfeh
1994, Popovic et al 1995).

Previous studies of nonlinear phenomenon can be classified as time domain or
frequency domain methods. Time domain methods typically involve the numerical
integration of the differential equation description of the nonlinear structures under
investigation or finite element simulation techniques (Rainey 1989, Jefferys and
Rainey 1994, Stansberg 1993, Farnes, et al. 1994, Lee and Newman 1994, Taylor et
al. 1992, Taylor and Natvig 1994). These techniques have been extensively applied to
many nonlinear engineering systems including offshore structures. But often the
results achieved can only indicate whether the phenomenon takes place under
considered loading situations. Many of the phenomena of interest, however, depend
on the system mechanisms in the frequency domain. Recently, the Generalised
Frequency Response Functions (GFRFs) have been used to explain nonlinear energy
transfer phenomena (Billings and Yusof 1996, Boaghe et al. 2000, Boaghe, Billings,
and et al. 2002). The GFRFs are the extension of the frequency response function of
linear systems to the nonlinear case and provide a description of the characteristics of
nonlinear systems in the frequency domain.

In this paper, the frequency domain analysis of nonlinear systems is conducted
from a new perspective. The study is based on a new concept known as Nonlinear
Output Frequency Response Functions (NOFRFs) and emphasises the combined
effects of the input and the system frequency domain characteristics that produce
phenomena in the nonlinear case. The concept of NOFRFs allows the analysis of
nonlinear systems to be implemented in a manner similar to the analysis of linear
system frequency responses. This provides great insight into when, why, and how the
particular phenomena of new frequency generation occur in nonlinear systems, and
can reveal the real mechanisms which dominate the occurrence of the nonlinear
behaviour. The new analysis provides a straightforward and transparent interpretation
for nonlinear phenomena in the frequency domain. The results also have application
in the design of nonlinear systems where a desired frequency domain behaviour is
important for system performance.



2 The frequency response of linear and nonlinear systems

Historically frequency domain methods have dominated the theory and practice
of control and signal processing for many years. This is because frequency domain
analysis often provides a physically meaningful insight into the behaviour of systems
under investigation which complements time domain analysis.

The output frequency response of a stable time-invariant linear system can be
expressed by

Y(jo)=H(jo)U(jw) (2.1)
when the system is subject to an input where the Fourier Transform exists. In (2.1),

Y(jw) and U(jw) are the system input and output spectrum which are the Fourier
Transforms of the system time domain input «(¢) and output y(¢) respectively.

Consider the class of nonlinear systems which are stable at zero equilibrium and
which can be described in the neighbourhood of the equilibrium by the Volterra series

yoy=Y [ - _[;h”(rl,...,rn)ﬁu(t"rf)drr. (2.2)

n=l

where 7 (z,,...,r,) is the nth order Volterra kernel, and N denotes the maximum

order of the system nonlinearity. In Lang and Billings (1996), an expression for the
output frequency response of this class of nonlinear systems to a general input was
derived. The result is given by

N
{Y(jw)zZY”(_jw) for ¥ w

=1

j/’ﬁ

(2ﬁ)n—l

2.3)

lyn (}'&)): j Hu (ja)n‘"":J.w:))nU(ja)i)dgjlru
i=/

W+ 0, =0

This expression reveals how the nonlinear mechanisms operate on the input spectra to
produce the system output frequency response. In (2.3), Y, (jw) represents the nth

order output frequency response of the system,
]j’“ (]a)l eees ja)”) = ff ]7” (Ti yoros T, e“[m|r|+ ..... +ru"r,,).."d1.1 ...dT” (24)

is the definition of the nth-order Generalised Frequency Response Function (GFRF),
and

[ H,Go.jo)] [UGe)s,,
=1

(W +...+ 0, =0

denotes the integration of H ( jw,,...,_ja)n)HU( jw.) over the n-dimensional

i=|
hyperplane w, +---+®, =@ . Equation (2.3) is a natural extension of the well-known
linear relationship (2.1) to the nonlinear case.

For linear systems, equation (2.1) shows that the possible output frequencies are
the same as the frequencies in the input. For nonlinear systems described by equation



(2.2), however, the relationship between the input and output frequencies is generally
given by

Jy = U.f}‘” (25)

n=l1

where f, denotes the non-negative frequency range of the system output, and f,
represents the non-negative frequency range produced by the nth-order system
nonlinearity. This is much more complicated than in the linear system case.

In 1997, Lang and Billings derived an explicit expression for the output
frequency range f, of nonlinear systems when subjected to a general input with a
spectrum given by

_ U(jw) when |o|€(a,b)
U(jw)= | ‘ (2.6)
0 otherwise
where b > a =0 . The result obtained 1s
f): - f'))'\' U j‘yk\‘-nz,a'-n
i—l
U]k when i [ = J<1
o=l (a+b) |(a+b)
4 ¥, i
U],‘, when i —t = JZI
par (a+b) |(a+b)
(2.7)

P L I
(a+b)

where U means to take the integer part

I, = (na —k(a+b),nb—k(a+ b)) fork=0,..,i -1,
1. =(0,nb~i"(a+))

In (2.7) p" could be taken as 1,2,---,| N/2 |, the specific value of which depends on the
system nonlinearities. If the system GFRFs H, ,; ,,(.)=0, for i=1---,g-1, and

Hy_5yn()#0, then p”=¢. This is the first analytical description for the output

frequencies of nonlinear systems, which extends the well-known relationship between
the input and output frequencies of linear systems to the nonlinear case. A similar
result was developed one year later by Raz and Veen (1998) from a different
perspective.

The evaluation of the output frequency range f, of a nonlinear system can be

implemented from equation (2.7) given the input frequency range (a,b) and the orders
of nonlinearity involved in the system description. Clearly f, contamns much richer

frequency components than the range (a,b) of the input frequencies.

Note that the f,, determined by (2.7), is the frequency range where frequency
components may exist in the output of a nonlinear system. The result, however, does



not mean that the output frequency components are definitely available over the whole
range of f,.

The above basic results show the composition of the frequency responses of a
general class of nonlinear systems and the possibility of the system moving signal
energy from the input frequency range to other frequency locations. However, when,
why, and how the relocation of the frequency domain response takes place with a
nonlinear system cannot be determined from these results. In the next section, a new
concept 1n the frequency domain analysis of nonlinear systems known as Nonlinear
Output Frequency Response Functions (NOFRFs) is proposed in order to provide an
informative and physically meaningful interpretation of this phenomenon.

3 Nonlinear Output Frequency Response Functions (NOFRFs)
3.1 The Concept

The concept of the frequency response function in linear systems theory is well-
known and has been widely applied. The Generalised Frequency Response Functions
(GERFs) can be considered as the extension of the linear frequency response function
concept to the nonlinear case. However, the relationship between the input and output
spectra of nonlinear systems is given by equation (2.3), which is much more
complicated than in the linear system case. This relationship shows that the GFRFs
cannot be used to provide a complete description of the output frequency response of
nonlinear systems. The concept of Nonlinear Output Frequency Response Functions is
introduced in this study to partly address this problem. The new concept can be
regarded as another extension of the linear frequency response function concept to the
nonlinear case, which is a complement to the GFRFs.

Consider a comparison between the output frequency response of a static linear
system

w(t) = ku(r) (3.1)
and a static nonlinear system

y(t) =l (1) (3.2)
The frequency domain representation of (3.1) and (3.2) are

Y(jw)=kU(jo) (3.3)
and

Y(j)=kU,(jo) (3.4)

respectively, where U,(jw) denotes the Fourier transform of u’(t) and can be
expressed i terms of the input spectrum U(jw) as

Valigl=s 1/I | HUUm)donw (3.5)

W)= i=l

The comparison of (3.3) with (3.4) indicates that U,(jw) should be regarded as
the natural extension of the input spectrum U(j) to the second order nonlinear case.



Because of this, the natural extension of U(jw) to the nth order homogeneous
nonlinear situation should be

Un(,jﬂ)) = ]/\/; j HU(.jmi)do-nm (3‘6)

5 el
(BT

+ot, =0 i=l

which is the Fourler transform of the system input u(z) raised to the nth power.
U, (jw) is an important concept for the description of the output frequency response

of nonlinear systems. However, as far as we are aware, this is the first time that this
concept has been introduced and used for the analysis of nonlinear systems.

The output frequency response of linear systems is given by equation (2.1). This
can be rewritten as

Y,(jo)=G,(jo)U,(jo) (3.7)
where Y,(jo)=Y(jo), G,(jo)=H(jo), and U,(jo)=U(jo).

The nth order output frequency response of nonlinear systems is given by the
second equation in (2.3). Given that U, (je) is the natural extension of U,(jw) to the

nth order homogeneous nonlinear situation, rewrite the second equation in (2.3) as

H,(j&, e joo, N TU(j0,
J n(.]wi .]wn)g (Jco;)dcrmu 1‘\/;

Yu (_j(U) - R " 2 n-1 -[ HU(JG){ )do—frm
j n U(]CU} )do-mu ( ﬂ-) Lt L

o+ goun 00, =10 i=1

=G, (jo)U,(jo) (3-8)

under the condition

j ﬁ U(jw)do,, #0 (3.9)

= =7
¥y +w, =

Y (jw) is expressed in a manner similar to the description for the output frequency
response of linear systems. In (3.8),

J. H”(ja)],...,jﬂ)”)HU(]‘H},—)({O’"{U
G” ( ] ([)) - ), = i=] (3 . 10)

[ TIvGexs,,

@+, = =1

is defined as the nth order Nonlinear Output Frequency Response Function when @ 1s
in the frequency range where condition (3.9) holds.

3.2 The Properties

The concept of NOFRFs has been proposed by mtroducing U, (j») into the

second equation in (2.3), the description for the nth order output frequency response
Y,(jw) . Notice that different definitions can be made by introducing a different term



associated with U(jw) to yield a similar description for ¥, (jw). The justification for
the present definition is based on its properties.

The NOFRFs G,(jw), n=1,....N, have the following three important properties.

(1) G,(jow) allows the system nth order output frequency response Y, (jw)

to be described in a manner similar to the description for the output
frequency response of linear systems,

(11) G,(jow) 1s valid over f, , the output frequency range contributed by the
nth order system nonlinearity, provided that condition (3.9) is satisfied.

(iii)  G,(jw) 1is insensitive to a change of the input spectrum by a constant
gain, that is,

G” (_](0) U jooy=al I ( o) = G’? (JCI))‘ US jeay=l( jeo)

The first property is straightforward. From equation (3.8) the total output
frequency response of the nonlinear systems can be described as

N N
Y(jw)=Y Y, (jo)=) G, (jo)U,(jo) (3.11)
n=/ n=/
This yields a description for Y( ), which is similar to the description for the output
frequency response of linear systems.

From (3.8), G,(jw) can be written as
G,(jo)=Y,(jo)/U,(jo)

Because V,(jo)=U,(jw)=0 when @ is outside the frequency range of f, , we have

the second property of G,(jw). This property implies that G,(jw) can be used to
study the behaviour of nth order homogeneous nonlinear systems over the frequency
range of f, where the system nth order output frequency response is located.

The third property is also straightforward since

M e
a” J Hu (-] a)l ks "‘-’-] CU” )HUUCU! )do—rrw
o) . Y, =0 i=l

; = X .12
G” (/ (U) (&1 ,"un:u!_f( jon - Gﬂ (_]ﬂ))‘ U(jrulw—-lni(jru) ( )

Of” _[ [_](](Uf )do-ﬁru
1

)+ b, =@ =]

This property reflects the similarity in function between the NOFRF G, (jw) in nth

order homogeneous nonlinear systems and the frequency response function in linear
systems. This property and equation (3.8) imply that G,(jw) behaves like a dynamic

filter and operates on U,(jw) over the frequency range of f, to produce the
contribution of nth order nonlinearity on the system output frequency response.

To clearly demonstrate the filtering effect of G,(jw) , consider the Hammerstein

system which represents a class of nonlinear systems which can be described by a
memoryless nonlinear element

u(t) = flu()] = au(t) + ou )+, +a,u’ (1) (3.13)



followed by linear dynamics with transfer function H(s). The GFRFs of the
Hammerstein system can readily be derived as

H (jo, -, jo,)= a”H[j(a); o+, )] n=1,+,N (3.14)
Therefore, the NOFRFs of the system are

1) F oot =0 i=]

[ [[vGews,,

W)+, =00 i=l

Gu (.j(‘)) =

J. CX‘,H[j((Uf +eidk @, )]ﬁU(jmy )dairru
i=1

gt =
n
j l I U(]ﬁ), )do—rrm

iy, = =1

=a,H(jw) n=1,....N (3:15)
and, in this case, equation (3.8) becomes
)/li (jw) = G.ll (jw)UH (-]aj) = CXHH(-].Q})UH (ja)) (3 . 1 6)

These results show that in the case of the Hammerstein system G,(jw) happens to be
a linear filter, which operates on U, (jw@) to produce the nth order output frequency
response of the system.

Although it is reasonable to interpret the effect of G,(jw) in terms of filtering,
and this is the basis of the analysis in Section 4, it should be emphasised that G,(jw)

generally depends on both the frequency domain characteristics of the system nth
order nonlinearity and the input spectrum. This is a distinct difference between the
linear (n=1) case and the homogeneous nonlinear (» > 2) situation. It is well known
that, unlike linear systems, the behaviour of nonlinear systems generally depend on
both the system properties and the input. So the dependence of G,(j@) on the input
spectrum is a manifestation of this general nonlinear property in the frequency
domain.

The effect of the input spectrum U(jw) on G,(jw) is complicated. Rewriting
equation (3.10) as '

GUw= [ Hop jw,,)[ﬁvuw.-) [ Ivvexo, o,
i=l

[OTE S e ] W+, =0 i=]

(3.17)

shows that G,(jw) can be regarded as the result of a ‘weighted’ sum of the GFRF
H,(jw, - jo,) over the n dimensional hyper-plane w, +---+®, =w. The ‘weight’ at

each point of {w,--.e,} is HU(ja),)nonnalised by j ﬁ Ujo)do,,

i=/ W+t =0 i=1

which is the sum of HU(ja),-) over the same hyper-plane. This interpretation for
i=1

G,(jw) emphasises its main dependence on the nth order GFRF H,(jw,,---, jo,), but



also indicates that the effect of the input spectrum U(jw) determines how
H,(jw,, . jw,) over the whole hyper-plane @, +---+®, =@ is combined together to
form the nth order output frequency response function. This observation is the basis of
another novel application of the concept of NOFRFs. This application is concerned

with fault detection and categorisation using the NOFRF concept for engineering
systems and structures and will be introduced in details in later publications.

4 New Frequency Generation Effects in Nonlinear Systems

The introduction of the concept of NOFRFs leads to a new expression for the
output frequency response of nonlinear systems given by equations (3.8) and (3.11).
In the present study, two objectives are to be achieved from equations (3.8) and
(3.11). The first is to provide a qualitative interpretation regarding when and why new
frequency generation happens in nonlinear systems so as to reveal the mechanism
which dominates the nonlinear behaviour. The second is to describe quantitatively
how a specific new frequency generation phenomenon occurs with a nonlinear system
when subject to a specific input. This is helpful for engineers trying to understand the
mechanisms behind the phenomenon, and informative for system design where the
objective is to achieve a desired frequency domain performance.

4.1 Qualitative analysis

In Section 3.1, It has been shown that U, (jw) is the Fourier Transform of the

system time domain input raised to the nth power. A comparison of the second
equation in (2.3) with equation (3.6) indicates that U, (jw) can also be interpreted as
the output spectrum of the nth order homogeneous nonlinear system whose GFRF 1s a
constant of value one. This means that the frequency range of U, (jw) is f, given by

(2.7), which is also the real output frequency range of the system if condition (3.9) is
satisfied. By the real output frequency range, we mean the frequency range where the
amplitude of the system output frequency components is not zero or not negligible.
Consequently equation (3.8), that is, ¥,(jo)=G,(jo)U,(jo) where G,(jo) is well
defined over f, implies that the real output frequency range f, of an nth order

homogeneous nonlinear system satisfies the relationship
f}',,R € f)',, (4.1)

For an nth (n>2) order homogeneous nonlinear systen, assume that the input
frequency components are within the range of (a,b). When the nonlinearities of the
system generate power at new frequency locations a part of or the whole f, must

have no overlap with the input frequency range (a,b). This can be explained from (3.8)
in terms of the composition of U,(jw) and the filtering effect of G,(jw). The
nonlinear composition of U, (jw) from U(jw) generates the frequency components in
fy, which can be determined using (2.7) and which are often much richer than the
frequency components in the input. The filtering effect of G,(jw) attenuates some of
the frequency components in f, and produces the output frequency components f,

some or all of which are not available in the input. In such cases, energy is generated
at new frequency locations.



Fig. 4.1 schematically illustrates a specific case where the combination of the
two mechanisms generate frequencies at a new location. First, the nth order
homogeneous nonlinear system with GFRF H, (jw,, -, jw,)=1 operates upon the

input spectrum U(jw) and produces U, (jw) the frequency range f;, of which is
greater than the frequency range (a,b) of the input. Then G, (jw) operates on U, (jw)
like a filter within the frequency range of f, =, resulting in an output spectrum
Y,(jw) whose real frequency range /, ~is within f, but does not overlap with (a,b),

resulting in a power transfer to a new frequency range.

For nonlinear systems with nonlinearities up to Nth order, the output spectrum
is given by (3.11). The real frequency range f, of the system output is therefore
N
within the union of U fy, »thatis,

n=l

i cUt 42)

n=l
Power can be transferred to new frequency locations in this general situation when a
part of or the whole f, has no overlap with (a,b). This can happen in two different
scenarios. Denote the output frequency range which is contributed by the nth (n>2)
order nonlinearity and which is outside the input frequency range (a,b) as fy . Then a

power transfer to a new frequency range happens when

(a) fy ,n=2,..,N, have no overlap at all with each other, or
(b) £y, n=2,..,N, have overlap but the output spectrum Y(jw) 1s not zero or

N
negligible over the whole range of | J /7. .

n=2

N
In case (a), some input signal energy will be transferred from (a,b) to U fy, - In
n=2

case (b), some input signal energy will be transferred from (a,b) to a frequency range

N
E - "N
within U Ty, -
Based on the above analysis the generation of power at new frequency locations
in nonlinear systems is produced due to the combined effects of

(a) The nonlinear composition of U, (jw) from the input spectrum U(jw),

which often generates much richer frequency components than the
frequency components in the input.

(b) The filtering effect of the NOFRF G, (jw), which determines the real output

frequency range contributed by nth order homogeneous nonlinear systems.
When an energy transfer phenomenon happens with the system, the whole
or part of the real output frequency range is outside the input frequency
band.

10



(c) The inter-kernel interference between the different orders of homogeneous
nonlinear systems involved in the system. This eventually determines
whether a frequency component outside the input frequency band produced
by the homogeneous nonlinear systems can be observed in the system
output.

Given the homogeneous nonlinear system components involved in a system and
a specific input, the filtering effect of the NOFRF G,(j®) is an important factor

which determines where the output power components are located in the frequency

"

domain. A considerable gain of G, (jw) at a frequency over the frequency range f;

implies that the mput signal energy could be transferred by the system to this
frequency unless the inter-kernel interference 1s counteracting and produces a
negligible response at this frequency. An inspection of the gain of the NOFRFs
G,(jw) for n=2, ... , N can therefore provide a significant insight into how the

phenomenon takes place.
4.2 Quantitative Interpretation

The mechanism which dominates the occurrence of a frequency domain energy
transfer phenomenon in a nonlinear system can generally be explained based on the
qualitative analysis discussed in Section 4.1. However, the behaviour of nonlinear
systems is input dependent. In order to understand exactly how the phenomenon
happens with a system, it is necessary to investigate quantitatively how the combined
effects of the system and a specific input produce the phenomenon. The new concept
of the NOFRFs reflects the combined contribution of the system and its input to the
system frequency domain output behaviour. The procedure for a quantitative
interpretation therefore includes

(1) Evaluate the NOFRFs under a considered specific input,

(i1)Inspect how the NOFRF G (jw) operates, like a filter, on U, (j@) to
produce the nth order output frequency response Y (jw)=G,(jo)U,(jo),
and

(111) Inspect how the inter-kernel interference effect of

N

D> Y, (jo)y=> G, (jo)U,(jo)

=/ =

works to generate the output frequency response Y(jw) at a frequency or
over a frequency range.

4.2.1 Evaluation of G,(jw)

From the definition of G,(j@) in (3.10), a direct evaluation of G,(j@) requires
a knowledge of the GFRF H, (jw,,--jw,) of the system and the spectrum U(jw) of

the considered input. In the following, however, an effective algorithm is proposed
which allows the evaluation of the NOFRFs to be implemented directly using the
system input output data.

From equation (3.11), it is known that

11



Y(jw)=3G,(jo)U,(jo) ~2(GR+JG,, v+ ju!)
=l n=|

= Ryrk _ ~ippl Ryrl IrrR Y. (4.3)
=yl -6 )6t « gt

n=1

where GF and G/ are the real and imaginary part of G,(jw), and U} and U/ are the
real and imaginary part of U, (o). Therefore

Re V(i R R gl gl R
€ -(j(L?) = U] i ?UN]* U}q, § U.;N G (44)
ImY(jw) Ul o s 08 | 6

where G* =[GF.....GF1" and G’ =[G/ ,-,G}1".

Consider the case of u(t)=cau () where « is a constant and » () is the input
signal under which the NOFRF's of the system are to be evaluated.

U, (jo)= 7 /I j HU(_/‘(UE)(IO'M

?1')” =)

- @+t =w =]

o' 20 [ [V e, =a"UsGe)
ZJT) O, =w =1

where U"(jw) is the Fourier Transform of «"(r) and

1/\n
U‘”(‘]‘CU}:;“— U (]Cl) )([O-nm
% I [} !{U r(JH
Equation (4.4) can be written as

ReY(jw) ch*R,---,aNU*R,faU*",---,—aNU;,’ Gk
[ H e Uy al, / (4.6)

ImY(jw) b o g U el P s e | Y
where U* and U]’ are the real and imaginary part of U,(jo), and G'* and G"
the real and imaginary part of G" =[G, -Gy which are the NOFRFs to evaluate.
Excite the system under study N times by the input signals
a,u*(r), i=l...N
where N >N and ay,ay_,.--,a, are constants which satisfy the condition

O >0s , >>0,>0

N N-t

to generate N output frequency responses ¥'(j@), i =1..,N . From equation (4.6), it is

known that the output frequency responses can be related to the NOFRFs to be
evaluated as below.

_ R
YN (jw) = AU (j(u)‘:G } (4.7)

where
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[ReY'(jo) |

ImY "(j(u)
G OE (4.8)
RerY (jo)
_ImYN(jm)

J

and
r 4 Ny * # N, *
il R ot UG U e e U
*J Ny *l R Ny *R
aUy ey Uy oma Uy
LN, - :
AU (jw) = . (4.9)
R Ny R # Ny*l
C!K;Ul ,"',a}v UN ,—Of},le ,"',—O.’ﬁ UN
*] Nyt *R Ny *R
L a‘le ,---,aﬁ UN,(Z'\—,U] ,"',C{N UN |

Consequently the values of the NOFRFs, G{k( jw),---,G;,(ja)), can be determined using
an Least Square based approach as

wf

R
{G }=[Gf”(m),---,G;’?(w),G:’(m),---,cj‘\,’(m)]f'
} (4.10)
_ ]:(AUI""'Q(](()))T (AU""""‘"(jm)ﬂ (AU”""N(j(u))TYl‘""’v(jm)

This algorithm for the determination of the NOFRFs requires experimental or
simulation results for the system under N different input signal excitations which are
au (1), i=1...N. The approach can be applied when either a simulation model such

as a mathematical or finite element model is available or practical experiments can be
performed on the system as required.

4.2.2 Inspection of the filtering effect of G, (jw) on U, (jw)

It is well known in linear system frequency response analysis that an inspection
of the magnitude of the frequency response function is an important means of
studying the system behaviour. The frequency locations where peaks can be found in
the magnitude characteristic of the frequency response function indicate resonance of
the system. In mechanical engineering systems, for example, this is called the analysis
of transmissibility, indicating that the results reflect how the system transmits the
input signal energy to the output at any frequency.

The inspection of the filtering effect of G,(j®) can be regarded as an extension
of the well-known linear analysis to the nth order homogeneous nonlinear system
case. The implementation of this suggests a graphical display of |G, ( jw)| over the

interested frequency range. Because

Y,(jo)=G,(jo)U,(j@)
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|G, (jw)| can be explained to be the transmissibility of the nth order homogeneous

nonlinear system for the specific input under consideration. The analysis of |G, (jw)|

can therefore be used to reveal the mechanism, which induces new frequency
generation. A peak in |G,(jw)| at a frequency implies that the contribution of the

system input to the nth order output, which is measured by |Un( ja))|, 1s greatly

enhanced at this frequency. Therefore, when the peak appears outside the imput
frequency band new frequency components are generated. For n>1 G,(jw) 1is

generally dependent on the input. So the analysis result 1s input dependent.

4.2.3 Study of the effects of inter-kernal interference

The output frequency response Y(jw) is determined by equation (3.11), the

summation of the output frequency responses of all homogeneous nonlinear systems
involved in the system. If some input signal energy is transferred by the nonlinear
system to a frequency location outside the input frequency band, the NOFRF analysis
above indicates the combined contribution of the system and the input at different
nonlinear orders to the occurrence of the phenomenon. But to unravel the
phenomenon a study of the composition of Y(jw) by Y, (jw)=G,(jo)U,(jo), for

n=1,..,N, at this frequency is also needed to reveal the effects of inter-kernal
interference.

It has been shown in Section 4.1 that there are two scenarios where the energy
transfer phenomenon may take place. In scenario (a), there is no overlap between the
frequency ranges which are outside the input frequency band and which are produced
by different order homogeneous nonlinear systems. In this case, there is no interkernal
interference effect on the new frequency generation phenomenon. In scenario (b),
however, the phenomenon needs to be interpreted by taking the influences of all
involved system nonlinearities into account. Therefore, the NOFRF G, (j@) based

analyses for all involved nonlinear orders are needed to determine exactly how the
phenomenon arises.

Given a nonlinear system and a frequency domain energy transfer phenomenon
with the system, the above three step procedure can be used to quantitatively reveal
the mechanisms behind the phenomenon. The significance of this study is in two
respects. First, the interpretation of the new frequency generation can help engineers
to fully understand the phenomena which is totally different from the linear system
case. Secondly, given a specific input, a comparison of the results of this study under
different values of system parameters will show the effects of the parameters on the
energy transfer phenomenon. This could be an effective means for the frequency
domain design of nonlinear systems and 1s worth further study.

The transmissibility concept in linear system frequency domamn analysis has
been mentioned above. Transmissibility is normally defined as the magnitude of the
ratio between the system output and input spectrum. Although this definition is
theoretically not correct for nonlinear systems, it is still widely applied in industry for
nonlinear frequency domain analysis due to its simplicity. The three step analysis can
be a powerful complement for the transmissibility analysis for nonlinear systems. The
results achieved are more accurate regarding the system frequency domain behaviour
and informative for system design.
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5 Energy transfer phenomena of a nonlinear system

In this section, the quantitative analysis procedure in Section 4.2 is applied to
investigate the generation of new frequency components in a nonlinear system.

5.1 The nonlinear system
The differential equation of the considered nonlinear system is given by

. a"_]’gt) e dy(t)
dt- dt

k() + kv (1) + I,y (1) = u(r) (5.1)

where y(t) and u(t) are the input and output of the system, m, ¢, k,, k,, and k, are the

system parameters. An example of a practical system which can be described by the
differential equation is the mechanical oscillator shown in Fig.5.1 where u(t) is the

force imposed on the mass m, y(t) is the displacement of the mass, and ¢, %,, k,, and
k, are characteristic parameters of the damper and spring respectively.

In the following, consider the case where (Worden et al. 1994)
me= el =l b=ell, b=zl

to study the frequency domain behaviour of the system when subject to two specific
inputs using the analysis procedure in Section 4.2.

5.2 Analysis of the system output frequency response to the first input
The first input 1s given by
3 sm(2x 35 xmxt)—sin(2x30xmxt)

u(t) = ; (5.2)

t=-=511%0.005sec,---,512x0.005sec

and shown in Fig. 5.2(a). The output response of the system to this input is obtained
using a fifth order Runge-Kutta simulation method, and the result is shown in Fig.
5.2(b). Fig. 5.3 shows the spectra of the input and output and indicates that some of
the input energy is transferred by the system from the input frequency band (30,55)
Hz to the lower frequency range (0,30) Hz.

The NOFRFs of system (5.1) when subjected to input (5.2) are evaluated up to
the fourth order over the frequency range (10,20) Hz to yield G,(j2#f), n=1,2,3,4, as

shown in Fig.5.4. The results indicate that over this frequency range a maximum gain
appears near 16Hz for G, (j27f), n=2,3,4. The nth order output frequency response

Y,(j2af) and the contribution of the system input to the response U, (j2af) are

shown in Figs 5.5 and 5.6 respectively. How the frequency domain behaviour of the
four homogeneous nonlinear systems are produced over the frequency range (10,20)
Hz can be clearly explained from Figs 5.4-5.6. G,(j27f) behaves like a filter that

shapes U, (j2#f) to yield Y, (jw)=G,(jo)U,(jw). Over the frequency range
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(10,20) Hz, the maximum gain of G,(j27f) near 16Hz produces a maximum nth
order output frequency response at this frequency for n=2,3.4.

The system output frequency response is the effect of a combination of the
output frequency responses of the involved homogeneous nonlinear systems. This can
be interpreted, to a certain extent, from the above NOFRF based analysis under the
assumption that

4

V(i)=Y G, (j2A ), (j24) (5.3)

n=l

But an analysis of the inter-kemel interference may also be needed to determine
exactly how a particular phenomenon arises.

In order to show how the inter-kernal interference works to produce the system
output frequency response, the frequency at which a maximum output frequency
response takes place in the range of (10,20)Hz is evaluated. The result is
f., =15.82 Hz. The contribution of each of the four homogeneous nonlinear systems to

the output response at this frequency can then be determined, and the results are
shown in Table 1.

Table 1 The contribution of different homogeneous nonlinear effects
to the output response at frequency f,, =15.82Hz when the
system is subject to the first input

n nth order output frequency Magnitude of the nth order
response output frequency response
G, (G2 W, G2 ) s 520 |G, G2 U, (280 ) £ Lis o
1 0 0
2 (0.2778-0.0513j)x 10~ 0.2336x 107
3 (=0.2821+0.0636 j)x 10™" 0.28012x107°
4 (0.0948 —0.0214 j)x 10~ 0.0927 x 107

Table 1 shows that under the condition of (5.3) the system response at frequency
s S8R 15

4
Y(j2af,) = ZG” (j2f, U, (j27f,, ) = 4.05495x 107 —9.13720x10°

n=|

the amplitude of which is

¥ (j2af,))| = }4.05495 x107° =9.13720x107° j| = 4.15662x107°

The result shows how a combination of the intra and inter kernel interference
cenerates the system output frequency response. The frequency domain behaviour of
the system at other frequencies can be quantitatively analysed in the same way to
explain how the behaviour occurs.
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To confirm the effectiveness of the above analysis where the maximum
nonlinear order N is assumed to be 4, the system output spectrum evaluated using the
direct FFT at f,, =15.82 Hz was obtained as

Y (j24f,,)| = 3.93462x 107

This is close to the result 4./5662x 107 obtained from the above quantitative
analysis, and indicates that the analysis based on N=4 is a reasonable approximation.

Note that the small value of the magnitude of the output spectrum at
£, =15.82 Hz is due to the small displacement y(t) of the system under the given input.

This is a quite common phenomenon in practical systems. The scale of the system
input and output amplitude can be clearly observed from Fig 5.2.

5.3 Analysis of the system frequency response to a second input

A second mput was generated from an uncorrelated random sequence uniformly
distributed in the interval (0,100) and band limited within the frequency range
(30,50)Hz under the sampling interval 7 =0.005 sec. Fig.5.7 (a) and (b) show the

input and the output response of the system to this input obtained using a fifth order
Runge-Kutta simulation method. The spectra of the input and output signals are
shown in Fig.5.8 indicating the occurrence of a frequency domain energy transfer
phenomenon. Over the frequency range of (10,20) Hz, a maximum frequency
response outside the input frequency band can be observed at about 15 Hz.

To reveal the composition of the system output frequency response over the
frequency range (10,20) Hz so as to explain how the energy transfer happens, the
NOFRFs of the system under the second input are evaluated up to the fourth order to

yield G, (j2#f), n=1234, as shown in Fig59. U,(j27) and
Y (j27f)=G,(j2=)U,(j27), n=1,2,3,4, are also determined over this frequency
range to yield the results shown in Figs. 5.10 and 5.11. A maximum gain of G, (j27f)

for n=23.and 4 at a frequency location a bit below 15 Hz can be observed, and a

maximum nth order output frequency response appears between 15Hz and 16Hz for
n=2.3,and 4.

Under the assumption of (5.3), Figs.5.9, 5.10, and 5.11 can explain, to a certain
extent, the frequency domain behaviour of the system output over the frequency range
(10,20) Hz as shown in Fig.5.8, especially why a maximum output frequency response
appears at a frequency of about 15 Hz. To determine exactly how the maximum
output frequency response is generated, however, an analysis for the effect of the
inter-kernel interference at this frequency is also needed.

The frequency where the maximum output frequency response occurs is
evaluated. The result is f,, =14.65Hz. The contribution of each of the four

homogeneous nonlinear systems to the system response at this frequency can then be
determined, and the results are shown in Table 2.

17



Table 2 The contribution of different homogeneous nonlinear effects
to the output response at frequency f,, =14.65Hz when the
system is subject to the second input.

n nth order output frequency Magnitude of the nth order
response output frequency response
G, (2, G278 paiosre | |G U2, G270,
] 0 0
2 (0.0725 - 0.0838 j)x 107 0.1108x 107
3 (—0.0898 —0.1038 j)x 10~ 0.1372x107°
4 (0.0302 +0.0349 j)x 10~ 0.0461x 107

Table 2 shows that under the condition of (5.3) the system response at frequency
f,, =14.65Hz is

’
Y(j2n) =Y. G, (j2af,)U,(j27f,) =1.2902x 107 + 1.4918x 107’ j

=1

the amplitude of which is
Y(j2nf,)| ~ 1.9723%107

How the intra and inter kernel interference effects work at frequency f,, =14.65Hz to
generate the maximum output frequency response outside the input frequency band is
clearly reflected by the quantitative analysis. To confirm this result, the system output
spectrum was evaluated using a direct FFT at f,, =14.65Hz . The result was

[Y(j24f,,) =1.86701x107

which is close to the above obtained result 7.9723x 10~ and therefore indicates that
the N=4 based analysis is a reasonable appoximation.

Figs 5.4 and 5.9 show the NOFRFs G,(j27f) n=1,2,3,4, of the nonlinear

system under the first and second input respectively. Apart from G,(j27f), the
NOFRFs under the two inputs are obviously different. This reflects the input
dependent property of the NOFRFs, and implies that some frequency domain
behaviour of nonlinear systems can only be interpreted under a specific input. This 1s
why a quantitative analysis is necessary to show exactly how the nonlinear
phenomenon happens. However, some similarities between the NOFRFs under the
two different inputs can still be observed. The most obvious similarity is that

|G”(_j.27;7’ )| under the two inputs all reach a maximum at a frequency near 15Hz for

n=2,3,4. This is because the resonant frequency of the nonlinear system 1is

K =99rad/s=1576Hz, and this important system property is reflected by the
m

NOFRFs evaluated under the two different inputs. Therefore, although the NOFRFs
generally describe a combined effect of the system characteristics and the input on the
system output frequency response, the concept does reflect some important dynamic
characteristics of the system under study.
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The above qualitative analysis of the generation of new frequencies indicates
why and how this phenomenon can happen with a nonlinear system. As far as the
system design in the frequency domain is concerned, the same analysis for a typical
mnput can be conducted under different values of the system parameters that can be
changed to show the effects of these parameters on the system performance and to
determine the parameter values which correspond to a desired system output
frequency response. This is a procedure which can be regarded as an extension of the
transmissibility based linear frequency domain design to the nonlinear case.

6 Conclusions

The frequency domain energy transfer in nonlinear systems is a phenomenon
which has been observed in systems in many different engineering areas. If this
nonlinear behaviour is not accounted for at the design stage unexpected and even
dangerous results may occur (Nayfeh and Nayfeh 1994). This indicates the
considerable significance of an effective analysis procedure which can reveal the real
mechanisms that dominate the occurrence of the nonlinear phenomenon and which
can therefore be more informative for system design. Previous approaches to this
analysis include techniques in both the time and the frequency domain. But the
question regarding when, why, and how such phenomenon happens with a general
nonlinear system cannot be properly answered using existing approaches. In the
present study, a new concept known as Nonlinear Output Frequency Response
Functions has been proposed and used to conduct a new form of analysis. This allows
the analysis to be implemented in a manner similar to the analysis of linear system
frequency responses. The analysis results provide great insight into the mechanisms
behind the nonlinear behaviour which has been shown to depend on a combined effect
of the input spectrum and the system frequency domain characteristics. The new
analysis should also be of benefit in the system design in the frequency domain. This
1s a more significant topic and is currently under study.
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Figure 4.1 An illustration of the energy transfer produced by an nth order homogeneous
nonlinear system

Figure 5.1 A mechanical oscillator which can be described by the nonlinear
system in Section 5
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