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Energy transfers in forced MHD turbulence

DANIELE CARATI*f, OLIVIER DEBLIQUYT, BERNARD KNAEPEN{,
BOGDAN TEACAT and MAHENDRA VERMAS§

tatistical and Plasma Physics, Université Libre de Bruxelles, Campus Plaine, ,
Statistical and Pl Physics, Université Libre de Bruxelles, Campus Plaine, CP 231
B-1050 Brussels, Belgium
aculty o sics, University of Craiova, .I. Cuza Street, raiova, Romania
Faculty of Physics, University of Crai 13 Al Cuza S 200585 Crai R i
§Department of Physics, I.I.T. Kanpur, Kanpur 208016, India

The energy cascade in magnetohydrodynamics is studied using high resolution direct numerical simu-
lations of forced isotropic turbulence. The magnetic Prandtl number is unity and the large scale forcing
is a function of the velocity that injects a constant rate of energy without generating a mean flow. A
shell decomposition of the velocity and magnetic fields is proposed and is extended to the Elsidsser
variables. The analysis of energy exchanges between these shell variables shows that the velocity and
magnetic energy cascades are mainly local and forward, though non-local energy transfer does exist
between the large, forced, velocity scales and the small magnetic structures. The possibility of splitting
the shell-to-shell energy transfer into forward and backward contributions is also discussed.
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1. Introduction

The study of the nonlinear interactions in fluid turbulence has long been an active subject of
research [1-4]. The motivation for such studies is of course to improve the understanding of
the physics of turbulence and, more specifically, of the mechanism(s) of energy transfer from
the large, geometry-dependent, structures to the small scales where dissipation into heat is
observed. With the emergence of simulation techniques based on scale separation, such as the
large-eddy simulations (LES) [5, 6], these studies have also acquired a more applied flavour.
Indeed, in LES, the small scales are not captured by the numerical grid and their influence
on the large scale flow has to be modelled. Since their major effect is to pump energy, the
knowledge of this energy transfer is essential to design accurate small scale models.

When the fluid is electrically conducting, the Navier—Stokes equation has to be coupled
to an induction equation for the magnetic field, yielding the magnetohydrodynamics (MHD)
equations. The analysis of energy transfers in MHD has closely followed the pioneering
works on fluid turbulence [7] and is still a very active field of research [8—10]. The extension
of LES to magnetohydrodynamics [11-13] motivates further the research in this field and the
present study aims at contributing to it. High resolution (5123) direct numerical simulations
(DNS) of forced MHD turbulence have been performed and the velocity and magnetic fields
have been analysed using a shell decomposition. The energy exchanges between different
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scales are characterized by shell-to-shell transfers. Moreover, two different strategies to split
these energy exchanges into forward and backward contributions are proposed.

The analysis is also extended to the MHD equations reformulated in terms of the Elsésser
variables [14]. The number of nonlinear terms then appears to be reduced and the energy
transfers are simpler as a consequence of the separated energy conservation for each of the
Elsdsser variables. This may provide some motivation for re-expressing the LES models for
MHD in terms of the Elsédsser variables, at least when the Prandtl number is not too far from
unity.

2. Shell decomposition

The MHD equations resulting from the coupling between hydrodynamics and electromag-
netisms are well known. In this paper, we consider incompressible MHD for which the evo-
lution equations for the velocity and magnetic fields read

i = —ujoju; +b;o;bi — 0ip + fi +vViu;, ey
8,b,‘ = —ujajb,- +bj8jui + nV2bi. (2)

In these equations, f; is an external mechanical force, v is the kinematic viscosity, p is the
total (hydrodynamic + magnetic) pressure divided by the fluid density, which is assumed to be
constant. In that case, both the magnetic and velocity fields are divergence free 0,u; = 0 = 9;b;.
The magnetic field is rescaled using Alfvén’s units and has the dimensions of a velocity. In the
examples treated below, the magnetic diffusivity n will be chosen to be equal to the viscosity,
so that the magnetic Prandtl number is unity.

Details on the direct numerical simulations (DNS) of equations (1) and (2), which are
performed using a Fourier representation of u#; and b;, are given in the next section. Several
velocity and magnetic fields obtained in these DNS have been analysed in detail by using a
shell variable decomposition. The Fourier space is divided into spherical shells s, that contain
all the wave vectors such that k, < ||k|| < k,+1. The velocity field obtained by keeping all
the Fourier modes in the shell s, while setting to O the modes outside this shell is denoted by
i, (l;). Its inverse Fourier transform, #, (7), can be used to give a physical space representation
of the shell velocity. Similarly, magnetic field shell variables may be defined, and kinetic and
magnetic shell energies are given by the following expressions:

EY = %kz AP = Z R =5 [ 67, )
1 NP
El = - Z b)) = Z ba(B)? = / dF by (7). )
kesn

The spectral energy density associated with the shell variable i, (k) is thus a function that has
a compact support in the Fourier space restricted to a shell. However, in the physical space
this energy density is not localized and clearly exhibits structures that have a typical length
scale of the order of £, = k! as shown in figure 1. The evolution of the shell energies is given
by the following coupled equations:

YEL =D Tie+ Z T!h + Fi — Dy, ()

m
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Figure 1. Physical space energy density of the shell velocity variable u¢(7) (left) and 12 (7) (right).

where F) is the shell energy injected per unit of time due to external mechanical forcing
terms (there is no such forcing terms in the magnetic field equation), while D} and D? are
respectively the kinematic and the magnetic energy dissipation rates:

F' = Relii, (k) - f(K)") (7
i
DY =v Y K, (b)) (8)
i
Dy =ny_ Klb®)P, ©
P

where Re represents the real part of a complex number. The shell-to-shell energy transfers are
given by

T = =" > Imfk - ik + p)* i(p) - i(k)} (10)
lzes,, PESm

Th =+ ) Imik - bk + p)* b(p) - i(k)} (11
/?Es,l PESm

Thd =+ ) Im{k - bk + p)* b(p) - i(k)} (12)
/zes,l PESm

Trh = =" " Im{k itk + p)* b(p) - b(k)} (13)
/zes,l PESm

where Im represents the imaginary part of a complex number and the symbol * represents the
complex conjugate of a complex number. In the DNS results analysed in the next sections,
forced turbulence is simulated using a force that is limited to one shell of wave vector s
(typically s = s4, so that energy is injected only at large scales). All modes in the shell s
are submitted to a force defined by

(k)
i)
where o = €/ N is the ratio between the desired total energy injection rate € and the number
of modes N in the forcing shell s . This forcing is very similar to the one introduced in [15].

fl)=a

(14)
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Considering expressions (7) and (14), it is easy to show that such a forcing mechanism injects
a constant rate of energy € in the flow. The forcing and dissipation mechanisms do not couple
the different shell energies and they are defined for each shell independently. However, the
terms 7, ;» where x and y can be either u or b correspond to energy transfers between different
shell variables and have to satisfy the following properties that derive directly from energy
conservation in the limit of vanishing forcing and dissipation:

Ty =—Tn (15)

The explicit mathematical form of these energy transfers 7, ;, can be derived straightforwardly
from equations (1) and (2) and has been discussed in many papers [2, 4]. Before presenting
the DNS analysis of the shell energy transfers, it is interesting to rewrite equations (1) and (2)
in terms of the Elsisser variables zl-i =u;  b;:

dz = —zF0jz7 —dip + fi + vV +0TVT, (16)

where v¥ = (v & 7)/2. Contrary with the kinetic or the magnetic energies, the energies
associated with the Elsésser variables are conserved separately by the nonlinear terms as a
consequence of the total energy conservation and the cross helicity (u - B) conservation. A
shell decomposition for the Elsédsser variables can also be considered and the related shell
energy equations read

OES =) ThE+Ff D, a7
OE, =) T, +F —D,, (18)
where
FE =Y Re{Zfk) f(k)} (19)
k
D =Y KE ZEB)IP + vFReZ () - Z, (0D 20)
4
T ==Y Imk -2k + pH(p) - 20 @1)
/;ESU PESm
Tom=—>. Y Imk-Z5 &+ P (p) - %), (22)
IQES,, PESm

As a consequence of the conservation of the Elsédsser variable energies, the shell-to-shell
energy transfers, schematically represented in figure 2, do not couple the two variables and
this simplifies strongly the analysis. It should be noted however that the kinetic and magnetic
energies cannot be derived from the knowledge of the Elsdsser energies. As a consequence,
the transfers T,,xj,,f appearing in equations (5) and (6) cannot be derived from the knowledge of
T and T, ;. Similarly, the shell-to-shell transfers (21) and (22) for the Elsisser variables
cannot be derived from the shell-to-shell transfers for the velocity and magnetic fields (10)—
(13). This can be understood easily since the expansion of 7,"," and 7, in terms of # and

b will show cubic terms in b that do not enter the definition of the transfers (10)—(13).
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Figure 2. Schematic representation of the shell-to-shell energy transfers between velocity and magnetic field vari-
ables (left) and between the Elsdsser variables (right).

3. DNS analysis

Equations (1) and (2) have been solved numerically in a cubic box whose size is L = 2x
using a fully dealiased pseudo-spectral code. The dissipative linear terms proportional to v
and n are treated analytically using exponential factors, so that the time step can be computed
automatically using a CFL criterion only. A third-order Runge—Kutta method is implemented
for the time advancement. The Reynolds number R; (based on Taylors micro-scale) for the
initial field is about 180. The number of grid points is 5123 and the product of the Kolmogorov
length £, = (v3/€)!/* and the maximal wavenumber kpa = 256 is larger than 1.6. Here € is
computed as the instantaneous total kinetic 4+ magnetic dissipation.

After a transient time, the total dissipation appears to fluctuate around the imposed energy
injection rate that enters the forcing definition (14). As a consequence, the Kolmogorov length
is indirectly imposed by the run parameters. Another advantage of the forcing is that it may
be easily modified to inject simultaneously kinetic energy and kinetic helicity by adding a
term proportional to the vorticity. In its present form, no kinetic helicity is injected and several
runs show that, even if present under the initial conditions, kinetic helicity tends to decay.
Similarly, the cross helicity normalized by the total energy,

20 -b
O, = e (23)
u? + b?

remains very small (|o.| <0.02) as well as the normalized magnetic helicity defined by

. a-b
- [dk kT E (k)

Om

(24)

which is less than 1% where b = V x @ and E’(k) is the magnetic energy spectrum. The
forcing is acting in the range [ki,¢ = 1.5, ksup = 3.1]. This range contains 104 modes so
that the energy injected is equidistributed amongst a fairly large number of modes, ensur-
ing isotropy even at large scales. The energy spectra produced by this forcing are presented in
figure 3.

In the shell decomposition of the DNS data, the shell boundaries &, are chosen to grow
algebraically k,,, = gk, with g = 2!/% between n = 4 and n = 19. The first k,,’s have been
chosen differently (k; = 0, k» = 2, k3 = 4 and k4 = 8) in order to ensure that enough modes
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Figure 3. Kinetic and magnetic energy spectra.

belong to the first three shells. Also, in order to limit the number of shells, the last shell sy,
which entirely lies in the dissipation range, is wider and limited by kyp = 128 and kp; = 256.

3.1 Shell-to-shell transfers

The shell-to-shell energy transfers are conveniently analysed using a two-dimensional rep-
resentation as in figure 4. First results for decaying MHD turbulence have been reported
elsewhere [23], so that the present discussion will focus mainly on the analysis of the forced
MHD turbulence DNS. The sign of the shell-to-shell energy transfers is not prescribed and, as
a consequence of the total energy conservation, T, have to sum up to 0. If T}, ;; is positive,
the shell variable x,, is receiving energy from the shell variable y,,. The symmetry relation (15)
automatically implies that, in this case, the shell variable y,, is losing energy at the expense of
shell variable x,,,. When 7}, is positive for n > m, the situation is referred to as a ‘forward’
energy transfer. Otherwise, it is referred to as a ‘backward’ energy transfer. When the largest
(positive as well as negative) value of T, is observed for n close to m, the energy transfer
is referred to as ‘local’. It is important to realize that the locality of the energy transfer has to
be interpreted as energy exchanges between structures that have similar length scales and not
necessarily between positions that are close to each other in the physical space.

As expected from the phenomenology of turbulence, the energy transfers 7, and Tnb’ b are
essentially local and forward. This can be seen in figure 4. Locality can be observed since all
the significant transfers are along the diagonal where 7 is close to m. Only direct transfers are
observed which is confirmed by the positive value below the diagonal and the negative value
above. Also, scale independent energy transfers can be observed since all the horizontal lines
are very much similar when properly shifted by m boxes, i.e. T”“nli is essentially a function of
n — m and not of n and m separately. Such properties confirm previous results obtained for
decaying turbulence.

These properties also support the use of shell models for investigating the dynamics of turbu-
lent systems. Indeed, shell models strongly rely on the locality as well as the scale invariance
of the turbulent interactions. In these models, the hydrodynamic or magnetohydrodynamic
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Figure 4. Two-dimensional representation of the shell-to-shell energy transfers. The horizontal coordinate corre-
sponds to the receiving shell and the vertical coordinate to the giving shell.

equations are replaced by a set of ordinary differential equations for a small number of com-
plex variables, each of which is summarizing the total information from a shell of wave
vectors. As in the present analysis, these variables are associated with wave numbers that
grow algebraically k; = k;_; g. In shell models, the parameter g is usually assumed to be 2
and the shell variable interactions are limited to the first two neighbour shells. This choice
however largely covers the interactions observed from the analysis of the DNS presented in
figure 4 where the shells are much thinner (g = 2'/4). These shell models have been originally
proposed for Navier—Stokes turbulence [16—18] and later extended to MHD [19-21] as well
as to MHD with passive scalar [22]. The analysis of shell-to-shell energy transfers in a shell
model simulation would be much simpler than for a DNS since mode-to-mode interactions
would almost coincide with the shell-to-shell energy transfers. Such a study is beyond the
scope of our work but would be an interesting extension to the present analysis.

The results are however different for the 7,;> and T,”, energy transfers (which are not inde-
pendent as a consequence of the property (15)). Indeed, a strong non-local contribution from
the forced velocity shell to all the magnetic shells is observed. This also confirms previous re-
sults obtained using different forcing mechanisms [24—26] which, contrary to the forcing (14),
generate an average velocity field. Hence, this phenomenon of distant interactions between
the velocity and the magnetic fields in forced turbulence appears to be independent of the
type of forcing. The analysis of the Elsdsser shell transfers shows that both these features
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Figure 5. Two-dimensional representation of the shell-to-shell energy transfers between the Elsésser variables in
forced MHD turbulence.

of local and forward transfer and non-local transfer from the forced shell are combined in
T and T, ;. This is not a surprise since the Elsisser variables mix u; and b;. Moreover,
the two quantities 7, and T~ are very similar. Actually, they are given by sums which
are strongly dominated by the same terms. The remaining terms are different but with rel-
atively small amplitudes. This explains why the two representations in figures 5 are almost
indistinguishable.

3.2 Forward and backward transfers

In turbulence, all the modes are coupled as a result of the nonlinearities. For instance, the shell-
to-shell energy transfer 7“; thus corresponds to a large number of mode-to-mode interactions

n,m
Ln which three modes are involved: a ‘receiving’ mode ii(l?) from the shell variable i, (i.e.
k € s,),a ‘giving’ mode b(p) from the shell variable l;m (i.e. p € s,,)and a ‘mediator’ mode that
can belong to any shell. The mediator mode is however entirely determined by the constraint
k + p + g = 0. These three mode interactions are usually referred to as triads. Obviously,
the fact that a given shell-to-shell transfer T,ff;ﬁ is positive does not imply that all the triad

interactions correspond to a positive energy transfer from I;(ZJ) to 11(7().

In a previous study [23], the shell-to-shell transfers have been separated into positive Tn”,'fl’( +

and negative T"" _ contributions. This decomposition is however not unique and two dif-

n,m,(—)
ferent definitions have been chosen. In the first one, the positive transfer, denoted as Tntf;sjg,jr)),

is defined by the sum of all the triads interaction for which l;m loses energy and u,, gains
energy. In another decomposition, the positive transfer, denoted as Tn"",s:%), is defined using
the physical space shell variable and, roughly speaking, corresponds to all the locations for
which i, (7) gains energy. Independently of the decomposition, the following relations should

be satisfied:

T3 >0, (25)
T5 O <o, (26)
T:f,’rr{’(” — _Tn{:ft,(—)’ 27)

Ty = T5n ™ 4 150, (28)

n,m
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Figure 6. Two-dimensional representation of the positive parts of the energy transfers defined using the Fourier

space representation (Tn)r "ylé,:')))

It is important to note that nothing guarantees the equivalence of the different decomposition
into positive and negative contributions and, in particular, it has been shown that

x,y,(+) x,y,(+)
(BT e (29)

n,m,(r)

This difference can be seen by comparing figures 6 and 7. While the transfers T,jf ,z((,j)) are very
much local (no strong contribution for large values of n — m), the situation is quite different
for the transfers TZ nf((;g), which appear to be strongly non-local. This striking difference may
be due to the choice of the spectral definition of the shell variables and other decompositions
of the total fields into subsets might lead to results much more independent of the definition
of positive and negative energy transfers.

The same decomposition between positive and negative contribution can obviously also
be performed for the Elsédsser variables. Figure 8 shows the results for the Fourier space
decomposition. The positive transfer Tnfr’nf(’g ) and Tnfr’,;‘,g ) seem to be globally less local,
though the non-local transfer from the forced shell is less marked than in figure 5. Again,

Tn+,’:(’,£)+) and Tn_,’n_(’,Sr ) are almost indistinguishable.
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4. Conclusion

DNS databases of forced isotropic MHD turbulence are analysed using a shell decomposition
of the velocity and magnetic fields. The kinetic and magnetic energy cascades are essentially
forward and local, although a non-local transfer of energy between the forced velocity shell
and the small scale magnetic field is observed. This non-local transfer seems to be independent
of the forcing mechanism since it has also been observed in previous studies [24—26] where
different mechanical forces were used. In particular, in [24, 25, 26], the forcing mechanism
is constant (infinite time correlation) and generates an averaged large scale flow. It is thus
interesting to note that the same non-local energy transfer is observed with the forcing (14)
that has a finite time correlation and preserves isotropy even at large scales. It is also worth
mentioning that such a non-local energy transfer is not observed in the decaying turbulence
simulation [23]. This is actually the major observed difference in the energy transfers between
decaying and forced turbulence.

The shell variable decomposition has been extended to the Elsisser variables. Again, the
global picture seems to be the superposition of mostly forward and local cascades and non-local
interactions between the forced shell and all the other shells. The fact that the Elsésser variables
exhibit basically the same type of energy exchanges is expected but not necessarily trivial.
Indeed, the shell-to-shell energy transfers in the Elsdsser formulation cannot be derived from
those computed in the velocity—magnetic fields formulation. The present analysis suggests
that it might be interesting to explore the LES modelling in terms of the Elsésser variables.
Indeed, the number of nonlinearities in the Elsdsser equations is reduced when compared to
the velocity—magnetic field equations ((2) instead of (4)), so that less subgrid scale stress
tensors do require a modelling effort. Moreover, the Elsdsser shell-to-shell interactions do not
seem to be more complex. There is thus a hope that simple traditional models (such as eddy
viscosity and eddy magnetic diffusivity models expressed for the Elsédsser variables) would
be well adapted to the Elsdsser formulation and less demanding than in the velocity—magnetic
field formulation.

The shell-to-shell energy transfers have been further decomposed into forward and backward
contributions using two different strategies. The results are very different and show that the
interpretation of backscatter [15, 27, 28] (the backward energy transfer) is closely linked to
the definition of the scale separation. As a consequence, the design of LES models that could
account for the dissipative effects of the small scales as well as for the large-scale energy
feeding by small structures will depend on the very nature of the separation into resolved and
unresolved scales.
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