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Abstract
Energy is increasingly a first-order concern in computer systems.
Exploiting energy-accuracy trade-offs is an attractive choice in
applications that can tolerate inaccuracies. Recent work has explored
exposing this trade-off in programming models. A key challenge,
though, is how to isolate parts of the program that must be precise
from those that can be approximated so that a program functions
correctly even as quality of service degrades.

We propose using type qualifiers to declare data that may be
subject to approximate computation. Using these types, the system
automatically maps approximate variables to low-power storage,
uses low-power operations, and even applies more energy-efficient
algorithms provided by the programmer. In addition, the system
can statically guarantee isolation of the precise program component
from the approximate component. This allows a programmer to
control explicitly how information flows from approximate data
to precise data. Importantly, employing static analysis eliminates
the need for dynamic checks, further improving energy savings. As
a proof of concept, we develop EnerJ, an extension to Java that
adds approximate data types. We also propose a hardware architec-
ture that offers explicit approximate storage and computation. We
port several applications to EnerJ and show that our extensions are
expressive and effective; a small number of annotations lead to sig-
nificant potential energy savings (10%–50%) at very little accuracy
cost.

Categories and Subject Descriptors C.0 [Computer Systems Or-
ganization]: General—Hardware/software interfaces; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features—Data
types and structures

General Terms Languages, Performance, Design

Keywords Accuracy-aware computing, power-aware computing,
energy, soft errors, critical data

1. Introduction
Energy consumption is an increasing concern in many computer
systems. Battery life is a first-order constraint in mobile systems,
and power/cooling costs largely dominate the cost of equipment
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in data-centers. More fundamentally, current trends point toward a
“utilization wall,” in which the amount of active die area is limited
by how much power can be fed to a chip.

Much of the focus in reducing energy consumption has been
on low-power architectures, performance/power trade-offs, and re-
source management. While those techniques are effective and can
be applied without software knowledge, exposing energy considera-
tions at the programming language level can enable a whole new set
of energy optimizations. This work is a step in that direction.

Recent research has begun to explore energy-accuracy trade-offs
in general-purpose programs. A key observation is that systems
spend a significant amount of energy guaranteeing correctness.
Consequently, a system can save energy by exposing faults to the
application. Many studies have shown that a variety of applications
are resilient to hardware and software errors during execution
[1, 8, 9, 19, 21–23, 25, 31, 35]. Importantly, these studies universally
show that applications have portions that are more resilient and
portions that are “critical” and must be protected from error. For
example, an image renderer can tolerate errors in the pixel data it
outputs—a small number of erroneous pixels may be acceptable or
even undetectable. However, an error in a jump table could lead to a
crash, and even small errors in the image file format might make the
output unreadable.

While approximate computation can save a significant amount of
energy, distinguishing between the critical and non-critical portions
of a program is difficult. Prior proposals have used annotations
on code blocks (e.g., [9]) and data allocation sites (e.g., [23]).
These annotations, however, do not offer any guarantee that the
fundamental operation of the program is not compromised. In
other words, these annotations are either unsafe and may lead to
unacceptable program behavior or need dynamic checks that end
up consuming energy. We need a way to allow programmers to
compose programs from approximate and precise components safely.
Moreover, we need to guarantee safety statically to avoid spending
energy checking properties at runtime. The key insight in this paper
is the application of type-based information-flow tracking [32] ideas
to address these problems.

Contributions. This paper proposes a model for approximate pro-
gramming that is both safe and general. We use a type system that
isolates the precise portion of the program from the approximate
portion. The programmer must explicitly delineate flow from ap-
proximate data to precise data. The model is thus safe in that it
guarantees precise computation unless given explicit programmer
permission. Safety is statically enforced and no dynamic checks are
required, minimizing the overheads imposed by the language.

We present EnerJ, a language for principled approximate comput-
ing. EnerJ extends Java with type qualifiers that distinguish between
approximate and precise data types. Data annotated with the “ap-
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proximate” qualifier can be stored approximately and computations
involving it can be performed approximately. EnerJ also provides
endorsements, which are programmer-specified points at which
approximate-to-precise data flow may occur. The language supports
programming constructs for algorithmic approximation, in which
the programmer produces different implementations of functionality
for approximate and precise data. We formalize a core of EnerJ and
prove a non-interference property in the absence of endorsements.

Our programming model is general in that it unifies approximate
data storage, approximate computation, and approximate algorithms.
Programmers use a single abstraction to apply all three forms of
approximation. The model is also high-level and portable: the
implementation (compiler, runtime system, hardware) is entirely
responsible for choosing the energy-saving mechanisms to employ
and when to do so, guaranteeing correctness for precise data and
“best effort” for the rest.

While EnerJ is designed to support general approximation
strategies and therefore ensure full portability and backward-
compatibility, we demonstrate its effectiveness using a proposed
approximation-aware architecture with approximate memory and
imprecise functional units. We have ported several applications to
EnerJ to demonstrate that a small amount of annotation can allow a
program to save a large amount of energy while not compromising
quality of service significantly.

Outline. We first detail the EnerJ language extensions in Section 2.
Section 3 formalizes a core of the language, allowing us to prove
a non-interference property. The full formalism and proof are
presented in an accompanying technical report [33]. Next, Section 4
describes hypothetical hardware for executing EnerJ programs.
While other execution substrates are possible, this proposed model
provides a basis for the evaluation in Sections 5 and 6; there, we
assess EnerJ’s expressiveness and potential energy savings. The
type checker and simulation infrastructure used in our evaluation
are available at http://sampa.cs.washington.edu/. Section 7
presents related work and Section 8 concludes.

2. A Type System for Approximate Computation
This section describes EnerJ’s extensions to Java, which are based
on a system of type qualifiers. We first describe the qualifiers
themselves. We next explain how programmers precisely control
when approximate data can affect precise state. We describe the
implementation of approximate operations using overloading. We
then discuss conditional statements and the prevention of implicit
flows. Finally, we describe the type system’s extension to object-
oriented programming constructs and its interaction with Java arrays.

EnerJ implements these language constructs as backwards-
compatible additions to Java extended with type annotations [11].
Table 1 summarizes our extensions and their concrete syntax.

2.1 Type Annotations
Every value in the program has an approximate or precise type.
The programmer annotates types with the @Approx and @Precise
qualifiers. Precise types are the default, so typically only @Approx is
made explicit. It is illegal to assign an approximate-typed value into
a precise-typed variable. Intuitively, this prevents direct flow of data
from approximate to precise variables. For instance, the following
assignment is illegal:
@Approx int a = ...;
int p; // precise by default
p = a; // illegal

Approximate-to-precise data flow is clearly undesirable, but it seems
natural to allow flow in the opposite direction. For primitive Java
types, we allow precise-to-approximate data flow via subtyping.
Specifically, we make each precise primitive Java type a subtype of

its approximate counterpart. This choice permits, for instance, the
assignment a = p; in the above example.

For Java’s reference (class) types, this subtyping relationship is
unsound. The qualifier of a reference can influence the qualifiers
of its fields (see Section 2.5), so subtyping on mutable references
is unsound for standard reasons. We find that this limitation is not
cumbersome in practice.

We also introduce a @Top qualifier to denote the common
supertype of @Approx and @Precise types.

Semantics of approximation. EnerJ takes an all-or-nothing ap-
proach to approximation. Precise values carry traditional guarantees
of correctness; approximate values have no guarantees. A more
complex system could provide multiple levels of approximation
and guaranteed error bounds, but we find that this simple system is
sufficiently expressive for a wide range of applications.

The language achieves generality by leaving approximation pat-
terns unspecified, but programmers can informally expect approx-
imate data to be “mostly correct” and adhere to normal execution
semantics except for occasional errors. The degree of precision is
an orthogonal concern; a separate system could tune the frequency
and intensity of errors in approximate data.

2.2 Endorsement
Fully isolating approximate and precise parts of a program would
likely not be very useful. Eventually a program needs to store data,
transmit it, or present it to the programmer—at which point the
program should begin behaving precisely. As a general pattern,
programs we examined frequently had a phase of fault-tolerant
computation followed by a phase of fault-sensitive reduction or
output. For instance, one application consists of a resilient image
manipulation phase followed by a critical checksum over the result
(see Section 6.3). It is essential that data be occasionally allowed to
break the strict separation enforced by the type system.

We require the programmer to control explicitly when approxi-
mate data can affect precise state. To this end, we borrow the concept
(and term) of endorsement from past work on information-flow con-
trol [2]. An explicit static function endorse allows the programmer
to use approximate data as if it were precise. The function acts as a
cast from any approximate type to its precise equivalent. Endorse-
ments may have implicit runtime effects; they might, for example,
copy values from approximate to precise memory.

The previous example can be made legal with an endorsement:
@Approx int a = ...;
int p; // precise by default
p = endorse(a); // legal

By inserting an endorsement, the programmer certifies that the ap-
proximate data is handled intelligently and will not cause undesired
results in the precise part of the program.

2.3 Approximate Operations
The type system thus far provides a mechanism for approximating
storage. Clearly, variables with approximate type may be located
in unreliable memory modules. However, approximate computation
requires additional features.

We introduce approximate computation by overloading operators
and methods based on the type qualifiers. For instance, our language
provides two signatures for the + operator on integers: one taking
two precise integers and producing a precise integer and the other
taking two approximate integers and producing an approximate
integer. The latter may compute its result approximately and thus
may run on low-power hardware. Programmers can extend this
concept by overloading methods with qualified parameter types.

Bidirectional typing. The above approach occasionally applies
precise operations where approximate operations would suffice.
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Construct Purpose Section
@Approx, @Precise, @Top Type annotations: qualify any type in the program. (Default is @Precise.) 2.1

endorse(e) Cast an approximate value to its precise equivalent. 2.2
@Approximable Class annotation: allow a class to have both precise and approximate instances. 2.5

@Context Type annotation: in approximable class definitions, the precision of the type depends on the
precision of the enclosing object.

2.5.1

APPROX Method naming convention: this implementation of the method may be invoked when the
receiver has approximate type.

2.5.2

Table 1. Summary of EnerJ’s language extensions.

Consider the expression a = b + c where a is approximate but
b and c are precise. Overloading selects precise addition even
though the result will only be used approximately. It is possible
to force an approximate operation by upcasting either operand to
an approximate type, but we provide a slight optimization that
avoids the need for additional annotation. EnerJ implements an
extremely simple form of bidirectional type checking [7] that
applies approximate arithmetic operators when the result type is
approximate: on the right-hand side of assignment operators and
in method arguments. We find that this small optimization makes
it simpler to write approximate arithmetic expressions that include
precise data.

2.4 Control Flow
To provide the desired property that information never flows from
approximate to precise data, we must disallow implicit flows that
occur via control flow. For example, the following program violates
the desired isolation property:
@Approx int val = ...;
boolean flag; // precise
if (val == 5) { flag = true; } else { flag = false; }
Even though flag is precise and no endorsement is present, its value
is affected by the approximate variable val.

EnerJ avoids this situation by prohibiting approximate values in
conditions that affect control flow (such as if and while statements).
In the above example, val == 5 has approximate type because the
approximate version of == must be used. Our language disallows
this expression in the condition, though the programmer can work
around this restriction using if(endorse(val == 5)).

This restriction is conservative: it prohibits approximate con-
ditions even when the result can affect only approximate data. A
more sophisticated approach would allow only approximate values
to be produced in statements conditioned on approximate data. We
find that our simpler approach is sufficient; endorsements allow the
programmer to work around the restriction when needed.

2.5 Objects
EnerJ’s type qualifiers are not limited to primitive types. Classes
also support approximation. Clients of an approximable class can
create precise and approximate instances of the class. The author
of the class defines the meaning of approximation for the class.
Approximable classes are distinguished by the @Approximable
class annotation. Such a class exhibits qualifier polymorphism [14]:
types within the class definition may depend on the qualifier of the
instance.

Note that precise class types are not subtypes of their approxi-
mate counterparts, as is the case with primitive types (Section 2.1);
such a subtyping relationship would be fundamentally unsound for
the standard reasons related to mutable references.

2.5.1 Contextual Data Types
The @Context qualifier is available in definitions of non-static
members of approximable classes. The meaning of the qualifier

depends on the precision of the instance of the enclosing class.
(In terms of qualifier polymorphism, @Context refers to the class’
qualifier parameter, which is determined by the qualifier placed on
the instance.) Consider the following class definition:
@Approximable class IntPair {

@Context int x;
@Context int y;
@Approx int numAdditions = 0;
void addToBoth(@Context int amount) {

x += amount;
y += amount;
numAdditions++;
}
}
If a is an approximate instance of IntPair, then the fields a.x, a.y,
and a.numAdditions are all of approximate integer type. However,
if p is a precise instance of the class, then p.x and p.y are precise but
p.numAdditions is still approximate. Furthermore, the argument
to the invocation p.addToBoth() must be precise; the argument to
a.addToBoth() may be approximate.

2.5.2 Algorithmic Approximation
Approximable classes may also specialize method definitions based
on their qualifier. That is, the programmer can write two implemen-
tations: one to be called when the receiver has precise type and
another that can be called when the receiver is approximate. Con-
sider the following implementations of a mean calculation over a
list of floats:
@Approximable class FloatSet {

@Context float[] nums = ...;
float mean() {

float total = 0.0f;
for (int i = 0; i < nums.length; ++i)

total += nums[i];
return total / nums.length;
}
@Approx float mean APPROX() {

@Approx float total = 0.0f;
for (int i = 0; i < nums.length; i += 2)

total += nums[i];
return 2 ∗ total / nums.length;
}
}
EnerJ uses a naming convention, consisting of the APPROX
suffix, to distinguish methods overloaded on precision. The first
implementation of mean is called when the receiver is precise. The
second implementation calculates an approximation of the mean:
it averages only half the numbers in the set. This implementation
will be used for the invocation s.mean() where s is an approximate
instance of FloatSet. Note that the compiler automatically decides
which implementation of the method to invoke depending on the
receiver type; the same invocation is used in either case.

It is the programmer’s responsibility to ensure that the two im-
plementations are similar enough that they can be safely substituted.
This is important for backwards compatibility (a plain Java com-
piler will ignore the naming convention and always use the precise



Prg ::= Cls, C, e

Cls ::= class Cid extends C { fd md }
C ::= Cid | Object
P ::= int | float
q ::= precise | approx | top | context | lost
T ::= q C | q P
fd ::= T f ;

md ::= T m(T pid) q { e }
x ::= pid | this
e ::= null | L | x | new q C() | e.f | e0.f :=e1 | e0.m(e)

| (q C) e | e0 ⊕ e1 | if(e0) {e1} else {e2}
f field identifier pid parameter identifier
m method identifier Cid class identifier

Figure 1. The syntax of the FEnerJ programming language. The
symbol A denotes a sequence of elements A.

version) and “best effort” (the implementation may use the precise
version if energy is not constrained).

This facility makes it simple to couple algorithmic approximation
with data approximation—a single annotation makes an instance
use both approximate data (via @Context) and approximate code
(via overloading).

2.6 Arrays
The programmer can declare arrays with approximate element types,
but the array’s length is always kept precise for memory safety. We
find that programs often use large arrays of approximate primitive
elements; in this case, the elements themselves are all approximated
and only the length requires precise guarantees.

EnerJ prohibits approximate integers from being used as array
subscripts. That is, in the expression a[i], the value i must be precise.
This makes it easier for the programmer to prevent out-of-bounds
errors due to approximation.

3. Formal Semantics
To study the formal semantics of EnerJ, we define the minimal lan-
guage FEnerJ. The language is based on Featherweight Java [16] and
adds precision qualifiers and state. The formal language omits En-
erJ’s endorsements and thus can guarantee isolation of approximate
and precise program components. This isolation property suggests
that, in the absence of endorsement, approximate data in an EnerJ
program cannot affect precise state.

The accompanying technical report [33] formalizes this language
and proves type soundness as well as a non-interference property
that demonstrates the desired isolation of approximate and precise
data.

3.1 Programming Language
Figure 1 presents the syntax of FEnerJ. Programs consist of a
sequence of classes, a main class, and a main expression. Execution
is modeled by instantiating the main class and then evaluating the
main expression.

A class definition consists of a name, the name of the superclass,
and field and method definitions. The @Approximable annotation
is not modeled in FEnerJ; all classes in the formal language can
have approximate and precise instances and this has @Context
type. The annotation is required only in order to provide backward-
compatibility with Java so that this in a non-approximable class has
@Precise type.

We use C to range over class names and P for the names of
primitive types. We define the precision qualifiers q as discussed in
Section 2.1, but with the additional qualifier lost; this qualifier

is used to express situations when context information is not
expressible (i.e., lost). Types T include qualifiers.

Field declarations consist of the field type and name. Method
declarations consist of the return type, method name, a sequence
of parameter types and identifiers, the method precision, and the
method body. We use the method precision qualifier to denote
overloading of the method based on the precision of the receiver
as introduced in Section 2.5.2. Variables are either a parameter
identifier or the special variable this, signifying the current object.

The language has the following expressions: the null literal, liter-
als of the primitive types, reads of local variables, instantiation, field
reads and writes, method calls, casts, binary primitive operations,
and conditionals. For brevity, the discussion below presents only the
rules for field reads, field writes, and conditionals.

Subtyping. Subtyping is defined using an ordering of the precision
qualifiers and subclassing.

The following rules define the ordering of precision qualifiers:

q <:q q ′ ordering of precision qualifiers

q 6=top

q <:q lost q <:q top q <:q q

Recall that top qualifies the common supertype of precise and
approx types. Every qualifier other than top is below lost; every
qualifier is below top; and the relation is reflexive. Note that the
precise and approx qualifiers are not related.

Subclassing is the reflexive and transitive closure of the relation
induced by the class declarations. Subtyping takes both ordering
of precision qualifiers and subclassing into account. For primitive
types, we additionally have that a precise type is a subtype of the
approximate type as described in Section 2.1.

Context adaptation. We use context adaptation to replace the
context qualifier when it appears in a field access or method
invocation. Here the left-hand side of . denotes the qualifier of
the receiver expression; the right-hand side is the precision qualifier
of the field or in the method signature.

q B q ′ = q ′′ combining two precision qualifiers

q ′=context ∧ (q ∈ {approx, precise, context})
q B q ′ = q

q ′=context ∧ (q ∈ {top, lost})
q B q ′ = lost

q ′ 6=context

q B q ′ = q ′

Note that context adapts to lost when the left-hand-side qualifier
is top because the appropriate qualifier cannot be determined.

We additionally define . to take a type as the right-hand side;
this adapts the precision qualifier of the type.

We define partial look-up functions FType and MSig that deter-
mine the field type and method signature for a given field/method
in an access or invocation. Note that these use the adaptation rules
described above.

Type rules. The static type environment sΓ maps local variables
to their declared types.

Given a static environment, expressions are typed as follows:
sΓ ` e : T expression typing

sΓ ` e0 : q C FType(q C , f ) = T
sΓ ` e0.f : T

sΓ ` e0 : q C FType(q C , f ) = T
lost /∈T sΓ ` e1 : T

sΓ ` e0.f := e1 : T



sΓ ` e0 : precise P sΓ ` e1 : T sΓ ` e2 : T
sΓ ` if(e0) {e1} else {e2} : T

A field read determines the type of the receiver expression and
then uses FType to determine the adapted type of the field.

A field write similarly determines the adapted type of the field
and checks that the right-hand side has an appropriate type. In
addition, we ensure that the adaptation of the declared field type did
not lose precision information. Notice that we can read a field with
lost precision information, but that it would be unsound to allow the
update of such a field.

Finally, for the conditional expression, we ensure that the condi-
tion is of a precise primitive type and that there is a common type T
that can be assigned to both subexpressions.

3.2 Operational Semantics
The runtime system of FEnerJ models the heap h as a mapping from
addresses ι to objects, where objects are a pair of the runtime type
T and the field values v of the object. The runtime environment rΓ
maps local variables x to values v.

The runtime system of FEnerJ defines a standard big-step opera-
tional semantics:

rΓ ` h, e  h ′, v big-step operational semantics

rΓ ` h, e0  h ′, ι0 h ′(ι0.f )=v
rΓ ` h, e0.f  h ′, v

rΓ ` h, e0  h0, ι0 rΓ ` h0, e1  h1, v
h1[ι0.f := v] = h ′

rΓ ` h, e0.f := e1  h ′, v
rΓ ` h, e0  h0, (q, rL) rL6=0
rΓ ` h0, e1  h ′, v

rΓ ` h, if(e0) {e1} else {e2}  h ′, v
rΓ ` h, e0  h0, (q, 0) rΓ ` h0, e2  h ′, v

rΓ ` h, if(e0) {e1} else {e2}  h ′, v

These rules reflect precise execution with conventional precision
guarantees. To model computation on an execution substrate that
supports approximation, the following rule could be introduced:

rΓ ` h, e  h ′, v h ′ ∼= h̃ ′ v ∼= ṽ

rΓ ` h, e  h̃ ′, ṽ

We use ∼= to denote an equality that disregards approximate values
for comparing heaps and values with identical types. The rule
permits any approximate value in the heap to be replaced with
any other value of the same type and any expression producing a
value of an approximate type to produce any other value of that type
instead. This rule reflects EnerJ’s lack of guarantees for approximate
values.

3.3 Properties
We prove two properties about FEnerJ: type soundness and non-
interference. The full proofs are listed in the accompanying technical
report [33].

The usual type soundness property expresses that, for a well-
typed program and corresponding static and runtime environments,
we know that (1) the runtime environment after evaluating the
expression is still well formed, and (2) a static type that can be
assigned to the expression can also be assigned to the value that is
the result of evaluating the expression. Formally:

` Prg OK ∧ ` h, rΓ : sΓ
sΓ ` e : T
rΓ ` h, e h′, v

}
=⇒

{
` h′, rΓ : sΓ
h′, rΓ (this) ` v : T

The proof is by rule induction over the operational semantics; in
separate lemmas we formalize that the context adaptation operation
. is sound.

MemoryCPU
L1 Data CacheFunctional UnitsRegisters

Int FP

Int FP

Figure 2. Hardware model assumed in our system. Shaded areas
indicate components that support approximation. Registers and the
data cache have SRAM storage cells that can be made approximate
by decreasing supply voltage. Functional units support approxima-
tion via supply voltage reduction. Floating point functional units
also support approximation via smaller mantissas. Main memory
(DRAM) supports approximation by reducing refresh rate.

The non-interference property of FEnerJ guarantees that approx-
imate computations do not influence precise values. Specifically,
changing approximate values in the heap or runtime environment
does not change the precise parts of the heap or the result of the
computation. More formally, we show:

` Prg OK ∧ ` h, rΓ : sΓ
sΓ ` e : T
rΓ ` h, e h′, v
h ∼= h̃ ∧ rΓ ∼= r̃Γ

` h̃, r̃Γ : sΓ

 =⇒

{
r̃Γ ` h̃, e→ h̃′, ṽ
h′ ∼= h̃′

v ∼= ṽ

For the proof of this property we introduced a checked operational
semantics that ensures in every evaluation step that the precise
and approximate parts are separated. We can then show that the
evaluation of a well-typed expression always passes the checked
semantics of the programming language.

4. Execution Model
While an EnerJ program distinguishes abstractly between approxi-
mate and precise data, it does not define the particular approximation
strategies that are applied to the program. (In fact, one valid execu-
tion is to ignore all annotations and execute the code as plain Java.)
An approximation-aware execution substrate is needed to take advan-
tage of EnerJ’s annotations. We choose to examine approximation
at the architecture level. Alternatively, a runtime system on top of
commodity hardware can also offer approximate execution features
(e.g., lower floating point precision, elision of memory operations,
etc.). Also, note that algorithmic approximation (see Section 2.5) is
independent of the execution substrate. This section describes our
hardware model, the ISA extensions used for approximation, and
how the extensions enable energy savings.

4.1 Approximation-Aware ISA Extensions
We want to leverage both approximate storage and approximate op-
erations. Our hardware model offers approximate storage in the form
of unreliable registers, data caches, and main memory. Approximate
and precise registers are distinguished based on the register number.
Approximate data stored in memory is distinguished from precise
data based on address; regions of physical memory are marked as
approximate and, when accessed, are stored in approximate portions
of the data cache. For approximate operations, we assume specific
instructions for approximate integer ALU operations as well as ap-
proximate floating point operations. Approximate instructions can
use special functional units that perform approximate operations.
Figure 2 summarizes our assumed hardware model.

An instruction stream may have a mix of approximate and pre-
cise instructions. Precise instructions have the same guarantees as
instructions in today’s ISAs. Note that an approximate instruction
is simply a “hint” to the architecture that it may apply a variety of



energy-saving approximations when executing the given instruction.
The particular approximations employed by a given architecture are
not exposed to the program; a processor supporting no approxima-
tions just executes approximate instructions precisely and saves no
energy. An approximation-aware ISA thus allows a single binary to
benefit from new approximations as they are implemented in future
microarchitectures.

Layout of approximate data. Our hardware model supports ap-
proximate memory data at a cache line granularity, in which software
can configure any line as approximate. This can be supported by
having a bit per line in each page that indicates whether the corre-
sponding line is approximate. Based on that bit, a cache controller
determines the supply voltage of a line (lower for approximate lines),
and the refresh rate for regions of DRAM. This bitmap needs to
be kept precise. With a typical cache line size of 64 bytes, this is
less than 0.2% overhead. Note that both selective supply voltage for
caches [13] and selective refresh rate for DRAM [15] are hardware
techniques that have been proposed in the past.

Setting approximation on a cache line basis requires the runtime
system to segregate approximate and precise data in different cache
lines. We propose the following simple technique for laying out
objects with both approximate and precise fields. First, lay out
the precise portion of the object (including the vtable pointer)
contiguously. Each cache line containing at least one precise field is
marked as precise. Then, lay out the approximate fields after the end
of the precise data. Some of this data may be placed in a precise line
(that is, a line containing some precise data already); in this case, the
approximate data stays precise and saves no memory energy. (Note
that wasting space in the precise line in order to place the data in an
approximate line would use more memory and thus more energy.)
The remaining approximate fields that do not fit in the last precise
line can be placed in approximate lines.

Fields in superclasses may not be reordered in subclasses. Thus,
a subclass of a class with approximate data may waste space in an
approximate line in order to place precise fields of the subclass in a
precise line.

While we simulate the artifacts of this layout scheme for our
evaluation, a finer granularity of approximate memory storage would
mitigate or eliminate the resulting loss of approximation. More
sophisticated layout algorithms could also improve energy savings;
this is a target for compile-time optimization. Note that even if an
approximate field ends up stored in precise memory, it will still be
loaded into approximate registers and be subject to approximate
operations and algorithms.

The layout problem is much simpler for arrays of approximate
primitive types. The first line, which contains the length and type
information, must be precise, with all remaining lines approximate.

4.2 Hardware Techniques for Saving Energy
There are many strategies for saving energy with approximate
storage and data operations. This section discusses some of the
techniques explored in prior research. We assume these techniques
in our simulations, which we describe later. The techniques are
summarized in Table 2.

Voltage scaling in logic circuits. Aggressive voltage scaling can
result in over 30% energy reduction with ∼ 1% error rate [10]
and 22% reduction with ∼ 0.01% error rate. Recent work [9, 17]
proposed to expose the errors to applications that can tolerate it and
saw similar results. In our model, we assume aggressive voltage
scaling for the processor units executing approximate instructions,
including integer and floating-point operations. As for an error
model, the choices are single bit flip, last value, and random value.
We consider all three but our evaluation mainly depicts the random-
value assumption, which is the most realistic.

Mild Medium Aggressive
DRAM refresh: per-second bit
flip probability

10−9 10−5 10−3

Memory power saved 17% 22% 24%

SRAM read upset probability 10−16.7 10−7.4 10−3

SRAM write failure probability 10−5.59 10−4.94 10−3

Supply power saved 70% 80% 90%*

float mantissa bits 16 8 4
double mantissa bits 32 16 8
Energy saved per operation 32% 78% 85%*

Arithmetic timing error proba-
bility

10−6 10−4 10−2

Energy saved per operation 12%* 22% 30%

Table 2. Approximation strategies simulated in our evaluation.
Numbers marked with * are educated guesses by the authors; the
others are taken from the sources described in Section 4.2. Note that
all values for the Medium level are taken from the literature.

Width reduction in floating point operations. A direct approach
to approximate arithmetic operations on floating point values is to
ignore part of the mantissa in the operands. As observed in [34],
many applications do not need the full mantissa. According to their
model, a floating-point multiplier using 8-bit mantissas uses 78%
less energy per operation than a full 24-bit multiplier.

DRAM refresh rate. Reducing the refresh rate of dynamic RAM
leads to potential data decay but can substantially reduce power
consumption with a low error rate. As proposed by Liu et al. [23], an
approximation-aware DRAM system might reduce the refresh rate
on lines containing approximate data. As in that work, we assume
that reducing the refresh rate to 1 Hz reduces power by about 20%. In
a study performed by Bhalodia [4], a DRAM cell not refreshed for 10
seconds experiences a failure with per-bit probability approximately
10−5. We conservatively assume this error rate for the reduced
refresh rate of 1 Hz.

SRAM supply voltage. Registers and data caches consist of static
RAM (SRAM) cells. Reducing the supply voltage to SRAM cells
lowers the leakage current of the cells but decreases the data in-
tegrity [13]. As examined by Kumar [18], these errors are domi-
nated by read upsets and write failures, which occur when a bit is
read or written. A read upset occurs when the stored bit is flipped
while it is read; a write failure occurs when the wrong bit is written.
Reducing SRAM supply voltage by 80% results in read upset and
write failure probabilities of 10−7.4 and 10−4.94 respectively. Soft
failures, bit flips in stored data due to cosmic rays and other events,
are comparatively rare and depend less on the supply voltage.

Section 5.4 describes the model we use to combine these various
potential energy savings into an overall CPU/memory system en-
ergy reduction. To put the potential energy savings in perspective,
according to recent studies [12, 24], the CPU and memory together
account for well over 50% of the overall system power in servers
as well as notebooks. In a smartphone, CPU and memory account
for about 20% and the radio typically close to 50% of the overall
power [6].

5. Implementation
We implement EnerJ as an extension to the Java programming
language based on the pluggable type mechanism proposed by Papi
et al. [28]. EnerJ is implemented using the Checker Framework1

1 http://types.cs.washington.edu/checker-framework/

http://types.cs.washington.edu/checker-framework/


infrastructure, which builds on the JSR 3082 extension to Java’s
annotation facility. JSR 308 permits annotations on any explicit
type in the program. The EnerJ type checker extends the rules from
Section 3 to all of Java, including arrays and generics. We also
implement a simulation infrastructure that emulates an approximate
computing architecture as described in Section 4. 3

5.1 Type Checker
EnerJ provides the type qualifiers listed in Table 1—@Approx,
@Precise, @Top, and @Context—as JSR 308 type annotations. The
default type qualifier for unannotated types is @Precise, meaning
that any Java program may be compiled as an EnerJ program with
no change in semantics. The programmer can add approximations
to the program incrementally.

While reference types may be annotated as @Approx, this only
affects the meaning of @Context annotations in the class definition
and method binding on the receiver. Our implementation never
approximates pointers.

5.2 Simulator
To evaluate our system, we implement a compiler and runtime
system that executes EnerJ code as if it were running on an
approximation-aware architecture as described in Section 4. We
instrument method calls, object creation and destruction, arithmetic
operators, and memory accesses to collect statistics and inject faults.
The runtime system is implemented as a Java library and is in-
voked by the instrumentation calls. It records memory-footprint
and arithmetic-operation statistics while simultaneously injecting
transient faults to emulate approximate execution.

To avoid spurious errors due to approximation, our simulated
approximate functional units never raise divide-by-zero exceptions.
Approximate floating-point division by zero returns the NaN value;
approximate integer divide-by-zero returns zero.

5.3 Approximations
Our simulator implements the approximation strategies described
in Section 4.2. Table 2 summarizes the approximations used, their
associated error probabilities, and their estimated energy savings.

Floating-point bit-width reduction is performed when executing
Java’s arithmetic operators on operands that are approximate float
and double values. SRAM read upsets and write failures are simu-
lated by flipping each bit read or written with a constant probability.
For DRAM refresh reduction, every bit also has an independent
probability of inversion; here, the probability is proportional to the
amount of time since the last access to the bit.

For the purposes of our evaluation, we distinguish SRAM and
DRAM data using the following rough approximation: data on the
heap is considered to be stored in DRAM; stack data is considered
SRAM. Future evaluations not constrained by the abstraction of the
JVM could explore a more nuanced model.

5.4 Energy Model
To summarize the effectiveness of EnerJ’s energy-saving properties,
we estimate the potential overall savings of the processor/memory
system when executing each benchmark approximately. To do so, we
consider a simplified model with three components to the system’s
energy consumption: instruction execution, SRAM storage (registers
and cache), and DRAM storage. Our model omits overheads of
implementing or switching to approximate hardware. For example,
we do not model any latency in scaling the voltage on the logic units.

2 http://types.cs.washington.edu/jsr308/
3 The EnerJ type checker and simulator are available from our website:
http://sampa.cs.washington.edu/sampa/EnerJ

For this reason, our results can be considered optimistic; future work
should model approximate hardware in more detail.

To estimate the savings for instruction execution, we assign
abstract energy units to arithmetic operations. Integer operations take
37 units and floating point operations take 40 units; of each of these,
22 units are consumed by the instruction fetch and decode stage and
may not be reduced by approximation strategies. These estimations
are based on three studies of architectural power consumption [5, 20,
27]. We calculate energy savings in instruction execution by scaling
the non-fetch, non-decode component of integer and floating-point
instructions.

We assume that SRAM storage and instructions that access it
account for approximately 35% of the microarchitecture’s power
consumption; instruction execution logic consumes the remainder.
To compute the total CPU power savings, then, we scale the savings
from SRAM storage by 0.35 and the instruction power savings,
described above, by 0.65.

Finally, we add the savings from DRAM storage to get an
energy number for the entire processor/memory system. For this, we
consider a server-like setting, where DRAM accounts for 45% of
the power and CPU 55% [12]. Note that in a mobile setting, memory
consumes only 25% of power so power savings in the CPU will be
more important [6].

6. Results
We evaluate EnerJ by annotating a variety of existing Java programs.
Table 3 describes the applications we used; they have been selected
to be relevant in both mobile and server settings.

Applications. We evaluate the FPU-heavy kernels of the SciMark2
benchmark suite to reflect scientific workloads.4 ZXing is a bar code
reader library targeted for mobile devices based on the Android op-
erating system.5 Our workload decodes QR Code two-dimensional
bar code images. jMonkeyEngine is a 2D and 3D game engine for
both desktop and mobile environments.6 We run a workload that
consists of many 3D triangle intersection problems, an algorithm
frequently used for collision detection in games.

ImageJ is an image-manipulation program; our workload exe-
cutes a flood fill operation.7 This workload was selected as repre-
sentative of error-resilient algorithms with primarily integer—rather
than floating point—data. Because the code already includes exten-
sive safety precautions such as bounds checking, our annotation for
ImageJ is extremely aggressive: even pixel coordinates are marked
as approximate. Raytracer is a simple 3D renderer; our workload
executes ray plane intersection on a simple scene.8

Annotation approach. We annotated each application manually.
While many possible annotations exist for a given program, we
attempted to strike a balance between reliability and energy savings.
As a rule, however, we attempted to annotate the programs in
a way that never causes them to crash (or throw an unhandled
exception); it is important to show that EnerJ allows programmers
to write approximate programs that never fail catastrophically. In
our experiments, each benchmark produces an output on every run.
This is in contrast to approximation techniques that do not attempt
to prevent crashes [22, 23, 35]. Naturally, we focused our effort on
code where most of the time is spent.

4 SciMark2: http://math.nist.gov/scimark2/
5 ZXing: http://code.google.com/p/zxing/
6 jMonkeyEngine: http://www.jmonkeyengine.com/
7 ImageJ: http://rsbweb.nih.gov/ij/
8 Raytracer: http://www.planet-source-code.com/vb/scripts/
ShowCode.asp?txtCodeId=5590&lngWId=2

http://types.cs.washington.edu/jsr308/
http://sampa.cs.washington.edu/sampa/EnerJ
http://math.nist.gov/scimark2/
http://code.google.com/p/zxing/
http://www.jmonkeyengine.com/
http://rsbweb.nih.gov/ij/
http://www.planet-source-code.com/vb/scripts/ShowCode.asp?txtCodeId=5590&lngWId=2
http://www.planet-source-code.com/vb/scripts/ShowCode.asp?txtCodeId=5590&lngWId=2


Lines Proportion Total Annotated Endorse-
Application Description Error metric of code FP decls. decls. ments
FFT

Scientific kernels from the
SciMark2 benchmark

Mean entry difference 168 38.2% 85 33% 2
SOR Mean entry difference 36 55.2% 28 25% 0
MonteCarlo Normalized difference 59 22.9% 15 20% 1
SparseMatMult Mean normalized difference 38 39.7% 29 14% 0
LU Mean entry difference 283 31.4% 150 23% 3

ZXing Smartphone bar code decoder 1 if incorrect, 0 if correct 26171 1.7% 11506 4% 247
jMonkeyEngine Mobile/desktop game engine Fraction of correct decisions

normalized to 0.5
5962 44.3% 2104 19% 63

ImageJ Raster image manipulation Mean pixel difference 156 0.0% 118 34% 18
Raytracer 3D image renderer Mean pixel difference 174 68.4% 92 33% 10

Table 3. Applications used in our evaluation, application-specific metrics for quality of service, and metrics of annotation density. “Proportion
FP” indicates the percentage of dynamic arithmetic instructions observed that were floating-point (as opposed to integer) operations.
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Figure 3. Proportion of approximate storage and computation in
each benchmark. For storage (SRAM and DRAM) measurements,
the bars show the fraction of byte-seconds used in storing approxi-
mate data. For functional unit operations, we show the fraction of
dynamic operations that were executed approximately.

Three of the authors ported the applications used in our eval-
uation. In every case, we were unfamiliar with the codebase be-
forehand, so our annotations did not depend on extensive domain
knowledge. The annotations were not labor intensive.

QoS metrics. For each application, we measure the degradation
in output quality of approximate executions with respect to the
precise executions. To do so, we define application-specific quality
of service (QoS) metrics. Defining our own ad-hoc QoS metrics
is necessary to compare output degradation across applications. A
number of similar studies of application-level tolerance to transient
faults have also taken this approach [3, 8, 19, 21, 25, 35]. The third
column in Table 3 shows our metric for each application.

Output error ranges from 0 (indicating output identical to the
precise version) to 1 (indicating completely meaningless output). For
applications that produce lists of numbers (e.g., SparseMatMult’s
output matrix), we compute the error as the mean entry-wise
difference between the pristine output and the degraded output. Each
numerical difference is limited by 1, so if an entry in the output is
NaN, that entry contributes an error of 1. For benchmarks where the
output is not numeric (i.e., ZXing, which outputs a string), the error
is 0 when the output is correct and 1 otherwise.

6.1 Energy Savings
Figure 3 divides the execution of each benchmark into DRAM
storage, SRAM storage, integer operations, and FP operations and
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Figure 4. Estimated CPU/memory system energy consumed for
each benchmark. The bar labeled “B” represents the baseline
value: the energy consumption for the program running without
approximation. The numbered bars correspond to the Mild, Medium,
and Aggressive configurations in Table 2.

shows what fraction of each was approximated. For many of the
FP-centric applications we simulated, including the jMonkeyEngine
and Raytracer as well as most of the SciMark applications, nearly
all of the floating point operations were approximate. This reflects
the inherent imprecision of FP representations; many FP-dominated
algorithms are inherently resilient to rounding effects. The same
applications typically exhibit very little or no approximate integer
operations. The frequency of loop induction variable increments
and other precise control-flow code limits our ability to approximate
integer computation. ImageJ is the only exception with a significant
fraction of integer approximation; this is because it uses integers to
represent pixel values, which are amenable to approximation.

DRAM and SRAM approximation is measured in byte-seconds.
The data shows that both storage types are frequently used in
approximate mode. Many applications have DRAM approximation
rates of 80% or higher; it is common to store large data structures
(often arrays) that can tolerate approximation. MonteCarlo and
jMonkeyEngine, in contrast, have very little approximate DRAM
data; this is because both applications keep their principal data in
local variables (i.e., on the stack).

The results depicted assume approximation at the granularity
of a 64-byte cache line. As Section 4.1 discusses, this reduces the
number of object fields that can be stored approximately. The impact
of this constraint on our results is small, in part because much of
the approximate data is in large arrays. Finer-grain approximate
memory could yield a higher proportion of approximate storage.
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Figure 5. Output error for three different levels of approximation
varied together. Each bar represents the mean error over 20 runs.

To give a sense of the energy savings afforded by our proposed
approximation strategies, we translate the rates of approximation de-
picted above into an estimated energy consumption. Figure 4 shows
the estimated energy consumption for each benchmark running on
approximate hardware relative to fully precise execution. The energy
calculation is based on the model described in Section 5.4. These
simulations apply all of the approximation strategies described in
Section 4.2 simultaneously at their three levels of aggressiveness.
As expected, the total energy saved increases both with the amount
of approximation in the application (depicted in Figure 3) and with
the aggressiveness of approximation used.

Overall, we observe energy savings from 9% (SOR in the Mild
configuration) to 48% (Raytracer in the Aggressive configuration).
The three levels of approximation do not vary greatly in the amount
of energy saved—the three configurations yield average energy
savings of 19%, 24%, and 26% respectively. The majority of the
energy savings come from the transition from zero approximation
to mild approximation. As discussed in the next section, the least
aggressive configuration results in very small losses in output fidelity
across all applications studied.

The fifth column of Table 3 shows the proportion of floating
point arithmetic in each application. In general, applications with
principally integer computation (e.g., ZXing and ImageJ) exhibit
less opportunity for approximation than do floating-point applica-
tions (e.g., Raytracer). Not only do floating-point instructions offer
more energy savings potential in our model, but applications that
use them are typically resilient to their inherent imprecision.

6.2 Quality-of-Service Tradeoff
Figure 5 presents the sensitivity of each annotated application to
the full suite of approximations explored. This quality-of-service
reduction is the tradeoff for the energy savings shown in Figure 4.

While most applications show negligible error for the Mild level
of approximation, applications’ sensitivity to error varies greatly for
the Medium and Aggressive configurations. Notably, MonteCarlo,
SparseMatMult, ImageJ, and Raytracer exhibit very little output
degradation under any configuration whereas FFT and SOR lose
significant output fidelity even under the Medium configuration.
This variation suggests that an approximate execution substrate
for EnerJ could benefit from tuning to the characteristics of each
application, either offline via profiling or online via continuous QoS
measurement as in Green [3]. However, even the conservative Mild
configuration offers significant energy savings.

Qualitatively, the approximated applications exhibit gradual
degradation of perceptible output quality. For instance, Raytracer
always outputs an image resembling its precise output, but the

amount of random pixel “noise” increases with the aggressiveness
of approximation. Under the Mild configuration, it is difficult to
distinguish the approximated image from the precise one.

We also measured the relative impact of various approximation
strategies by running our benchmark suite with each optimization
enabled in isolation. DRAM errors have a nearly negligible impact
on application output; floating-point bit width reduction similarly
results in at most 12% QoS loss in the Aggressive configuration.
SRAM write errors are much more detrimental to output quality
than read upsets. Functional unit voltage reduction had the greatest
impact on correctness. We considered three possibilities for error
modes in functional units: the output has a single bit flip; the last
value computed is returned; or a random value is returned. The
former two models resulted in significantly less QoS loss than the
random-value model (25% vs. 40%). However, we consider the
random-value model to be the most realistic, so we use it for the
results shown in Figure 5.

6.3 Annotation Effort
Table 3 lists the number of qualifiers and endorsements used in
our annotations. Only a fraction of the types in each program
must be annotated: at most 34% of the possible annotation sites
are used. Note that most of the applications are short programs
implementing a single algorithm (the table shows the lines of code
in each program). Our largest application, ZXing, has about 26,000
lines of code and only 4% of its declarations are annotated. These
rates suggest that the principal data amenable to approximation is
concentrated in a small portion of the code, even though approximate
data typically dominates the program’s dynamic behavior.

Endorsements are also rare, even though our system requires
one for every approximate condition value. The outlier is ZXing,
which exhibits a higher number of endorsements due to its frequency
of approximate conditions. This is because ZXing’s control flow
frequently depends on whether a particular pixel is black.

Qualitatively, we found EnerJ’s annotations easy to insert. The
programmer can typically select a small set of data to approximate
and then, guided by type checking errors, ascertain associated data
that must also be marked as approximate. The requirements that
conditions and array indices be precise helped quickly distinguish
data that was likely to be sensitive to error. In some cases, such as
jMonkeyEngine and Raytracer, annotation was so straightforward
that it could have been largely automated: for certain methods, every
float declaration was replaced indiscriminately with an @Approx
float declaration.

Classes that closely represent data are perfect candidates for
@Approximable annotations. For instance, ZXing contains BitArray
and BitMatrix classes that are thin wrappers over binary data. It
is useful to have approximate bit matrices in some settings (e.g.,
during image processing) but precise matrices in other settings (e.g.,
in checksum calculation). Similarly, the jMonkeyEngine benchmark
uses a Vector3f class for much of its computation, which we marked
as approximable. In this setting, approximate vector declarations
(@Approx Vector3f v) are syntactically identical to approximate
primitive-value declarations (@Approx int i).

We found that the @Context annotation helped us to approach
program annotation incrementally. A commonly-used class that is a
target for approximation can be marked with @Context members
instead of @Approx members. This way, all the clients of the class
continue to see precise members and no additional annotation on
them is immediately necessary. The programmer can then update
the clients individually to use the approximate version of the class
rather than addressing the whole program at once.

An opportunity for algorithmic approximation also arose in
ZXing. The BitArray approximable class contains a method isRange
that takes two indices and determines whether all the bits between



the two indices are set. We implemented an approximate version
of the method that checks only some of the bits in the range by
skipping some loop iterations. We believe that application domain
experts would use algorithmic approximation more frequently.

In one case, we found it convenient to introduce a slight change
to increase the fault tolerance of code dealing with approximate
data. ZXing has a principally floating-point phase that performs
an image perspective transform. If the transform tried to access a
coordinate outside of the image bounds, ZXing would catch the
ArrayIndexOutOfBoundsException and print a message saying
that the image transform failed. We modified the algorithm to
silently return a white pixel in this case. The result was that
the image transform became more resilient to transient faults in
the transformation coordinates. We marked these coordinates as
approximate and then endorsed them at the point they are used
as array indices. In no case, however, does an application as we
annotated it do more computation than the pristine version.

7. Related Work
Space constraints preclude a discussion of the vast body of compiler
or hybrid hardware/software work to improve energy efficiency.
Instead, we focus on work we are aware of that exploits approximate
computing to improve energy.

Many studies have shown that a variety of applications have a
high tolerance to transient faults [8, 19, 21, 22, 25, 35]. However,
certain parts of programs are typically more fault-tolerant than
others. Our work exploits this property by allowing the programmer
to distinguish critical from non-critical computation.

Our work at the language level was influenced by previous
work on techniques for trading off correctness for power savings.
Flikker [23] proposes a programming model for reducing the
DRAM refresh rate on certain heap data via low-level program
annotations. Besides being limited to heap storage, Flikker does
not provide any safety guarantees. Relax [9] is an architecture that
exposes timing faults to software as opposed to providing error
recovery automatically in hardware; its goal is to improve error
tolerance with lower power by exploiting portions of code that
are tolerant to error. While Relax focuses on error recovery and
hardware design simplicity, EnerJ emphasizes energy-efficiency
over error detectability and supports a wider range of power-saving
approximations. Moreover, Relax explores a code-centric approach,
in which blocks of code are marked for failure and recovery while
EnerJ employs data-centric type annotations.

Work by Rinard et al. proposes approximate code transforma-
tions in the compiler [1, 25, 31]. Relatedly, EnerJ’s support for
algorithmic approximation, the ability to write an approximate im-
plementation and a precise implementation of the same functionality,
bears some similarity to the Green programming model [3]. How-
ever, Green primarily concerns itself with online monitoring of
application QoS; EnerJ’s guarantees are entirely static. Overall, En-
erJ’s type system makes approximation-based approaches to energy
savings general (it supports approximate operations, storage, and
algorithms) and safe (it provides static isolation guarantees).

Using types to achieve fine-grained isolation of program com-
ponents is inspired by work on information flow types for secure
programming [26, 32]. That body of work also influenced the en-
dorsement construct for explicitly violating non-interference.

Work by Perry et al. also focuses on static verification of fault
tolerance [29, 30]. That work focuses on detection and recovery
rather than exposing transient faults.

8. Conclusion
Approximate computing is a very promising way of saving energy
in large classes of applications running on a wide range of systems,

from embedded systems to mobile phones to servers. We propose
to use a type system based on information-flow tracking ideas: vari-
ables and objects can be declared as approximate or precise; approx-
imate data can be processed more cheaply and less reliably; and we
can statically prove that approximate data does not unexpectedly
affect the precise state of a program. Our type system provides a
general way of using approximation: we can use approximate stor-
age by mapping data to cheaper memory, cache, and registers; we
can use approximate operations by generating code with cheaper,
approximate instructions; and we can use method overloading and
class parameterization to enable algorithmic approximation.

We implement our type system on top of Java and experiment
with several applications, from scientific computing to image pro-
cessing to games. Our results show that annotations are easy to
insert: only a fraction of declarations must be annotated and en-
dorsements are rare. Once a program is annotated for approximation,
the runtime system or architecture can choose several approximate
execution techniques. Our hardware-based model shows potential
energy savings in the 10% to 50% range.
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