
Enforcing Collaboration in Peer-to-Peer Routing
Services

Tim Moreton and Andrew Twigg

Computer Laboratory, Cambridge University, UK
{Tim.Moreton,Andrew.Twigg}@cl.cam.ac.uk

Abstract. Many peer-to-peer services rely on a cooperative model of
interaction among nodes, yet actually provide little incentive for nodes
to collaborate. In this paper, we develop a trust and security architec-
ture for a routing and node location service based on Kademlia [1], a
distributed hash table. Crucially, rather than ‘routing round’ defective
or malicious nodes, we discourage free-riding by requiring a node to con-
tribute honestly in order to obtain routing service in return. We claim
that our trust protocol enforces collaboration and show how our modified
version of Kademlia resists a wide variety of attacks.

1 Introduction

Peer-to-peer systems are global-scale distributed applications that consist of
nodes or peers typically run by individuals and organisations without an out-
of-band trust relationship. Despite this, most existing such systems rely on a
cooperative model of node interaction. Participants join the network and use
the service: other peers route their queries, serve their requests or store their
data. In return, they are expected to contribute their own resources to provide
the same functionality to other peers, although doing so yields no direct benefit
to them.

Game-theoretic and empirical analysis of such applications [2,3] has shown
that users will often defect from providing resources if it is in their personal
interest to do so, while still using the service, regardless of the degradation that
results. Some adversaries may even actively consume resources in an attempt to
deny service to legitimate users.

The decentralized nature of a peer-to-peer system means that it is impossible
to account for the validity of peer software implementing the system’s protocol: a
user may develop or download an alternative to any ‘bona fide’ implementation.
In such an environment, we must assume that each peer acts as a rational,
self-interested agent.

Routing substrates such as Pastry [4], Tapestry [5] and Kademlia [1] are an
important class of middleware for peer-to-peer applications, and are the focus of
much recent research. Being services in the same way as higher-level peer-to-peer
applications, each node contributes by maintaining routing table information
and carrying out either message-passing or responding to routing table requests.

P. Nixon and S. Terzis (Eds.): Trust Management 2003, LNCS 2692, pp. 255–270, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

256 T. Moreton and A. Twigg

D B Akey

A requests
RTEs from B

C
key space

Fig. 1. Locating a node in Kademlia is reminiscent of a source-routing protocol. Node
A wishes to route to the closest node to a key (which happens to be D), by learning
of and querying successively closer nodes, represented by the solid lines. The dashed
lines represent the conceptual routing that takes place

There is no reason to believe that peers will behave any differently in a routing
service; as yet though there are no real-world deployments from which to gather
evidence.

This work focuses on developing a new model for participation in routing
services that are based on distributed hash tables (DHTs), and in particular
Kademlia. We describe a trust protocol which forms the basis for enforcing
collaboration by providing incentives for nodes to participate both in the routing
service and in the trust framework.

The remainder of this paper is organised as follows. Section 2 outlines Kadem-
lia, the routing service to which we apply our model. Section 3 describes the trust
model, how to extend Kademlia to support it, and discusses attacks. Finally, we
compare our approach with related work in Section 4.

2 Background

2.1 Kademlia

Kademlia [1] is a distributed hash table in which peers are assigned a unique
identifier that determines the position they take in a global key space. Each
node maintains a set of routing table entries (RTEs) organised by the distance
between itself and each remote node. Kademlia offers the property common to
DHTs that a node’s knowledge of the key space is greater for values closer to
their own identifier.

Observations made of node uptime data in traces of Gnutella networks [3]
show that nodes are more likely to stay connected, the longer that they have re-
mained connected already. Kademlia applies a least-recently-seen eviction policy

Enforcing Collaboration in Peer-to-Peer Routing Services 257

to nodes in its tables, and never removes entries for nodes that respond to PING
messages. This means that long-term pairwise relationships build up between
peers close to each other in the key space. In our framework these relationships
allow nodes to determine accurate trust information about likely first and second
hops.

Unlike other distributed hash tables, Kademlia does not perform message-
passing in a hop-by-hop fashion, where each node on the route forwards the
request towards its destination key.

Instead, at each step, the source node picks a node B and requests B’s k clos-
est nodes’ RTEs1 . Each successive step uses routing information obtained in the
previous step, until the source node can determine the identity of the destination
peer; at this point they may communicate directly. Figure 1 demonstrates this
process.

2.2 Service and Participation in Routing Substrates

In considering Kademlia’s routing service, we distinguish three categories of
participation: honest participation, and two categories of active, dishonest be-
haviour: free-riding and deliberate subversion:

– Free-riders wish to use the global service, but aim to minimise their par-
ticipation costs by not contributing some or all of the resources expected
of them. By threatening to exclude them from the service, we make it in
free-riders’ interests to participate honestly.

– Deliberately subversive nodes, on the other hand, actively choose to expend
their own resources to deny service to other users. In this case, external
motivations determine a node’s self-interest. Peers acting in this way have
no desire to utilise the global service except to gain a position whereby they
might deny service.

Our trust model allows nodes to ‘route around’ both categories of dishonest
peers. However, using trust to avoid poorly-contributing nodes is not sufficient.
In a routing context, free-riding nodes are less likely to return responses, so fewer
nodes will pass requests for routing information to them; the amount of resources
they need to consume to contribute is reduced. It is then in the interest of all
nodes to defect and free-ride; a global equilibrium may emerge in which no node
replies to queries and the service collapses. To avoid this, we need additionally to
align the incentives of free-riding nodes with participation in the routing service.

So, we aim to enforce two properties in a collaborative service:

1. Dishonest nodes do not provide the routing service for other valid partici-
pants (the avoidance property).

2. Dishonest nodes may not use the routing service (the exclusion property).

1 In practice, at each step the node makes requests for RTEs from α different nodes,
to mitigate the effect on the latency of the lookup from nodes that do not respond.

258 T. Moreton and A. Twigg

3 Enforcing Collaboration

3.1 Securing Messages and Routing Tables

As it stands, the Kademlia protocol is susceptible to nodes returning false in-
formation in replying to requests. Here we present techniques that restrict the
class of attacks that a trust model must consider.

Pairwise authentication. Each node has an associated asymmetric keypair,
which can be used to sign and verify requests and replies between nodes. As
nodes in each other’s routing tables tend to interact over an extended period, we
are investigating a lower-overhead means of authenticating messages by hashing
chains of codewords.

Secure RTEs and identifier assignment. Recall that node identifiers are
assigned pseudo-randomly. It is not sufficient to allow each node to determine
its own identifier, since this may allow an adversary to install a higher fraction
of subversive nodes in one region of the keyspace where it wants to censor a node
or a data item.

Rather, we calculate it as the hash of the concatenation of the node’s public
key and IP address, included to prevent identifiers being swapped between real
nodes. A trusted third party Certification Agency (CA) or a similar distributed
scheme signs these two unhashed values, so that it is difficult for adversaries to
obtain many virtual identities. The operation of the CA and the requirements
it makes on nodes (financial, proof of identity, etc.) are beyond the scope of this
paper.

Testing for malicious tampering of replies. The above techniques ensure
that a set of k RTEs can contain no non-existent nodes. A malicious adversary
may, however, return nodes which are not among the k closest to the lookup key,
by excluding legitimate entries. A density test proposed by Castro et al. [6] may
be used to compare the spacing of identifiers in the local routing tables with the
spacing of the returned entries. Given the distance between the remote node and
the destination key, we can estimate the average expected spacing and range of
nodes in the appropriate level of the remote routing table, and compare it to
observations.

3.2 The Structure of Trust Values

Before developing the trust model, we present a few brief definitions. Trust values
are elements of a complete lattice (T, ≤), P is the set of principals and the trust
space t is a partial function t : P ⇀ (P ⇀ T). Initially, let P be the set of nodes
in the network, hence we write tAB to denote A’s trust in node B.

We separate the notions of trust into two categories: trust as a participa-
tor in the service and trust as a recommender of other principals. This avoids

Enforcing Collaboration in Peer-to-Peer Routing Services 259

C

B

AC

B

A

a) b)

trust as a participator
trust as a recommender

Fig. 2. How separate trust spaces permit selective transitivity in trust relationships.
Principal A only trusts C as a participant if A trusts B as a recommender and B trusts
C as a participant. Interestingly, A need not trust B as a participant for it to have the
transitive relationship

the inherent difficulty associated with having to make an assumption about a
principal’s ability to recommend, based on their ability to participate. Without
this independence, s service is open to the colluding nodes attack. Essentially a
node builds up the trust of another node A (by participating), then makes false
recommendations to ‘transfer’ A’s trust into a set of malicious nodes, which A
now trusts transitively via B. By separating trust in participation and recom-
mendation, we avoid this attack, as described in Section 3.7. We now define more
precisely these two notions of trust.

Let tAP,B be principal A’s trust in principal B as a participant of the service,
i.e. returning valid RTEs. This is computed based on principals’ (including A’s)
interactions with B. Let tAR,B be principal A’s trust in principal B as a recom-
mender. More accurately, it is the trust A has in the proposition ‘B returns
accurate recommendations about other principals’.

Transitivity. Trust is not, in general, transitive [7] yet it should be transitive for
small groups of principals who trust each other in a certain way. By separating
trust in participation and recommendation, we show how trust can be transferred
selectively transitively.

Consider the arrangement of nodes in Figure 2. If B trusts C to participate
(tBP,C is high) then should A trust C to participate, i.e. should the trust be transi-
tively transferred? The answer depends on A’s trust in B as a recommender (i.e.
tAR,B), though not in A’s trust in B as a participator. If tAR,B = � ∈ T then the
trust is completely transitive, and if it equals ⊥ ∈ T then A completely discounts
B’s recommendation and no trust in C as a participator is inferred. A value in-
between describes a partial transitivity and furthermore, each trust relationship
has its own degree of transitivity based on these two trust relationships.

260 T. Moreton and A. Twigg

3.3 Making Recommendations

Recommendations are made by a principal B by augmenting the RTEs returned
with B’s trust in those principals. A typical set of routing table entries returned
from B would be as in Figure 3.

{〈
C, tB

P,C

〉
,
〈
D, tB

P,D

〉
,
〈
E , tB

P,E

〉}

Fig. 3. A typical set of RTEs from a principal B. C represents all the lower-level data
about node C, returned by B as per the standard Kademlia protocol

3.4 Observations and Interactions

Let ϕA
B = (x, y) represent the direct observations principal A has made on prin-

cipal B where x, y are the numbers of successful and unsuccessful interactions,
respectively. ‘Success’ is defined to exclude as many attacks as possible on the
routing service. We consider a successful interaction to be one where B, when
passed a valid request for a given key, returns k valid RTEs, where a valid RTE
is one which:

– refers to a node that exists: the identifier associated with the node is
valid; it may be signed by an out-of-band Certification Authority [1];

– is plausibly in the set of the k-closest nodes to the key that B
knows about: to prevent B inserting valid but colluding nodes into the k
entries that it returns; i.e. that it passes the density test [6].

No response after a certain timeout, whether because B dropped the request,
or because it was never delivered, is an unsuccessful interaction. Note that our
definition of a routing service specifies only an ability to find the node whose
identifier is closest to a given key, not an ability to interact with it.

The exact nature of ϕ depends on the trust space used – it could be the
proportion of successful interactions (and hence in [0, 1]) as in [8,9,10] or taken
to be opinions in subjective logic [11], as in [12]. The advantage of a subjective
logic is that it permits a notion of uncertainty in probabilities, allowing nodes to
reason subjectively about the trust in the network and the decisions they make.
The trust model we develop in this paper makes no assumptions about the trust
values used, only that they form a complete lattice (T, ≤) and that a number
of operators which obey certain properties, are well-defined (and closed) over T .
These are:

– discounting ⊗ : This reduces the contribution of a node’s opinion B by our
trust in B as a recommender, and is written tA:B = tA ⊗ tB . We require
that ⊗ be associative but not necessarily commutative. An example ⊗ over
opinions in subjective logic is given in [11].

Enforcing Collaboration in Peer-to-Peer Routing Services 261

– consensus ⊕ : This takes two trust values and combines them, as if two
agents held opinions on different events, and is written tA,B = tA ⊕ tB .
We require that ⊕ be associative and commutative. As an example, if trust
values are pairs of (successful, unsuccessful) interactions then (a, b)⊕(c, d) =
(a + c, b + d).

– agreement � : This returns a measure of the agreement in opinions expressed
in two trust values, and is written tA−B = tA � tB . We require that � both
associates and commutes. Trust values that are very similar will have high
agreement, and those which differ wildly will have low agreement.

3.5 Trust Protocol

How nodes interact. When A attempts to interact with B (i.e. by requesting
RTEs), the protocol is that B satisfies the request (i.e. responds) in proportion
to some combination of its trust in A as a participant and a recommender.
Considering both trust values satisfies the exclusion property of the service. An
initial thought is to consider just A’s trust as a participant (i.e. to reciprocate
A’s behaviour in replying), but this fails to uphold the exclusion property since
lazy nodes (see the laziness attack) are not penalised. Hence our protocol is for
B to reply to A with probability proportional to tBP,A � tBR,A, i.e. the greatest
lower bound of the two values.

The bandwidth cost associated with a poorly-trusted node retrying failed
requests may not be sufficient on its own to cause the node to improve its
participation. As such, we may also employ a proof-of-work scheme where a
token that requires a certain amount of computation to generate, but is trivial
to verify, is associated with each request; this will serve to limit the rate at which
A can make requests, and so increase the relative cost of each failed one.

How nodes route. In Kademlia, A picks α nodes at random from its k closest
nodes to perform the next ‘hop’ on the route. Our trust protocol extends this
by choosing α nodes which A trusts to return accurate and valid entries. The
expected proportion of accurate and valid RTEs returned from B in response to
a request from A is given by:

tAP,B ⊗ tAR,B (1)

since tAP,B is A’s trust in B to reply with valid entries and tAR,B is A’s trust that
the valid entries B returns are accurate.

Hence A chooses α nodes from the k about which it knows that are closest
to the desired key, with probabilities proportional to their expected values as
in Equation (1). This provides a form of load balancing, and offers nodes with
low trust values an opportunity to increase them through successful interactions
while adhering overall to the desired avoidance property.

262 T. Moreton and A. Twigg

3.6 Trust Computation

In this section, we describe how a node’s trust values are computed for both
participants and recommenders, and discuss their derivations and solutions.

Computing the trust in participators. We now look at how A computes
its trust in B as a participant. Without the use of recommendations, the trust
computation for tAP,B (A’s trust in B as a participant) is given by:

tAP,B = tAR,A ⊗ ϕA
B (2)

where tAR,A is A’s trust in itself as a recommender (which may be �). Including
this may seem surprising, but it is not uncommon to not have full trust in one’s
observations in reality.

Now we consider how to incorporate recommendations from other principals.
Let C : B represent a recommendation from principal C about principal B,
obtained from an RTE returned by C. Using the discounting operator ⊗, the
recommendation C : B with trust value tCP,B (C’s trust in B as a participant) is
discounted (its contribution reduced) by A’s trust in C as a recommender (tAR,C).
This is done for each recommendation about B, and the discounted values are
combined using the consensus operator ⊗.

This leads to an iterative fixpoint computation whose solution is the fixpoint
assignment of all participating trust values. The final step is to introduce the
direct observations. For tAP,B all the recommendations are combined with A’s
direct observations on B, ϕA

B . The final trust computation for participation is
given below:

tAP,B =
⊕

∀C s.t. C:B

{
tAR,C ⊗ tCP,B

} ⊕ (
tAR,A ⊗ ϕA

B

)
(3)

Computing the trust in recommenders. Now we consider how A computes
its trust in B as a recommender. Essentially what we want to do is compare
the recommendations it makes with our view of the same, using the agreement
operator � which represents the agreement between two trust values. Hence
(tC � tB) is a high trust value iff tC and tB concur.

We can combine the results of all these ‘comparisons’ by using the consensus
operator ⊕, over all the recommendations made by (as opposed to about as in
Equation (3)) B, about some principal C. The computation is as below:

tAR,B =
⊕

∀C s.t. B:C

{
tBP,C � tAP,C

}
(4)

It may be that ⊕ is not the best way to combine the comparisons in all appli-
cations. Essentially, ⊕ performs an ‘averaging’ over all the comparisons, which
allows incorrect recommendations to become ‘diluted’ or lost if a principal makes
enough good ones. The computation could be made ‘more strict’ by taking the

Enforcing Collaboration in Peer-to-Peer Routing Services 263

CB

A

1) B says:
 "C is a good
 participant"

2) A observes:
 "C is a bad
 participant"

3) A concurs:
 "B is a bad
 recommender"

Fig. 4. Updating A’s opinion about B as a recommender. In addition to A’s direct
observations on C, it can use other recommendations from principals it already trusts
as recommenders (of course, they can be wrong but the process converges to the correct
situation rapidly)

worst comparison, i.e. replacing ⊕ with the greatest lower bound of the observa-
tions, � (which exists since our trust values form a complete lattice). It should
now be clear that ⊕ and � are just two operators in a partial order which de-
scribes how ‘strict’ A is about computing its trust in B as a recommender. The
order includes other operators and a subset of it is given below:

⊥ 	 � 	 ⊕ 	
 	 � (5)

where ⊥ means ‘ignore B’s recommendations and assign it lowest trust anyway’
(and the opposite for �), and
 takes the least upper bound of the comparisons.

This is interesting since it allows each principal control over how it rates
other principals, as well as how it computes the trust values. As a node, we do
not care about how A computes its trust values, only how they compare to our
and others’ findings. Thus, it is in a principal’s interest to accurately compute
the values (to avoid being marked as lazy) whilst doing the minimum amount
of computation it can ‘get away with’.

Meta-recommendations. Consider the situation where A has requested RTEs
from B and chooses C as the next step on the route. C returns k valid RTEs as
per the protocol (and hence participates), but since A has no evidence of C as a
recommender, it cannot discount C’s recommendations. This situation will not
be uncommon in large principal spaces where nodes will have only interacted
and received recommendations for, a very small proportion of the principals in
the space.

In the same way that principals can recommend principals’ abilities to par-
ticipate, we can increase the propagation of trust by considering the ability to
recommend other principals’ abilities to recommend. Recall that tAR,B is A’s

264 T. Moreton and A. Twigg

C

B

A

1) B says:
 "C is a good
 recommender"

3) A observes:
 "D is a bad participant"

D
2) C says:
 "D is a good
 participant"

4) A concurs:
 "D is a bad participant"
 "C is a bad recommender"
 "B is a bad recommender"

Fig. 5. How meta-recommendations are updated and propagated. A’s trust in B’s abil-
ity as a recommender decreases due to one of two things: C turns out to be a bad rec-
ommender, or (not shown) C could be a bad participant. Hence meta-recommendations
consider the ability to recommend in general

recommendation about B’s ability to return correct observations about other
principals. A meta-recommendation is a recommendation about a principal’s
ability to recommend principals who make accurate recommendations about
other principals. We make the assumption that a principal makes accurate meta-
recommendations (i.e. about principals’ abilities to recommend) if they make ac-
curate recommendations, since it is the ability to recommend in general, not their
ability to recommend about participation, that we are interested in modelling.

To handle meta-recommendations, a node returns in its RTEs its trust values
of other nodes as recommenders, in addition to their trust values as participants,
as shown in Figure 6.

{〈
C, tB

P,C , tB
R,C

〉
,
〈
D, tB

P,D, tB
R,D

〉
,
〈
E , tB

P,E , tB
R,E

〉}

Fig. 6. A typical set of RTEs from a principal B with meta-recommendations. C rep-
resents all the lower-level data about node C, returned by B as per the standard
Kademlia protocol

Fixed-point solutions to trust equations. Equations (3) and (4) are
mutually-recursive - A’s trust in B as a participant affects A’s (and others’)
trust in B as a recommender, which in turn affects the weightings of B’s rec-

Enforcing Collaboration in Peer-to-Peer Routing Services 265

C

B

A

D

C

B

A

D

participation trust space recommendation trust space

Fig. 7. How the trust spaces affect each other by means of the trust Equations (3) and
(4). The fixed-point solution to both sets of trust values represents the ‘equilibrium
position’ between the spaces, i.e. when the values in one do not change the values in
the other

ommendations, and so on. The solution is analogous to eigen problems in sparse
graphs (such as the WWW), so techniques similar to PageRank [13] can be
employed to solve it. A similar computation and its approximate solution is
described in [12,9].

Conceptually, the two trust spaces can be thought of as products in a two-
way reaction, as in Figure 7. Essentially, the fixed-point solution to the trust
equations is the equilibrium position between these spaces.

3.7 Attacks

This subsection outlines a series of possible attacks on the service, and informally
describes how they are resisted.

Recall that we so far only model the aggregate property of B as a recom-
mender of principals’ participation in the service. One may consider stronger
adversarial network models where nodes make false recommendations depend-
ing on the subject of the recommendation, and this behaviour can be modelled
by transforming the principal space as in [12]. This type of adversarial model is
particularly appropriate when one considers the colluding nodes attack.

Attack 1 (Colluding Nodes) A node B participates in the service and makes
true recommendations, except for other nodes in its collusion set, about which it
falsely reports excellent observations, as shown in Figure 8.

By treating principals as pairs of nodes, trust values resemble tAR,B:C mean-
ing A’s trust in B as a recommender of C’s participation. Then, even if B
participates and makes good recommendations on other nodes outside its set,
B cannot ‘transfer’ A’s trust in it into the set via C, since B’s correctness in

266 T. Moreton and A. Twigg

C

BA D

colluding set

E

A can never build trust in C,D
as participants unless they are
observed (not necessarily by A)"non-participant"

Fig. 8. The colluding nodes attack. Nodes B, C, D form a set where B participates
and aims to use this to transfer A’s trust in it into the set, where C, D are free-riding.
A has high trust in E as a recommender, who has observed C to be a free-rider.
Separating trust in participation and recommendation prevents C, D from free-riding
at the expense of A

recommending other nodes has no influence on A’s trust in it recommending C.
Only by observing (or gaining recommendations from other nodes whom A trusts
to recommend C) C’s participation (and therefore validating or refuting B’s rec-
ommendation) can A transfer trust into the set. But if C is malicious and does
not participate, B’s claim is impossible to validate.

Resisting the next attack essentially relies on the system to uphold both the
avoidance and exclusion properties of the service, to both avoid and exclude
‘free-riders’.

Attack 2 (Free-riding) A free-riding node B avoids participation in the ser-
vice by not returning RTEs when requested, or returning invalid RTEs.

Nodes that request RTEs from B will rapidly concur that tP,B is low, both
by their direct observations and from recommendations of principals they trust.
The avoidance property of the service is not compromised since nodes will route
around B by avoiding requesting RTEs from it, and the exclusion property is
upheld since nodes will rapidly deny B their RTEs, ending its reign as a free-
rider.

A variation on free-riding is laziness. Although this may not be an attack in the
malicious sense, we still consider it a threat to the service.

Attack 3 (Laziness) A lazy node B participates in the service by returning
valid RTEs but with random trust values since it does not wish to (or cannot)
expend the resources involved in computing trust values. This is distinct from bad-
mouthing, in that expected correlation between B’s trust values and the actual
values is zero, yet the values are all strongly-negative under bad-mouthing.

On average the tBP values in RTEs returned by B are significantly different
from those computed by non-lazy nodes (not just other honest nodes). By Equa-
tion (3), the trust values tR,B will be low. Hence B can be identified as a lazy
node quite easily and hence avoided. The exclusion property of our service is also
upheld, since other nodes will not return RTEs for B very often.

Enforcing Collaboration in Peer-to-Peer Routing Services 267

However, we certainly consider the next attack to be of malicious intent since
it involves nodes spreading malicious recommendations. Unfortunately, it may
be quite difficult to distinguish between bad-mouthing and lazy nodes in reality
unless the attack is sufficiently long-lived.

Attack 4 (Bad-mouthing) A node B attempts to bad-mouth other nodes by
returning valid RTEs but with malicious trust values, often ⊥.

This attack is similar to the laziness attack except that B may do one of two
things:

1. Return malicious (i.e. low) trust values for all nodes;
2. Return lazy (i.e. random) trust values for nodes it does not bad-mouth;
3. Return correct trust values for nodes it does not bad-mouth.

The first mode of attack can be detected (and treated) in the same way as for
laziness. The final two modes require a transformation of the principal space so
that principals represent pairs of nodes, as per Attack 1.

A possible motivation for this attack is an attempt to justify later free-riding,
by claiming that nodes B bad-mouthed were poor participators, and hence B is
justified in reciprocating their behaviour towards them, as if it were following the
protocol honestly.

The phrase ‘screw-each-server-once’ has been used as an attack against systems
which do not consider recommendations (where the trust is built ‘locally’) and
therefore is fairly weak in the current context.

Attack 5 (Screw-each-server-once) A malicious node B which does not par-
ticipate nor make accurate recommendations (due to laziness or bad-mouthing)
attempts to gain maximum use of the service by interacting with as many prin-
cipals as possible in the hope that it stays ‘ahead of its reputation’.

The use of almost any recommendation and reputation system will counteract
this attack eventually. However, the attacker may use knowledge about how the
recommendations are distributed in order to maximize its benefit from the attack.
Since nodes in Kademlia are distributed randomly over the key space, the graph
which describes how recommendations are distributed (by other nodes performing
routing) is essentially a random graph. Assuming routing requests are randomly
distributed and each route discovers reputations about O(k log n) other nodes,
we conjecture that a node can expect to ‘screw’ O((1/k) log n) servers before its
reputation catches up with it.

The final attack we consider relies on subverting a particular property of Kadem-
lia’s routing protocol. That is, a node returns k valid RTEs but they do not
represent the k closest nodes in the key space.

Attack 6 (Not returning the actual k closest nodes) This can be de-
tected using the density test described in Section 3.1, and the node’s trust value
as a participant will be reduced, excluding it from the service.

268 T. Moreton and A. Twigg

4 Related Work

4.1 Economic and Game-Theoretic Approaches

Work on using economic models to realign nodes’ incentives to participate have
presented schemes that assume variable demand for services. Geels and Kubi-
atowicz argue in [14] that replica management in global-scale storage systems
should be conducted as an economy. Nodes trade off the cost of storing data
blocks with the value they are able to charge for access to them – in this con-
text, a variable demand for blocks is essential.

However, variable demand properties may hold for human-valued commodi-
ties, such as the information stored or shared in a peer-to-peer system, but not
for routing table entries. Since DHTs typically determine the allocation of items
to nodes pseudo-randomly, requests for keys will also be distributed evenly, so
no particular value can be conferred on any particular destination.

Currently, the lack of a scalable, low-overhead digital cash system that may
be fully decentralized hampers uptake of economic models. Mojo Nation [15], a
distributed file storage and trading system, used a currency ‘mojo’ to discourage
free-riding and to obtain load balancing at servers by congestion charging, but
relied on a centralized trusted third party to prevent double-spending.

Acqusti et al. [16] develop an incentive model for a distributed application
that offers anonymity to its participants. They take a game-theoretic approach
to analysing node behaviour and attacks in various system models. Trust is only
considered as a means to ameliorate pseudo-spoofing [17] attacks, rather than
as a means to provide incentives to peers.

4.2 Trust and Reputation Frameworks

Aberer et al. [10] present a system for ‘managing trust’ in a peer-to-peer system
using a complaint-based metric. However, recommendations from other nodes
are not discounted and they present a threshold technique for checking whether
a node is ‘untrustworthy’, based on the difference between its recommendations
and the ‘average view’. This presents a brittle view of trust which is likely to be
difficult to use to effectively reason about decisions on whether to interact.

The NICE system [18] aims to identify rather than enforce the existence
of cooperative peers. It claims to “efficiently locate the generous minority [of
cooperating users], and form a clique of users all of whom offer local services to
the community.” We take the view that such systems should work to exclude
dishonest users rather than avoid them.

4.3 Levien’s Stamp Trading Network

Levien proposes a stamp-trading network [19] applied to Kademlia that offers
incentives to enforce end-to-end service, and is underpinned by a trust model
based on constrained flow in networks. A node’s owner explicitly selects other
nodes whom they trust, so a trusted set of live nodes must be obtained or known

Enforcing Collaboration in Peer-to-Peer Routing Services 269

before each join. Stamps are continually created and circulated to these nodes,
which may them trade them with other nodes, and which can later be redeemed
at the issuing node for service.

Trading is directed by Kademlia’s key location service, but the mechanism
suffers from practical difficulties. Currently, at each step in the key lookup, a node
obtains a stamp to facilitate its next hop. However, stamp exchange rates, set
to reflect the value of the service offered by nodes, require advertising before an
exchange can be made. The interaction is further complicated by the Kademlia
protocol usually returning k RTEs at once to reduce latency.

The system obtains feedback when a destination node ‘refuses’ to redeem a
stamp that it issued. An audit trail is maintained in the stamp to detect double-
spending; each node trading the stamp appends a signed statement to the trail.
Unfortunately, this scheme suffers high overhead given the number of trades
required for a stamp, and no scheme is proposed to exclude double-spending
nodes.

5 Conclusion

We have presented a trust model which aims to enforce collaboration in a peer-to-
peer routing service, based on Kademlia, a distributed hash table with symmetric
routing properties. Our work is related to the research goals of the SECURE
project [20], which aims to develop a formal foundation for trust and risk in
global computing systems. We have presented an existential view of trust which
separates how trust values are computed from what the computation represents.
This methodology allows each node to compute trust approximations of differing
quality, yet still be able to exchange recommendations – particularly important
in mobile and pervasive computing applications.

Acknowledgements. The authors wish to thank members of the Cambridge
Computer Laboratory for reading draft versions of this paper, often at short
notice. Thanks also go to the reviewers for helpful comments about the general
ideas within the paper. The authors are supported by EPSRC and Andrew Twigg
is additionally supported by BTexact technologies.

References

1. Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information system
based on the xor metric. In: Proceedings of IPTPS02, Cambridge, MA. (2002)

2. Adar, E., Huberman, B.: Free riding on Gnutella. In: Technical report, Xerox
PARC, 10 Aug. 2000. (2000)

3. Saroiu, S., Gummadi, P.K., Gribble, S.D.: A measurement study of peer-to-peer
file sharing systems. In: Proceedings of Multimedia Computing and Networking
2002 (MMCN ’02), San Jose, CA, USA (2002)

4. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware). (2001) 329–350

270 T. Moreton and A. Twigg

5. Zhao, B.Y., Kubiatowicz, J.D., Joseph, A.D.: Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141, UC
Berkeley (2001)

6. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.: Security for
structured peer-to-peer overlay networks. In: 5th Symposium on Operating Sys-
tems Design and Implementaion (OSDI’02). (2002)

7. Christianson, B., Harbison, W.: Why isn’t trust transitive? In: Security Protocols
Workshop, 1996, pp. 171–176. (1996)

8. Keane, J.: Trust based dynamic source routing in mobile ad hoc networks. MSc.
Thesis, Trinity College Dublin) (2002)

9. Xiong, L., Liu, L.: Building trust in decentralized peer-to-peer electronic com-
munities. In: Fifth International Conference on Electronic Commerce Research
(ICECR-5), Canada. (2002)

10. Aberer, K., Despotovic, Z.: Managing trust in a peer-2-peer information system.
In: CIKM. (2001) 310–317

11. Jøsang, A.: A logic for uncertain probabilities. Available at
citeseer.nj.nec.com/392196.html (2001)

12. Twigg, A.: A subjective approach to routing in P2P and ad hoc networks. In: 1st
International Conference on Trust Management, Crete. (2003)

13. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. available as tech. Rep., computer science department,
stanford university (1998)

14. Geels, D., Kubiatowicz, J.: Replica management should be a game. In: Proceedings
of the SIGOPS European Workshop. (2002)

15. Wilcox-O’Hearn, B.: Experiences Deploying a Large-Scale Emergent Network. In:
1st International Peer To Peer Systems Workshop. (2002)

16. Acquisti, A., Dingledine, R., Syverson, P.: On the economics of anonymity. Avail-
able at www.freehaven.net/doc/fc03/econymics.pdf (2003)

17. Douceur, J.: The Sybil Attack. In: 1st International Peer To Peer Systems Work-
shop. (2002)

18. Lee, S., Sherwood, R., Bhattacharjee, B.: Cooperative Peer Groups in NICE. In:
IEEE Infocom. (2003)

19. Levien, R.: Stamp trading networks. Available at www.levien.com/thesis (2001)
20. SECURE: Secure: Secure environments for collaboration among ubiquitous roam-

ing entities. EU IST-2001-32486 (2001)

