
This paper is included in the Proceedings of the

12th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’15).

May 4–6, 2015 • Oakland, CA, USA

ISBN 978-1-931971-218

Open Access to the Proceedings of the

12th USENIX Symposium on

Networked Systems Design and

Implementation (NSDI ’15)

is sponsored by USENIX

Enforcing Customizable Consistency Properties
in Software-Defined Networks

Wenxuan Zhou, University of Illinois at Urbana-Champaign;

Dong Jin, Illinois Institute of Technology; Jason Croft, Matthew Caesar,

and P. Brighten Godfrey, University of Illinois at Urbana-Champaign

https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/zhou

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 73

Enforcing Customizable Consistency Properties in

Software-Defined Networks

Wenxuan Zhou*, Dong Jin**, Jason Croft*, Matthew Caesar*, and P. Brighten Godfrey*

*University of Illinois at Urbana-Champaign
**Illinois Institute of Technology

Abstract

It is critical to ensure that network policy remains con-

sistent during state transitions. However, existing tech-

niques impose a high cost in update delay, and/or FIB

space. We propose the Customizable Consistency Gener-

ator (CCG), a fast and generic framework to support cus-

tomizable consistency policies during network updates.

CCG effectively reduces the task of synthesizing an up-

date plan under the constraint of a given consistency pol-

icy to a verification problem, by checking whether an

update can safely be installed in the network at a par-

ticular time, and greedily processing network state tran-

sitions to heuristically minimize transition delay. We

show a large class of consistency policies are guaranteed

by this greedy heuristic alone; in addition, CCG makes

judicious use of existing heavier-weight network update

mechanisms to provide guarantees when necessary. As

such, CCG nearly achieves the “best of both worlds”:

the efficiency of simply passing through updates in most

cases, with the consistency guarantees of more heavy-

weight techniques. Mininet and physical testbed evalu-

ations demonstrate CCG’s capability to achieve various

types of consistency, such as path and bandwidth proper-

ties, with zero switch memory overhead and up to a 3×

delay reduction compared to previous solutions.

1 Introduction

Network operators often establish a set of correctness

conditions to ensure successful operation of the network,

such as the preference of one path over another, the pre-

vention of untrusted traffic from entering a secure zone,

or loop and black hole avoidance. As networks become

an increasingly crucial backbone for critical services, the

ability to construct networks that obey correctness cri-

teria is becoming even more important. Moreover, as

modern networks are continually changing, it is critical

for them to be correct even during transitions. Thus,

a key challenge is to guarantee that properties are pre-

served during transitions from one correct configuration

to a new correct configuration, which has been referred

as network consistency [25].

Several recent proposed systems [13, 16, 19, 25] con-

sistently update software-defined networks (SDNs), tran-

sitioning between two operator-specified network snap-

shots. However, those methods maintain only specific

properties, and can substantially delay the network up-

date process. Consistent updates [25] (CU), for example,

only guarantees coherence: during a network update any

packet or any flow is processed by either a new or an old

configuration, but never by a mix of the two. This is a rel-

atively strong policy that is sufficient to guarantee a large

class of more specific policies (no loop, firewall traver-

sal, etc.), but it comes at the cost of requiring a two-phase

update mechanism that incurs substantial delay between

the two phases and doubles flow entries temporarily. For

networks that care only about a weaker consistency prop-

erty, e.g., only loop freedom, this overhead is unneces-

sary. At the same time, networks sometimes need prop-

erties beyond what CU provides: CU only enforces prop-

erties on individual flows, but not across flows (e.g., “no

more than two flows on a particular link”). SWAN [13]

and zUpdate [19] also ensure only a specific property, in

their case congestion freedom.

That leads to a question: is it possible to efficiently

maintain customizable correctness policies as the net-

work evolves? Ideally, we want the “best of both

worlds”: the efficiency of simply immediately installing

updates without delay, but the safety of whatever correct-

ness properties are relevant to the network at hand.

We are not the first to define this goal. Recently,

Dionysus [15] proposed to reduce network update time to

just what is necessary to satisfy a certain property. How-

ever, Dionysus requires a rule dependency graph for each

particular invariant, produced by an algorithm specific to

that invariant (the paper presents an algorithm for packet

coherence). For example, a waypointing invariant would

need a new algorithm. Furthermore, the algorithms work

only when forwarding rules match exactly one flow.

We take a different approach that begins with an ob-

servation: synthesizing consistent updates for arbitrary

consistency policies is hard, but network verification on

general policies is comparatively easy, especially now

that real-time data plane verification tools [5, 17, 18] can

verify very generic data-plane properties of a network

state within milliseconds. In fact, as also occurs in do-

mains outside of networking, there is a connection be-

tween synthesis and verification. A feasible update se-

quence is one which the relevant properties are verifiable

at each moment in time. Might a verifier serve as a guide

through the search space of possible update sequences?

74 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

Based on that insight, we propose a new consistent

update system, the Customizable Consistency Generator

(CCG), which efficiently and consistently updates SDNs

under customizable properties (invariants), intuitively by

converting the scheduling synthesis problem to a series

of network verification problems. With CCG, network

programmers can express desired invariants using an in-

terface (from [18]) which allows invariants to be defined

as essentially arbitrary functions of a data plane snap-

shot, generally requiring only a few tens of lines of code

to inspect the network model. Next, CCG runs a greedy

algorithm: when a new rule arrives from the SDN con-

troller, CCG checks whether the network would satisfy

the desired invariants if the rule were applied. If so, the

rule is sent without delay; otherwise, it is buffered, and

at each step CCG checks its buffer to see if any rules can

be installed safely (via repeated verifications).

This simplistic algorithm has two key problems. First,

the greedy algorithm may not find the best (e.g., fastest)

update installation sequence, and even worse, it may get

stuck with no update being installable without violat-

ing an invariant. However, we identify a fairly large

scope of policies that are “segment-independent” for

which the heuristic is guaranteed to succeed without

deadlock (§5.2). For non-segment-independent policies,

CCG needs a more heavyweight update technique, such

as Consistent Updates [25] or SWAN [13], to act as a

fallback. But CCG triggers this fallback mechanism only

when the greedy heuristic determines it cannot offer a

feasible update sequence. This is very rare in practice

for the invariants we test (§7), and even when the fall-

back is triggered, only a small part of the transition is

left to be handled by it, so the overhead associated with

the heavyweight mechanism (e.g., delay and temporarily

doubled FIB entries) is avoided as much as possible.

The second challenge lies in the verifier. Existing

real-time data plane verifiers, such as VeriFlow and Net-

Plumber, assume that they have an accurate network-

wide snapshot; but the network is a distributed system

and we cannot know exactly when updates are applied.

To address that, CCG explicitly models the uncertainty

about network state that arises due to timing, through

the use of uncertain forwarding graph (§4), a data struc-

ture that compactly represents the range of possible net-

work behaviors given the available information. Al-

though compact, CCG’s verification engine produces po-

tentially larger models than those of existing tools due to

this “uncertainty” awareness. Moreover, as a subroutine

of the scheduling procedure, the verification function is

called much more frequently than when it is used purely

for verification. For these reasons, a substantial amount

of work went into optimization, as shown in §7.1.

In summary, our contributions are:

• We developed a system, CCG, to efficiently synthe-

size network update orderings to preserve customiz-

able policies as network states evolve.

• We created a graph-based model to capture network

uncertainty, upon which real-time verification is per-

formed (90% of updates verified within 10 µs).

• We evaluate the performance of our CCG implemen-

tation in both emulation and a physical testbed, and

demonstrate that CCG offers significant performance

improvement over previous work—up to 3× faster

updates, typically with zero extra FIB entries—while

preserving various levels of consistency.

2 Problem Definition and Related Work

We design CCG to achieve the following objectives:

1) Consistency at Every Step. Network changes can

occur frequently, triggered by the control applications,

changes in traffic load, system upgrades, or even failures.

Even in SDNs with a logically centralized controller, the

asynchronous and distributed nature implies that no sin-

gle component can always obtain a fully up-to-date view

of the entire system. Moreover, data packets from all

possible sources may traverse the network at any time

in any order, interleaving with the network data plane

updates. How can we continuously enforce consistency

properties, given the incomplete and uncertain network

view at the controller?

2) Customizable Consistency Properties. The range

of desired consistency properties of networks is quite di-

verse. For example, the successful operations of some

networks may depend on a set of paths traversing a fire-

wall, certain “classified” hosts being unreachable from

external domains, enforcement of access control to pro-

tect critical assets, balanced load across links, loop free-

dom, etc. As argued in [21], a generic framework to

handle general properties is needed. Researchers have

attempted to ensure certain types of consistency proper-

ties, e.g., loop freedom or absence of packet loss [13,19],

but those studies do not provide a generalized solution.

Dionysus [15], as stated earlier, generalizes the scope of

consistency properties it deals with, but still requires de-

signing specific algorithms for different invariants. Con-

sistent Updates [25] is probably the closest solution to

support general consistency properties because it pro-

vides the relatively strong property of packet coherence

which is sufficient to guarantee many other properties;

but as we will see next, it sacrifices efficiency.

3) Efficient Update Installation. The network

controller should react in a timely fashion to network

changes to minimize the duration of performance drops

and network errors. There have been proposals [13, 16,

19, 23, 25] that instill correctness according to a specific

consistency property, but these approaches suffer sub-

stantial performance penalties. For example, the wait-

ing time between phases using the two-phase update

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 75

scheme proposed in CU [25] is at least the maximum

delay across all the devices, assuming a completely par-

allel implementation. Dionysus [15] was recently pro-

posed to update networks via dynamic scheduling atop

a consistency-preserving dependency graph. However, it

requires implementing a new algorithm and dependency

graph for each new invariant to achieve good perfor-

mance. For example, a packet coherence invariant needs

one algorithm and a waypoint invariant would need an-

other algorithm. In contrast, our approach reduces the

consistency problem to a general network verification

problem, which can take a broad range of invariants as

inputs. In particular, one only needs to specify the ver-

ification function instead of designing a new algorithm.

This approach also grants CCG the ability to deal with

wildcard rules efficiently, in the same way as general ver-

ification tools, whereas Dionysus only works for applica-

tions with exact match on flows or classes of flows.

3 Overview of CCG

CCG converts the update scheduling problem into a

network verification problem. Our overall approach

is shown in Figure 1. Our uncertainty-aware network

model (§4.2) provides a compact symbolic representa-

tion of the different possible states the network could be

in, providing input for the verification engine. The ver-

ification engine is responsible for verifying application

updates against specified invariants and policies (§4.4).

Based on verification results, CCG synthesizes an effi-

cient update plan to preserve policy consistency during

network updates, using the basic heuristic and a more

heavyweight fallback mechanism as backup (§5.1 and

§5.3). One key feature of CCG is that it operates in a

black-box fashion, providing a general platform with a

very flexible notion of consistency. For example, one can

“plug in” a different verification function and a fallback

update scheduling tool to meet one’s customized needs.

Uncertainty-aware
Network Model

Verication
Engine

Controller

Fail

Pass

Buffer of
pending updates

Conrmations

No loop//black hole,
Resource isolation,

No suboptimal routing,
No VLAN leak,

...

Fallback
Mechanism

Stream of
UpdatesCCG

Figure 1: System architecture of CCG.

4 Verification under Uncertainty

We start by describing the problem of network uncer-

tainty (§4.1), and then present our solution to model a

network in the presence of uncertainty (§4.2 and §4.3).

Our design centers around the idea of uncertain forward-

ing graphs, which compactly represent the entire set of

possible network states from the standpoint of packets.

Next, we describe how we use our model to perform

uncertainty-aware network verification (§4.4).

4.1 The Network Uncertainty Problem

Networks must disseminate state among distributed

and asynchronous devices, which leads to the inherent

uncertainty that an observation point has in knowing the

current state of the network. We refer to the time period

during which the view of the network from an observa-

tion point (e.g., an SDN controller) might be inconsistent

with the actual network state as temporal network uncer-

tainty. The uncertainty could cause network behaviors to

deviate from the desired invariants temporarily or even

permanently.

Figure 2 shows a motivating example. Initially, switch

A has a forwarding rule directing traffic to switch B. Now

the operator wants to reverse the traffic by issuing two

instructions in sequence: (1) remove the rule on A, and

(2) insert a new rule (directing traffic to A) on B. But it

is possible that the second operation finishes earlier than

the first one, causing a transient loop that leads to packet

losses. That is not an uncommon situation; for example,

three out of eleven bugs found by NICE [7] (BUG V,

IX and XI) are caused by the control programs’ lack of

knowledge of the network states.

Figure 2: Example: challenge of modeling networks in the

presence of uncertainty.

Such errors may have serious consequences. In the

previous example, the resulting packet losses could cause

a significant performance drop. A recent study [9] shows

TCP transfers with loss may take five times longer to

complete. Other transient errors could violate security

policy, e.g., malicious packets could enter a secure zone

because of a temporary access control violation [25].

To make matters worse, errors caused by unawareness

of network temporal uncertainty can be permanent. For

instance, a control program initially instructs a switch to

install one rule, and later removes that rule. The two

instructions can be reordered at the switch [11], which

ultimately causes the switch to install a rule that ought to

be removed. The view of the controller and the network

state will remain inconsistent until the rule expires. One

may argue that inserting a barrier message in between

the two instructions would solve the problem. However,

this may harm performance because of increasing control

traffic and switch operations. There are also scenarios in

76 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

which carefully crafting an ordering does not help [25].

In addition, it is difficult for a controller to figure out

when to insert the barrier messages. CCG addresses that

by serializing only updates that have potential to cause

race conditions that violate an invariant (§6).

4.2 Uncertainty Model

We first briefly introduce our prior work VeriFlow, a

real-time network-wide data plane verifier. VeriFlow in-

tercepts every update issued by the controller before it

hits the network and verifies its effect in real time. Ver-

iFlow first slices the set of possible packets into Equiv-

alence Classes (ECs) of packets using all existing for-

warding rules and the new update. Each EC is a set

of packets that experiences the same forwarding ac-

tions throughout the network. Next, VeriFlow builds

a forwarding graph for each EC affected by the up-

date, by collecting forwarding rules influencing the EC.

Lastly, VeriFlow traverses each of these graphs to verify

network-wide invariants.

Naively, to model network uncertainty, for every up-

date, we need two graphs to symbolically represent the

network behavior with and without the effect of the up-

date for each influenced EC, until the controller is certain

about the status of the update. If n updates are concur-

rently “in flight” from the controller to the network, we

would need 2n graphs to represent all possible sequences

of update arrivals. Such a state-space explosion will re-

sult in a huge memory requirement and excessive pro-

cessing time to determine consistent update orderings.

To address that, we efficiently model the network

forwarding behavior as a uncertain forwarding graph,

whose links can be marked as certain or uncertain. A

forwarding link is uncertain if the controller does not yet

have information on whether that corresponding update

has been applied to the network. The graph is maintained

by the controller over time. When an update is sent, its

effect is applied to the graph and marked as uncertain.

After receipt of an acknowledgment from the network

that an update has been applied (or after a suitable time-

out), the state of the related forwarding link is changed to

certain. Such a forwarding graph represents all possible

combinations of forwarding decisions at all the devices.

In this way, the extra storage required for uncertainty

modeling is linearly bounded by the number of uncertain

rules. We next examine when we can resolve uncertainty,

either confirming a link as certain or removing it.

4.3 Dynamic Updating of the Model

In order to model the most up-to-date network state,

we need to update the model as changes happen in the

network. At first glance, one might think that could be

done simply by marking forwarding links as uncertain

when new updates are sent, and then, when an ack is re-

ceived from the network, marking them as certain. The

Figure 3: CCG’s uncertain forwarding graph.

problem with that approach is that it may result in incon-

sistencies from the data packets’ perspective. Consider a

network consisting of four switches, as in Figure 4.

t0

t1

t2
s1 s2 s3 s4

packet

switch

Time

Figure 4: Example: challenge of dealing with non-atomicity

of packet traversal.

The policy to enforce is that packets from a particu-

lar source entering Switch s1 should not reach Switch s4.

Initially, at time t0, Switch s3 has a filtering rule to drop

packets from that source, whereas all the other switches

simply pass packets through. The operator later wants to

drop packets on s1 instead of s3. To perform the transi-

tion in a conservative way, the controller first adds a fil-

tering rule on s1 at t1, then removes the filtering rule on

s3 at t2, after the first rule addition has been confirmed.

The forwarding graphs at all steps seem correct. How-

ever, if a packet enters s1 before t1 and reaches s3 after

t2, it will reach s4, which violates the policy. Traversal

of a packet over the network is not atomic, interleaving

with network updates, as also observed in [25]. More-

over, [20] recently proved that there are situations where

no correct update order exists. To deal with it, upon re-

ceiving an ack from the network, CCG does not imme-

diately mark the state of the corresponding forwarding

link as certain. Instead, it delays application of the con-

firmation to its internal data structure. In fact, confirma-

tions of additions of forwarding links in the graph model

can be processed immediately, and only confirmations of

removals of forwarding links need to be delayed. The

reason is that we want to ensure we represent all the pos-

sible behaviors of the network. Even after a forwarding

rule has been deleted, packets processed by the rule may

still exist in the network, buffered in an output queue of

that device, in flight, or on other devices.

We have proved that our uncertainty-aware model is

able to accurately capture the view of the network from

the packets’ perspective [2], even for in-flight packets

that have been affected by rules not currently present.

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 77

Definition 1. A packet P’s view of the network agrees

with the uncertainty-aware model, if at any time point

during its traversal of the network, the data plane state

that the packet encounters is in the model at that time

point. More specifically, at time t, to P if a link l

• is reachable, l is in the graph model for P at t;

• otherwise, l is definitely not certain in the graph at t.

Theorem 1. Assuming that all data plane changes are

initiated by the controller, any packet’s view of the net-

work agrees with the uncertainty-aware model.

4.4 Uncertainty-aware Verification

Construction of a correct network verification tool is

straightforward with our uncertainty-aware model. By

traversing the uncertainty graph model using directed

graph algorithms, we can answer queries such as whether

a reachable path exists between a pair of nodes. That can

be done in a manner similar to existing network verifi-

cation tools like HSA [17] and VeriFlow [18]. However,

the traversal process needs to be modified to take into

account uncertainty. When traversing an uncertain link,

we need to keep track of the fact that downstream infer-

ences lack certainty. If we reach a node with no certain

outgoing links, it is possible that packets will encounter

a black-hole even with multiple uncertain outgoing links

available. By traversing the graph once, CCG can reason

about the network state correctly in the presence of un-

certainty, determine if an invariant is violated, and output

the set of possible conterexamples (e.g., a packet and the

forwarding table entries that caused the problem).

5 Consistency under Uncertainty

In this section, we describe how we use our model to

efficiently synthesize update sequences that obey a set of

provided invariants (§5.1). We then identify a class of in-

variants that can be guaranteed in this manner (§5.2), and

present our technique to preserve consistency for broader

types of invariants (§5.3).

5.1 Enforcing Correctness with Greedily

Maximized Parallelism

The key goal of our system is to instill user-specified

notions of correctness during network transitions. The

basic idea is relatively straightforward. We construct a

buffer of updates received from the application, and at-

tempt to send them out in FIFO order. Before each up-

date is sent, we check with the verification engine on

whether there is any possibility, given the uncertainty in

network state, that sending it could result in an invariant

violation. If so, the update remains buffered until it is

safe to be sent.

There are two key problems with this approach. The

first is head-of-line blocking: it may be safe to send an

update, but one before it in the queue, which isn’t safe,

could block it. This introduces additional delays in prop-

agating updates. Second, only one update is sent at a

time, which is wasteful—if groups of updates do not con-

flict with each other, they could be sent in parallel.

To address this, CCG provides an algorithm for syn-

thesizing update sequences to networks that greedily

maximizes parallelism while simultaneously obeying the

supplied properties (Algorithm 1).

Whenever an update u is issued from the controller,

CCG intercepts it before it hits the network. Network

forwarding behavior is modeled as an uncertainty graph

(Guncertain) as described previously. Next, the black-

box verification engine takes the graph and the new up-

date as input, and performs a computation to determine

whether there is any possibility that the update will cause

the graph state to violate any policy internally specified

within this engine. If the verification is passed, the up-

date u is sent to the network and also applied to the net-

work model Model, but marked as uncertain. Otherwise,

the update is buffered temporarily in Bu f .

When a confirmation of u from the network arrives,

CCG also intercepts it. The status of u in Model is

changed to certain, either immediately (if u doesn’t re-

move any forwarding link from the graph), or after a de-

lay (if it does, as described in §4.3). The status change of

u may allow some pending updates that previously failed

the verification to pass it. Each of the buffered updates

is processed through the routine of processing a new up-

date, as described above.

In this way, CCG maintains the order of updates only

when it matters. Take the example in Figure 2. If the

deletion of rule 1 is issued before the addition of rule 2 is

confirmed, CCG’s verification engine will capture a pos-

sible loop, and thus will buffer the deletion update. Once

the confirmation of adding rule 2 arrives, CCG checks

buffered updates, and finds out that now it’s safe to issue

the deletion instruction.

5.2 Segment Independence

Next, we identify a class of invariants for which a fea-

sible update ordering exists, and for which CCG’s heuris-

tic will be guaranteed to find one such order. As defined

in [25], trace properties characterize the paths that pack-

ets traverse through the network. This covers many com-

mon network properties, including reachability, access

control, loop freedom, and waypointing. We start with

the assumption that a network configuration applies to

exactly one equivalence class of packets. A network con-

figuration can be expressed as a set of paths that packets

are allowed to take, i.e., a forwarding graph. A configu-

ration transition is equivalent to a transition from an ini-

tial forwarding graph, G0, to a final graph, G f , through a

series of transient graphs, Gt , for t ∈ {1, . . . , f −1}. We

assume throughout that the invariant of interest is pre-

served in G0 and G f .

78 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

Algorithm 1 Maximizing network update parallelism

ScheduleIndividualUpdate(Model,Bu f ,u)

On issuing u:

Guncertain = ExtractGraph(Model,u)

veri f y = BlackboxVerification(Guncertain,u)

if veri f y == PASS then

Issue u

Update(Model,u,uncertain)

else

Buffer u in Bu f

On confirming u:

Update(Model,u,certain)

Issue updates ← /0

for ub ∈ Bu f do

Guncertain = ExtractGraph(Model,ub)

veri f y = BlackboxVerification(Guncertain,ub)

if veri f y == PASS then

Remove ub from Bu f

Update(Model,ub,uncertain)

Issue updates ← Issue updates+ub

Issue Issue updates

Loop and black-hole freedom The following theo-

rems were proved for loop freedom [10]: First, given

both G0 and G f are loop-free, during transition, it is safe

(causing no loop) to update a node in any Gt , if that node

satisfies one of the following two conditions: (1) in Gt

it is a leaf node, or all its upstream nodes have been up-

dated with respect to G f ; or (2) in G f it reaches the des-

tination directly, or all its downstream nodes in G f have

been updated with respect to G f . Second, if there are

several updatable nodes in a Gt , any update order among

these nodes is loop-free. Third, in any loop-free Gt (in-

cluding G0) that is not G f , there is at least one node safe

to update, i.e., a loop-free update order always exists.

Similarly, we have the following proved for the black-

hole freedom property [2].

Lemma 1. (Updatable condition): A node update does

not cause any transient black-hole, if in G f , the node

reaches the destination directly, or in Gt , all its down-

stream nodes in G f have already been updated.

Proof. By contradiction. Let N0, N1,...Nn be downstream

nodes of Na in G f . Assume N0, N1,...Nn have been up-

dated with respect to G f in Gt . After updating Na in

Gt , N0, N1,...Nn become Na’s downstream nodes and all

nodes in the chain from Na to Nn have been updated. Na’s

upstream with respect to Gt can still reach Na, and thus

reach the downstream of Na. If we assume there is a

black-hole from updating Na, there exists a black-hole in

the chain from Na to Nn. Therefore, the black-hole will

exist in G f , and there is a contradiction.

Lemma 2. (Simultaneous updates): Starting with any

Gt , any update order among updatable nodes is black-

hole-free.

Proof. Consider a updatable node Na such that all its

downstream nodes in G f have already been updated in

Gt (Lemma 1). Then updating any other updatable node

does not change this property. When a node is updatable

it remains updatable even after updating other nodes.

Therefore, if there are several updatable nodes, they can

be updated in any order or simultaneously.

Theorem 2. (Existence of a black-hole-free update or-

der): In any black-hole-free Gt that is not G f (including

G0), at least one of the nodes is updatable, i.e., there is a

black-hole-free update order.

Proof. By contradiction. Assume there is a transient

graph Gt such that no node is updatable. All nodes are ei-

ther updated or not updatable. As nodes with direct links

to the destination are updatable (Lemma 1), these nodes

can only be updated. Then nodes at previous hop of these

nodes in Gt are also updatable (Lemma 1), and therefore

these nodes must also be updated. Continuing, it follows

that all nodes are updated, which is a contradiction as Gt

= G f . As there is always a node updatable in a consis-

tent Gt , and the updatable node can be updated to form a

new consistent Gt , the number of updated nodes will in-

crease. Eventually, all nodes will be updated. Therefore

there is a black-hole free update order.

Any update approved by CCG results in a consistent

transient graph, so CCG always finds a consistent update

sequence to ensure loop and black-hole freedom.

Generalized Trace Properties To get a uniform ab-

straction for trace properties, let us first visit the ba-

sic connectivity problem: node A should reach node

B (A → B). To make sure there is connectivity be-

tween two nodes, both black-hole and loop freedom

properties need to hold. Obviously, black-hole free-

dom is downstream-dependent (Theorem 2), whereas

loop freedom is upstream- (updatable condition (1)) or

downstream-dependent (updatable condition (2)), and

thus weaker than black-hole freedom. In other words,

connectivity is a downstream-dependent property, i.e.,

updating from downstream to upstream is sufficient to

ensure it. Fortunately, a number of trace properties,

such as waypointing, access control, service/middle box

chaining, etc., can be broken down to basic connectivity

problems. A common characteristic of such properties is

that flows are required to traverse a set of waypoints.

Definition 2. Waypoints-based trace property: A

property that specifies that each packet should traverse

a set of waypoints (including source and destination) in

a particular order.

Definition 3. Segment dependency: Suppose a trace

property specifies n waypoints, which divide the old

and the new flow path each into (n − 1) segments:

old1,old2, ...,oldn−1 and new1,new2, ...,newn−1. If new j

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 79

crosses oldi (i �= j), then the update of segment j is de-

pendent on the update of segment i, i.e., segment j can-

not start to update until segment i’s update has finished,

in order to ensure the traversal of all waypoints.

Otherwise, if segment j starts to update before i has

finished, there might be violations. If j < i, there might

be a moment when the path between waypoints j and

i+ 1 consists only of new j and part of oldi, i.e., way-

points (j+ 1)...i are skipped. As in Figure 5(b), B may

be skipped if the AB segment is updated before BC, and

the path is temporarily A → 2 →C.

If j > i, there might be a moment when the

path between waypoints i and (j + 1) consists of

oldi,oldi+1, ...,new j, and a loop is formed. As in Fig-

ure 5(c), the path could temporarily be A → B → 1 → B.

If there is no dependency among segments (Figure 5

(a)), then each can be updated independently simply by

ensuring connectivity between the segment’s endpoints.

That suggests that for paths with no inter-segment de-

pendencies, a property-compliant update order always

exists. Another special case is circular dependency be-

tween segments, as depicted in Figure 5(d), in which no

feasible update order exists.

Theorem 3. If there is no circular dependency between

segments, then an update order that preserves the re-

quired property always exists. In particular, if policies

are enforcing no more than two waypoints, an update or-

der always exists.

If a policy introduces no circular dependency, i.e., at

least one segment can be updated independently (Fig-

ure 5(a-c)), then we say the policy is segment indepen-

dent. However, in reality, forwarding links and paths

may be shared by different sets of packets, e.g., multi-

ple flows. Thus it is possible that two forwarding links

(smallest possible segments) l1 and l2 will have conflict-

ing dependencies when serving different groups of pack-

ets, e.g., in forwarding graphs destined to two differ-

ent IP prefixes. In such cases, circular dependencies are

formed across forwarding graphs. Fortunately, forward-

ing graphs do not share links in many cases. For exam-

ple, as pointed out in [15], a number of flow-based traf-

fic management applications for the network core (e.g.,

ElasticTree, MicroTE, B4, SWAN [6, 12–14]), any for-

warding rule at a switch matches at most one flow.

Other Properties There are trace properties which are

not waypoint-based, such as quantitative properties like

path length constraint. To preserve such properties and

waypoint-based trace properties that are not segment in-

dependent, we can use other heavyweight techniques as

a fallback (see 5.3), such as CU [25]. Besides, there

are network properties beyond trace properties, such as

congestion freedom, and it has been proven that care-

ful ordering of updates cannot always guarantee conges-

tion freedom [13, 27]. To ensure congestion freedom,

one approach is to use other heavyweight tools, such as

SWAN [13], as a fallback mechanism that the default

heuristic algorithm can trigger only when necessary.

5.3 Synthesis of Consistent Update Sched-

ules

When desired policies do not have the segment-

independence property (§5.2), it is possible that some

buffered updates (through very rare in our experiments)

never pass the verification. For instance, consider a cir-

cular network with three nodes, in which each node has

two types of rules: one type to forward packets to desti-

nations directly connected to itself, and one default rule,

which covers destinations connected to the other two

switches. Initially, default rules point clockwise. They

later change to point counterclockwise. No matter which

of the new default rules changes first, a loop is imme-

diately caused for some destination. The loop freedom

property is not segment-independent in this case, because

each default rule is shared by two equivalence classes

(destined to two hosts), which results in conflicting de-

pendencies among forwarding links.

To handle such scenarios, we adopt a hybrid approach

(Algorithm 2). If the network operators desire some

policies that can be guaranteed by existing solutions,

e.g., CU or SWAN, such solutions can be specified and

plugged in as the fallback mechanism, FB. The stream

of updates is first handled by CCG’s greedy heuristic (Al-

gorithm 1) as long as the policy is preserved. Updates

that violate the policy are buffered temporarily. When

the buffering time is over threshold T , configured by the

operator, the fallback mechanism is triggered. The re-

maining updates are fed into FB to be transformed to a

feasible sequence, and then Algorithm 1 proceeds with

them again to heuristically maximize update parallelism.

In that way, CCG can always generate a consistent update

sequence, assuming a fallback mechanism exists which

can guarantee the desired invariants.1 Note that even

with FB triggered, CCG achieves better efficiency than

using FB alone to update the network, because: 1) in the

common case, most of updates are not handled by FB;

2) CCG only uses FB to “translate” buffered updates and

then heuristically parallelize issuing the output of FB,

but doesn’t wait explicitly as some FB mechanism does,

e.g., the waiting time between two phases in CU.

To show the feasibility of that approach, we imple-

mented both CU [25] (see §7) and SWAN [13] as our

fallback mechanisms in CCG. We emulated traffic engi-

1If no appropriate fallback exists, and the invariant is non-segment-

independent, CCG can no longer guarantee the invariant. In this case,

CCG can offer a “best effort” mechanism to maintain consistency dur-

ing updates by simply releasing buffered updates to the network after a

configurable threshold of time. This approach might even be preferable

for certain invariants where operators highly value update efficiency;

we leave an evaluation to future work.

80 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

A B C

(a) No segment crossing, update dif-

ferent segments in parallel, as long

as each segment’s updating follows

downstream dependency

A B C2

(b) Old path: A → B → 2 → C, new

path: A → 2 → B → C. New AB

crosses old BC, so AB depends on

BC

A B C1

(c) Old path: A → 1 → B → C, new

path: A → B → 1 → C. New BC

crosses old AB, so BC depends on

AB

A B C21

(d) Old path: A →→ 1 → B → 2 → C,

new path: A → 2 → B → 1 → C.

New BC crosses old AB, and new AB

crosses old BC, so BC and AB have

circular dependency between them-

selves.

Figure 5: Examples: dependencies between segments. Path AC is divided into two segments AB and BC by three waypoints A,

B, and C, with old paths in solid lines, and new paths in dashed lines.

Algorithm 2 Synthesizing update orderings

ScheduleUpdates(Model,Bu f ,U,FB,T)

for u ∈U do

ScheduleIndividualUpdate(Model,Bu f ,u)

On timeout(T):

Ũ = Translate(Bu f ,FB)

for u ∈ Ũ do

ScheduleIndividualUpdate(Model,Bu f ,u)

neering (TE) and failure recovery (FR), similar to Diony-

sus [15], in the network shown in Figure 6. Network up-

dates were synthesized to preserve congestion-freeness

using CCG (with SWAN as plug-in), and for compari-

son, using SWAN alone. In the TE case, we changed the

network traffic to trigger new routing updates to match

the traffic. In the FR case, we turned down the link S3-

S8 so that link S1-S8 was overloaded. Then the FR ap-

plication computed new updates to balance the traffic.

The detailed events that occurred at all eight switches

are depicted in Figure 7. We see that CCG ensured the

same consistency level, but greatly enhanced parallelism,

and thus achieved significant speed improvement (1.95×
faster in the TE case, and 1.97× faster in the FR case).

S1

S8

S6 S5

S7

S2

S4S3

Figure 6: Topology for CCG and SWAN bandwidth tests

6 Implementation

We implemented a prototype of CCG with 8000+ lines

of C++ code. CCG is a shim layer between an SDN con-

troller and network devices, intercepting and scheduling

network updates issued by the controller in real time.

CCG maintains several types of state, including

network-wide data plane rules, the uncertainty state of

each rule, the set of buffered updates, and bandwidth in-

formation (e.g., for congestion-free invariants). It stores

data plane rules within a multi-layer trie in which each

layer’s sub-trie represents a packet header field. We de-

signed a customized trie data structure for handling dif-

ferent types of rule wildcards, e.g., full wildcard, subnet

wildcard, or bitmask wildcard [24], and a fast one-pass

traversal algorithm to accelerate verification. To han-

dle wildcarding for bitmasks, each node in the trie has

three child branches, one for each of {0, 1, don’t care}.

For subnetting, the wildcard branch has no children, but

points directly to a next layer sub-trie or a rule set. Thus,

unlike other types of trie, the depth of subnet wildcard

tries is not fixed as the number of bits in this field, but

instead equals to the longest prefix among all the rules it

stores. Accordingly, traversal cost is reduced compared

with general tries. For full wildcard fields, values can

only be non-wildcarded or full wildcarded. The special-

ized trie structure for this type of field is a plain binary

tree plus a wildcard table.

When a new update arrives, we need to determine the

set of affected ECs, as well as the rules affecting each

EC. VeriFlow [18] performs a similar task via a two-

pass algorithm, first traversing the trie to compute a set of

ECs, and then for each of the discovered ECs, traversing

the trie again to extract related rules. In CCG, using call-

back functions and depth first searching, the modeling

work is finished with only one traversal. This algorithm

eliminates both the unnecessary extra pass over the trie

and the need to allocate memory for intermediate results.

In addition to forwarding rules, the data structure and

algorithm are also capable of handling packet trans-

formation rules, such as Network Address Translation

(NAT) rules, and rules with VLAN tagging, which are

used by CU for versioning, and verified by CCG when

the CU plug-in is triggered (see §7).

To keep track of the uncertainty states of rules, we de-

sign a compact state machine, which enables CCG to de-

tect rules that cause potential race conditions. If desired,

our implementation can be configured to insert barrier

messages to serialize those rule updates.

To bound the amount of time that the controller is

uncertain about network states, we implemented two

alternate types of the confirmation mechanisms: (1)

an application-level acknowledgment by modifying the

user-space switch program in Mininet, and (2) leverag-

ing the barrier and barrier reply messages for our physi-

cal SDN testbed experiments.

CCG exposes a set of APIs that can be used to write

general queries in C++. The APIs allow the network op-

erator to get a list of affected equivalence classes given an

arbitrary forwarding rule, the corresponding forwarding

graphs, as well as traverse these graphs in a controlled

manner and check properties of interest. For instance,

an operator can ensure packets from an insecure source

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 81

Figure 7: Time series

of events that occurred

across all switches:

(a) SWAN + CCG,

traffic engineering; (b)

SWAN, traffic engi-

neering; (c) SWAN +

CCG, failure recovery;

(d) SWAN, failure

recovery. In both cases,

CCG + SWAN finishes

about 2x faster.

encounter a firewall before accessing an internal server.

7 Evaluation

7.1 Verification Time

To gain a baseline understanding of CCG’s perfor-

mance, we micro-benchmarked how long the verification

engine takes to verify a single update. We simulated BGP

routing changes by replaying traces collected from the

Route Views Project [4], on a network consisting of 172

routers following a Rocketfuel topology (AS 1755) [1].

After initializing the network with 90,000 BGP updates,

2,559,251 updates were fed into CCG and VeriFlow [18]

(as comparison). We also varied the number of concur-

rent uncertain rules in CCG from 100 to 10,000. All ex-

periments were performed on a 12-core machine with In-

tel Core i7 CPU at 3.33 GHz, and 18 GB of RAM, run-

ning 64-bit Ubuntu Linux 12.04. The CDFs of the update

verification time are shown in Figure 8.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06

Fr
ac

tio
n

of
 t

ri
al

s

Microsecond

CCG-100
CCG-1000

CCG-10000
VeriFlow

Figure 8: Microbenchmark results.

CCG was able to verify 80% of the updates within 10

µs, with a 9 µs mean. CCG verifies updates almost two

order of magnitude faster than VeriFlow because of data

structure optimizations (§6). Approximately 25% of the

updates were processed within 1 µs, because CCG ac-

curately tracks the state of each rule over time. When a

new update matches the pattern of some existing rule, it’s

likely only a minimum change to CCG’s network model

is required (e.g., only one operation in the trie, with no

unnecessary verification triggered). We observed long

tails in all curves, but the verification time of CCG is

bounded by 2.16 ms, almost three orders of magnitude

faster than VeriFlow’s worst case. The results also show

strong scalability. As the number of concurrent uncer-

tainty rules grows, the verification time increases slightly

(on average, 6.6 µs, 7.3 µs, and 8.2 µs for the 100-

, 1000-, and 10000-uncertain-rule cases, respectively).

Moreover, CCG offers a significant memory overhead re-

duction relative to VeriFlow: 540 MB vs 9 GB.

7.2 Update Performance Analysis

7.2.1 Emulation-based Evaluation

Segment-independent Policies: We used Mininet to em-

ulate a fat-tree network with a shortest path routing ap-

plication and a load-balancing application in a NOX con-

troller. The network consists of five core switches and

ten edge switches, and each edge switch connects to five

hosts. We change the network (e.g., add links, or mi-

grate hosts) to trigger the controller to update the data

plane with a set of new updates. For each set of exper-

iments, we tested six update mechanisms: (1) the con-

troller immediately issues updates to the network, which

is Optimal in terms of update speed; (2) CCG with the

basic connectivity invariants, loop and black-hole free-

dom, enabled (CCG); (3) CCG with an additional invari-

ant that packets must traverse a specific middle hop be-

fore reaching the destination (CCG-waypoint); (4) Con-

sistent Updates (CU) [25]; (5) incremental Consistent

Updates (Incremental CU) [16]; and (6) Dionysus [15]

with its WCMP forwarding dependency graph genera-

tor. We configure our applications as the same type

as in Dionysus, with forwarding rules matching exactly

one flow, i.e., no overlapping forwarding graphs. Thus,

loop and black-hole freedom are segment-independent as

proved in §5.2. Because of the fat-tree structure, there

is no crossing between path segments (as in Fig 5(a)),

so the waypoint policy is also segment independent. A

mix of old and new configurations, e.g., oldAB+newBC

in Figure 5(a), is allowed by CCG, but forbidden when

using CU. Note here, we used our own implementation

of the algorithms introduced in Dionysus paper, specifi-

cally the algorithm for packet coherence. Therefore, this

is not a full evaluation of the Dionysus approach: one

82 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

can develop special-purpose algorithms that build cus-

tomized dependency graphs for weaker properties, and

thus achieve better efficiency. We leave such evaluation

to future work.

We first set the delay between the controller issuing an

update and the corresponding switch finishing the appli-

cation of the update (i.e, the controller-switch delay) to

a normal distribution with 4 ms mean and 3 ms jitter, to

mimic a dynamic data center network environment. The

settings are in line with that of other data center SDN ex-

periments [8, 26]. We initialized the test with one core

switch enabled and added the other four core switches

after 10 seconds. The traffic eventually is evenly dis-

tributed across all links because of the load balancer ap-

plication. We measured the completion time of updating

each communication path, repeated each experiment 10

times. Figure 9(a) shows the CDFs for all six scenarios.

The performance of both “CCG” and “CCG-

waypoint” is close to optimal, and much faster (47 ms

reduction on average) than CU. In CU, the controller is

required to wait for the maximum controller-switch delay

to guarantee that all packets can only be handled by ei-

ther the old or the new rules. CCG relaxes the constraints

by allowing a packet being handled by a mixture of old

and new rules along the paths, as long as the impact of

the new rules passed verification. By doing so, CCG can

apply any verified updates without explicitly waiting for

irrelevant updates. CU requires temporary doubling of

the FIB space for each update, because it does not delete

old rules until all in-flight packets processed by the old

configuration have drained out of the network. To ad-

dress this, incremental-CU was proposed to trade time

against flow table space. By breaking a batch of updates

into k subgroups (k = 3 in our tests), incremental-CU re-

duced the extra memory usage to roughly one kth at the

cost of multiplying the update time k times. In contrast,

when dealing with segment-independent policies, as in

this set of experiments, CCG never needs to trigger any

heavyweight fallback plug-in, and thus requires no ad-

ditional memory, which is particularly useful as switch

TCAM memory can be expensive and power-hungry.

To understand how CCG performs in wide-area net-

works, where SDNs have also been used [13, 14], we

set the controller-switch delay to 100 ms (normal dis-

tribution, with 25ms jitter), and repeated the same tests

(Figure 9(b)). CCG saved over 200 ms update com-

pletion time compared to CU, mainly due to the longer

controller-switch delay, for which CU and incremental-

CU have to wait between the two phases of updates.

As for Dionysus, we observed in Figure 9 that it speeds

up updates compared to CU in both local and wide-area

settings, as it reacts to network dynamics rather than

pre-determining a schedule. But because its default al-

gorithm for WCMP forwarding produces basically the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

Fr
ac

tio
n

of
 t

ri
al

s

Millisecond

Optimal
CCG

CCG-waypoint
Dionysus

Consistent Updates
Incremental CU

(a) Data center network setting

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fr
ac

tio
n

of
 t

ri
al

s

Millisecond

Optimal
CCG

CCG-waypoint
Dionysus

Consistent Updates
Incremental CU

(b) Wide-area network setting

Figure 9: Emulation results: update completion time com-

parison.

same number of updates as CU, CCG (either CCG or

CCG-waypoint) outperforms it in both time and memory

cost. We further compared CCG-waypoint with Diony-

sus in other dynamic situations, by varying controller-

switch delay distribution. Figure 10 shows the 50th, 90th

and 99th percentile update completion time, under vari-

ous controller-switch delays (normal distributed with dif-

ferent (mean, jitter) pairs, (a,b)) for four update mecha-

nisms: optimal, CCG, Dionysus, and CU. In most cases,

both CCG and Dionysus outperform CU, with one ex-

ception (4ms delay, zero jitter). Here, Dionysus does not

outperform CU because it adjusts its schedule accord-

ing to network dynamics, which was almost absent in

this scenario. The cost of updating dependency graphs in

this scenario is relatively large compared to the small net-

work delay. When the mean delay was larger (100ms),

even with no jitter, Dionysus managed to speed the tran-

sition by updating each forwarding path independently.

On the other hand, CCG’s performance is closer to Opti-

mal than Dionysus. For example, in the (4,0) case, CCG

is 37%, 38%, and 52% faster than Dionysus in the 50th,

90th and 99th percentile, respectively; in the (100,25)
case, CCG is 50%, 50%, and 53% faster than Dionysus

in the 50th, 90th and 99th percentile, respectively. Also,

we observe that Dionysus’s performance is highly depen-

dent on the variance of the controller-switch delay (the

larger the jitter is, the faster the update speed) because of

the dynamic scheduling, but CCG’s performance is in-

sensitive to the jitter.

Non-segment-independent Policies: We then explored

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 83

Figure 10: Update completion time with [50th, 90th, 99th per-

centile]; x-axis label {a, b}: a is the mean controller-switch

delay, b is the jitter following a normal distribution.

scenarios in which CCG’s lightweight heuristic cannot

always synthesize a correct update ordering and needs

to fall back to the more heavyweight algorithm to guar-

antee consistency. The traces we used were collected

from a relatively large enterprise network that consists of

over 200 layer-3 devices. During a one-day period (from

16:00 7/22/2014 to 16:00 7/23/2014), we took one snap-

shot of the network per hour, and used Mininet to emu-

late 24 transitions, each between two successive snap-

shots. We processed the network updates with three

mechanisms: immediate application of updates, CCG,

and CU. Updates were issued such that new rules were

added first, then old rules deleted. Thus, all three mech-

anisms experience the trend that the number of stored

rules increases then decreases.. The controller-switch

delay was set to 4 ms. We selected 10 strongly con-

nected devices in the network, and plotted the number

of rules in the network over time during four transition

windows, as shown in Figure 11. As the collected rules

overlapped with longest prefix match, the resulting for-

warding graphs might share links, so unlike previous ex-

periments, segment-independency was not guaranteed.

The update completion time (indicated by the width

of the span of each curve) using CCG was much shorter

than CU, and the memory needed to store the rules was

much smaller. In fact, the speed and memory require-

ments of CCG were close to those of the immediate up-

date case, because CCG rarely needs to fall back to CU.

In 22 out of 24 windows, there was a relatively small

number of network updates (around 100+), much as in

the [22:00, 23:00) window shown in Figure 11, in which

CCG passed through most of the updates with very few

fallbacks. During the period 23:00 to 1:00, there was a

burst of network dynamics (likely to have been caused

by network maintenance), in which 8000+ network up-

dates occurred. Even for such a large number of updates,

the number of updates forced to a fallback to CU, was

still quite small (10+). Since CCG only schedules up-

dates in a heuristic way, the waiting time of a buffered

update could be suboptimal, as in this hour’s case, where

the final completion time of CCG was closer to CU. CCG

achieves performance comparable to the immediate up-

date mechanism, but without any of its short-term net-

work faults (24 errors in the 0:00 to 2:00 period).

7.2.2 Physical-testbed-based Evaluation

We also evaluated CCG on a physical SDN testbed [3]

consisting of 176 server ports and 676 switch ports, using

Pica8 Pronto 3290 switches via TAM Networks, NIA-

GARA 32066 NICs from Interface Masters, and servers

from Dell. We compared the performance of CCG and

CU by monitoring the traffic throughput during network

transitions. We first created a network with two sender-

receiver pairs transmitting TCP traffic on gigabit links,

shown in Figure 12. Initially, a single link was shared by

the pairs, and two flows competed for bandwidth. After

90 seconds, another path was added (the upper portion

with dashed lines in Figure 12). Eventually, one flow was

migrated to the new path and each link was saturated. We

repeated the experiment 10 times, and recorded the aver-

age throughput in a 100-ms window during the network

changes. We observed repeatable results. Figure 13(a)

shows the aggregated throughput over time for one trial.

CCG took 0.3 seconds less to finish the transition than

CU because: (1) unlike CU, CCG does not require packet

modification to support versioning, which takes on the

order of microseconds for gigabit links, while packet for-

warding is on the order of nanoseconds; (2) CU requires

more rule updates and storage than CCG, and the speed

of rule installation is around 200 flows per second; and

(3) Pica8 OpenFlow switches (with firmware 1.6) cannot

simultaneously process rule installations and packets.2

Figure 12: eight-switch topology.

To test CCG in a larger setting, we then utilized all

13 physical switches. Each physical switch was devided

into 6 “virtual” switches by creating 6 bridges. Due to the

fact that the switches are physically randomly connected,

this division results in a “pseudo-random” network con-

sisting of 78 switches, each with 8 ports. Initially, the

topology consisted of 60 switches, and we randomly se-

lected 10 sender-receiver pairs to transmit TCP traffic.

After 90 seconds, we enabled the remaining 18 switches

in the network. The topology change triggered instal-

lations of new rules to balance load. We repeated the

experiments 10 times, and selected two flows from one

trial that experienced throughput changes (Figure 13(b)).

The trend of the two flows is consistent with the overall

observed throughput change.

CCG again outperformed CU in convergence time and

average throughput during transitions. Compared to CU,

CCG spent 20 fewer seconds to complete the transition

(a reduction of 2/3), because CU waits for confirmation

2All the performance specifications reported in this paper have been

confirmed with the Pica8 technical team.

84 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

Immediate Update
GCC

Consistent Updates
} CCG

Figure 11: Network-trace-driven emulations: (1) immediate application of updates; (2) CCG (with CU as fallback); and (3) CU.

 0

 0.5

 1

 1.5

 2

 90 91 92 93 94 95

T
hr

ou
gh

pu
t

(G
bp

s)

Second

CCG
Consistent updates

(a) A eight-switch topology.

 0

 0.5

 1

 1.5

 2

 90 95 100 105 110 115 120 125 130

T
hr

ou
gh

pu
t

(G
bp

s)

Second

CCG
Consistent updates

(b) A 78-switch network.

Figure 13: Physical testbed results: comparison of through-

put changes during network transitions for CCG and CU.

of all updates in the first phase before proceeding to the

second. In contrast, CCG’s algorithm significantly short-

ened the delay, especially for networks experiencing a

large number of state changes. In CCG, the through-

put never dropped below 0.9 Gb/s, while CU experienced

temporary yet significant drops during the transition, pri-

marily due to the switches’ lack of support for simulta-

neous application of updates and processing of packets.

8 Discussion

Limitations: CCG synthesizes network updates with

only heuristically maximized parallelism, and in the

cases where required properties are not segment inde-

pendent, relies on heavier weight fallback mechanisms

to guarantee consistency. When two or more updates

have circular dependencies with respect to the consis-

tency properties, fallback will be triggered. One safe way

of using CCG is to provide it with a strong fallback plug-

in, e.g., CU [25]. Any weaker properties will be auto-

matically ensured by CCG, with fallback triggered (rare

in practice) only for a subset of updates and when nec-

essary. In fact, one can use CCG even when fallback is

always on. In this case, CCG will be faster most of the

time, as discussed in §5.3.

Related work: Among the related approaches, four

warrant further discussion. Most closely related to our

work is Dionysus [15], a dependency-graph based ap-

proach that achieves a goal similar to ours. As discussed

in §2, our approach has the ability to support 1) flexible

properties with high efficiency without the need to im-

plement new algorithms, and 2) applications with wild-

carded rules. [22] also plans updates in advance, but us-

ing model checking. It, however, does not account for

the unpredictable time switches take to perform updates.

In our implementation, CU [25] and VeriFlow [18] are

chosen as the fallback mechanism and verification en-

gine. Nevertheless, they are replaceable components of

the design. For instance, when congestion freedom is the

property of interest, we can replace CU with SWAN [13].

Future work: We plan to study the generality of seg-

ment independent properties both theoretically and prac-

tically, test CCG with more data traces, and extend its

model to handle changes initiated from the network. As

comparison, we will test CCG against the original im-

plementation of Dionysus with dependency graphs cus-

tomized to properties of interest. We will also investi-

gate utilizing possible primitives in network hardware to

facilitate consistent updates.

9 Conclusion

We present CCG, a system that enforces customizable

network consistency properties with high efficiency. We

highlight the network uncertainty problem and its ramifi-

cations, and propose a network modeling technique cor-

rectly derives consistent outputs even in the presence of

uncertainty. The core algorithm of CCG leverages the

uncertainty-aware network model, and synthesizes a fea-

sible network update plan (ordering and timing of control

messages). In addition to ensuring that there are no vi-

olations of consistency requirements, CCG also tries to

maximize update parallelism, subject to the constraints

imposed by the requirements. Through emulations and

experiments on an SDN testbed, we show that CCG is

capable of achieving a better consistency vs. efficiency

trade-off than existing mechanisms.

We thank our shepherd, Katerina Argyraki, for helpful

comments, and the support of the Maryland Procurement

Office under Contract No. H98230-14-C-0141.

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 85

References

[1] Rocketfuel: An ISP topology mapping en-

gine. http://www.cs.washington.edu/

research/networking/rocketfuel/.

[2] Tech report. http://web.engr.illinois.

edu/˜wzhou10/gcc_tr.pdf.

[3] University of illinois ocean testbed.

http://ocean.cs.illinois.edu/.

[4] University of Oregon Route Views Project. http:

//www.routeviews.org/.

[5] E. Al-Shaer and S. Al-Haj. FlowChecker: Config-

uration analysis and verification of federated Open-

Flow infrastructures. In SafeConfig, 2010.

[6] T. Benson, A. Anand, A. Akella, and M. Zhang.

Microte: Fine grained traffic engineering for data

centers. CoNEXT, 2011.

[7] M. Canini, D. Venzano, P. Peresini, D. Kostic, and

J. Rexford. A NICE way to test OpenFlow applica-

tions. In NSDI, 2012.

[8] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagan-

dula, P. Sharma, and S. Banerjee. DevoFlow: Scal-

ing flow management for high-performance net-

works. In ACM SIGCOMM Computer Communi-

cation Review, volume 41, pages 254–265. ACM,

2011.

[9] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan,

N. Cardwell, Y. Cheng, A. Jain, S. Hao, E. Katz-

Bassett, and R. Govindan. Reducing web latency:

the virtue of gentle aggression. In SIGCOMM,

2013.

[10] J. Fu, P. Sjodin, and G. Karlsson. Loop-free up-

dates of forwarding tables. IEEE Transactions on

Network and Service Management, March 2008.

[11] A. Guha, M. Reitblatt, and N. Foster. Machine-

verified network controllers. Programming Lan-

guages Design and Implementation, 2013.

[12] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiak-

oumis, P. Sharma, S. Banerjee, and N. McKeown.

ElasticTree: Saving energy in data center networks.

In NSDI, volume 3, pages 19–21, 2010.

[13] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang,

V. Gill, M. Nanduri, and R. Wattenhofer. Achieving

high utilization with software-driven WAN. ACM

SIGCOMM, 2013.

[14] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,

A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,

et al. B4: Experience with a globally-deployed

software defined WAN. In ACM SIGCOMM, pages

3–14. ACM, 2013.

[15] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Ma-

hajan, M. Zhang, J. Rexford, and R. Wattenhofer.

Dynamic scheduling of network updates. In ACM

SIGCOMM, 2014.

[16] N. P. Katta, J. Rexford, and D. Walker. Incremental

consistent updates. HotSDN, 2013.

[17] P. Kazemian, M. Chang, H. Zeng, G. Varghese,

N. McKeown, and S. Whyte. Real time network

policy checking using header space analysis. In

NSDI, 2013.

[18] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.

Godfrey. VeriFlow: Verifying network-wide invari-

ants in real time. In NSDI, 2013.

[19] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Watten-

hofer, and D. Maltz. zUpdate: Updating data center

networks with zero loss. ACM SIGCOMM, 2013.

[20] A. Ludwig, M. Rost, D. Foucard, and S. Schmid.

Good network updates for bad packets: Way-

point enforcement beyond destination-based rout-

ing policies. HotNets, 2014.

[21] R. Mahajan and R. Wattenhofer. On consistent up-

dates in software defined networks. HotNets, 2013.

[22] J. McClurg, H. Hojjat, P. Cerny, and N. Foster. Ef-

ficient synthesis of network updates. Programming

Languages Design and Implementation, 2015. to

appear.

[23] A. Noyes, T. Warszawski, P. Černỳ, and N. Foster.

Toward synthesis of network updates. SYNT, 2014.

[24] Open Network Foundation. OpenFlow switch spec-

ification v1.4, October 2013. https://www.

opennetworking.org/.

[25] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger,

and D. Walker. Abstractions for network update. In

ACM SIGCOMM, 2012.

[26] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,

M. Casado, N. McKeown, and G. Parulkar. Can the

production network be the testbed? OSDI, 2010.

[27] L. Shi, J. Fu, and X. Fu. Loop-free forwarding table

updates with minimal link overflow. International

Conference on Communications, 2009.

