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Abstract
Transactional memory provides a new concurrency control mech-
anism that avoids many of the pitfalls of lock-based synchroniza-
tion. High-performance software transactional memory (STM) im-
plementations thus far provide weak atomicity: Accessing shared
data both inside and outside a transaction can result in unexpected,
implementation-dependent behavior. To guarantee isolation and
consistent ordering in such a system, programmers are expected to
enclose all shared-memory accesses inside transactions.

A system that provides strong atomicity guarantees isolation
even in the presence of threads that access shared data outside trans-
actions. A strongly-atomic system also orders transactions with
conflicting non-transactional memory operations in a consistent
manner.

In this paper, we discuss some surprising pitfalls of weak atom-
icity, and we present an STM system that avoids these problems
via strong atomicity. We demonstrate how to implement non-
transactional data accesses via efficient read and write barriers,
and we present compiler optimizations that further reduce the over-
heads of these barriers. We introduce a dynamic escape analysis
that differentiates private and public data at runtime to make bar-
riers cheaper and a static not-accessed-in-transaction analysis that
removes many barriers completely. Our results on a set of Java pro-
grams show that strong atomicity can be implemented efficiently
in a high-performance STM system.

Categories and Subject Descriptors D.1.3 [Programming tech-
niques]: Concurrent Programming—Parallel Programming; D.3.3
[Programming languages]: Language Constructs and Features—
Concurrent programming structures; D.3.4 [Programming Lan-
guages]: Processors—Code generation, Compilers, Optimization,
Run-time environments

General Terms Algorithms, Measurement, Performance, Design,
Experimentation, Languages

Keywords Transactional Memory, Strong Atomicity, Weak Atom-
icity, Isolation, Ordering, Escape Analysis, Compiler Optimiza-
tions, Code Generation, Virtual Machines
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Globally visible java.util.LinkedList list
Initially list == [Item{val1==0,val2==0}]

Thread 1 Thread 2
Item item; synchronized(list) {
synchronized(list) { if(!list.isEmpty()) {
item = (Item) Item item = (Item)
list.removeFirst(); list.getFirst();

} item.val1++;
int r1 = item.val1; item.val2++;
int r2 = item.val2; }

}
Can r1!=r2?

Figure 1. Thread 1 privatizes the previously shared object item.
Can we safely replace synchronized with atomic?

1. Introduction
Transactional memory (TM) offers a simple concurrency control
mechanism that avoids many of the pitfalls associated with locks.
With TM, the programmer declares an atomic code block, and
the underlying system guarantees atomicity and isolation during
execution, giving the illusion that the block executes as an atomic
step with respect to other concurrently executing operations.

Prior software TM (STM) systems mostly implement weak
atomicity [9], in which non-transactional memory accesses go di-
rectly to memory and bypass the STM access protocols. Weak
atomicity allows violation of a transaction’s isolation if there is a
data race between transactional and non-transactional code; fur-
thermore, weak atomicity allows violation of established memory
ordering rules if a thread outside of a transaction accesses a loca-
tion modified by a committed transaction. To ensure isolation and
consistent ordering, it is sufficient to manually segregate shared-
memory into memory accessed only in transactions and memory
accessed only outside transactions. As Section 2 explains in more
detail, without this segregation, different weak-atomicity STM im-
plementation techniques will exhibit different and surprising be-
haviors. Strict segregation is error-prone especially as software
evolves; but more disturbingly, weak atomicity can require segre-
gation even in situations where lock-based critical sections do not.
In such situations, weak atomicity is a step backwards from the
goal of reliable and efficient concurrent programming.

Consider the lock-based Java program in Figure 1, adapted from
Larus and Rajwar [35] and from Hudson et. al. [32]. Thread 1
removes an item from list and dereferences it twice. Because
the item becomes private to Thread 1 once it is removed, Thread



1 can dereference the item outside the critical section. Thread 2,
which properly synchronizes on the list, clearly cannot touch the
item once Thread 1 removes it. In this lock-based case, it is clear
that r1 == r2 as either both fields were incremented or neither
were. The Java Memory Model [38] was designed to support such
idioms; this program is correctly synchronized.

Now consider Figure 1 with the locks replaced by weak atomic
blocks. There is no segregation because fields of item are ac-
cessed inside and outside transactions. Most of the existing multi-
processor STM implementations could violate isolation or ordering
for reasons depending on the implementation approach. On systems
implementing eager versioning and lazy conflict detection [27, 1],
Thread 2 may speculatively update fields of item even as Thread
1 removes it and commits its transaction. Although Thread 2 will
eventually abort, the unprotected dereference operations in Thread
1 may see speculative values before this. On systems implementing
lazy versioning [25, 28, 39, 21], Thread 1 may commit its trans-
action after Thread 2 commits its transaction but before Thread 2
updates the fields of item. Although Thread 2 will eventually up-
date these fields from its private buffers, Thread 1’s unprotected
dereference will see stale values before this.

We believe the simplest way to avoid the morass of unpre-
dictable and implementation-defined behavior for such seemingly
reasonable programming idioms is to provide strong atomicity [9],
in which the system provides isolation and consistent ordering
without requiring segregation. Prior implementations of strong
atomicity, however, use hardware support [30, 42, 43, 24], assume
a uniprocessor [47, 37], enforce strict segregation statically [26], or
do not demonstrate scalable parallelism [31, 6].

This paper presents a high-performance strong-atomicity STM
system. We make the following contributions:

1. We present the first scalable STM designed for multiprocessors
that supports strong atomicity in an imperative language.

2. We characterize the kinds of problems that occur in weakly-
atomic systems. Although past work has illustrated some of the
problems that occur with weak atomicity, none have provided
the same detail or as complete an analysis of the problems that
different STM implementations exhibit. (Section 2)

3. We demonstrate how to implement strong atomicity via efficient
read and write barrier sequences for memory accesses outside
transactions. (Section 3)

4. We present new optimizations to reduce the cost of these read
and write barriers (and often remove them entirely). First, dy-
namic escape analysis (Section 4) tracks thread-local objects at
runtime to avoid unnecessary synchronization in the barriers.
Second, a whole-program static not-accessed-in-transaction
analysis (Section 5) eliminates barriers for code that cannot
conflict with transactional memory accesses. Third, intrapro-
cedural optimizations (Section 6) such as barrier aggregation
help amortize the cost of barriers.

5. We measure the performance and scalability of strong atomic-
ity on both non-transactional benchmarks and a set of multi-
threaded Java programs modified to use our atomic construct.
We show that strong atomicity has no negative effect on scala-
bility and that our optimizations reduce the overhead of strong
atomicity to a fraction of the overhead imposed by an unopti-
mized implementation. (Section 7)

2. Characterizing weak atomicity behaviors
In a safe language such as Java, language constructs need semantics
that precisely determine possible behaviors, but giving precise, for-
mal semantics for transactions is beyond our present scope. Rather,
we aim to describe as thoroughly as we can the various ways that

existing STM systems for weak atomicity can violate isolation
or ordering expectations, categorizing the issues with terminology
from the database community [22] or prior memory-consistency
work [2] where appropriate. Because strong atomicity has none of
the pitfalls we present, we believe it is a better starting point for
developing a comprehensive memory model that includes TM even
though memory-model questions remain open [23].

As expected, all unexpected behaviors involve transactional and
non-transactional code accessing the same shared data with at least
one write access. Section 2.1 presents well-known isolation viola-
tions that also occur with locks. However, there are additional prob-
lems specific to weakly-atomic STMs. Section 2.2 presents isola-
tion anomalies that can result from the speculate-and-abort strat-
egy of eager-versioning STM systems [1, 27], in which a transac-
tion updates shared memory directly and rolls back its writes if it
aborts. Section 2.3 presents ordering anomalies that can result from
lazy-versioning STM systems [25, 28, 39, 21], in which a trans-
action computes with private versions of written-to data and up-
dates shared memory after it commits. Section 2.4 presents anoma-
lies due to the coarse granularity at which some lazy- and eager-
versioning STM systems manage multiple versions of data.

Some of the examples in this section illustrate programs that
are properly synchronized using critical sections in lieu of atomic
blocks, while others illustrate programs that have data races. We
believe not only that the properly synchronized programs should
execute correctly using atomic blocks, but also that in the spirit of
the Java memory model, we should provide some guarantees for
programs with data races and prohibit “out-of-thin-air” values that
may compromise safety and security [38].

Note that we use the term weak atomicity in a more general
fashion than Blundell, et.al., [9] have defined it. In contrast to their
work, we do not assume a particular behavior when transactional
and non-transactional code access the same data. Instead, we refer
to any STM system as weakly atomic if it allows non-transactional
accesses to access memory directly, bypassing the STM system’s
mechanisms for accessing shared memory. As shown below, differ-
ent types of weakly-atomic STM systems behave very differently. 1

2.1 Problems shared with locks
Under weak atomicity, one typically expects that data races cause
isolation violations just like with improperly synchronized lock-
based code. There are three issues, all demonstrated in Figure 2.

Non-repeatable reads: Figure 2(a) illustrates a non-repeatable
read (NR). Thread 1’s two reads should observe the same value
for x since they are inside a transaction. But if Thread 2 writes x
between the two reads then Thread 1 will observe two different
values for the variable, violating transaction isolation. A similar
problem happens if Thread 1 first writes to x (say the value 10) and
then reads x; Thread 1 will not observe the value it wrote (10) if
Thread 2 writes x between Thread 1’s write and read.

Intermediate lost updates: Figure 2(b) illustrates an intermediate
lost update (ILU) where the same memory location is updated both
inside and outside a transaction. In a serialized execution of the
two threads, both updates should compose. The shared variable x
should have the final value of either 10 (Thread 2 executed last) or
11 (Thread 2 executed first); but x will have the final value 1 (as
if Thread 2’s write never happened) if Thread 2 updates x between
Thread 1’s read and write operations.

1 Blundell, et.al. [9], appear to assume that weak atomicity implies an eager-
versioning STM where transactional updates become immediately visible to
non-transactional code. In a lazy-versioning STM, such updates are visible
only after commit.



Thread 1 Thread 2
atomic {
r1 = x; x = 1;
r2 = x;
}

Can r1!=r2?
(a) Non-repeatable reads

Initially x==0
Thread 1 Thread 2
atomic {
r = x; x = 10;
x = r + 1;
}

Can x==1?
(b) Lost updates

Initially x is even
Thread 1 Thread 2
atomic {
x++; r = x;
x++;
}

Can r be odd?
(c) Dirty reads

Figure 2. Isolation violations expected with data races.

Intermediate dirty reads: Figure 2(c) illustrates an intermediate
dirty read (IDR) where a non-transactional access can observe
the intermediate state of a transaction. Thread 1 maintains the
invariant that x is even, but Thread 2 will observe an odd value if it
reads x between Thread 1’s two increments. Under lazy versioning,
intermediate dirty reads cannot occur, but at the cost of ordering
violations discussed in Section 2.3.

2.2 Eager-versioning anomalies
Eager-versioning STM can exhibit dirty read and lost update behav-
iors that are not otherwise possible in lock-based code. These be-
haviors are due to the speculate-and-undo strategy of eager version-
ing, in which a transaction speculatively updates shared memory in
place and then on abort, rolls back these updates with a compensat-
ing write. A rolled-back transaction thus manufactures new shared
memory writes that are not present in any sequentially-consistent
execution, resulting in new lost update and dirty read scenarios.

Speculative lost updates: Figure 3(a) illustrates a speculative lost
update (SLU) where a non-transactional update is lost due to a
write during transaction rollback. Assume Thread 1 updates x first,
and then Thread 2 updates y and x. If Thread 1 now rolls back, it
will restore x’s value back to 0 and skip over the update to x on
re-execution (because it now observes y==1), resulting in x==0.

Speculative dirty reads: Figure 3(b) illustrates a speculative dirty
read (SDR) where a non-transactional read observes the speculative
state of a transaction. Assume Thread 1 updates x first, and then
Thread 2 updates y after observing x==1. If Thread 1 now rolls
back, it will restore x’s value back to zero and skip over the update
to x on re-execution, resulting in x==0.

2.3 Lazy-versioning anomalies
Lazy-versioning STM can exhibit memory ordering problems sim-
ilar to memory consistency problems in shared-memory multi-
processors [2]. Lazy-versioning STM buffers transactional updates
privately and then writes the buffered updates back to shared mem-
ory “lazily” when the transaction commits. The window of time
between the transaction commit and the update to shared memory
can cause memory ordering violations because non-transactional
code does not see all committed values during that time.

Memory inconsistency: Figure 4 illustrates memory inconsis-
tency (MI) due to violation of established ordering rules. In Figure
4(a), Thread 1 initializes a field in the object el and then publishes
the object by writing it to a volatile shared variable x. Thread 2 may
now see the published object in x but not see the initialized value of
its field because a lazy-versioning STM copies buffered values to
memory one at a time in no particular order. Since x is volatile, this
ordering is inconsistent [38]. The same problem can occur when a
final field is initialized inside a transaction but is reordered with a
publishing write. This is similar to the multiple overlapped writes
problem described in [2].

Figure 4(b) shows another memory inconsistency example dis-
tilled from Figure 1. Thread 1 takes a shared value in x and makes

it thread local. Once x is set to null, the object in r1 is not visible
to other threads, and from the programmers point of view, it should
be safe to access x outside an atomic region. In a lazy-versioning
STM, Thread 2 may buffer an update to x.val, validate itself, and
commit. But before it has flushed the new value to memory, Thread
1 may execute its transaction and start accessing r1.val. Logi-
cally, Thread 2’s transaction executes before Thread 1’s transaction,
and Thread 1’s accesses to r1.val execute after Thread 1’s trans-
action. But because the STM updates shared memory lazily, Thread
1’s accesses to r1.val end up racing with the STM’s update. This
is similar to the buffered writes problem described in [2].

2.4 Anomalies due to coarse-grained versioning
When the granularity at which the STM system manages data
versions is greater than the granularity at which non-transactional
code writes data (e.g., if the STM logs or buffers writes in 8-byte
blocks while a non-transactional access writes a 4-byte value within
that block), then additional problems can occur in both lazy- and
eager-versioning STM systems.

Granular lost updates: Figure 5(a) illustrates a granular lost
update (GLU) where the non-transactional update to x.g is lost
even though the transaction never accesses this field and there is
no data race. Eager-versioning STM systems [27, 1] maintain undo
log entries that may be larger than individual object fields (or array
elements). If Thread 1’s transaction creates an undo log entry that
spans fields f and g of x, Thread 2’s update to x.g could be lost if
Thread 1 aborts and rolls back x.f. A similar problem can happen
in lazy-versioning STM’s that buffer values at a similar granularity;
for example, if Thread 2 updates x.g after Thread 1 has created a
private copy that spans fields f and g, then the update will vanish
after Thread 1 commits and writes back its copy to shared memory.

Granular lost updates arise because the STM manufactures new
writes to variables that lie adjacent to a variable updated inside a
transaction. These writes do not exist in any sequentially-consistent
execution of the program. Granular lost updates are similar to the
problem of rewriting adjacent data described by Boehm [10].

Granular inconsistent reads: Figure 5(b) illustrates a granular
inconsistent read (GIR) where a transaction may see inconsis-
tent updates from a non-transactional thread. Granular inconsistent
reads are similar to granular lost updates but may only occur in
lazy versioning STMs. Here, the shared variable y is volatile and
imposes certain ordering constraints between Thread 1 and Thread
2. In particular, if Thread 1 observes Thread 2’s update to y, it
must also observe Thread 2’s update to x.g. In a lazy-versioning
STM, however, Thread 1’s transaction (as in the earlier GLU ex-
ample) may have created a private copy on the write to field x.f
that also spans x.g. In this case, the transaction will later read its
own stale copy of x.g and not observe Thread 2’s update as re-
quired by the Java memory model. Note that a granular inconsistent
read is a memory inconsistency anomaly akin to those described in
Section 2.3.



Initially x==0 and y==0
Thread 1 Thread 2
atomic {
if (y==0) x = 2;
x = 1; y = 1;
/*abort*/
}

Can x==0?
(a) Speculative lost updates

Initially x==0 and y==0
Thread 1 Thread 2
atomic {
if (y==0) if (x==1)
x = 1; y = 1;
/*abort*/
}

Can x==0?
(b) Speculative dirty reads

Figure 3. More isolation violations for eager versioning STM.

Suppose x is volatile
Initially x==null
and el.val==0

Thread 1 Thread 2
atomic { r=-1;
el.val=1; if(x!=null)
x=el; r=x.val;
}

Can r==0?
(a) Overlapped writes

Initially x!=null
and x.val==1

Thread 1 Thread 2
atomic { atomic {
r1=x; if(x!=null)
x=null; x.val++;
} }
r2=r1.val;
r3=r1.val;
r1.val=0;
Can r2!=r3 or r1.val!=0?

(b) Buffered writes

Figure 4. Lazy-versioning ordering violations.

Because of granular lost updates and inconsistent reads, the pro-
grammer must consider versioning granularity when segregating
data in a weakly-atomic system, and the weak-atomicity program-
ming interface must explicitly define this granularity; otherwise,
the STM must manage versions at the granularity of the individ-
ual fields updated inside a transaction. A strongly-atomic system
hides this granularity, but optimizations such as our not-accessed-
in-transaction analysis must take the granularity into account when
analyzing which variables are updated inside transactions.

2.5 Discussion
Figure 6 summarizes the behavior of weak atomicity, comparing it
with locks. This table shows the behaviors for read-write, write-
write, and write-read accesses between transactional (Txn) and
non-transactional (Non-Txn) code. The eager and lazy versioning
columns represent weak atomicity for these version management
policies, the Locks columns represents lock-based critical sections.
The Strong column represents strong atomicity, emphasizing that
the techniques that we present later avoid these behaviors.

Revisiting the privatization example in Figure 1, the problem
with eager versioning is an SDR (Thread 2 may increment and then
decrement item.val++ due to an abort) and the problem with lazy
versioning is an MI since the non-transactional accesses “see” that
the increments happen after the transaction commits.

3. Enforcing isolation and ordering
Enforcing memory ordering and isolation between transactional
and non-transactional threads requires read and write isolation
barriers in code that executes outside of atomic blocks. Avoiding
dirty reads requires read barriers that detect simultaneous writes
by a transaction, avoiding non-repeatable reads and lost updates
requires write barriers that prevent a simultaneous access by a
transaction, and avoiding memory inconsistencies requires barriers
that detect pending buffered updates by a transaction.

Initially x.g==0
Thread 1 Thread 2
atomic {
x.f=1; x.g=1;
}

Can x.g==0?
(a) Granular lost updates

Suppose y is volatile
Initially x.g==0 and y==0
Thread 1 Thread 2
r=-1;
atomic {
x.f=...; x.g=1;
if (y==1) y=1;
r=x.g;

}
Can r==0?

(b) Granular inconsistent reads

Figure 5. Anomalies due to coarse-grained versioning.

Non- Txn Anomaly Versioning Locks Strong
Txn Eager Lazy
write read NR yes yes yes no

GIR no yes no no
ILU yes yes yes no

write write SLU yes no no no
GLU yes yes no no
MI no yes no no
IDR yes no yes no

read write SDR yes no no no
MI no yes no no

Figure 6. Summary of weak atomicity behaviors.

We have implemented our techniques in a high-performance
STM system that extends Java with an atomic{ B } construct
for declaring an atomic code block B [1]. Our system supports
a full range of transactional features including closed and open
nesting [45] and user-initiated retry operations. The JIT com-
piler automatically inserts and optimizes STM operations for code
that executes inside a transaction and isolation barriers for non-
transactional code. At the core of our system lies McRT-STM [49],
which implements optimistic concurrency control using version-
ing [34] for reads and strict two-phase locking [22] and eager ver-
sioning for writes. For our whole-program static analysis we used
the Paddle [7] extension to Soot [56].

3.1 Transaction records
In the base STM system, a pointer-sized transaction record [1]
tracks the state of each object accessed inside a transaction. The
transaction record can be in either the shared state, which allows
read-only access by any number of transactions, or the exclusive
state, which allows read-write access by the single transaction that
owns the record. In the shared state, the record contains a version
number used for optimistic read concurrency. In the exclusive state,
it contains a pointer to the owning transaction’s descriptor. Each
object has a transaction field holding its transaction record.

To support efficient strong atomicity, we extend the transaction
record to four states encoded in its three least-significant bits (Fig-
ure 7). The shared and exclusive states are as before. The exclusive
anonymous state indicates that some thread owns the object exclu-
sively for read-write access, but the record does not indicate who
owns it. This state prevents a transaction from accessing data that a
non-transactional thread is concurrently updating. The upper bits in
this state contain the version number from the record’s prior shared
state. An object whose transaction field is in the private state is
visible only to a single thread. Threads never contend for private
objects so the runtime can avoid most of the barrier overheads on
accesses to private objects.



Encoding State Value in upper bits
x..x011 Shared Version number
x..xx00 Exclusive Owner address
x..x010 Exclusive anonymous Version number
1..1111 Private All ones

Figure 7. Transaction record encoding.

This encoding enables efficient read and write barriers outside
transactions. A non-transactional read can check whether it con-
flicts with a transaction — that is, detect dirty reads in an eager-
versioning STM or pending updates by a committed transaction in a
lazy-versioning STM — by inspecting only the second lowest bit.2

A non-transactional write can acquire exclusive anonymous own-
ership of a record by atomically flipping the lowest bit from one to
zero with a single IA32 bit-test-and-reset (BTR) instruction — thus
avoiding non-repeatable reads and lost updates — and can release
ownership and at the same time increment the version number by
incrementing the record by 9. Figure 8 shows the state transition
diagram for the transaction record. The write barrier detects pub-
lication of a private object and calls the publishObject function
(described later) to transition its record to the shared state. A trans-
action acquires ownership of a record using an atomic compare-
and-swap operation (CAS) in its open-for-write barrier [1, 27] and
releases ownership and increments the version number when it ends
(Txn end).

Exclusive

anonymous

ExclusiveShared

Private

publishObject

new

BTR+ 9

CAS

Txn end

Figure 8. Transaction record state transitions.

3.2 Read and write barriers for enforcing isolation
Figure 9 shows the read and write isolation barrier instruction se-
quences for non-transactional code. The read barrier first reads the
transaction record followed by the accessed address. If the object
is not in the exclusive state, the barrier validates that the record did
not change, ensuring that no other thread acquired ownership of
the record after the first read of the record. If the record is in an ex-
clusive state or if validation fails, then the read barrier invokes the
conflict handler (handleConflict). By design, this barrier may
not detect some conflicts between two non-transactional threads as
such conflicts do not violate any transaction’s isolation; it can de-
tect such conflicts by simply checking the lowest-order bit.

The write barrier tries to acquire ownership of the record by flip-
ping the lowest bit of the record with an atomic BTR instruction.3 If
the record is already in either of the exclusive states, then the write
barrier invokes the conflict handler. After performing the write op-
eration, the write barrier increments the version number and sets
the record to the shared state by incrementing it by 9.

The barriers invoke the conflict manager whenever multiple
threads access a shared location simultaneously with at least one of
the accesses updating the location. The conflict manager backs off

2 We can also detect conflicts with either concurrent transactional or con-
current non-transactional writes by inspecting only the lowest bit.
3 We can also use a compare-and-swap instruction.

readBarrier:
mov ecx, [TxRec]
mov eax, [addr]
test ecx, 2
jz readConflict
cmp ecx, [TxRec]
jne readConflict
readDone:

. . .
readConflict:
push TxRec
call handleConflict
jmp readBarrier
(a) Read isolation barrier

writeBarrier:
lock btr [TxRec],0
jnc writeConflict
mov [addr],val
add [TxRec],9
writeDone:

. . .

writeConflict:
push TxRec
call handleConflict
jmp writeBarrier
(b) Write isolation barrier

Figure 9. Read and write barriers for accessing shared data in a
non-transactional thread.

and returns so that the barriers retry. Alternatively, conflicts could
signal a race by throwing an exception or breaking to the debugger.
Isolation barriers can thus aid in debugging concurrent programs.

3.3 Barriers for enforcing ordering
Lazy-versioning STM systems acquire transaction records on com-
mit and release them after writing back updates to shared memory
(or after aborting if commit fails). These systems do not need a
read barrier to enforce isolation as dirty reads are never written to
shared memory, but they do need one to enforce consistent ordering
(as shown in Figure 1). The read barrier for enforcing ordering in a
lazy-versioning STM thus simply checks for a pending update by a
committed transaction:

test [TxRec], 2
jz readConflict
mov eax, [addr]

Note that this read barrier does not need to recheck the transaction
record after the read because it needs to make sure only that the
pending updates from the most recent transaction since the last
synchronization action are done.

3.4 Quiescence for respecting privatization
A quiescence mechanism can provide partial isolation and ordering
guarantees and can handle the privatization problem illustrated in
Figures 1 and 4(b) without requiring non-transactional read or write
barriers. Recent work in the context of unmanaged languages [32,
18] uses quiescence to ensure that doomed transactions (i.e., invalid
transactions that have not yet aborted) do not cause run-time faults
due to an inconsistent view of memory. They guarantee that a
thread does not free memory while a doomed transaction could still
access it. 4

Other work [58, 52] demonstrates how to extend quiescence
to handle the privatization problem by requiring that a transac-
tion can complete only when all other transactions reach a con-
sistent state. In the transactional variant of Figure 1, this ensures
that, for an eager-versioning STM, the transaction in Thread 1
waits until Thread 2 can no longer access item before committing.
Quiescence can also prevent the privatization problem in a lazy-
versioning STM. Here, a transaction must wait until previously se-
rialized transactions finish applying their updates to memory before
completing itself. In Figure 1, this ensures that, when the transac-
tion in Thread 1 completes, all updates from Thread 2 are already
visible.

4 With managed languages, an STM can rely on garbage collection and type
safety to avoid these problems.



readBarrier:
mov ecx, [TxRec]
mov eax, [addr]
cmp ecx, -1
jeq readDone
test ecx, 2
jz readConflict
cmp ecx, [TxRec]
jne readConflict
readDone:

. . .

readConflict:
push TxRec
call handleConflict
jmp readBarrier

(a) Read isolation barrier

writeBarrier:
cmp [TxRec], -1
jeq privateWrite
lock btr [TxRec],0
jnc writeConflict
* cmp val, 0
* jz publicWrite
* cmp [val+txFld],-1
* jne publicWrite
* push val
* call publishObject

publicWrite:
mov [addr],val
add [TxRec],9
jmp writeDone

privateWrite:
mov [addr], val
writeDone:
. . .
(b) Write isolation barrier

Figure 10. Read and write isolation barriers with dynamic escape
analysis. The italicized code shows instructions due to dynamic
escape analysis. In the read barrier, this code is optional. In the
write barrier, the asterisked code is for reference types only.

Quiescence and other solutions that focus on privatization [52]
rather than strong atomicity, do not solve general isolation and
ordering problems such as speculative dirty reads and memory
inconsistency. We also note that aggressive read-set validation [53,
18, 58] solves neither the general problems nor the privatization
problem.

4. Dynamic escape analysis
Dynamic escape analysis detects if an object is private (visible
to one thread) or public (visible to multiple threads). A freshly
minted object is private and becomes public (is published) only
when a reference leading to the object is written into either another
public object or a static field. The read and write barriers for private
objects are shorter and never perform a synchronized operation.

Once an object is public, our analysis leaves it public. Thread
objects become public prior to the thread being spawned since both
the spawning thread and the spawned thread have access to the
thread object.

Figure 10 shows the instruction sequences for read and write
isolation barriers with dynamic escape analysis. The italicized code
shows new instructions compared to Figure 9. The read barrier
reads the transaction record and the accessed adress and then skips
over the rest of the barrier if the object is private. This privacy check
is optional because, like the exclusive anonymous and shared states,
the second-lowest bit of the transaction record is also set in the
private state. The write barrier starts from doing the privacy check
and skips the rest of the barrier if the object is private.

For writes of reference types the write barrier also contains the
instructions to publish a private object that became public because
of the write. (These instructions are marked with asterisk in Figure
10 and are not present for write barriers of non-reference types.) If
the new value that is being written references a non-null private
object then these insturctions call the function publishObject
(Figure 11) to publish the written object before it is visible to other
threads. Since the object is still private, publishObject does not
concern itself with race conditions. Each object has associated with
it a vtable containing a map of the object’s fields holding references
(slots). The slots are iterated over and the graph rooted by the object

void publishObject(object) {
mark object public
markStackPush(object);
while (obj = markStackPop()) {

forall (slots in obj) {
if (*slot is private) {

mark *slot public
markStackPush(*slot);

} } } }

Figure 11. Object publication algorithm.

remove barrier outside atomic
transactional access read write

none yes yes
only read yes no

only written no no
read and written no no

Figure 12. The barrier removal allowed by our not-accessed-in-
transaction (NAIT) analysis.

is traversed marking any private object encountered as public. A
mark stack similar to those used by garbage collectors encoded
the naturally recursive nature of the traversal. Once all reachable
private objects are marked as public the object can be published.

The termination argument for the publishObject routine is
similar to the one that guarantees a garbage collector’s stop-the-
world heap traversal terminates. The graph of private objects reach-
able from the root object is finite and fixed. Since the graph is
private, objects cannot be added during the traversal. No private
objects are reachable through public objects. Private objects are
immediately annotated as public when first encountered. Later en-
counters will not continue the traversal beyond the public object,
eliminating cycles of private objects. Every hop in the traversal that
discovers a private object reduces the number of reachable private
objects. Therefore the traversal will have to visit a finite number of
nodes and needs to visit them a finite number of times.

In an eager-versioning, optimistic-read-concurrency STM sys-
tem such as ours, compiler and runtime optimizations must con-
sider that one transaction may read the dirty data of another trans-
action. Such a doomed transaction will abort eventually as it has
read data speculatively written by another concurrently-executing
transaction; but before it aborts, it can access objects published by
the other thread. The compiler and runtime cannot assume, there-
fore, that a private object becomes visible to other threads only on
commit — inside a transaction, a write of a reference into a public
object immediately publishes any referenced private objects. Static
escape analysis algorithms for detecting transaction-private objects
must also take this into account.

5. Static not-accessed-in-transaction analysis
This section presents an effective whole-program static analysis
that operates on Java bytecodes to optimize away read and write
isolation barriers. The analysis is based on the following obser-
vation: A memory write does not need a barrier if the memory it
writes is never accessed in a transaction. A memory read does not
need a barrier if the memory it reads is never written in a transac-
tion. Figure 12 summarizes this barrier-removal opportunity. Note
that in a program not using transactions the analysis would remove
all barriers.

There exists considerable prior work on identifying thread-local
objects [3, 15, 8]. The not-accessed-in-transaction analysis (here-



after NAIT) complements thread-local analysis (hereafter TL) in
two ways. First, truly thread-shared data may never be accessed
in a transaction. A common example is “data handoff,” such as
objects that are transferred among threads via shared queues. Of-
ten the queues are accessed in critical sections, but not the ob-
jects passed through them. NAIT optimizes this situation naturally
whereas TL requires complicated additions of limited effective-
ness [12]. Another example is fields in subtypes of Thread, which
are never thread-local. Second, NAIT and TL have complementary
static approximations. For example, TL typically treats a static field
as thread-shared even if only one thread ever uses it.

5.1 Pointer Analysis
For each field or array access outside a transaction, we need to
know if it might access an object that is also accessed within
a transaction, which is clearly an aliasing question. We use the
Paddle [7] extension to Soot [56] to compute points-to sets for each
bytecode that accesses memory. The analysis is a sound whole-
program, field-sensitive, flow-insensitive analysis. (See Section 5.3
for discussion regarding whole-program analysis.)

Conceptually, the analysis is context-insensitive (OCFA) after
code duplication, where for each method there is one version called
during transactions and one called otherwise. After this duplication
(a common implementation technique for transactions), a program
point is “in a transaction” if and only if it is in the transactional
version of a method or it is lexically in an atomic block. However,
we do not perform this duplication on bytecodes; it is simpler and
more efficient to do it lazily in the JIT.

Therefore, we simulate the effect of duplication by defining a
new form of context-sensitivity during pointer analysis: The con-
text is just “in transaction” or “not in transaction”, so each method
is analyzed in at most two contexts. (Hence efficiency is within
a factor of two of OCFA and in practice, nowhere near the worst
case.) All calls inherit the current context except calls lexically in
atomic always analyze the callee under “in transaction.” For the
full effect of code duplication, we use heap specialization, mean-
ing abstract objects are pairs of allocation site and context. Paddle’s
support for defining new kinds of contexts was crucial and elegant.

Hence after pointer analysis, each bytecode instruction that ac-
cesses memory has two points-to sets (one for each context of the
enclosing method). Except for our novel definition of contexts, we
are simply clients of pointer analysis.

5.2 Annotating Memory Operations
Given the points-to sets, annotating bytecodes with barrier-removal
information requires only two more passes over the code. First, for
each abstract object we compute how it may be accessed within
transactions (the left column in Figure 12) by using (1) the “in
transaction” points-to set for each load and store, as well as (2) the
“not in transaction” points-to set for loads and stores lexically in
atomic.5 Second, for each load and store not lexically in atomic,
we use its “not in transaction” points-to set and the result of the first
pass to determine if the non-transactional version of the instruction
needs an isolation barrier. No barrier is needed if the instruction is
a load and no object in the points-to set is written in a transaction,
or if the instruction is a store and no object in the points-to set is
read or written in a transaction.

Though our focus has been on removing strong-atomicity bar-
riers, the analysis information could also be used to remove STM
operations within transactions. In particular, given weak atomicity,
we could remove transactional open-for-read barriers [1] for the
“in transaction” version if that points-to set contained no objects

5 For the latter, the loads and stores are in transactions, but the context for
the enclosing method is “not in transaction.”

barrier removed by
program type total NAIT-TL TL-NAIT TL+NAIT
JVM98 read 12671 8796 0 12671

write 9885 7961 0 9885
tsp read 106 89 0 93

write 36 16 0 17
OO7 read 300 279 0 292

write 136 114 2 117
JBB read 804 364 24 798

write 621 131 344 575

Figure 13. Static counts of barriers removed in reachable non-
transactional code by NAIT but not TL (NAIT-TL), TL but not NAIT
(TL-NAIT), and both analyses applied together (TL +NAIT).

potentially written in a transaction. This is unsound under strong
atomicity because the instruction may have a conflict with a non-
transactional write.

5.3 Details
If the first use of a class C might be in a transaction, then its static
initializer (method clinit) could run in a transaction. This method
includes at least a write (bytecode putstatic) to each static field
in C, which would naively prevent NAIT from removing any barriers
on accesses to these fields. However, Java’s class-initialization se-
mantics prevents another thread from accessing these fields while C
is being initialized. Therefore, an access of a static field of C within
C’s clinit need not “count” for NAIT, and our empirical results
include this improvement.

Soot/Paddle’s whole-program pointer analysis is sound as is our
specialized use of it. In general, Soot’s soundness guarantee does
require analysis users to provide classes that may be dynamically
loaded or fields/methods that may be accessed from C code using
JNI or via reflection. The benchmarks we consider do not require
doing so.6

Whole-program analysis is not uncommon for concurrent pro-
grams [44, 48]. We believe it is practical even in a Java setting
because one could modify a virtual machine to recompute analysis
information incrementally when classes are dynamically loaded or
C code uses JNI to access Java objects. In any case, our point is
to show that NAIT is especially effective and should be exploited
whenever possible.

5.4 Static Results
To give a sense of NAIT’s effectiveness, we counted how many
barriers were removed. (For benchmark descriptions and the effect
on run-time, see Section 7.) We also implemented a straightforward
TL analysis using the same points-to information for comparison
purposes. Our results (Figure 13) show that for our benchmarks
NAIT removes significantly more barriers and it removes almost all
the barriers that TL removes.

The numbers we report include the non-transactional barriers
for all object field, static field, and array accesses for nonlibrary
classes, with two exceptions. First, we do not count instructions in
methods the pointer analysis determines are unreachable. Second,
in class initializers we do not count accesses to static fields of the
class being initialized. For the former, barrier removal is always
allowed but cannot affect performance. For the latter, barrier re-
moval is sound without any analysis. In both cases, including these
instructions in our counts would make our results appear better.

6 jbb uses reflection, but only with constant strings. The analysis is sound
without user intervention in this case.



Code generated for the source a.x=0; a.y+=1;

checknull a
t1 = ldfldaddr a.x
[t1] = stind.wb 0
t2 = ldfldaddr a.y
t3 = ldind.rb [t2]
t4 = add t3,1
[t2] = stind.wb t4

(a) Intermediate representation

cmp a, 0
jz nullPtrException
lock btr [a.txnfld],0
jnc conflict
mov [a.x],0
add [a.y],1
add [a.txnfld],9

(b) Generated code

Figure 14. Barrier aggregation example

Qualitatively, TL is ill-suited to common idioms that we see
in tsp and 007; for example, tsp uses fields of a subtype of
Thread for data that is actually thread-local and accessed only
outside transactions, but these fields are reachable from two threads
(the one running and the one that created the object). For jbb, TL
does better but NAIT still provides significant and complementary
benefit.

6. JIT optimizations
Our JIT represents the non-transactional read and write barriers by
annotations on the memory accesses. Such accesses map directly
to the IA32 code sequences shown earlier (which vary depending
on whether dynamic escape analysis is enabled) unless the JIT’s
own optimizations can either eliminate the barriers or combine the
barriers for multiple memory accesses (via barrier aggregation).

The JIT does not insert barriers for accesses to immutable
fields (e.g., final fields and internal fields such as the virtual
method table or array length field) or immutable objects (e.g., ob-
jects of certain built-in classes such as java.lang.Integer or
java.lang.String).

The JIT also detects and eliminates barriers to thread-local ob-
jects via a path-sensitive intraprocedural escape analysis, a tradi-
tional static escape analysis in contrast to the dynamic escape anal-
ysis of Section 4. Allocated objects begin thread-local and an it-
erative, forward dataflow analysis finds that objects escape when
they are assigned to escaped locations (static variables or fields of
escaped objects) or are reachable from method-call arguments. Ag-
gressive inlining lowers the imprecision of the latter, and the use of
types improves precision by ruling out incompatible assignments.

The code generator lowers the non-transactional read and write
operations to the complete barrier sequences, exposing the opera-
tions within the barriers to further optimization at the basic-block
level. Barrier aggregation then detects multiple barriers to the same
object in the same basic block and combines them into a single
aggregated barrier. Figure 14 shows an example that accesses the
same object several times and thus is amenable to barrier aggre-
gation. The IR generated by the JIT (Figure 14(a)) has two write-
barrier-annotated store operations and one read-barrier-annotated
load operation. Figure 14(b) shows the code generated after bar-
rier aggregation. 7 The instruction sequence first performs a null
pointer check and then attempts to acquire the transaction record.
If it succeeds, it writes field x of object a, updates field y, and finally
releases ownership by incrementing the record’s version number.

The code sequence in Figure 14(b) is almost identical to that
for a single write. We acquire the transaction record, perform op-
erations on the object, and finally release ownership by setting the
record to the incremented version number. Whereas unoptimized
code acquires the record for every modification of an object, ag-
gregated barriers acquire the record just once per multiple reads

7 For simplicity, we show a code sequence without dynamic escape analysis.

and writes to an object. In the presence of dynamic escape analy-
sis aggregated barriers skip acquire and release of the transaction
record if the object is private; the barriers also publish the objects
that become public due to writes of reference types.

As with the standard barrier, aggregated barriers access a single
object and perform a finite number of operations. To guarantee
these properties and avoid deadlock, the JIT does not aggregate
across basic blocks and does not allow function calls or access to
multiple objects within an aggregated barrier.

7. Performance
We investigate the cost of strong atomicity and the effectiveness of
our optimizations using both transactional and non-transactional
workloads. For non-transactional benchmarks, we measure the
overhead of strong atomicity by running each benchmark with
and without our read and write isolation barriers. For transactional
benchmarks, we investigate the performance of (1) a weakly atomic
execution (with no isolation barriers), (2) a strongly atomic execu-
tion (with isolation barriers), and (3) a lock-based synchronized ex-
ecution (with synchronized regions in the source instead of atomic
ones). We show that enforcing strong atomicity has little effect on
the scalability of multi-threaded transactional workloads. We also
show that our optimizations are extremely effective in mitigating
the overhead of non-transactional and single-threaded workloads.

We performed our experiments on an IBM xSeries 445 machine
running Windows 2003 Server Enterprise Edition. This machine
has 16 2.2GHz Intel R© Xeon R© processors and 16GB of shared
memory arranged across 4 boards. Each processor has 8KB of L1
cache, 512KB of L2 cache, and 2MB of L3 cache, and each board
has a 64MB L4 cache shared by its 4 processors. In all experiments,
we use an object-level conflict detection granularity in our STM.
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Figure 15. Overhead of strong atomicity on SPEC JVM98 (with-
out whole-program optimizations).
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Figure 16. Read barrier overhead on SPEC JVM98.
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Figure 17. Write barrier overhead on SPEC JVM98.

We measure the cost of strong atomicity for non-transactional
programs using the SPEC JVM98 [54] suite of benchmarks. We
use steady-state execution time measured as the execution time of
the third run of a benchmark during a single invocation. Figure 15
shows the overhead due to read and write isolation barriers with
various levels of optimization. The No Opts bars show the over-
head with no optimizations. The remaining bars show the cumu-
lative influence of JIT and run-time optimizations: Barrier Elim
shows the effect of barrier elimination for immutable object and
fields and data detected to be thread-local by intra-procedural es-
cape analysis, + Barrier Aggr adds barrier aggregation, and +
DEA adds dynamic escape analysis (DEA). We also measured the
overhead of inserting only read or only write barriers (Figures 16
and 17). These data both help to understand the nature of the strong
atomicity overhead and provide an insight into the cost of enforcing
different levels of isolation in an STM.

With no optimizations, the overhead of strong atomicity is sig-
nificant - up to 8 times normal program execution time; the ma-
jority of the overhead comes from the cost of write barrier, which
contains an expensive atomic instruction. Barrier elimination re-
duces the overhead by 30% on 227 mtrt, but has little effect
on other benchmarks. Barrier aggregation significantly reduces
the overhead for many benchmarks, especially for 201 compress
and 222 mpegaudio where it succeeds in aggregating multiple
accesses to an array. DEA dramatically reduces the remaining over-
head for all benchmarks except 222 mpegaudio by practically
eliminating the cost of write barriers. (For 201 compress its ef-
fect is especially impressive - the overhead goes down by an order
of magnitude - from 700% to 40%.) DEA fails to remove the
barrier overhead for 222 mpegaudio because that benchmark op-
erates mostly on static arrays and static data is visible to multiple
threads. The behavior of 222 mpegaudio shows that programming
style can have significant effect on the performance of a strongly
atomic STM system - unnecessarily exposing thread-private data
to multiple threads may have detrimental effect on performance.

Note that Figures 15, 16 and 17 have no bars for the overhead in
the presence of the whole-program optimizations. This is because
for non-transactional programs not-accessed-in-transaction analy-
sis (NAIT) removes all the barriers, and, thus, completely eliminates
the overhead of strong atomicity.

We investigate the effect of strong atomicity on scalability
using three multi-threaded transactional benchmarks - Tsp [57],
OO7 [59] and SpecJBB [55]. For all the benchmarks, we created
transactional versions by replacing the original Java synchroniza-
tion with transactions.8 Tsp solves a traveling salesman problem.
In this benchmark, threads perform their searches independently,

8 In SpecJBB we did not convert to transactions the critical sections con-
taining wait/notify and warehouse initialization
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Figure 18. Tsp execution time over multiple threads.
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Figure 19. OO7 execution time over multiple threads.
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Figure 20. SpecJBB execution time over multiple threads.

but share partially completed work and the best-answer-so-far via
shared memory. OO7 performs a number of traversals over a syn-
thetic database organized as a tree. Traversals either lookup (read-
only) or update the database. OO7 allows transactional access (or
locking, in the original version of the benchmark) at different levels
of the tree. In our experiments we used root locking and a mixture
of 80% lookups and 20% updates. SpecJBB, a well known Java
server benchmark, emulates a 3-tier system for a wholesale com-
pany with multiple warehouses.

Figures 18, 19 and 20 show the performance of Tsp, OO7 and
SpecJBB from 1 to 16 threads, where each thread is mapped to a
different processor. The Synch bars show the performance of the
lock-based versions, the Weak Atom bars show the performance
of transactional versions under weak atomicity, and the rest of
the bars show the performance of the transactional versions under
strong atomicity with various levels of optimizations. The Strong



Atom NoOpts bars show the performance with no optimizations,
+JitOpts add barrier elimination and barrier aggregation, +DEA
adds DEA, and +Whole-Prog Opts add static whole-program op-
timizations (NAIT and TL).

The cost of unoptimized strong atomicity vs. weak atomicity
for a single-threaded execution varies significantly depending on
the benchmark (Tsp, which performs a lot of non-transactional ac-
cesses, is about 3 times slower; but there is less than 11% over-
head for OO7 and SpecJBB, which spend the majority of their time
in transactional code). Optimizations (especially NAIT), reduce the
overhead of strong atomicity to less than 27%. (OO7 with DEA
and SpecJBB with DEA and whole-program optimizations are even
slightly faster than their weakly atomic versions. This happens be-
cause for OO7 dynamic escape analysis also speeds up some of the
open-for-write operations [1] inside transactions.)

Also note that strong atomicity has no detrimental effect on
scalability. For all three benchmarks strongly atomic executions
scale as well as weakly atomic executions and as well or better
than lock-based versions of the benchmarks. (Lock-based OO7
does not scale due to coarse-grained synchronization.) Moreover,
as the number of threads increases, the cost of strong atomicity
compared to weak atomicity drops further. With 16 threads the
strongly atomic versions of Tsp, OO7 and SpecJBB are only 2%,
12% and 1% slower than their weakly atomic counterparts.

8. Related work
Several researchers [51, 21, 28, 39, 29] have implemented STM
APIs that allow a programmer to access memory transactionally.
These systems guarantee transactional behavior only for accesses
that go through the STM API – they do not guarantee isolation
in the presence of conflicting accesses that do not go through the
STM API. Other researchers [25, 27, 1] have introduced first-class
transaction constructs into Java or C# and implemented them via
weak-atomicity STMs.

Harris et.al., [26] add transactions to Concurrent Haskell, a
functional language. Their approach uses Haskell’s monadic type
system to segregate transactional data from other mutable shared
data, thereby ensuring that transactional data is accessed only
within a transaction. Neither the data segregation nor the monadic
type system map naturally to an imperative language such as Java.

On a uniprocessor, one can implement strong atomicity in soft-
ware using scheduler-based techniques to ensure no transaction is
active during a non-transactional access [47, 37]. While extremely
efficient on uniprocessors, the approach does not extend naturally
to multiprocessors.

The new HPCS language proposals – Fortress [4], X10 [14],
and Chapel [16] – all define a transactional memory construct in
lieu of locks. Fortress [4] uses the terms shared and local where we
use public and private; it states that segregating the two will enable
optimizations of transactional reads and writes. The current X10
reference implementation implements atomic blocks as a single
mutual exclusion lock [14]. These languages are still in flux and
currently do not appear to require strong atomicity.

Hardware transactional memory (HTM) systems [30, 24, 13,
41] provide strong atomicity naturally because they leverage the
existing cache coherence logic to implement transactions. Recent
work has provided ways to support transactions with memory foot-
prints that do not fit in cache [46, 5, 42, 43]. Hybrid transac-
tional memory [17, 33] provides architectural support for mixing
HTMs and STMs, relying on the latter when transactions become
too large. Hardware accelerated STM (HASTM) provides architec-
tural support to accelerate transactions executed entirely in soft-
ware [50]. Our work establishes that STMs can provide scalable
strong atomicity, which is important when transactional hardware

is unavailable (e.g., today), and to guide research on architectural
support for transactional memory.

Domani et al. [19] dynamically segregated thread local objects
from globally visible objects, in much the same way we do, to
reduce the cost of garbage collection and synchronization. Lev
and Maessen [36] sketch techniques similar to our dynamic escape
analysis to implement strong atomicity. They do not describe an
implementation and thus do not present implementation details and
quantitative measurements.

Compilers have used static escape analysis for removing syn-
chronization overheads and stack allocation of objects [11, 15, 8,
3, 48]. These escape analysis techniques could also be used to
eliminate strong atomicity barriers, but we demonstrated that not-
accessed-in-transaction is much more effective on our benchmarks.

Whole-program analysis is common in research on eliminat-
ing synchronization overhead [48] or detecting data races [44, 20].
Autolocker [40] uses whole-program analysis to implement trans-
actions in terms of locks, using programmer annotations to guide
what locks protect what data. Our whole-program not-accessed-in-
transaction analysis is novel because it targets lowering the cost
of strong atomicity. Hindman and Grossman [31] briefly sketched
a similar idea, but they had neither points-to information (relying
only on type-based alias information) nor an optimized implemen-
tation of transactions. They also performed the analysis after creat-
ing two versions of each method rather than treating “in a transac-
tion” as a new form of context-sensitivity.

9. Conclusion
The success of transactional memory depends on simple, intuitive
rules and semantics. Isolation and consistent ordering are among
the most important of these. We have shown how strong atomicity
meets the simplicity criteria better than weak atomicity by catego-
rizing and characterizing non-intuitive weak atomicity anomalies.

We have shown how the cost of providing simpler and stronger
semantics is ameliorated by our novel optimizations, including dy-
namic escape analysis that leverages a conservative runtime ap-
proximation of thread local data to avoid barriers, and new static
compiler optimizations that elide read and write barriers for ob-
jects not used in transactions. We have implemented these seman-
tics and optimizations in the context of a high performance system
and shown that strong atomicity is competitive with weak atomicity
in performance while retaining simple and intuitive semantics.
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