
This paper is included in the Proceedings of the

11th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’14).

April 2–4, 2014 • Seattle, WA, USA

ISBN 978-1-931971-09-6

Open access to the Proceedings of the

11th USENIX Symposium on

Networked Systems Design and

Implementation (NSDI ’14)

is sponsored by USENIX

Enforcing Network-Wide Policies in the Presence
of Dynamic Middlebox Actions using FlowTags

Seyed Kaveh Fayazbakhsh, Carnegie Mellon University; Luis Chiang, Deutsche Telekom Labs;

Vyas Sekar, Carnegie Mellon University; Minlan Yu, University of Southern California;

Jeffrey C. Mogul, Google

https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/fayazbakhsh

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 533

Enforcing Network-Wide Policies in the Presence

of Dynamic Middlebox Actions using FlowTags

Seyed Kaveh Fayazbakhsh∗ Luis Chiang† Vyas Sekar∗ Minlan Yu‡ Jeffrey C. Mogul⋆

∗Carnegie Mellon University †Deutsche Telekom Labs ‡USC ⋆Google

Abstract

Middleboxes provide key security and performance

guarantees in networks. Unfortunately, the dynamic traf-

fic modifications they induce make it difficult to reason

about network management tasks such as access control,

accounting, and diagnostics. This also makes it difficult

to integrate middleboxes into SDN-capable networks and

leverage the benefits that SDN can offer.

In response, we develop the FlowTags architecture.

FlowTags-enhanced middleboxes export tags to provide

the necessary causal context (e.g., source hosts or in-

ternal cache/miss state). SDN controllers can configure

the tag generation and tag consumption operations using

new FlowTags APIs. These operations help restore two

key SDN tenets: (i) bindings between packets and their

“origins,” and (ii) ensuring that packets follow policy-

mandated paths.

We develop new controller mechanisms that leverage

FlowTags. We show the feasibility of minimally extend-

ing middleboxes to support FlowTags. We also show that

FlowTags imposes low overhead over traditional SDN

mechanisms. Finally, we demonstrate the early promise

of FlowTags in enabling new verification and diagnosis

capabilities.

1 Introduction

Many network management tasks are implemented us-

ing custom middleboxes, such as firewalls, NATs, prox-

ies, intrusion detection and prevention systems, and

application-level gateways [53, 54]. Even though mid-

dleboxes offer key performance and security benefits,

they introduce new challenges: (1) it is difficult to ensure

that “service-chaining” policies (e.g., web traffic should

be processed by a proxy and then a firewall) are imple-

mented correctly [49, 50], and (2) they hinder other man-

agement functions such as performance debugging and

forensics [56]. Our conversations with enterprise opera-

tors suggest that these problems get further exacerbated

with the increasing adoption of virtualized/multi-tenant

deployments.

The root cause of this problem is that traffic is

modified by dynamic and opaque middlebox behav-

iors. Thus, the promise of software-defined network-

ing (SDN) to enforce and verify network-wide policies

(e.g., [39, 40, 44]) does not extend to networks with mid-

dleboxes. Specifically, middlebox actions violate two

key SDN tenets [24, 32]:

1. ORIGINBINDING: There should be a strong binding

between a packet and its “origin” (i.e., the network

entity that originally created the packet);

2. PATHSFOLLOWPOLICY: Explicit policies should de-

termine the paths that packets follow.1

For instance, NATs and load balancers dynamically

rewrite packet headers, thus violating ORIGINBINDING.

Similarly, dynamic middlebox actions, such as responses

served from a proxy’s cache, may violate PATHSFOL-

LOWPOLICY. (We elaborate on these examples in §2.)

Some might argue that middleboxes can be eliminated

(e.g., [26, 54]), or that their functions can be equiv-

alently provided in SDN switches (e.g., [41]), or that

we should replace proprietary boxes by open solutions

(e.g, [20, 52]). While these are valuable approaches,

practical technological and business concerns make them

untenable, at least for the foreseeable future. First, there

is no immediate roadmap for SDN switches to support

complex stateful processing. Second, enterprises already

have a significant deployed infrastructure that is unlikely

to go away. Furthermore, these solutions do not funda-

mentally address ORIGINBINDING and PATHSFOLLOW-

POLICY; they merely shift the burden elsewhere.

We take a pragmatic stance that we should attempt to

integrate middleboxes into the SDN fold as “cleanly” as

possible. Thus, our focus in this paper is to systemati-

cally (re-)enforce the ORIGINBINDING and PATHSFOL-

LOWPOLICY tenets, even in the presence of dynamic

middlebox actions. We identify flow tracking as the key

to policy enforcement.2 That is, we need to reliably asso-

ciate additional contextual information with a traffic flow

as it traverses the network, even if packet headers and

1A third SDN tenet, HIGHLEVELNAMES, states that network poli-

cies should be expressed in terms of high-level names. We do not ad-

dress it in this work, mostly to retain backwards compatibility with

current middlebox configuration APIs. We believe that HIGHLEVEL-

NAMES can naturally follow once we restore the ORIGINBINDING

property.
2We use the term “flow” in a general sense, not necessarily to refer

to an IP 5-tuple.

534 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

contents are modified. This helps determine the packet’s

true endpoints rather than rewritten versions (e.g., as with

load balancers), and to provide hints about the packet’s

provenance (e.g., a cached response).

Based on this insight, we extend the SDN paradigm

with the FlowTags architecture. Because middleboxes

are in the best (and possibly the only) position to pro-

vide the relevant contextual information, FlowTags envi-

sions simple extensions to middleboxes to add tags, car-

ried in packet headers. SDN switches use the tags as part

of their flow matching logic for their forwarding opera-

tions. Downstream middleboxes use the tags as part of

their packet processing workflows. We retain existing

SDN switch interfaces and explicitly decouple middle-

boxes and switches, allowing the respective vendors to

innovate independently.

Deploying FlowTags thus has two prerequisites: (P1)

adequate header bits with SDN switch support to match

on tags and (P2) extensions to middlebox software. We

argue that (P1) is possible in IPv4; quite straightforward

in IPv6; and will become easier with recent OpenFlow

standards that allow flexible matching [9] and new switch

hardware designs [23]. As we show in §6, (P2) requires

minor code changes to middlebox software.

Contributions and roadmap: While some of these ar-

guments appeared in an earlier position paper [28], sev-

eral practical questions remained w.r.t. (1) policy abstrac-

tions to capture the dynamic middlebox scenarios; (2)

concrete controller design; (3) the viability of extending

middleboxes to support FlowTags; and (4) the practical

performance and benefits of FlowTags.

Our specific contributions in this paper are:

• We describe controller–middlebox interfaces to con-

figure tagging capabilities (§4), and new controller

policy abstractions and rule-generation mechanisms

to explicitly configure the tagging logic (§5).

• We show that it is possible to extend five software

middleboxes to support FlowTags, each requiring less

than 75 lines of custom code in addition to a common

250-line library. (To put these numbers in context, the

middleboxes we have modified have between 2K to

over 300K lines of code.) (§6).

• We demonstrate that FlowTags enables new verifica-

tion and network diagnosis methods that are otherwise

hindered due to middlebox actions (§7).

• We show that FlowTags adds little overhead over SDN

mechanisms, and that the controller is scalable (§8).

§9 discusses related work; §10 sketches future work.

2 Background and Motivation

In this section we present a few examples that high-

light how middlebox actions violate ORIGINBINDING

and PATHSFOLLOWPOLICY, thus making it difficult to

enforce network-wide policies and affecting other man-

agement tasks such as diagnosis. We also discuss why

some seemingly natural strawman solutions fail to ad-

dress our requirements.

2.1 Motivating Scenarios

Attribution problems: Figure 1 shows two middle-

boxes: a NAT that translates private IPs to public IPs

and a firewall configured to block hosts H1 and H3 from

accessing specific public IPs. Ideally, we want adminis-

trators to configure firewall policies in terms of original

source IPs. Unfortunately, we do not know the private-

public IP mappings that the NAT chooses dynamically;

i.e., the ORIGINBINDING tenet is violated. Further, if

only traffic from H1 and H3 should be directed to the

firewall and the rest is allowed to pass through, an SDN

controller cannot install the correct forwarding rules at

switches S1/S2, as the NAT changes the packet headers;

i.e., PATHSFOLLOWPOLICY no longer holds.

��� ���

�������

���������

���

���

������������
��	�����������������������

���

Figure 1: Applying the blocking policy is challenging,

as the NAT hides the true packet sources.

Network diagnosis: In Figure 2, suppose the users of

hosts H1 and H3 complain about high network latency.

In order to debug and resolve this problem (e.g., deter-

mine if the middleboxes need to be scaled up [30]), the

network administrator may use a combination of host-

level (e.g., X-Trace [29]) and network-level (e.g., [3])

logs to break down the delay for each request into per-

segment components as shown. Because ORIGINBIND-

ING does not hold, it is difficult to correlate the logs to

track flows [50, 56].

���

����

���

���

��������

��������

��

���

���

��� ���
�������

����������
�����������������������
�
��������

���

���

�������������

�����������

�
�

�
�
�

Figure 2: Middlebox modifications make it difficult

to consistently correlate network logs for diagnosis.

Data-dependent policies: In Figure 3, the light IPS

checks simple features (e.g., headers); we want to route

suspicious packets to the heavy IPS, which runs deeper

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 535

analysis to determine if the packet is malicious. Such a

triggered architecture is quite common; e.g., rerouting

suspicious packets to dedicated packet scrubbers [12].

The problem here is that ensuring PATHSFOLLOWPOL-

ICY depends on the processing history; i.e., did the light

IPS flag a packet as suspicious? However, each switch

and middlebox can only make processing or forwarding

decisions with its link-local view.

��� ������

���
������

���
��

�

������
�

���������������������
��	����������������

����������������
��	�������������

������

���
�

Figure 3: S2 cannot decide if an incoming packet

should be sent to the heavy IPS or the server.

Policy violations due to middlebox actions: Figure 4

shows a proxy used in conjunction with an access control

device (ACL). Suppose we want to block H2’s access to

xyz.com. However, H2 may bypass the policy by ac-

cessing cached versions of xyz.com, thus evading the

ACL. The problem, therefore, is that middlebox actions

may violate PATHSFOLLOWPOLICY by introducing un-

foreseen paths. In this case, we may need to explicitly

route the cached responses to the ACL device as well.

��� ���

������

���������

���

���
����

�����������������������������������

Figure 4: Lack of visibility into the middlebox con-

text (i.e., cache hit/miss in this example) makes policy

enforcement challenging.

2.2 Strawman Solutions

Next, we highlight why some seemingly natural straw-

man solutions fail to address the above problems. Due

to space constraints, we discuss only a few salient can-

didates; Table 1 summarizes their effectiveness in the

previously-presented examples.

Placement constraints: One way to ensure ORIGIN-

BINDING/PATHSFOLLOWPOLICY is to “hardwire” the

policy into the topology. In Figure 1, we could place the

firewall before the NAT. Similarly, for Figure 3 we could

connect the light IPS and the heavy IPS to S1, and con-

figure the light IPS to emit legitimate/suspicious packets

Strawman

solution

Attribution

(Figure 1)

Diagnosis

(Figure 2)

Data-

dependent

policy

(Figure 3)

Policy

violations

(Figure 4)

Placement Yes, if we

alter

policy

chains

No If both

IPSes are

on S1 &

Light IPS

has 2 ports

Yes

Tunneling

(e.g, [38,

36])

No No Need IPS

support

No

Consoli-

dation

(e.g., [52])

Not with

separate

modules

No Maybe, if shim is aware

Correla-

tion

(e.g., [49])

Not accurate, lack of ground truth, and high overhead

Table 1: Analyzing strawman solutions vs. the moti-

vating examples in §2.1.

on different output ports. S1 can then use the incom-

ing port to determine if the packet should be sent to the

heavy IPS. This coupling between policy and topology,

however, violates the SDN philosophy of decoupling the

control logic from the data plane. Furthermore, this re-

stricts flexibility to reroute under failures, load balance

across middleboxes, or customize policies for different

workloads [50].

Tunneling: Another option to ensure PATHSFOLLOW-

POLICY is to set up tunneling rules, for example, using

MPLS or virtual circuit identifiers (VCIs). For instance,

we could tunnel packets from the “suspicious” output of

the light IPS to the heavy IPS in Figure 3. (Note that this

requires middleboxes to support tunnels.) Such topol-

ogy/tunneling solutions may work for simple examples,

but they quickly break for more complex policies; e.g., if

there are more outputs from the light IPS. Note that even

by combining placement+tunneling, we cannot solve the

diagnosis problem in Figure 2, as it does not provide

ORIGINBINDING.

Middlebox consolidation: At first glance, it may

seem that we can ensure PATHSFOLLOWPOLICY by run-

ning all middlebox functions on a consolidated plat-

form [20, 52]. While consolidation provides other ben-

efits (e.g., reduced hardware costs), it has several lim-

itations. First, it requires a significant network infras-

tructure change. Second, it merely shifts the burden of

PATHSFOLLOWPOLICY to the internal routing “shim”

that routes packets between the modules. Finally, if the

individual modules are provided by different vendors, di-

agnosis and attribution is hard, as this shim cannot ensure

ORIGINBINDING.

Flow correlation: Prior work attempts to heuristi-

cally correlate the payloads of the traffic entering and

leaving middleboxes to correlate flows [49]. However,

this approach can result in missed/false matches too of-

536 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

��� ���

�������

���������

���

������������

���

������������

���

������������

������ ����

������������ ��

������������ ��

������������ ��

���� ����������

�� ������������

�� ������������

�����������������

������������������

������������������ ����������������
���������

����

�����������

���� ��������

���� ���

�� ���������

�
�
������������

Figure 5: Figure 1 augmented to illustrate how tags

can solve the attribution problem.

ten to be useful for security applications [49]. Also,

such “reverse engineering” approaches fundamentally

lack ground truth. Finally, this process has high over-

head, as multiple packets per flow need to be processed

at the controller in a stateful manner (e.g., when reassem-

bling packet payloads).

As Table 1 shows, none of these strawman solutions

can address all of the motivating scenarios. In some

sense, each approach partially addresses some symptoms

of the violations of ORIGINBINDING and PATHSFOL-

LOWPOLICY, but does not address the cause of the prob-

lem. Thus, despite the complexity they entail in terms of

topology hacks, routing, and middlebox and controller

upgrades, they have limited applicability and have fun-

damental correctness limitations.

3 FlowTags Overview

As we saw in the previous section, violating the ORIG-

INBINDING and PATHSFOLLOWPOLICY tenets makes it

difficult to correctly implement several network manage-

ment tasks. To address this problem, we propose the

FlowTags architecture. In this section, we highlight the

main intuition behind FlowTags, and then we show how

FlowTags extends the SDN paradigm.

3.1 Intuition

FlowTags takes a first-principles approach to ensure

that ORIGINBINDING and PATHSFOLLOWPOLICY hold

even in the presence of middlebox actions. Since the

middleboxes are in the best (and sometimes the only)

position to provide the relevant context (e.g., a proxy’s

cache hit/miss state or a NAT’s public-private IP map-

pings), we argue that middleboxes need to be extended

in order to be integrated into SDN frameworks.

Conceptually, middleboxes add tags to outgoing pack-

ets. These tags provide the missing bindings to en-

sure ORIGINBINDING and the necessary processing con-

text to ensure PATHSFOLLOWPOLICY. The tags are

then used in the data plane configuration of OpenFlow

switches and other downstream middleboxes.

To explain this high-level idea, let us revisit the exam-

ple in Figure 1 and extend it with the relevant tags and ac-

�������������

���������������������������
�������������

���������������������������

����������������

�

�

�

��������

�����

����

���������

����
�	���

�

�

�

����
����

���������

������	�����

����
����

�	����

�������������

���������������������������

������

�	���

������

�������

����������

�������������

����
�

��

�	��

����
�����

�����
�������������

���������������

����
��	��

�������

����������

����

����������

Figure 6: Interfaces between different components in

the FlowTags architecture.

tions as shown in Figure 5. We have three hosts H1 −H3

in an RFC1918 private address space; the administrator

wants to block the Internet access for H1 and H3, and

allow H2’s packets to pass through without going to the

firewall. The controller (not shown) configures the NAT

to associate outgoing packets from H1, H2, and H3 with

the tags 1, 2, and 3, respectively, and adds these to pre-

specified header fields. (See §5.3). The controller con-

figures the firewall so that it can decode the tags to map

the observed IP addresses (i.e., in “public” address space

using RFC1918 terminology) to the original hosts, thus

meeting the ORIGINBINDING requirement. Similarly,

the controller configures the switches to allow packets

with tag 2 to pass through without going to the firewall,

thus meeting the PATHSFOLLOWPOLICY requirement.

As an added benefit, the administrator can configure fire-

wall rules w.r.t. the original host IP addresses, without

needing to worry about the NAT-induced modifications.

This example highlights three key aspects of Flow-

Tags. First, middleboxes (e.g., the NAT) are generators

of tags (as instructed by the controller). The packet-

processing actions of a FlowTags-enhanced middlebox

might entail adding the relevant tags into the packet

header. This is crucial for both ORIGINBINDING and

PATHSFOLLOWPOLICY, depending on the middlebox.

Second, other middleboxes (e.g., the firewall) are con-

sumers of tags, and their processing actions need to de-

code the tags. This is necessary for ORIGINBINDING.

(In this simple example, each middlebox only generates

or only consumes tags. In general, however, a given mid-

dlebox could both consume and generate tags.)

Third, SDN-capable switches in the network use the

tags as part of their forwarding actions, in order to route

packets according to the controller’s intended policy, en-

suring PATHSFOLLOWPOLICY holds.

Note that the FlowTags semantics apply in the context

of a single administrative domain. In the simple case,

we set tag bits to NULL on packets exiting the domain.3

3More generally, if we have a domain hierarchy (e.g., “CS dept”

and “Physics dept” and “Univ” at a higher level), each sub-domain’s

egress switch can rewrite the tag to only capture higher-level semantics

(e.g, “CS” rather than “CS host A”), without revealing internal details.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 537

This alleviates concerns that the tag bits may accidentally

leak proprietary topology or policy information. When

incoming packets arrive at an external interface, the gate-

way sets the tag bits appropriately (e.g., to ensure stateful

middlebox traversal) before forwarding the packet into

the domain.

3.2 Architecture and Interfaces

Next, we describe the interfaces between the controller,

middleboxes, switches, and the network administrator in

a FlowTags-enhanced SDN architecture.

Current SDN standards (e.g., OpenFlow [45]) define

the APIs between the controller and switches. As shown

in Figure 6, FlowTags adds three extensions to today’s

SDN approach:

1. FlowTags APIs between the controller and FlowTags-

enhanced middleboxes, to programmatically config-

ure their tag generation and consumption logic (§4).

2. FlowTags controller modules that configure the

tagging-related generation/consumption behavior of

the middleboxes, and the tag-related forwarding ac-

tions of SDN switches (§5).

3. FlowTags-enhanced middleboxes consume an in-

coming packet’s tags when processing the packet and

generate new tags based on the context (§6).

FlowTags requires neither new capabilities from SDN

switches, nor any direct interactions between middle-

boxes and switches. Switches continue to use traditional

SDN APIs such as OpenFlow. The only interaction be-

tween switches and middleboxes is indirect, via tags em-

bedded inside the packet headers. We take this approach

for two reasons: (1) to allow switch and middlebox de-

signs and their APIs to innovate independently; and (2)

to retain compatibility with existing SDN standards (e.g.,

OpenFlow). Embedding tags in the headers avoids the

need for each switch and middlebox to communicate

with the controller on every packet when making their

forwarding and processing decisions.

We retain existing configuration interfaces for cus-

tomizing middlebox actions; e.g., vendor-specific lan-

guages or APIs to configure firewall/IDS rules. The ad-

vantage of FlowTags is that administrators can configure

these rules without having to worry about the impact of

intermediate middleboxes. For example, in the first sce-

nario of §2.1, FlowTags allows the operator to specify

firewall rules with respect to the original source IPs. This

provides a cleaner mechanism, as the administrator does

not need to reason about the space of possible header val-

ues a middlebox may observe.4

4Going forward, we want to configure the middlebox rules to ensure

the HIGHLEVELNAMES as well [24].

������������������������ ��������������������������

����������������������������

��

��

��

��

���� ��

����

�� �� ��

���

������������ �������������

������������ �
	���������������������

������������ �������������

������� ���� �
	���������������������

� � � � �� �� � ���

Figure 7: Packet processing walkthrough for tag gen-

eration: 1. Tag Generation Query, 2. Tag Generation

Response, 3. Data Packet, 4. Packet-in Message, 5.

Modify Flow Entry Message, 6. Data Packet (to next

on-path switch).

����������������������� ��������������������������

����������������������������

��

��

������������ �������������

������������

���

�

���� ��

����

 	� ��

�����������������������

������������� �������������

�������� ��� ����������������� ������

� �� � ���

Figure 8: Packet processing walkthrough for tag con-

sumption: 1. Data Packet, 2. Packet-in Message, 3.

Modify Flow Entry Message, 4. Data Packet, 5. Tag

Consumption Query, 6. Tag Consumption.

4 FlowTags APIs and Operation

Next, we walk through how a packet is processed in

a FlowTags-enhanced network, and describe the main

FlowTags APIs. For ease of presentation, we assume

each middlebox is connected to the rest of the network

via a switch. (FlowTags also works in a topology with

middleboxes directly chained together.) We restrict our

description to a reactive controller that responds to in-

coming packets, but proactive controllers are also possi-

ble.

For brevity, we only discuss the APIs pertaining to

packet processing. Analogous to the OpenFlow config-

uration APIs, we envision functions to obtain and set

FlowTags capabilities in middleboxes; e.g., which header

fields are used to encode the tag values (§5.3).

In general, the same middlebox can be both a genera-

tor and a consumer of tags. For clarity, we focus on these

two roles separately. We assume that a packet, before it

reaches any middlebox, starts with a NULL tag.

Middlebox tag generation, Figure 7: Before the

middlebox outputs a processed (and possibly modified)

packet, it sends the FT GENERATE QRY message to the

controller requesting a tag value to be added to the packet

(Step 1). As part of this query the middlebox provides

the relevant packet processing context: e.g., a proxy tells

the controller if this is a cached response; an IPS pro-

vides the processing verdict. The controller provides a

tag value via the FT GENERATE RSP response (Step 2).

(We defer tag semantics to the next section.)

Middlebox tag consumption, Figure 8: When a mid-

538 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

dlebox receives a tag-carrying packet, it needs to “de-

code” this tag; e.g., an IDS needs the original IP 5-

tuple for scan detection. The middlebox sends the

FT CONSUME QRY message (Step 5) to the controller,

which then provides the necessary decoding rule for

mapping the tag via the FT CONSUME RSP message

(Step 6).

Switch actions: In Figure 7, when the switch receives

a packet from the middlebox with a tag (Step 3), it

queries the controller with the OFPT PACKET IN mes-

sage (Step 4), and the controller provides a new flow ta-

ble entry (Step 5). This determines the forwarding ac-

tion; e.g., whether this packet should be routed toward

the heavy IPS in Figure 3. Similarly, when the switch

receives a packet in Figure 8 (Step 1), it requests a for-

warding entry and the controller uses the tag to decide if

this packet needs to be forwarded to the middlebox.

Most types of middleboxes operate at an IP flow or

session granularity, and their dynamic modifications typ-

ically use a consistent header mapping for all packets of

a flow. Thus, analogous to OpenFlow, a middlebox needs

to send FT CONSUME QRY and FT GENERATE QRY

only once per flow. The middlebox stores the per-flow

tag rules locally, and subsequent packets in the same flow

can reuse the cached tag rules.

5 FlowTags Controller

In this section, we discuss how a FlowTags-enhanced

SDN controller can assign tags and tags-related “rules”

to middleboxes and switches. We begin with a policy ab-

straction (§5.1) that informs the semantics that tags need

to express (§5.2). Then, we discuss techniques to trans-

late this solution into practical encodings (§5.3–§5.4). Fi-

nally, we outline the controller’s implementation (§5.5).

5.1 Dynamic Policy Graph

The input to the FlowTags controller is the policy that

the administrator wants to enforce w.r.t. middlebox ac-

tions (Figure 6). Prior work on middlebox policy focuses

on a static policy graph that maps a given traffic class

(e.g., as defined by network locations and flow header

fields) to a chain of middleboxes [30, 38, 49]. For in-

stance, the administrator may specify that all outgoing

web traffic from location A to location B must go, in

order, through a firewall, an IDS, and a proxy. How-

ever, this static abstraction fails to capture the ORIGIN-

BINDING and PATHSFOLLOWPOLICY requirements in

the presence of traffic-dependent and dynamic middle-

box actions. Thus, we propose the dynamic policy graph

(or DPG) abstraction.

A DPG is a directed graph with two types of nodes: (1)

In and Out nodes, and (2) logical middlebox nodes. In

and Out nodes represent network ingresses and egresses

(including “drop” nodes). Each logical middlebox rep-

������

����
������

����

�

���������

����
�����������

	���������
�

�������

���������

�������� �����������

(a) Dynamic policy routing

������ ����

���������

��
������������

���

�

���

��
����
�

���
���
�

�������	��

�������	���
����

������
����

��	����
�������	���

���������������	��� �����

���
����� �	��

������� �	���� �	��
������������

����
 �	��

�����
���

	�����
�������	���

���

���
��

����� ���������	���

�� �� ��

�������	��

(b) Middlebox context

Figure 9: The DPGs for the examples in Figures 3 and

4. Rectangles with solid lines denote “Ingress” nodes

and with dotted lines denote “Egress” nodes. Cir-

cles denote logical middlebox functions. Each edge is

annotated with a {Class};Context denoting the traffic

class and the processing context(s). All traffic is ini-

tialized as “{null};-”.

resents a type of middlebox function, such as “firewall.”

(For clarity, we restrict our discussion to “atomic” mid-

dlebox functions; a multi-function box will be repre-

sented using multiple nodes.) Each logical middlebox

node is given a configuration that governs its process-

ing behavior for each traffic class (e.g., firewall rulesets

or IDS signatures). As discussed earlier, administrators

specify middlebox configurations in terms of the unmod-

ified traffic entering the DPG, without worrying about

intermediate transformations.

Each edge in the DPG is annotated with the condition

m → m� under which a packet needs to be steered from

node m to node m�. This condition is defined in terms

of (1) the traffic class, and (2) the processing context of

node m, if applicable. Figure 9 shows two DPG snippets:

• Data-dependent policies: Figure 9a revisits the ex-

ample in Figure 3. Here, we want all traffic to be

first processed by the light IPS. If the light IPS flags

a packet as suspicious, then it should be sent to the

heavy IPS. In this case, the edge connecting the light

IPS to the heavy IPS is labeled “*, Alarm”, where *

denotes the class of “any traffic,” and Alarm provides

the relevant processing history from the light IPS.

• Capturing effects of middlebox actions: Figure 9b

revisits the example in Figure 4, where we want to

apply an ACL only on host H2’s web requests. For

correct policy enforcement, the ACL must be applied

to both cached and uncached responses. Thus, both

“H2, Hit” and “H2, Miss” need to be on the Proxy-to-

ACL edge. (For ease of visualization, we do not show

the policies applied to the responses coming from the

Internet.)

We currently assume that the administrator creates the

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 539

DPG based on domain knowledge. We discuss a mecha-

nism to help administrators to generate DPGs in §10.

5.2 From DPG to Tag Semantics

The DPG representation helps us reason about the se-

mantics we need to capture via tags to ensure ORIGIN-

BINDING and PATHSFOLLOWPOLICY.

Restoring ORIGINBINDING: We can ensure ORIGIN-

BINDING if we are always able to map a packet to its

original IP 5-tuple OrigHdr as it traverses a DPG. Note

that having OrigHdr is a sufficient condition for ORIG-

INBINDING: given the OrigHdr, any downstream mid-

dlebox or switch can conceptually implement the action

intended by a DPG. In some cases, such as per-flow diag-

nosis (Figure 2), mapping a packet to the OrigHdr might

be necessary. In other examples, a coarser identifier may

be enough; e.g., just srcIP in Figure 1.

Restoring PATHSFOLLOWPOLICY: To ensure

PATHSFOLLOWPOLICY, we essentially need to capture

the edge condition m → m�. Recall that this condition

depends on (1) the traffic class and (2) the middlebox

context, denoted by C, from logical middlebox m (and

possibly previous logical middleboxes). Given that the

OrigHdr for ORIGINBINDING provides the necessary

context to determine the traffic class, the only additional

required information on m → m� is the context C.

If we assume (until §5.3) no constraints on the tag

identifier space, we can think of the controller as assign-

ing a globally unique tag T to each “located packet”; i.e.,

a packet along with the edge on the DPG [51]. The con-

troller maps the tag of each located packet to the infor-

mation necessary for ORIGINBINDING and PATHSFOL-

LOWPOLICY: T → �OrigHdr,C�. Here, the OrigHdr

represents the original IP 5-tuple of this located packet

when it first enters the network (i.e., before any middle-

box modifications) and C captures the processing context

of this located packet.

In the context of tag consumption from §4,

FT CONSUME QRY and FT CONSUME RSP essentially

“dereference” tag T to obtain the OrigHdr. The middle-

box can apply its processing logic based on the OrigHdr;

i.e., satisfying ORIGINBINDING.

For tag generation at logical middlebox m,

FT GENERATE QRY provides as input to the controller:

(1) the necessary middlebox context to determine which

C will apply, and (2) the tag T of the incoming packet

that triggered this new packet to be generated. The

controller creates a new tag T � entry for this new located

packet and populates the entry T � → �OrigHdr�,C� for

this new tag as follows. First, it uses OrigHdr (for the

input tag T) to determine the value OrigHdr� for T �.

In many cases (e.g., NAT), this is a simple copy. In

some cases (e.g., proxy response), the association has

to reverse the src/dst mappings in OrigHdr. Second, it

associates the new tag T � with context C. The controller

instructs the middlebox, via FT GENERATE RSP, to

add T � to the packet header. Because T � is mapped to C,

it supports enforcement of PATHSFOLLOWPOLICY.

5.3 Encoding Tags in Headers

In practice, we need to embed the tag value in a fi-

nite number of packet-header bits. IPv6 has a 20-bit

Flow Label field, which seems ideal for this use (thus

answering the question “how should we use the flow-

label field?” [19]). For our current IPv4 prototype and

testbed, we used the 6-bit DS field (part of the 8-bit ToS),

which sufficed for our scenarios. To deploy FlowTags on

large-scale IPv4 networks, we would need to borrow bits

from fields that are not otherwise used. For example, if

VLANs are not used, we can use the 12-bit VLAN Iden-

tifier field. Or, if all traffic sets the DF (Don’t Fragment)

IP Flag, which is typical because of Path MTU Discov-

ery, the 16-bit IP ID field is available.5

Next, we discuss how to use these bits as efficiently as

possible; §8 reports on some analysis of how many bits

might be needed in practice.

As discussed earlier, tags restore ORIGINBINDING

and PATHSFOLLOWPOLICY. Conceptually, we need

to be able to distinguish every located packet—i.e.,

the combination of all flows and all possible paths in

the DPG. Thus, a simple upper bound on the number

of bits in each packet to distinguish between |Flows|
flows on |DPGPaths| processing paths is: log2 |Flows|+
log2 |DPGPaths|, where Flows is the set of IP flows (for

ORIGINBINDING), and DPGPaths is the set of possi-

ble paths a packet could traverse in DPG (for PATHS-

FOLLOWPOLICY). However, this grows log-linearly in

the number of flows over time and the number of paths

(which could be exponential w.r.t. the graph size).

This motivates optimizations to reduce the number of

header bits necessary, which could include:

• Coarser tags: For many middlebox management

tasks, it may suffice to use a tag to identify the log-

ical traffic class (e.g., “CS Dept User”) and the local

middlebox context (e.g., 1 bit for cache hit or miss or

1 bit for “suspicious”), rather than individual IP flows.

• Temporal reuse: We can reuse the tag assigned to a

flow after the flow expires; we can detect expiration

via explicit flow termination, or via timeouts [3, 45].

The controller tracks active tags and finds an unused

value for each new tag.

• Spatial reuse: To address ORIGINBINDING, we only

need to ensure that the new tag does not conflict

with tags already assigned to currently active flows at

the middlebox to which this packet is destined. For

PATHSFOLLOWPOLICY, we need to: (1) capture the

5IP ID isn’t part of the current OpenFlow spec; but it can be sup-

ported with support for flexible match options [9, 23].

540 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

most recent edge on the DPG rather than the entire

path (i.e., reducing from |DPGPaths| to the node de-

gree); and (2) ensure that the switches on the path have

no ambiguity in the forwarding decision w.r.t. other

active flows.

5.4 Putting it Together

Our current design is a reactive controller that re-

sponds to OFPT PACKET IN, FT CONSUME QRY, and

FT GENERATE QRY events from the switches and the

middleboxes.

Initialization: Given an input DPG, we generate a data

plane realization DPGImpl; i.e., for each logical middle-

box m, we need to identify candidate physical middlebox

instances, and for each edge in DPG, we find a switch-

level path between corresponding physical middleboxes.

This translation should also take into account considera-

tions such as load balancing across middleboxes and re-

source constraints (e.g., switch TCAM and link capac-

ity). While FlowTags is agnostic to the specific realiza-

tion, we currently use SIMPLE [49], mostly because of

our familiarity with the system. (This procedure only

needs to run when the DPG itself changes or in case of a

network topology change. It does not run for each flow

arrival.)

Middlebox event handlers: For each physical middle-

box instance PMi, the controller maintains two FlowTags

tables: CtrlInTagsTablei and the CtrlOutTagsTablei. The

CtrlInTagsTablei maintains the tags corresponding to all

incoming active flows into this middlebox using entries

{T → OrigHdr}. The CtrlOutTagsTablei tracks the tags

that need to be assigned to outgoing flows and maintains

a table of entries {�T,C� → T �}, where T is the tag for

the incoming packet, C captures the relevant middlebox

context for this flow (e.g., cache hit/miss), and T � is the

output tag to be added. At bootstrap time, these struc-

tures are initialized to be empty.

The HANDLE FT CONSUME QRY handler looks up

the entry for tag T in the CtrlInTagsTablei and sends

the mapping to PMi. As we will see in the next sec-

tion, middleboxes keep these entries in a FlowTable-like

structure, to avoid look ups for subsequent packets. The

HANDLE FT GENERATE QRY handler is slightly more

involved, as it needs the relevant middlebox context C.

Given C, the DPG, and the DPGImpl, the controller

identifies the next hop physical middlebox PMi� for this

packet. It also determines a non-conflicting T � using the

logic from §5.3.

Switch and flow expiry handlers: The handlers for

OFPT PACKET IN are similar to traditional OpenFlow

handlers; the only exception is that we use the incom-

ing tag to determine the forwarding entry. When a

flow expires, we trace the path this flow took and, for

each PMi, delete the entries in CtrlInTagsTablei and

CtrlOutTagsTablei, so that these tags can be repurposed.

5.5 Implementation

We implement the FlowTags controller as a POX mod-

ule [10]. The CtrlInTagsTablei and CtrlOutTagsTablei

are implemented as hash-maps. For memory efficiency

and fast look up of available tags, we maintain an auxil-

iary bitvector of the active tags for each middlebox and

switch interface; e.g., if we have 16-bit tags, we maintain

a 216 bit vector and choose the first available bit, using a

log-time algorithm [22]. We also implement simple opti-

mizations to precompute shortest paths for every pair of

physical middleboxes.

6 FlowTags-enhanced Middleboxes

As discussed in the previous sections, FlowTags requires

middlebox support. We begin by discussing two candi-

date design choices for extending a middlebox to support

FlowTags. Then, we describe the conceptual operation of

a FlowTags-enhanced middlebox. We conclude this sec-

tion by summarizing our experiences in extending five

software middleboxes.

6.1 Extending Middleboxes

We consider two possible ways to extend middlebox soft-

ware to support FlowTags:

• Module modification: The first option is to modify

specific internal functions of the middlebox to con-

sume and generate the tags. For instance, consider an

IDS with the scan detection module. Module modifi-

cation entails patching this scan detection logic with

hooks to translate the incoming packet headers+tag to

the OrigHdr and to rewrite the scan detection logic to

use OrigHdr. Similarly, for generation, we modify the

output modules to provide the relevant context as part

of the FT GENERATE QRY.

• Packet rewriting: A second option is to add a

lightweight shim module that interposes on the in-

coming and outgoing packets to rewrite the packet

headers. For consumption, this means we modify

the packet headers so that the middlebox only sees

a packet with the true OrigHdr. For generation, this

means that the middlebox proceeds as-is and then the

shim adds the tag before the packet is sent out.

In both cases, the administrator sets up the middle-

box configuration (e.g., IDS rules) as if there were no

packet modifications induced by the upstream middle-

boxes because FlowTags preserves the binding between

the packet’s modified header and the OrigHdr.

For consumption, we prefer packet rewriting because

it generalizes to the case where each middlebox has

multiple “consumer” modules; e.g., an IDS may apply

scan detection and signature-based rules. For generation,

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 541

Consumption Processing Generation

���������������

��������������

����������������

����������������������

Process packet

Rewrite Pkt

with OrigHdr

N

Y

FT_CONSUME_QRY

Match in

MBInTagsTable?

YY

ss p

Dropped?

Y

Match in

MBOutTagsTable?

FT_GENERATE_QRY

Add new Tag

RAT

N

Y

Send

packet

Receive

packet

t h

e

t

��
��	�	���

���������

N

FT

�����

�����

Figure 10: We choose a hybrid design where the

“consumption” side uses the packet rewriting and the

“generation” uses the module modification approach.

however, packet rewriting may not be sufficient, as the

shim may not have the necessary visibility into the mid-

dlebox context; e.g., in the proxy cache hit/miss case.

Thus, we use module modification in this case.

End-to-end view: Figure 10 shows a simplified view of

a FlowTags-enhanced middlebox. In general, consump-

tion precedes generation. The reason is that the packet’s

current tag can affect the specific middlebox code paths,

and thus impacts the eventual outgoing tags.

Mirroring the controller’s CtrlInTagsTablei and

CtrlOutTagsTablei, each physical middlebox i

maintains the tag rules in the MBInTagsTablei and

MBOutTagsTablei. When a packet arrives, it first checks

if the tag value in the packet already matches an existing

tag-mapping rule in MBInTagsTablei. If there is a

match, we rewrite packet headers (see above) so that

the processing modules act as if they were operating

on OrigHdr. If there is a MBInTagsTablei miss, the

middlebox sends a FT CONSUME QRY, buffers the

packet locally, and waits for the controller’s response.

Note that the tags are logically propagated through

the processing contexts (not shown for clarity). For ex-

ample, most middleboxes follow a connection-oriented

model with a data structure maintaining per-flow or per-

connection state; we augment this structure to propagate

the tag value. Thus, we can causally relate an outgo-

ing packet (e.g., a NAT-ed packet or a proxy cached re-

sponse) to an incoming packet.

When a specific middlebox function or module

is about to send a packet forward, it checks the

MBOutTagsTablei to add the outgoing tag value. If there

is a miss, it sends the FT GENERATE QRY, providing

the necessary module-specific context and the tag (from

the connection data structure) for the incoming packet

that caused this outgoing packet to be generated.

6.2 Experiences in Extending Middleboxes

Given this high-level view, next we describe our experi-

ences in modifying five software middleboxes that span

a broad spectrum of management functions. (Our choice

was admittedly constrained by the availability of the mid-

Name, Role Modified /

Total LOC

Key Modules Data

Structures

Squid [14],

Proxy

75 / 216K Client and Server

Side Connection,

Forward, Cache

Lookup

Request

Table

Snort [13],

IDS/IPS

45 / 336K Decode, Detect,

Encode

Verdict

Balance [1],

Load

Balancer

60 / 2K Client and Server

Connections

n/a

PRADS [11],

Monitoring

25 / 15K Decode n/a

iptables [6],

NAT

55 / 42K PREROUTING,

POSTROUTING

Conn Map

Table 2: Summary of the middleboxes we have added

FlowTags support to along with the number of lines

of code and the main modules to be updated. We use

a common library (≈ 250 lines) that implements rou-

tines for communicating to the controller.

dlebox source code.) Table 2 summarizes these middle-

boxes and the modifications necessary.

Our current approach to extend middleboxes is semi-

manual and involved a combination of call graph analy-

sis [7, 17] and traffic injection and logging techniques [2,

4, 5, 15]. Based on these heuristics, we identify the suit-

able “chokepoints” to add the FlowTags logic. Develop-

ing techniques to automatically extend middleboxes is an

interesting direction for future work.

• Squid: Squid [14] is a popular proxy/cache. We mod-

ified the functions in charge of communicating with

the client, remote server, and those handling cache

lookup. We used the packet modification shim for

incoming packets, and applied module modification

to handle the possible packet output cases, based on

cache hit and miss events.

• Snort: Snort [13] is an IDS/IPS that provides many

functions—logging, packet inspection, packet filter-

ing, and scan detection. Similar to Squid, we ap-

plied the packet rewriting step for tag consumption

and module modification for tag generation as fol-

lows. When a packet is processed and a “verdict”

(e.g., OK vs. alarm) is issued, the tag value is gen-

erated based on the type of the event (e.g., outcome of

a matched alert rule).

• Balance: Balance [1] is a TCP-level load balancer

that distributes incoming TCP connections over a

given a set of destinations (i.e., servers). In this case,

we simply read/write the tag bits in the header fields.

• PRADS: PRADS [11] is passive monitor that gathers

traffic information and infers what hosts and services

exist in the network. Since this is a passive device,

we only need the packet rewriting step to restore the

(modified) packet’s OrigHdr.

• NAT via iptables: We have registered appropriate

tagging functions with iptables [6] hook points, while

542 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Src / Time(s) DPG path Notes

H1 / 0 L-IPS→Internet –

H1 / 0.3 L-IPS→Internet –

H1 / 0.6 L-IPS→Internet L-IPS alarm

H1 / 0.8 L-IPS→H-IPS→Drop drop

(a) In Figure 3, we configure Snort as the light IPS (L-IPS) to flag

hosts sending more than 3 packets/sec and send them to the heavy

IPS (H-IPS).

Host / URL DPG path Notes

H1 / Dept Proxy→Internet always allow

H2 / CNN Proxy→ACL→Internet miss, allow

H2 / Dept Proxy→ACL→Drop hit, drop

H1 / CNN Proxy hit, allow

(b) In Figure 4, we use Squid as the proxy and Snort as the ACL and

block H2’s access to the Dept site.

Figure 11: Request trace snippets for validating the

example scenarios in Figure 3 and Figure 4.

it is configured as a source NAT. The goal is to main-

tain 5-tuple visibility via tagging. We added hooks

for tag consumption and tag generation into the PRE-

ROUTING and the POSTROUTING chains, which

are the input and output checkpoints, respectively.

7 Validation and Use Cases

Next, we describe how we can validate uses of FlowTags.

We also discuss how FlowTags can be an enabler for new

diagnostic and verification capabilities.

Testing: Checking if a network configuration correctly

implements the intended DPG is challenging—we need

to capture stateful middlebox semantics, reason about

timing implications (e.g., cache timeouts), and the im-

pact of dynamic modifications. (Even advanced network

testing tools do not capture these effects [39, 57].) Au-

tomating this step is outside the scope of this paper, and

we use a semi-manual approach for our examples.

Given the DPG, we start from each ingress and enu-

merate all paths to all “egress” or “drop” nodes. For each

path, we manually compose a request trace that traverses

the required branch points; e.g., will we see a cache hit?

Then, we emulate this request trace in our small testbed

using Mininet [33]. (See §8 for details.) Since there is

no other traffic, we use per-interface logs to verify that

packets follow the intended path.

Figure 11 shows an example with one set of request se-

quences for each scenario in Figures 3 and 4. To emulate

Figure 3, we use Snort as the light IPS to flag any host

sending more than 3 packets/second as suspicious, and

direct such hosts’ traffic to the heavy IPS for deep packet

inspection (also Snort). Figure 11(a) shows the request

trace and the corresponding transitions it triggers.

To emulate Figure 4, we use Squid as the proxy and

Snort as the (web)ACL device. We want to route all H2’s

web requests through ACL and configure Snort to block

�
��

���

���������
�

���������
�

�������������������� �������������������������������
	�����������
	��

���� ����

�

����
�������� �����������

��������
��������

����

���������

����

��������

��

��������

����

��������

��

������

����

��������

����� ����

����

��������

���

���

����

���������

Figure 12: Disconnect between header-space analysis

and the intended processing semantics in Figure 3.

H2’s access to the department website. Figure 11(b)

shows the sequence of web requests to exercise different

DPG paths.

We have validated the other possible paths in these ex-

amples, and in other scenarios from §2. We do not show

these due to space constraints.

FlowTags-enabled diagnosis: We revisit the diagnosis

example of Figure 2, with twenty user requests flowing

through the NAT and LB. We simulated a simple “red

team-blue team” test. One student (“red”) synthetically

introduced a 100ms delay inside the NAT or LB code

for half the flows. The other student (“blue”) was re-

sponsible for attributing the delays. Because of dynamic

header rewriting, the “blue” team could not diagnose de-

lays using packet logs. We repeated the experiment with

FlowTags-enhanced middleboxes. In this case, the Flow-

Tags controller assigns a globally unique tag to each re-

quest. Thus, the “blue” team could successfully track

a flow through the network and identify the bottleneck

middlebox using the packet logs at each hop.

Extending verification tools: Verification tools such

as Header Space Analysis (HSA) [39] check correctness

(e.g., reachability) by modeling a network as the compo-

sition of header-processing functions. While this works

for traditional switches/routers, it fails for middleboxes,

as they operate at higher semantic layers. While a full

discussion of such tools is outside the scope of this pa-

per, we present an example illustrating how FlowTags

addresses this issue.

Figure 12 extends the example in Figure 3 to show

both header-space annotations and DPG-based seman-

tic annotations. Here, a header-space annotation (solid

boxes) of �Src� describes a packet from Src, so �∗� mod-

els a packet from any source. A DPG annotation (dashed

boxes) of �Src,L,H� describes a packet from Src for

which Light IPS returns L and Heavy IPS returns H, so

�∗,0,∗� indicates a packet from any source that is flagged

by Light IPS as not OK; our policy wants such suspicious

packets to go via Heavy IPS, while �∗,1,∗� packets need

no further checking.

Recall from §2 that we cannot implement this policy,

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 543

in this topology, using existing mechanisms (i.e., without

FlowTags). What if we rewired the toplogy by adding

the (dashed) link Light IPS → Heavy IPS? Even with

this hardwired topology, tools like HSA incorrectly con-

clude that “all” packets exit the network (the output edge

is labeled �∗�), because HSA models middleboxes as

“wildcard”-producing blackboxes [39].

FlowTags bridges the gap between “header space,” in

which verification tools operate, and “semantic space,” in

which the policy operates. Instead of modeling middle-

boxes as blackboxes, or reverse-engineering their func-

tions, in FlowTags we treat them as functions operating

on tag bits in an (extended) header space. Then, we apply

HSA on this extended header space to reason if the net-

work implements the reachability defined by the DPG.

8 Performance Evaluation

We frame questions regarding the performance and scal-

ability of FlowTags:

• Q1: What overhead does support for FlowTags add to

middlebox processing?

• Q2: Is the FlowTags controller fast and scalable?

• Q3: What is the overhead of FlowTags over traditional

SDN?

• Q4: How many tag bits do we need in practice?

Setup: For Q1 and Q2, we run each middlebox and

POX controller in isolation on a single core in a 32-core

2.6 Ghz Xeon server with 64 GB RAM. For Q3, we use

Mininet [33] on the same server, configured to use 24

cores and 32 GB RAM to model the network switches

and hosts. We augment Mininet with middleboxes run-

ning as external virtual appliances. Each middlebox runs

as a VM configured with 2GB RAM on one core. (We

can run at most 28 middlebox instances, due to the max-

imum number of PCI interfaces that can be plugged in

using KVM [8]). We emulate the example topologies

from §2, and larger PoP-level ISP topologies from Rock-

etFuel [55]. Our default DPG has an average path length

of 3.

Q1 Middlebox overhead: We configure each middle-

box to run with the default configuration. We vary the

offered load (up to 100 Mbps) and measure the per-

packet processing latency. Overall, the overhead was low

(<1%) and independent of the offered load (not shown).

We also analyzed the additional memory and CPU usage

using atop; it was < 0.5% across all experiments (not

shown).

Q2 Controller scalability: Table 3 shows the running

time for the HANDLE FT GENERATE QRY. (This is the

most complex FlowTags processing step; other functions

take negligible time.) The time is linear as a function

of topology size with the baseline algorithms, but almost

constant using the optimization to pre-compute reacha-

Topology (#nodes) Baseline (ms) Optimized (ms)

Abilene (11) 0.037 0.024

Geant (22) 0.066 0.025

Telstra (44) 0.137 0.026

Sprint (52) 0.161 0.027

Verizon (70) 0.212 0.028

AT&T (115) 0.325 0.028

Table 3: Time to run HANDLE FT GENERATE QRY.

Figure 13: Breakdown of flow processing time in dif-

ferent topologies (annotated with #nodes).

bility information. This implies that a single-thread POX

controller can handle 1
0.028ms

≈ 35K middlebox queries

per second (more than three times larger than the peak

number of flows per second reported in [24]).

We also varied the DPG complexity along three axes:

number of nodes, node degrees, and distance between ad-

jacent DPG nodes in terms of number of switches. With

route pre-computation, the controller processing time is

independent of the DPG complexity (not shown).

Q3 End-to-end overhead: Figure 13 shows the break-

down of different components of the flow setup time in a

FlowTags-enhanced network (i.e., mirroring the steps in

Figure 7) for different Rocketfuel topologies. Since our

goal is to compare the FlowTags vs. SDN operations, we

do not show round-trip times to the controller here, as it

is deployment-specific [35].6 Since all values are close

to the average, we do not show error bars. We can see

that the FlowTags operations add negligible overhead.

In fact, the middlebox tag processing is so small that it

might be hard to see in the figure.

We also measure the reduction in TCP throughput a

flow experiences in a FlowTags-enhanced network, com-

pared to a traditional SDN network with middleboxes

(but without FlowTags). We vary two parameters: (1)

controller RTT and (2) the number of packets per flow.

As we can see in Table 4, except for very small flows (2

packets), the throughput reduction is <4%.

Q4 Number of tag bits: To analyze the benefits of

spatial and temporal reuse, we consider the worst case,

where we want to diagnose each IP flow. We use

packet traces from CAIDA (Chicago and San Jose traces,

2013 [16]) and a flow-level enterprise trace [18]. We sim-

6FlowTags adds 1 more RTT per middlebox, but this can be avoided

by pre-fetching rules for the switches and middleboxes.

544 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Flow size (#packets) Reduction in throughput (%)

1ms RTT 10ms RTT 20ms RTT

2 12 16.2 22.7

8 2.1 2.8 3.8

32 1.6 2.3 3.0

64 1.5 2.1 2.9

Table 4: Reduction in TCP throughput with Flow-

Tags relative to a pure SDN network.

Configuration Number of bits

(spatial, temporal) CAIDA trace Enterprise trace

(No spatial, 30 sec) 22 22

(Spatial, 30 sec) 20 20

(Spatial, 10 sec) 18 18

(Spatial, 5 sec) 17 17

(Spatial, 1 sec) 14 14

Table 5: Effect of spatial and temporal reuse of tags.

ulate the traces across the RocketFuel topologies, using a

gravity model to map flows to ingress/egress nodes [55].

Table 5 shows the number of bits necessary with

different reuse strategies, on the AT&T topology from

RocketFuel.7 The results are similar across other topolo-

gies (not shown). We see that temporal reuse offers the

most reduction. Spatial reuse helps only a little; this is

because with a gravity-model workload, there is typically

a “hotspot” with many concurrent flows. To put this in

the context of §5.3, using the (Spatial, 1 sec) configura-

tion, tags can fit in the IPv6 FlowLabel, and would fit in

the IPv4 IP ID field.

9 Related Work

We have already discussed several candidate solutions

and tools for verification and diagnosis (e.g., [34, 39]).

Here, we focus on other classes of related work.

Middlebox policy routing: Prior work has focused on

orthogonal aspects of policy enforcement such as mid-

dlebox load balancing (e.g., [42, 49]) or compact data

plane strategies (e.g,. [27]). While these are candidates

for translating the DPG to a DPGImpl (§5), they do not

provide reliable mechanisms to address dynamic middle-

box actions.

Middlebox-SDN integration: OpenMB [31] focuses

on exposing the internal state (e.g., cache contents and

connection state) of middleboxes to enable (virtual) mid-

dlebox migration and recovery. This requires signifi-

cantly more instrumentation and vendor support com-

pared to FlowTags, which only requires externally rel-

evant mappings. Stratos [30] and Slick [21] focus on us-

ing SDN to dynamically instantiate new middlebox mod-

ules in response to workload changes. The functionality

these provide is orthogonal to FlowTags.

7Even though the number of flows varies across traces, they require

the same number of bits, as the values of ceil(log2(# f lows)) are the

same.

Tag-based solutions: Tagging is widely used to im-

plement Layer2/3 functions, such as MPLS labels or

virtual circuit identifiers (VCIs). In the SDN con-

text, tags have been used to avoid loops [49], reduce

FlowTable sizes [27], or provide virtualized network

views [46]. Tags in FlowTags capture higher-layer se-

mantics to address ORIGINBINDING and PATHSFOL-

LOWPOLICY. Unlike these Layer2/3 mechanisms where

switches are generators and consumers of tags, FlowTags

middleboxes generate and consume tags, and switches

are consumers.

Tracing and provenance: The idea of flow tracking

has parallels in the systems (e.g., tracing [29]), databases

(e.g., provenance [58]), and security (e.g., taint track-

ing [47, 48]) literature. Our specific contribution is to

use flow tracking for integrating middleboxes into SDN-

capable networks.

10 Conclusions and Future Work

The dynamic, traffic-dependent, and hidden actions of

middleboxes make it hard to systematically enforce and

verify network-wide policies, and to do network diag-

nosis. We are not alone in recognizing the significance

of this problem—others, including the recent IETF net-

work service chaining working group, mirror several of

our concerns [37, 43, 50].

The insight behind FlowTags is that the crux of these

problems lies in violation of two key SDN tenets—

ORIGINBINDING and PATHSFOLLOWPOLICY—caused

by middlebox actions. We argue that middleboxes are

in the best (and possibly the only) vantage point to re-

store these tenets, and make a case for minimally ex-

tending middleboxes to provide the necessary context,

via tags embedded inside packet headers. We design new

SDN APIs and controller modules to configure this tag-

related behavior. We showed a scalable proof-of-concept

controller, and the viability of adding FlowTags support,

with minimal changes, to five canonical middleboxes.

We also demonstrated that the overhead of FlowTags is

comparable to traditional SDN mechanisms.

We believe that there are three natural directions for

future work: automating DPG generation via model

refinement techniques (e.g., [25]); automating middle-

box extension using appropriate programming-languages

techniques; and, performing holistic testing of the net-

work while accounting for switches and middleboxes.

11 Acknowledgments

We would like to thank our shepherd Ben Zhao and the

NSDI reviewers for their feedback. This work was sup-

ported in part by grant number N00014-13-1-0048 from

the Office of Naval Research and by Intel Labs’ Univer-

sity Research Office.

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 545

References

[1] Balance. http://www.inlab.de/balance.

html.

[2] Bit-Twist. http://bittwist.sourceforge.

net/.

[3] Cisco systems netflow services export version 9. RFC

3954.

[4] httperf. https://code.google.com/p/

httperf/.

[5] iperf. https://code.google.com/p/iperf/.

[6] iptables. http://www.netfilter.org/

projects/iptables/.

[7] KCachegrind. http://kcachegrind.

sourceforge.net/html/Home.html.

[8] KVM. http://www.linux-kvm.org/page/

Main_Page.

[9] Openflow switch specification. https:

//www.opennetworking.org/images/

stories/downloads/sdn-resources/onf-

specifications/openflow/openflow-

spec-v1.4.0.pdf.

[10] POX Controller. http://www.noxrepo.org/

pox/about-pox/.

[11] PRADS. http://gamelinux.github.io/

prads/.

[12] Prolexic. www.prolexic.com.

[13] Snort. http://www.snort.org/.

[14] Squid. http://www.squid-cache.org/.

[15] tcpdump. http://www.tcpdump.org/.

[16] The Cooperative Association for Internet Data Analysis

(caida). http://www.caida.org/.

[17] Valgrind. http://www.valgrind.org/.

[18] Vast Challenge. http://vacommunity.

org/VAST+Challenge+2013%3A+Mini-

Challenge+3.

[19] S. Amante, B. Carpenter, S. Jiang, and J. Rajahalme.

Ipv6 flow label update. http://rmv6tf.org/wp-

content/uploads/2012/11/rmv6tf-flow-

label11.pdf.

[20] J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and

A. Vahdat. xOMB: extensible open middleboxes with

commodity servers. In Proc. ANCS, 2012.

[21] B. Anwer, T. Benson, N. Feamster, D. Levin, and J. Rex-

ford. A Slick Control Plane for Network Middleboxes. In

Proc. ONS, research track, 2012.

[22] G. Banga and J. Mogul. Scalable kernel performance for

Internet servers under realistic loads. In Proc. USENIX

ATC, 1998.

[23] P. Bosshar, G. Gibb, H.-S. Kim, G. Varghese, N. McKe-

own, M. Izzard, F. Mujica, and M. Horowitz. Forwarding

Metamorphosis: Fast Programmable Match-Action Pro-

cessing in Hardware for SDN. In Proc. SIGCOMM, 2013.

[24] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKe-

own, and S. Shenker. Ethane: Taking control of the enter-

prise. In Proc. SIGCOMM, 2007.

[25] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.

Counterexample-guided abstraction refinement. In Proc.

CAV, 2000.

[26] C. Dixon, H. Uppal, V. Brajkovic, D. Brandon, T. An-

derson, and A. Krishnamurthy. ETTM: a scalable fault

tolerant network manager. In Proc. NSDI, 2011.

[27] L. Erran Li, Z. M. Mao, and J. Rexford. CellSDN:

Software-defined cellular networks. In Techinical Report,

Princeton University.

[28] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul.

FlowTags: Enforcing network-wide policies in the pres-

ence of dynamic middlebox actions. In Proc. HotSDN,

2013.

[29] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Sto-

ica. X-Trace: a pervasive network tracing framework. In

Proc. NSDI, 2007.

[30] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl,

X. Gao, A. Anand, T. Benson, A. Akella, and V. Sekar.

Stratos: A network-aware orchestration layer for middle-

boxes in the cloud. CoRR, abs/1305.0209, 2013.

[31] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella. To-

ward software-defined middlebox networking. In Proc.

HotNets-XI, 2012.

[32] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,

N. McKeown, and S. Shenker. NOX: towards an oper-

ating system for networks. In CCR, 2008.

[33] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and

N. McKeown. Reproducible network experiments using

container-based emulation. In Proc. CoNext, 2012.

[34] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and

N. McKeown. Where is the debugger for my software-

defined network? In Proc. HotSDN, 2012.

[35] B. Heller, R. Sherwood, and N. McKeown. The Con-

troller Placement Problem. In Proc. HotSDN, 2012.

[36] X. Jin, L. Erran Li, L. Vanbever, and J. Rexford. Softcell:

Scalable and flexible cellular core network architecture.

In Proc. CoNext, 2013.

[37] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind,

A. Manzalini, F. Risso, D. Staessens, R. Steinert, and

C. Meirosu. Research directions in network service chain-

ing. In Proc. IEEE SDN4FNS, 2013.

[38] D. A. Joseph, A. Tavakoli, and I. Stoica. A policy-aware

switching layer for data centers. In Proc. SIGCOMM,

2008.

[39] P. Kazemian, G. Varghese, and N. McKeown. Header

space analysis: static checking for networks. In Proc.

NSDI, 2012.

[40] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey. Ver-

iflow: verifying network-wide invariants in real time. In

Proc. NSDI, 2013.

546 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[41] J. Lee, J. Tourrilhes, P. Sharma, and S. Banerjee. No More

Middlebox: Integrate Processing into Network. In Proc.

SIGCOMM posters, 2010.

[42] L. Li, V. Liaghat, H. Zhao, M. Hajiaghay, D. Li, G. Wil-

fong, Y. Yang, and C. Guo. PACE: Policy-Aware Ap-

plication Cloud Embedding. In Proc. IEEE INFOCOM,

2013.

[43] L. MacVittie. Service chaining and unintended

consequences. https://devcentral.f5.

com/articles/service-chaining-and-

unintended-consequences#.Uvbz0EJdVe9.

[44] N. McKeown. Mind the Gap: SIGCOMM’12

Keynote. http://www.youtube.com/watch?v=

Ho239zpKMwQ.

[45] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, S. Shenker, and J. Turner. Open-

Flow: enabling innovation in campus networks. CCR,

March 2008.

[46] C. Monsanto, J. Reich, N. Foster, J. Rexford, and

D. Walker. Composing Software Defined Networks. In

Proc. NSDI, 2013.

[47] Y. Mundada, A. Ramachandran, M. B. Tariq, and

N. Feamster. Practical Data-Leak Prevention for Legacy

Applications in Enterprise Networks. Technical Report

http://hdl.handle.net/1853/36612, 2011.

[48] J. Newsome and D. Song. Dynamic Taint Analysis for

Automatic Detection, Analysis, and Signature Genera-

tion of Exploits on Commodity Software. In Proc. NDSS,

2005.

[49] Z. Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar, and

M. Yu. SIMPLE-fying Middlebox Policy Enforcement

Using SDN. In Proc. SIGCOMM, 2013.

[50] P. Quinn, J. Guichard, S. Kumar, P. Agarwal, R. Ma-

nur, A. Chauhan, N. Leyman, M. Boucadir, C. Jacquenet,

M. Smith, N. Yadav, T. Nadeau, K. Gray, B. Mcconnell,

and K. Glavin. Network service chaining problem state-

ment. http://tools.ietf.org/html/draft-

quinn-nsc-problem-statement-03.

[51] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and

D. Walker. Abstractions for network update. In Proc.

SIGCOMM, 2012.

[52] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi.

Design and implementation of a consolidated middlebox

architecture. In Proc. NSDI, 2012.

[53] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi.

The middlebox manifesto: enabling innovation in mid-

dlebox deployment. In Proc. HotNets, 2011.

[54] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Rat-

nasamy, and V. Sekar. Making middleboxes someone

else’s problem: Network processing as a cloud service.

In Proc. SIGCOMM, 2012.

[55] N. Spring, R. Mahajan, and D. Wetherall. Measuring

ISP Topologies with Rocketfuel. In Proc. of ACM SIG-

COMM, 2002.

[56] W. Wu, G. Wang, A. Akella, and A. Shaikh. Virtual net-

work diagnosis as a service. In Proc. SoCC, 2013.

[57] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown.

Automatic test packet generation. In Proc. CoNext, 2012.

[58] W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao.

Efficient querying and maintenance of network prove-

nance at internet-scale. In Proc. SIGMOD, 2010.

