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ABSTRACT

In a distributed computing environment, remote devices must often
be granted access to sensitive information. In such settings, it is
desirable to restrict access only to known, trusted devices. While
approaches based on public key infrastructure and trusted hardware
can be used in many cases, there are settings for which these solu-
tions are not practical. In this work, we define physically restricted
access control to reflect the practice of binding access to devices
based on their intrinsic properties. Our approach is based on the
application of physically unclonable functions. We define and for-
mally analyze protocols enforcing this policy, and present experi-
mental results observed from developing a prototype implementa-
tion. Our results show that non-deterministic physical properties of
devices can be used as a reliable authentication and access control
factor.

Categories and Subject Descriptors

K.6.5 [MANAGEMENT OF COMPUTING AND INFORMA-

TION SYSTEMS]: Security and Protection—authentication

General Terms

Security

Keywords

physically unclonable functions, applied cryptography, access con-
trol

1. INTRODUCTION
Controlled remote access to protected resources is a critical el-

ement in security for distributed computing systems. Often, some
resources are considered more sensitive than others, and require
greater levels of protection. Recent advances in access control [6,
1, 21] provide means to tighten the security controls by consider-
ing users’ contextual factors. While these techniques offer more
fine-grained control than traditional identity-based approaches, we
desire an even stronger guarantee: Our goal is to provide a means
by which access is granted only to known, trusted devices.
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To achieve our aim, we had to address two separate issues. First,
we required the ability to identify a device uniquely. That is, our
scheme must be able to distinguish between two devices with soft-
ware that is configured identically. Second, we had to establish a
mechanism for encrypting the data for access by only the identified
device.

A naïve approach to this problem would be to apply authentica-
tion mechanisms at the network and transport layers, for instance
Challenge-Handshake Authentication Protocol (CHAP), Transport
Layer Security (TLS), or Internet Protocol Security (IPsec). How-
ever, these solutions fail to provide our desired security guarantees
in three ways. First, they differentiate based on stored data, e.g.,

cryptographic keys. If this data is leaked, these solutions can be
broken. Our approach, however, does not rely on the security of
data stored on the client.

Second, these approaches are too coarse-grained, granting or
denying access below the application layer. That is, our solution
allows a server program to selectively grant access to subsets of
data based on the unique hardware of the remote device. Existing
approaches cannot provide this flexibility.

The third and final shortcoming of these basic approaches is that
they can be completely bypassed by improper management and
insider threats. In a recent report [35], the most common cause
(48%) of data breaches was privilege misuse, which includes im-
proper network configuration and malicious insider threats. In our
approach, access control decisions are based on the physical prop-
erties of the remote devices themselves. While this does not com-
pletely eliminate insider threats, our solution does offer a higher
level of defense against such insider threats.

Alternatively, one could rely on a public key infrastructure (PKI)
using trusted platform modules (TPMs). While these approaches
will work in traditional computing environments, our interests ex-
tend to environments for which TPMs are not available or PKI
is considered to be too expensive. Specifically, we desire a solu-
tion that could also be deployed in low-power embedded systems.
In these scenarios, the computing power required for modular ex-
ponentiation can quickly exhaust the device’s resources. Our ap-
proach relies on a cryptographic scheme that offers similar guaran-
tees as PKI, but with less computation required.

Our solution is based on the use of physically unclonable func-
tions (PUFs) [14, 15]. PUFs rely on the fact that it is physically
impossible to manufacture two identical devices. For example,
two application-specific integrated circuits (ASICs) can be man-
ufactured on the same silicon wafer, using the same design. How-
ever, a circuit in one ASIC may execute faster than the equivalent
circuit in the other, because the wire length in the first is a nanome-
ter shorter than the second. Such variations are too small to con-
trol and can only be observed during execution. PUFs quantify



these variations as challenge-response pairs, denoted (C,R), that
are unique to each particular hardware instance. A robust PUF is
unpredictable, yet consistent for a single device. It is also unforge-
able, as the physical variations that determine the PUF are too small
to control.

Previous works on PUFs have focused on two areas. First, PUFs
can be used to store cryptographic keys in a secure manner. Given a
PUF pairing (C,R) and a key K, the device stores X = R⊕K. In
this case, R acts as a one-time pad, and X is a meaningless string
of bits that can be stored in plaintext on a hard-drive. When the
key is needed at a later time, the device again executes the PUF to
get R and recovers the key as K = R ⊕ X . The second use of
PUFs is to generate cryptographic keys directly by mapping R to,
for example, a point on an elliptic curve. In such a usage, the PUF
does not have to store any data.

The advantages of employing PUFs for key generation and stor-
age are subtle, and may be missed at first glance. First, note that no
cryptographic keys are explicitly stored; the only data above that
is ever stored is the value X , which is a random, meaningless bit
string that reveals no information regarding the key K. A second
advantage, which follows from the first, is that any key exists only
at run-time. Furthermore, if the PUF is integrated into the proces-
sor itself, then the keys never even exist in main memory. Thus,
PUFs offer very strong protections of cryptographic keys.

While these previous works assume a traditional cryptographic
scheme is in place, we propose a new and unique direction for PUF
research. That is, we propose incorporating the randomness of the
PUF directly into an application-layer access request protocol. Our
light-weight multifactor authentication mechanism, coupled with
a dynamic key generation scheme, provides a novel technique for
enforcing access control restrictions based on the device used.

The main contributions of our work can be summarized as fol-
lows.

• We propose the notion of physically restricted access control.
That is, we propose integrating a device’s distinct character-
istics directly into an access request.

• We define protocols for registering a device and making an
access request, and present formal analyses of the security
guarantees.

• We present a prototype implementation of our client-server
architecture, which includes the creation of a PUF on a field-
programmable gate array (FPGA) for experimental evalua-
tion. Our implementation provides several insights concern-
ing the adoption of PUF technology in security protocols.

• We provide empirical results that validate our use of a PUF
to create a light-weight multifactor authentication system.

The rest of this paper is organized as follows. Section 2 details
our threat model and deployment assumptions. Section 3 describes
related work in the area of trusted computing, authentication, and
access control. Section 4 provides an overview of how PUFs are
created and controlled. In Section 5, we define our notion of physi-

cally restricted access control, specify protocols for enforcing this
goal, and provide a formal analysis of our security guarantees. Sec-
tion 6 provides details of our implementation, including our choices
of cryptographic primitives for our protocol and our PUF FPGA
implementation. Section 7 presents empirical results of our experi-
ments. In Section 8, we discuss additional issues relevant to future
implementations of our scheme. We then conclude in Section 9.

2. THREAT MODEL
In describing our threat model, we start with the central server

S. We first note that the adversary’s goal is to gain access to sensi-
tive data stored on S. We place no restrictions on what constitutes
this data; we simply note that a server application running on S

is responsible for the access control decisions. Next, we assume
that S is trusted and secure. While this may seem like a strong as-
sumption to make, we stress that it is the data stored on S that is
important. That is, if an adversary can compromise S, there is no
need to attack our protocols, as he has already “won.”

Regarding the client devices C, we assume that the organization
has the authority to tightly control the software running on each
device. While this is a daunting task for traditional computing,
recall that we are also highly motivated by the concerns of embed-
ded distributed applications. Embedded devices do not require the
complex code base that exists in a traditional workstation; thus, sat-
isfying this requirement is easier. Furthermore, our protocols will
still apply in traditional schemes, too. Specifically, remote attes-
tation techniques can be used to ensure that only known, trusted
software is running.

Our main adversaries, then, are the users. We consider two
classes of users as threats. First, client users have full access to
the device, with the exception of installing software. That is, these
users can read any data stored on the device. However, they cannot
extract the data from memory to external storage. Also note, in the
case of embedded systems, there might not actually be a user, as
the devices may be executing autonomously. If there is a human
user, he will have a password, and we assume it is protected.

The other class of users that pose a threat, whether malicious or
not, are administrators. While administrators may have access to
the data on S directly, our assumption is that the goal of a malicious
administrator is to enable access to an untrusted device, thereby
bypassing the physical restrictions. This adversary has access to all
secret data stored on S.

Finally, we also consider network-based attackers, such as eaves-
droppers. In all cases, we apply standard cryptographic assump-
tions. Specifically, we assume that adversaries are limited to prob-
abilistic, polynomial-time attacks.

3. RELATED WORK
The literature of computer security contains a long history of

identification schemes and authentication protocols [24, 23, 11,
12]. Modern research in this area has become more focused on
addressing issues concerning digital identity management under
specialized circumstances, such as internet banking [10], secure
roaming with ID metasystems [20], digital identity in federation
systems [5], authentication for location-based services [18], and
location-based encryption [2]. These works rely on knowledge or
possession of a secret, and do not bind the authentication request to
a particular piece of hardware.

The origin of PUFs can be traced to attempts to identify hardware
devices by mismatches in their behavior [22]. The use of PUFs for
generating or storing cryptographic keys has been proposed in a
number of works [31, 17, 16, 15, 14]. AEGIS [32, 33], a new
design for a secure RISC processor, incorporates a PUF for cryp-
tographic operations. Biometrics have also been used to generate
secure keys [19]. We will contrast our approach with this scheme in
Section 6.1. Our work contrasts with these, as we aim to integrate
the unique PUF behavior directly into an authentication protocol,
rather than simply providing secure key storage.

In a previous work, we presented a very rudimentary sketch of
incorporating PUFs into an authentication system (reference omit-



Figure 1: A sample 1-bit PUF based on ring oscillators

ted for purposes of anonymity). However, the focus of that pa-
per was on joint installation of PUF challenges to combat insider
threats. Additionally, that work did not present any formal pro-
tocol definition or implementation. In contrast, our current work
presents substantial more significant results. We present formal
definitions of our approach, protocols, and security proofs of our
design. Also, our current work addresses the technical details in-
volved with such an implementation, including the necessity of
error-correcting codes, and presents empirical results of our pro-
totype implementation.

Besides our previous work, [3] and [13] are perhaps the most
similar to our current work. However, the former focuses on bind-
ing software in a virtual machine environment, whereas the latter
focuses on authenticating banking transactions. Our protocols fo-
cus on light-weight multifactor authentication for distributed set-
tings to bind remote file access to trusted systems.

Other types of trusted hardware exist for various purposes. TPMs
can provide secure key storage and remote attestation [34, 4, 30,
28]. In many cases, the secure storage of TPMs can be used to bind
authentication to a piece of hardware. However, we are interested
in solutions for distributed computing that do not rely on TPMs, as
TPMs may not be available for the devices used.

Finally, a new direction for hardware identification has emerged
to identify unique characteristics of RFID devices [8, 7, 29]. These
works are similar to previous work on PUFs, where they focus on
identifying the device. These works do not propose new protocols
that incorporate the unique behavior directly.

4. PUFS
The fundamental idea of PUFs is to create a random pairing be-

tween a challenge input C and a response R. The random behavior
is based on the premise that no two instances of a hardware design
can be identical. That is, one can create a PUF by designing a piece
of hardware such that the design is intentionally non-deterministic.
The physical properties of the actual hardware instance resolve the
non-determinism when it is manufactured. For example, the length
of a wire in one device may be a couple of nanometers longer than
the corresponding wire in another device; such differences are too
small to be controlled and arise as natural by-products of the phys-
ical world.

While there are several types of PUFs, in this work we focus on
PUFs derived from ring oscillators (ROs). Figure 1 shows a sample
1-bit RO PUF. A RO consists of a circular circuit containing an odd
number of not-gates; this produces a circuit that oscillates between
producing a 1 and 0 as output. In a 1-bit PUF, the output of two ROs
pass through a pair of multiplexors (MUX) into a pair of counters
that count the number of fluctuations between the 0 and 1 output.
The PUF result is 1 if the counter on top holds a greater value, and

0 otherwise. The role of the challenge in a 1-bit RO PUF is to flip
the MUX.

Clearly, it is not desirable to have such a one-to-one correspo-
nence for larger PUFs. As such, for larger output bit strings it is
better to have a pool of ROs, and randomly select pairs for com-
parison based on the challenge. In [33], the authors evaluate the
entropy resulting from random pairings of ROs, and show that N
ROs can be used to produce log

2
(N !) bits. For example, 35 ROs

can be used to create 133 bits. Thus, a small number of ROs can be
used to exhibit good random behavior. Another way to introduce
entropy into the PUF behavior is to apply a cryptographic hash to
the output. Given a strong hash function, changing a single bit of
the PUF challenge, which yields a single flipped PUF bit, will pro-
duce a very different output.

The interesting properties of PUFs arise from the fact that it is
virtually impossible for two ROs to operate at the same frequency.
Specifically, miniscule variations in the wire width or length can
cause one RO to oscillate at a faster speed than the other. As these
variations are persistent, one of the oscillators will consistently be
faster. Thus, the behavior of PUFs based on ROs depends on the
physical instance of the device. Also, if the PUF is large enough,
the behavior is unique. Furthermore, as these variations can be
neither predicted nor controlled, they cannot be cloned.

With the exception of our implementation description in Sec-
tion 6, we will assume an idealized PUF in our protocol design.
That is, given a challenge-response pair < Ci, Ri > and another
challenge Cj 6= Ci, one cannot predict the value of Rj . Conse-
quently, our results apply to any PUF that meets this ideal, rather
than just RO-based PUFs.

5. PHYSICALLY RESTRICTED ACCESS

CONTROL
In this section, we start by defining our notion of physically re-

stricted access control. Next, we offer a high-level protocol and
formal analysis for achieving this goal. We then present a more
concrete example of this protocol that is derived from the Feige-
Fiat-Shamir identification scheme.

We assume that the protected resources consist of files on a cen-
tral server and subjects request access to these files remotely. For
a file access request by a subject from a given device, the access
control system checks whether the subject is allowed to access the
file from the device; if this is the case, the server encrypts the file
with a dynamically generated key and sends the resulting data to
the device.

We thus assume an access control model based on a number of
sets. Let S denote the set of subjects,D the set of trusted devices,F
the set of protected files, andR the set of privileges. For simplicity,
we assume R = {read,write}. A permission can be written as
the tuple < s, f, r >, such that s ∈ S , f ∈ F , and r ∈ R. Thus
P ⊆ S × F ×R defines the set of authorized permissions subject
to the physical restrictions. Let PUFd : C → R be the PUF for a
trusted device d ∈ D.

We define physically restricted access control to be the restric-
tion of an access request < s, d, f, r >, subject to the following
conditions:

• The identity of s is authenticated.

• < s, f, r >∈ P .

• d ∈ D, and the authentication is performed implicitly by the
ability of d to demonstrate a one-time proof of knowledge of
PUFd.



• A dynamic encryption key kPUF based on the proof of PUFd

is used to bind the request to the device.

An important element of this definition is the notion of hard-

ware binding of the cryptographic key. That is, the key kPUF is
generated dynamically and relies on the physical properties of the
hardware itself (i.e., the PUF). Consequently, kPUF is never explic-
itly stored on the requesting device. This dynamic key generation
is in contrast to traditional key management, in which keys are gen-
erated a priori. This approach simplifies the administration work,
while reducing the threat of a rogue administrator transferring keys
to an untrusted device.

One possible criticism to our definition is that it does not con-
sider what happens to the contents of the file after decryption. That
is, if the device d is malicious (or is infected with malicious soft-
ware), it could simply broadcast the contents after decryption. We
counter this objection by noting that remote attestation techniques
could be applied to ensure that only trusted applications are run-
ning on the device. Hence, we assume either the device is free of
malware, or the server can detect the malware and abort.

In addition to such software attacks, an attacker with physical
access and sufficient technical skill could read the contents directly
from the device’s memory. However, such an attack exists regard-
less of the access control methodology applied. As such, we con-
sider such threats beyond the scope of our work.

5.1 Protocols
Our protocols rely on a number of cryptographic primitives. Let

H denote a collision-resistant hash function, while Enck(m) de-
notes the symmetric key encryption of a message m with the key
k, using a cipher that is secure against probabilistic polynomial

time (PPT) known ciphertext attacks. Define Auth(·) to be a ro-
bust authentication scheme that is resilient against PPT adversaries.
Gen(·) denotes a pseudorandom key generator based on the pro-
vided seed value.

Let Commit(·) denote a commitment scheme that ensures confi-
dentiality against PPT adversaries. Chal(·) and Prove(·), then, in-
dicate a random challenge and the corresponding zero-knowledge
proof of the secret value bound to the commitment. Furthermore,
we assume that any PPT adversary A has negligible probability of
guessing Prove(·) without access to the committed secret value.
Assuming C denotes the PUF-enabled client (also called the de-
vice) and S indicates the server, the table in Table 1 gives the for-
mal definition of our protocols.

Given these formalisms, we now explain the intuition behind
each protocol. In Request(adm,m), an administrator adm re-
quests a set of m challenges to be used with a new (unspecified)
device.1 S authenticates adm and creates a database entry of the
form < adm,n,C1, . . . , Cm >, binding those challenges and the
nonce to that administrator. Hence, only that administrator is autho-
rized to use that particular set of challenges. We use prms to indi-
cate any parameters needed for the commitment and proof scheme.
For instance, in our implementation prms consists of a modulus.

For Enroll(adm,pwd,C1, . . . , Cm, prms), we are assuming a
trusted path from adm to C. That is, no eavesdropper learns the ad-
ministrator’s password, and all data are entered correctly. Based on
this assumption, adm provides the inputs to C, which initiates an
enrollment protocol that starts with authenticating adm. C uses a

1In general, we assume Ci ← Gen(1n) ∀ 1 ≤ i ≤ m; that is,
each challenge is the result of a pseudorandom generator with a
security parameter 1n. However, in some applications, it may be
desirable for S to define the challenges predictably. As such, we
are intentionally vague on the selection of C1, . . . , Cm.

pseudorandom generator to produce a one-time-use key otk derived
from the administrator’s password pwd, the nonce n, and the chal-
lenges. S can retrieve the nonce and challenges from its database,
thus recreating the key on its end. C uses otk to encrypt a commit-
ment of the PUF challenge-response pairs. S acknowledges receipt
of the values with a hash of the commitment.

Finally, Access(user, file, action) defines the access request
protocol. As before, S authenticates the user making the request,
and selects a random set T of the challenges C1, . . . , Cm. After
receiving Chal(T ), C executes the PUF to get the responses Ri

for each Ci ∈ T . The corresponding zero-knowledge proof p ←
Prove(T ) is derived from these responses. S uses p and the user’s
password pwd as inputs to a pseudorandom generator to produce
a one-time-use key k. S encrypts the file contents c with this key,
returning the encrypted file to C. Hence, the intuition behind this
protocol is that the file can only be decrypted by that user with that
particular PUF-enabled device.

We note that there is one important consideration regarding our
definition of Access(user, file, action). Unlike the previous pro-
tocols, this protocol will be executed repeatedly. However, there
are only 2m subsets of P(C1, . . . , Cm). After all subsets are ex-
hausted for a single user, the necessary proof will be reused. How-
ever, this repetition is acceptable, as the proof is never made public.
Instead, the proof is used as an input to the key generation. Further-
more, assuming the nonce z is never repeated, the keys generated
will always be different, even if p← Prove(T ) is reused.

In designing our protocols, we envisioned both traditional com-
puting and embedded applications. In the embedded scenario, there
may not be a human user making the request Access(user, file,
action). A straightforward variant of our protocol could accom-
modate this situation by eliminating Auth(user) from that proto-
col. Then, S must make the access control decision based on the
device making the request, not the user doing so. Though this
flexibility is a nice feature of our design, we will not investigate the
security claims of this variant in this paper.

5.2 Security Analysis
Here, we present our formal analysis of the security properties

of our protocols. We start with three lemmas, and complete our
analysis with a theorem that our approach satisfies our definition of
physically restricted access control.

Lemma 1.

A PPT adversary A can enable an untrusted device with only neg-

ligible probability.

Proof: Based on our assumption that Auth(·) is resilient against
PPT adversaries, S will abort the Request(·) and Enroll(·) pro-
tocols, except with negligible probability. Even with a transcript
of Request(·), A must be able to forge the Encotk(·) message to
enable an untrusted device. However, with no knowledge of pwd,
this feat is also infeasible, by our assumptions of Enck(·). There-
fore, A has only negligible probability of completing the Enroll(·)
protocol and enabling an untrusted device. �

Lemma 2.

An honest client C can validate its enrollment with the legitimate

S, except with negligible probability.

Proof: Similar to Lemma 1, a PPT adversary A has negligible
probability of forging H(Commit(< C1, R1 >, . . . , < Cm, Rm >

)). Hence, if C receives such a hash, it has high assurance that
the hash originated from the legitimate S and the enrollment suc-
ceeded. �



Request(adm,m) – Administrator adm requests m challenges to enable a new device.

– S performs Auth(adm)
– S responds with C1, . . . , Cm, parameters prms, and a nonce n

Enroll(adm, pwd,C1, . . . , Cm, prms) – C (after receiving data provided by adm) sends a commitment of the PUF to S.

– S performs Auth(adm)
– C generates otk ← Gen(pwd, n,C1, . . . , Cm)
– C provides Encotk(Commit(< C1, R1 >, . . . , < Cm, Rm >))
– S responds with H(Commit(< C1, R1 >, . . . , < Cm, Rm >))

Access(user, file, action) – Subject user requests action for file, which is encrypted with key chal and transferred. If
action = read, S sends the file. Otherwise, C sends it.

– S performs Auth(user) and issues Chal (T ), where T ⊂P(C1, . . . , Cm)
– S responds with a nonce z
– S verifies that user is permitted to perform action on file
– Generate and transfer Encchal(c), where p← Prove(T ) and chal← Gen(p, z, pwd)

Table 1: Protocols for enforcing physically restricted access control

Lemma 3.

A PPT adversary A with transcripts of Request(·) and Enroll(·)
can model the PUF with only negligible probability.

Proof: In order for A to learn the commitments of the PUF be-
havior, A must either decrypt Encotk(Commit(< C1, R1 >, . . . ,

< Cm, Rm >)) or find a preimage of H(Commit(< C1, R1 >

, . . . , < Cm, Rm >)). However, based on our assumptions re-
garding Enck(·) and H(·), both actions are infeasible. Thus, these
protocols do not leak enough information for a PPT adversaryA to
model the PUF. �

Informally, these lemmas demonstrate that the Request(·) and
Enroll(·) protocols guarantee integrity and confidentiality against
PPT adversaries. That is, by viewing a transcript of both proto-
cols,A fails to learn the administrator’s pwd or the PUF challenge-
response pairs. Furthermore, any tampering by A will be detected
by either S or C. Also, A cannot launch a man-in-the-middle at-
tack against Enroll(·), as doing so requires knowledge pwd. Ap-
plying these lemmas, we propose the following theorem.

Theorem 1.

The Access(·) protocol enforces physically restricted access con-

trol under the PPT adversarial model.

Proof: By Lemma 1, we are guaranteed that only trusted devices
will be able to produce p ← Prove(T ). Lemma 2 ensures that
trusted devices receive confirmation if their enrollment is success-
ful; as such, if the confirmation is not received, proper mitigation
can be performed. By Lemma 3, we are guaranteed that PPT adver-
saries cannot possess a model of the PUF behavior by observing a
transcript of the Request(·) and Enroll(·) protocols. We explicitly
model the authentication of user, check that user is authorized to
perform action on file, and the device is implicitly authenticated
by generating a one-time proof of knowledge of the PUF behav-
ior. Furthermore, the one-time key chal ← Gen(p, z, pwd) exists
only at run-time, is never transmitted, is bound to the hardware of
the requesting (trusted) device (by the use of the PUF), and is used
to encrypt data transferred between C and S. The probability of
a PPT adversary generating chal is negligible, so the encryption
successfully enforces the access control policy. Therefore, by defi-
nition, the Access(·) protocol enforces physically restricted access
control under the PPT adversarial model. �

6. IMPLEMENTATION
In this section, we describe our implementation of a PUF-based

access control mechanism based on our protocols described above.
We start by describing our protocol instantiation and our implemen-

tation of a PUF using ring oscillators, which is the same method
used in [32]. We also describe the use of Reed-Solomon codes to
ensure the PUF produces a consistent result that can be used for
authentication, and detail our minimal storage requirements.

6.1 Protocol Instantiation
The underlying premise of our protocol instantiation is the Feige-

Fiat-Shamir identification scheme. Our choice of hash function was
SHA-1, although a better choice would be SHA-256, which offers
more protection against preimage attacks and is collision-resistant.
Our choice of symmetric key cryptography was AES which also
provides the security against PPT adversaries that we require.

Our Auth(·) primitive uses the hash function and a nonce n in a
challenge-response protocol. Specifically, S generates n, and the
user must respond with H(H(pwd), n). Note that both hashes are
necessary, as our implementation of S protects the secrecy of user
passwords by storing H(pwd), not the passwords themselves. Fur-
thermore, as the response requires knowledge of both n and the
password (in the form of H(pwd)), this challenge-response pair
preserves the secrecy of pwd from PPT adversaries. Figure 2(a)
shows our implementation of Request(adm,m), in which an ad-
ministrator A requests a new set of challenges from the server S.
The parameter N returned in step 4 is used as a modulus in the
other protocols.

Our Enroll(adm,pwd,C1, . . . , Cm, prms) implementation is
shown in Figure 2(b). Our Commit(·) primitive consists of the
pairs (C1, R

2

1), . . . , (Cm, R2

m), where the multiplication is modu-
lus N . The security of this commitment relies on the intractability
of computing Ri by observing R2

i (mod N ). That is, even if a PPT
adversary gains access to the committed values stored on S, he can
compute the modular square roots with only negligible probabil-
ity, and the confidentiality of the PUF is assured. As we will ex-
plain in Subsection 6.4, we used the mcrypt utility to generate the
cryptographic keys, thus providing the functionality of the Gen(·)
primitive.

Our instantiation of Access(user, file, action) is shown in Fig-
ure 2(c). As we mentioned previously, our choice of Chal(·) and
Prove(·) is based on the Feige-Fiat-Shamir identification scheme.
The first step of this scheme is for the prover (C) to generate a
random r and send x ≡ +/- r2 (mod N ).2 The user is then au-
thenticated using a nonce and a cryptographic hash. Given the
challenge set T ⊂ P(C1, . . . , Cm) (where P denotes the power
set), C executes the PUF for each Ci ∈ T . That is, C computes
y ≡ r ·

∏
R

pi
i (mod N ), where pi = 1 if Ci ∈ T and pi = 0

2Randomly flipping the sign of r2 (mod N ) ensures that the scheme
is a zero-knowledge proof of knowledge.



(a) Request(adm,m): Requesting a set of m
challenges

(b) Enroll(adm,pwd,C1, . . . , Cm, prms):
Generating the Feige-Fiat-Shamir PUF commit-
ments.

(c) Access(user, file, action): Using Feige-Fiat-
Shamir and the PUF to generate a one-time-use key to
encrypt the file.

Figure 2: Physically restricted access control protocols. All multiplications are modulo N .

otherwise. Thus, the proof p← Prove(T ) is the value +/- y2 (mod
N ). As both parties also know H(pwd) and the nonce z, and they
can compute +/- y2 (mod N ), they can use the proof to generate
chal ← Gen(p, z, pwd) as required by the protocol.

There is an important subtlety here that should be noted. Under
the traditional Feige-Fiat-Shamir scheme, the prover sends y and
the verifier must compare both y2 (mod N ) and −y2 (mod N )
with the product of x and the committed values. That is, it would
seem that C and S would have to attempt the encryption and/or
decryption twice. However, this is not the case. S always uses
x ·

∏
R

pi
i (which includes the correct sign). As the decision of

whether or not to flip the sign of x was made by C, C clearly knows
whether the proof should be y2 (mod N ) or −y2 (mod N ). Hence,
the encryption and decryption only need to be attempted once by
each party.

In addition, readers who are familiar with existing work in gen-
erating cryptographic keys from biometrics [19] may object to our
use of the responses as the secrets. In that work, the authors cre-
ate a secure key K and compute Θlock = K ⊕ Θref , where Θref

denotes the reference biometric sample. To authenticate a sample
Θsam at a later point, the system applies the bit mask Θlock in an
attempt to recover the key K.

In our approach, this bit mask is unnecessary for two reasons.
First, unlike biometric data, the PUF responses exist only at run-
time and are never made public. In contrast, biometric data, such
as fingerprints, are always present and can be harvested. Thus, PUF
responses are more private and, consequently, more protected. Sec-
ond, revoking a biometric is impossible; however, it must be possi-
ble to revoke the associated key. The bit mask makes this possible.
In our scheme, though, revocation of a PUF response Ri is simple:
S stops using the associated challenge Ci. Hence, applying the bit
mask to the PUF response is unnecessary for our scheme.

6.2 PUF Creation
We used the Xilinx Spartan-3 FPGA to implement a PUF. To

simplify the circuitry, we created independent pairs of ROs, each
forming a 1-bit PUF. To ensure that we could count a high number
of oscillations, we implemented a 64-bit counter to receive the data

from each multiplexor. Each oscillator consisted of a series of nine
inverter gates. Our experiments with fewer gates resulted in the
oscillator running at too high of a frequency, but nine gates offered
good, consistent behavior.

We controlled the PUF execution time by incrementing a small
counter until it overflowed. The Spartan-3 uses a 50 MHz clock,
so a 16-bit counter overflows in approximately 1 ms. We also in-
creased the counter size to 20 bits, which required 21 ms to over-
flow. We did not notice any observable difference in the consis-
tency; hence, a 16-bit counter offers sufficient time for the oscilla-
tors to demonstrate quantifiably different behavior.

Our design is based on a 128-bit PUF. However, in our experi-
ments, we needed to create a state machine to write the PUF result
out to a serial port. The extra space for the state machine would not
fit on the Spartan-3. As such, we reduced the PUF size to 64 bits
for experimental evaluation. In future designs, all work will be per-
formed on the device itself, the state machine will not be needed,
and accommodating 128-bit PUFs (and larger) will certainly be fea-
sible.

From the perspective of space on the device, the limiting factor
is the usage of the look-up tables (LUTs). Implementing a 128-bit
PUF on the Spartan-3 occupies 39% of the available input LUTs
and 78% of slices. However, as more ROs are added, the number
of slices grows only slightly, while the usage of the LUTs increases
more quickly. Implementing two independent 128-bit PUFs on the
same device would occupy 78% of the LUTs and 99% of slices.
Note, though, that these numbers are based on our simplistic PUF
design, which consists of 128 pairs of independent 1-bit ROs. More
advanced designs [33] select random pairs from a pool of ROs; in
such an approach, a 128-bit output can be produced from 35 ROs,
whereas our approach would use 256 (128 pairs).

By implementing the full PUF as independent 1-bit PUFs, there
is a direct correlation between each bit of the challenge and each bit
of the response. That is, flipping only a single bit of input would
result in only a single bit difference in the output. To counteract
this correlation, we take a hash of the PUF output. As a result of the
properties of cryptographic hash functions, a single bit difference
in the PUF output will produce a very different hash result. This



hash step prevents an attacker from using the one-to-one mapping
to model the PUF.

6.3 Error Correction
PUFs are designed to be generally non-deterministic in their be-

havior. The physical properties of the device itself resolves this
non-determinism to create a consistent and predictable challenge-
response pattern. However, variations in the response are inevitable.
For instance, if two ring oscillators operate at nearly identical fre-
quencies, the PUF may alternate between identifying each as the
“faster” oscillator. Reed-Solomon codes [26] correct these varia-
tions up to a pre-defined threshold.

Reed-Solomon codes are linear block codes that append blocks
of data with parity bits that can be used to detect and correct errors
in the block. To guarantee that we can correct up to 16 bits of output
for a 128-bit PUF, we use a RS(255,223) code. Note that this code
operates on an array of bytes, rather than bits. To accommodate
this, we encode each PUF output bit into a separate byte. Alterna-
tively, we could have compacted eight bits at a time into a single
byte for a more compact representation. In fact, doing so is neces-
sary for implementations that use larger sizes of PUF output. For
our current work, though, we find this encoding to be acceptable,
even if it is not optimal.

RS(255,223) reads a block of 223 input symbols and can cor-
rect up to 16 errors. After converting the PUF output to a string of
bytes, we pad the end of the string with 0s. The encoding produces
a syndrome of 32 bytes that must be stored. When the PUF is exe-
cuted at a later point, the response is again converted to a string of
bytes and padded, and these 32 bytes are appended. The array of
bytes is then decoded, correcting up to 16 errors introduced by the
noisy output of the PUF.

While Reed-Solomon codes can correct errors in a data block,
they operate under the assumption that the original data is correct.
In the case of PUFs, it is also possible that the original data varies
from the normal behavior observed at later times. To counteract
this initial bias, during the enrollment process, we execute the PUF
three times, not once. For each bit, we do a simple majority vote.
That is, the “official” PUF result is the result of the consensus of
the three executions.

6.4 Client-Server Implementation
We implemented our protocols as a custom client-server proto-

type. Both applications use a custom-built package for performing
arbitrary-length arithmetic operations for large numbers. All hash
operations use the SHA-1 implementation by Devine [9]. We incor-
porated the Reed-Solomon code library created by Rockliff [27].
Recall that, in our protocols, we use symmetric key encryption in
a number of steps; the symmetric keys are generated from a shared
secret. In all cases, we wrote the secret to a file, used the Linux
utility mcrypt (which reads the file and generates a strong key
from the data), and immediately destroyed the file using shred.
The cryptographic algorithm used was 128-bit AES (Rijndael). To
minimize the possibility of leaking the key by writing the shared
secret to a file, we used setuid to run server under a dedicated
uid, and restricted read access to the file before writing the secret.

6.5 Storage Requirements
The storage requirements of our solution for both C and S are

minimal. C must storeN , the challenges Ci, and an error-correcting
syndrome for each challenge. As we detailed above, N and Ci are
each 128 bits, or 16 bytes in length. Each syndrome (one per chal-
lenge) is 32 bytes in length. Thus, the total storage for C in our

prototype is 48m + 16 bytes. For 16 challenges, then, the storage
requirement is under 1 KB.

S also must store a minimal amount of data. S stores N and the
R2

i (mod N ) commitments, each of which are 128 bits (16 bytes)
in size. In addition, S stores a hash of each user’s password. If
SHA-1 is used, that hash is 20 bytes. If a denotes the number of
devices enabled and b denotes the number of authorized users, the
total storage requirement for our system is (16m+16)a+20b bytes
of data. E.g., given 100 users, S can enable 1000 devices with 16
challenges each for less than 268 KB of storage.

7. EXPERIMENTAL EVALUATION
We now present the experimental evaluation of of our prototype.

Our evaluation goals focused on two areas. First, we strove to
demonstrate that RO-based PUFs are both non-deterministic and
consistent. That is, different physical instantiations of the same
PUF design produce different behavior, but repeating the PUF exe-
cution on the same input and hardware produce results that can be
reliably quantified as the same binary string. Our second area of
evaluation was on the performance of our client-server prototype.
In that portion, we show that our design offers better performance
than using traditional PKI to distribute symmetric encryption keys.

The output from the PUF, implemented using a Xilinx Spartan-
3 FPGA, is transferred to a client application via serial cable, al-
though in deployed settings all operations would occur on the same
device. All client and server operations were executed on a system
with a 2.26GHz Intel R© CoreTM 2 Duo CPU with 3GB of 667MHz
memory. The OS used was Ubuntu 9.04, with version 2.6.28-15 of
the Linux kernel.

7.1 PUF Consistency
As noted in Section 6, we implemented a 64-bit PUF and wrote

the serialized output to a workstation via cable. In our experiments,
we observed an average of 0.2 bits that differed from the “official”
PUF result. The maximum difference that we observed was 5 bits.
Clearly, the use of Reed-Solomon codes that can correct up to 16
error bits at each iteration will be able to provide consistent output
from the PUF, even if we double the size of the PUF to 128 bits.
Furthermore, note that changes in environmental conditions, such
as different temperatures, will affect the absolute speeds at which
the ROs oscillate. However, the PUF result is based on the relative

speeds; that is, increasing the temperature will slow both ROs in
a pair down, but is unlikely to change which of the two oscillates
faster. Consequently, the PUF shows very consistent behavior that
can be used to build a reliable authentication mechanism.

7.2 Client/Server Performance
To evaluate the performance of our client and server implementa-

tions, we executed a series of automated file requests, given several
different files sizes. In these experiments, we emulated the PUF in
software. As noted in Section 6.2, we can control the PUF execu-
tion time; overflowing a 16-bit counter adds only 1 ms to the client
computation time. Figures 3 and 4 report the amount of time for
computing key portions of the Access protocol for some of the file
sizes that we measured.

In these figures, “Generate Proof” (shown in blue) refers to the
time to authenticate the user by generating or checking the hash
H(H(pwd), z) and the proof y sent in step 3. “Generate Key”
(shown in green) refers to the amount of time required to create the
128-bit AES key needed to encrypt or decrypt the file, Echal(file).
The AES computation is shown in orange.

Figures 3 and 4 are shown on both a (truncated) linear scale and
a logarithmic scale. The key observation of these figures is that the



(a) Truncated, linear scale (b) Logarithmic scale

Figure 3: Average client-side computation time for steps 3 and 4 of the Access protocol.

(a) Truncated, linear scale (b) Logarithmic scale

Figure 4: Average server-side computation time for steps 3 and 4 of the Access protocol.

two primary functions of our protocol, plotted as “Generate Key”
and “Generate Proof,” are fairly constant and minimal. The client
side operations take approximately 14 ms on average, which is the
same length of time as decrypting a 6-byte piece of data with AES
(12 ms on average). The server burden is even less, requiring ap-
proximately 2 ms for each protocol stage and 9 ms to encrypt the
file. As the file size increases, the AES encryption clearly becomes
the limiting factor, as it increases approximately linearly with the
file size, while our protocol overhead remains constant.

Comparing the performance of our approach with traditional PKI
(specifically, RSA) required addressing a number of factors. First,
the intractability assumption behind our approach (as described in
the next section) states that finding the modular square root is at
least as hard as factoring the product of primes, assuming the prod-

uct and the modular square are the same size. That is, computing
Ri from a 128-bit R2

i is only as difficult as breaking a 128-bit RSA
key, which is quite a weak claim. Thus, we needed to increase
the size of the PUF output. Note, though, that the PUF execution
time does not change. The only additional performance overhead
is the extra time required to do the modular multiplication on larger
numbers.

The other disparity between our approach and RSA is that the re-
sult of an RSA decryption would give you the key itself. In our ap-
proach, we would be left with a 1024-, 2048-, or 4096-bit value that

would have to be converted into an AES key. However, based on
our experiments with mcrypt, we observed only negligible over-
head to convert this PUF output value into a key. Thus, this extra
work had no measurable impact on our performance.

Figure 5 shows the difference in performance between our PUF-
based key generation and using RSA to encrypt an AES key. The
RSA modular exponentiation requires approximately four times
the computation time as our client-side PUF-based key generation.
Thus, our approach offers a clear performance advantage, which
may be very beneficial for low-power embedded devices.

8. DISCUSSION
We start this section with a brief discussion on PUF and RSA

key sizes. We then focus on possible attack models for our design.

8.1 On Key Sizes
In the previous section, we showed the performance difference

between our 128-bit PUF-based client-server architecture and var-
ious sizes of RSA keys. However, comparing the security guar-
antees of our system with the use of PKI to distribute symmetric
keys is somewhat challenging. Revealing R2

i while assuming Ri to
be secure relies on the assumption that computing modular square
roots is intractable. [25] shows that this computation is at least
as difficult as factoring the product of primes, provided the num-



Figure 5: Large PUF computation compared with RSA-based

modular exponentiation

bers are all large. Intuitively, though, computing a 128-bit modular
square root is only as hard as factoring a 128-bit RSA key, which
is quite a weak claim. We counter this criticism of our design with
the following justifications.

First, attacking the Ri values in this manner can only occur at
S. That is, the R2

i values are never transmitted in the clear where
an attacker can eavesdrop. In RSA, though, public keys are used
to encrypt the symmetric keys before transmitting them across the
network. Transmitting keys in this manner creates an attack surface
that our approach avoids.

Second, the PUF could be repeatedly polled to produce a larger
output bit string. That is, appending 8 responses for a 128-bit PUF
will create a 1024-bit bit string. Additionally, we showed that in-
creasing the size yields a minimal performance cost when com-
pared with common RSA key sizes. Consequently, we do not con-
sider criticisms based on the key size to detract from the soundness
of our overall design.

8.2 Additional Threats & Attacks
In Section 5.2, we provided a formal analysis of our protocol.

Here, we expand on this analysis with an informal discussion of
the remaining threats to our design. First, recall that our protocol is
built on the assumption that C is a trusted device. As such, we do
not consider attacks in which C leaks secure data received through a
legitimate access request. The presence of malware on C makes this
a very realistic concern. However, we consider this threat beyond
the scope of our work, and focus on what can be accomplished
under the assumption that the C is trusted.

A common flaw in authentication protocols is vulnerability to a
replay attack. Consider a PPT adversary A with a transcript of of
Access(user, file, action), as shown in Figure 2(c). If either z or
T were different, the replay attempt would fail. Additionally, even
if both z and T are the same, A would learn nothing new. That
is, under the PPT assumption, A cannot decrypt Echal(file). The
only threat in this scenario would be if the session involved upload-

ing the file from C to S. In this case, A could force S to revert the
status of file to an earlier version. However, this can only happen
if both z and T are identical. Assuming a large range of values for
these variables, this attack can succeed with only negligible proba-
bility.

Now consider a stronger adversary A that has learned the pairs
(Ci, R

2

i ) for a particular device. Under the PPT model, such an

adversary can only have learned these values by successfully at-
tacking S. Clearly, if A can bypass S’s protection of the pairs, he
can also directly access all of the files on the system. Hence, the
only remaining motivation of such an attacker is to try to model the
PUF by learning the PUF responses.

The defenses against such an adversary rely on a number of
factors. First, even if we set aside the PPT model and assume
that the adversary has somehow learned the key used to encrypt
Echal(file) and the inputs to Gen(p, z, pwd). Note that this p is
exactly the proof generated in the Feige-Fiat-Shamir identification
scheme, which is known to be zero-knowledge. Hence, observing
additional sessions provides no new information regarding the val-
ues of Ri.

Thus, A can only model the PUF by computing the modular
square roots. Returning to the PPT model, such an attack can suc-
ceed with only negligible probability, as computing modular square
roots is at least as difficult as factoring a large product of primes for
composite values of N [25]. Admittedly, in our prototype, we used
only 128-bit values (which is quite weak), but we demonstrated that
it would be straightforward to increase the PUF output to larger
sizes with minimal overhead. Hence, a PPT adversary could not
model the PUF, even with possession of the pairs (Ci, R

2

i ).
Finally, consider the case of a malicious administrator. Insider

threats are very difficult to prevent in general, as these attackers
have been granted permissions because they were deemed trust-
worthy. In our approach, there is no inherent mechanism for pre-
venting a malicious administrator from enabling untrusted devices.
One simple defense would be to apply separation-of-duty, thus re-
quiring multiple administrators to input the same challenges to each
device.3 Another approach would be to require a supervisor to ap-
prove the enrollment request. Incorporating such defense-in-depth
techniques would strengthen our scheme against these threats.

9. CONCLUSIONS
In this work, we have proposed a novel mechanism that uses

PUFs to bind an access request to a trusted physical device. In con-
trast to previous work, we do not use the PUF to generate or store
a cryptographic key. Rather, we incorporate the PUF challenge-
response mechanism directly into our authentication and access re-
quest protocols. Furthermore, our approach avoids expensive com-
putation, such as the modular exponentiation used in public key
cryptography. As a result, our PUF-based mechanism can be used
in settings where PKI or TPMs are either not available or require
too much performance overhead. We have presented the details of
our implementation. Our empirical results show that PUFs can be
used to create a light-weight multifactor authentication that suc-
cessfully binds an access request to a physical device.
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