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Abstract. We classify existing approaches to resource-bounds checking as static
or dynamic. Dynamic checking performs checks during program execution, while
static checking performs them before execution. Dynamic checking is easy to im-
plement but incurs runtime cost. Static checking avoids runtime overhead but typ-
ically involves difficult, often incomplete program analyses. In particular, static
checking is hard in the presence of dynamic data and complex program structure.
We propose a new resource management paradigm that offers the best of both
worlds. We present language constructs that let the code producer optimize dy-
namic checks by placing them either before each resource use, or at the start of
the program, or anywhere in between. We show how the code consumer can then
statically verify that the optimized dynamic checks enforce his resource bounds
policy. We present a practical language that is designed to admit decidable yet
efficient verification and prove that our procedure is sound and optimal. We de-
scribe our experience verifying a Java implementation of tar for resource safety.
Finally, we outline how our method can improve the checking of other dynamic
properties.

1 Introduction

Users are downloading code to run on their devices—computers, PDAs, cell phones,
etc.—with increasing frequency. Examples of downloaded code include software up-
dates, applications, games, active web pages, proxies for new protocols, codecs for new
formats, and front-ends for distributed applications. At the same time, viruses, worms,
and other malicious agents have also become common, resulting in attacks that include
data corruption, privacy violation, and denial of service based on overuse of system
resources. The latter problem is particularly relevant for small devices such as PDAs
and cell phones. The state of the practice in mobile code execution includes powerful
techniques that prevent data corruption (e.g., bytecode verification), but the enforcement
of resource usage bounds is comparatively less developed. In this paper, we provide an
efficient and flexible approach to limiting the resource usage of untrusted code. By flex-
ible, we mean that our method applies to all sequential computer programs, including
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those where resource usage is not known until runtime. By efficient, we mean that it per-
forms significantly fewer runtime checks while enforcing resource bounds than previous
methods.

We address the scenario in which a code consumer runs an untrusted program created
by a code producer, who possibly is untrusted. This program communicates with the code
consumer’s computer via a runtime library that provides functions to access resources.
We consider both physical resources such as CPU, memory, disk, and network, as well
as virtual resources such as files, database connections, and processes. Our goal is to
limit resources according to the code consumer’s security policy. This policy specifies
the resources that each program can use, along with the corresponding usage bounds.

Our technique enforces resource usage bounds with a combination of static and
dynamic checks. More precisely, we verify statically that a program’s dynamic checks
are sufficient to enforce the consumer’s safety policy. In order to support such hybrid
checking, we separate the acquire function, which acquires a resource, from the various
functions that consume the resource. For notational simplicity, we use a single, specific
consume function to represent abstractly any library function that consumes resources.

In current libraries, acquire and consume are performed together when a resource is
used. It is easy to automatically replace these calls by pairs of separate calls to acquire
and consume. It is also easy to verify statically that the result of this transformation
never uses more resources than have been acquired.

The advantage of this separation is that the programmer, or appropriate optimization
tools, can combine multiple acquires into one and can hoist acquire out of a loop
whose body consumes resources. In this paper, we describe a static analysis that verifies
that an arbitrary placement of acquires is sufficient. The analysis is decidable and
efficient, and our experiments show that it can validate even aggressive optimizations.
Moving acquire out of a loop can yield an arbitrary improvement in in the number
of dynamic checks. This improvement results in significant performance gains if the
acquire operation consults a complex or remote resource manager. Moving checks
earlier can also guarantee that no resource errors occur in critical code fragments such
as atomic transactions.

We begin this paper by introducing an imperative language with resource-aware
constructs in Section 2, and illustrate the benefits of our method over purely static or
dynamic approaches using a few key examples. In Section 3, we present an operational
semantics for our language, and provide a precise characterization of resource-use safety.
Section 4 describes the two components of the verifier: the safety condition generator
(SCG) (Section 4.1) and the prover (Section 4.4), and presents soundness and optimality
results for our SCG. We describe our experience with the tar program in Section 5.
Section 6 positions this paper with respect to relevant work in a few areas. We mention
ongoing efforts and future work opportunities in Section 7, and conclude in Section 8.

2 Concept

For resource-usage safety, we must ensure that each resource consuming operation,
denoted by consume, has adequate resources available, as specified by a system security
policy. Abstractly, we can refer to this policy as quota, and so the sum of all of the
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consumes must be guaranteed never to exceed quota; we state this goal informally as
consume ≤ quota. In the following, we motivate our approach to the resource-usage
problem with a few examples, and introduce our method over a simple iterative language.

2.1 Examples

Figure 1 shows four programs that use resources. Program Dynamic uses an amount of
resources that depends entirely on its runtime input. Program Static uses a fixed amount
of resources. Program Mixed1 uses a fixed amount of resources, but this amount is
dynamic. Program Mixed2 uses a fixed amount of resources each time through its inner
loop, but it executes this loop a dynamic number of times.

A standard dynamic checker performs one check for each consume. It executes all
four programs safely but adds unnecessary overhead to the static and mixed programs.
A typical static analyzer adds no overhead to the static program but cannot execute the
other three safely.

We present a method that has the advantages of both static and dynamic checkers.
Like the dynamic checker, it safely executes all four programs. Like the static checker,
it uses the static information available in each program to run more efficiently.

Program Dynamic Program Static
while read() �= 0 i := 0
consume 1 while i < 10000

consume 1
i := i + 1

Program Mixed1 Program Mixed2
N := read() while read() �= 0
i := 0 i := 0
while i < N while i < 100
consume 1 consume 1
i := i + 1 i := i + 1

Fig. 1. Example programs

2.2 Language

In order to describe the static checking procedure, we use a simple imperative pro-
gramming language that computes with integer values. Without loss of generality, we
assume that there is one resource of interest whose amount is measured in some arbitrary
unit. We introduce the command consume e to model any operation that uses e units
of the resource, where e is an expression in the language. We introduce the command
acquire e to reserve e resource units from the operating system. This command may
fail, but if it succeeds, we know that e resource units have been reserved for the running
program. The acquire operation is an example of a dynamic reservation instruction,
perhaps realized with a library function, and occurs only in programs created by the
code producer. In contrast, the consume operation acts as a no-op at execution time, and
is used only in the static verification process.
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e ::= x | n | e1 + e2 | n ∗ e | cond(b, e1, e2) Integer expressions
b ::= true | e1 ≥ e2 | e1 = e2 Boolean expressions
c ::= skip | x := e | c1; c2 |

consume e | acquire e
if b then c1 else c2 |
while b do c inv (A, e) Commands

P ::= b | P1 ∧ P2 | A ⇒ P |
∀x.P | cond(b, P1, P2) Predicates

A ::= b | A1 ∧ A2 Annotations

Fig. 2. Simple imperative language definition

Program Dynamic Program Static
while read() �= 0 acquire 10000
acquire 1 i := 0
consume 1 while i < 10000

inv (true, 0) consume 1
i := i + 1

inv (i ≤ 10000, 10000 − i)

Program Mixed1 Program Mixed2
N := read() while read() �= 0
acquire N acquire 100
i := 0 i := 0
while i < N while i < 100
consume 1 consume 1
i := i + 1 i := i + 1

inv (i ≤ N, N − i) inv (i ≤ 100, 100 − i)

Fig. 3. Example programs with annotations

Figure 2 shows the syntax of the full language. We assume that the variables x take
only integer values. The expression cond(b, e1, e2) has value e1 if the boolean expression
b has value true and has value e2 otherwise. Similarly, the command cond(b, P1, P2)
is equivalent to the command P1 if b has value true, and command P2 otherwise. The
propositional connectives ∧,∀,⇒ have their usual meaning.

The argument e to acquire and consumemust be non-negative. The safety condition
generator of Section 4.1 statically guarantees this condition.

Note also that we annotate the looping command with an invariant (A, e). During
static checking, we verify that the predicate A holds and there are at least e resource
units available before the looping command is executed. To simplify the task of the static
checker, and to allow for a prover that is complete over safety conditions generated from
programs in this language, we restrict the invariants to a conjunction of boolean equalities
and comparisons between integer expressions and we similarly restrict the left side of
implications in predicates.
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Fig. 4. Partitioning code safety into static and dynamic components

2.3 Annotated Examples

The programmer’s (or automated tool’s) job is to insert enough acquire operations to
make the program safe. It is always possible to insert an acquire before each consume,
so that eachconsumeperforms a runtime check, bringing us to the pure dynamic checking
safety paradigm. The question is whether the programmer or automated tool can insert
fewer acquire operations and thereby reduce the cost of dynamic checking.

Figure 3 shows the same four programs with acquire operations added. Note that
all four programs execute safely. Dynamic performs exactly the same checks that it
would in a dynamic system, acquiring each resource just before using it. Static performs
exactly one check at the very beginning of execution. Mixed1 and Mixed2 perform far
fewer checks than they would in a dynamic system, reserving all resources either at the
beginning or each time through the outer loop; for example, Mixed2 performs two orders
of magnitude fewer checks.

Notice that the new language abstractions provide us with a midpoint in the orig-
inal resource-usage condition consume ≤ quota. That is, we check statically that
consume ≤ acquire, and we check dynamically that acquire ≤ quota. Figure 4
illustrates this concept. Static checking lets us hoist and combine acquires, so that we
can use dynamically fewer of them and thus reduce the cost of checking.

3 Semantics of Annotated Programs

In this section, we formalize the meaning of expressions and commands, and make
explicit the precise ways in which execution can fail, following well-known approaches
to operational specifications of programming language constructs [1].

The execution state is a pair 〈σ, n〉 of an environment σ that maps variable names to
integer values and a natural number n that represents the amount of available resources.
We write [[e]]σ for the value of the integer expression e in the environment σ and [[b]]σ
for the value of the boolean expression b in the environment σ. For example,

[[cond(b, e1, e2)]]σ =
{

[[e1]]σ if [[b]]σ = true
[[e2]]σ if [[b]]σ = false

The other cases of the definition are straightforward. We use the notation σ[x := n] to
denote the environment that is identical to σ except that x is set to n.

3.1 Operational Semantics

We define the operational semantics of our language in terms of the judgment 〈c, σ, n〉 ⇓
R, which means that the evaluation of command c starting in state 〈σ, n〉 terminates
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σ � P

〈while b do c inv (P, e), σ, n〉 ⇓ InvFailure
WHILEINVFAILURE

[[b]]σ = false σ |= P n ≥ [[e]]σ

〈while b do c inv (P, e), σ, n〉 ⇓ 〈σ, n〉
WHILEF

σ |= P n ≥ [[e]]σ 〈c, σ, n〉 ⇓ 〈σ′, n′〉 [[b]]σ = true σ′ |= P n′ ≥ [[e]]σ′

〈while b do c inv (P, e), σ′, n′〉 ⇓ R

〈while b do c inv (P, e), σ, n〉 ⇓ R
WHILET

Fig. 5. Operational semantics for while loops

n ≥ [[e]]σ

〈consumee, σ, n〉 ⇓ 〈σ, n − [[e]]σ〉
C-OK

n < [[e]]σ

〈consumee, σ, n〉 ⇓ QuotaExceeded
C-FAIL

〈acquiree, σ, n〉 ⇓ 〈σ, n + [[e]]σ〉
A-OK

〈acquiree, σ, n〉 ⇓ AcquireFailed
A-FAIL

Fig. 6. Operational semantics for reservations

with result R. If there does not exist an R such that 〈c, σ, n〉 ⇓ R, we write 〈c, σ, n〉 ⇑
(pronounced “diverges”).

The result R can be one of the following types of values. If the command termi-
nates normally, then R is a new state 〈σ′, n′〉. If an acquire fails, then R is the error
AcquireFailed. If the program uses more resources than it has acquired, then R is the
error QuotaExceeded. If the program does not satisfy an invariant annotation, then R is
the error InvFailure. Thus, from an initial state, a command either diverges, terminates
normally, or terminates with one of three errors.

Figure 5 shows the operational semantics for while loops; the operational semantics
for the other standard constructs is straightforward.

Figure 6 shows the rules for evaluating resource-specific commands, which mod-
ify the amount of resources in the current state. Notice that only acquire replenishes
this state, so that if the program starts with no resources, it must acquire all the re-
sources that it uses. If enough resources are available, consume terminates normally,
consuming resources. If not enough resources are available, it yields a QuotaExceeded
error. The acquire command either increases the amount of available resources or
yields an AcquireFailed error. In this formalization, the acquire command is non-
deterministic. In practice, its behavior is determined by the operating system, which we
do not model here. Alternatively, we could add an explicit dynamic pool to model the
resources available to acquire.

4 Verifier

The verifier has two parts, the safety condition generator (SCG), which computes a
program’s safety condition (SC), and the prover, which actually proves the SC. We
define safety, state a soundness theorem, which says that the SC guarantees safety, and
state an optimality theorem, which says that the SC captures all programs that are safe.



Enforcing Resource Bounds via Static Verification of Dynamic Checks 317

scg(skip)(P, e) = (P, e)
scg(c1; c2)(P, e) = scg(c1)(scg(c2)(P, e))
scg(x := e′)(P, e) = ([e′/x]P, [e′/x]e)
scg(consumee′)(P, e) = (P ∧ e′ ≥ 0, e′ + cond(e ≥ 0, e, 0)
scg(acquire e′)(P, e) = (P ∧ e′ ≥ 0, e − e′)
scg(if b then c1 else c2)(P, e) = (cond(b, P1, P2), cond(b, e1, e2))

where (P1, e1) = scg(c1)(P, e)
and (P2, e2) = scg(c2)(P, e)

scg(while b do c inv (AI , eI))(P, e) = (AI ∧ ∀x.AI ⇒ cond(b, Q′, Q), eI)
where (P ′, e′) = scg(c)(AI , eI)
and Q′ = P ′ ∧ eI ≥ e′

and Q = P ∧ eI ≥ e
and x are the variables modified in c

Fig. 7. Definition of scg

4.1 Safety Condition Generator

Our verifier uses a variant of Dijkstra’s weakest precondition calculus [2]. We work with
“generalized predicates” (P, e), meaning that P holds and there are at least e resource
units available. Figure 7 shows the definition of the safety condition generator scg. We
define scg by recursion on the syntax of commands. Our definition matches the standard
scg definition for all commands that do not manipulate resources explicitly. For the com-
mands that manipulate resources, we extracted the definition from the soundness proof.
The scg definition also (1) checks the invariant that there are a non-negative amount
of resources available and (2) checks that the arguments to acquire and consume are
non-negative.

Although our language uses structured control (while loops), we can also define
scg for unstructured control (gotos), by associating an invariant with each label, or at
least those at the heads of loops, as determined by a standard dominator-based control
flow analysis.

4.2 Soundness

We write σ |= P to indicate that predicate P holds in state σ. Recall that σ supplies values
for the variables in P , so we define σ |= P as usual by induction over the propositional
connectives.

Definition 1. 〈σ, n〉 |= (P, e) iff n ≥ 0, σ |= P , and σ |= n ≥ e.

That is, n is non-negative, P holds in σ, and at least e resources are available in σ.

Definition 2. A tuple (c, 〈σ, n〉, (P, e)) is safe iff one of the following holds:

1. 〈c, σ, n〉 ⇑, or
2. 〈c, σ, n〉 ⇓ AcquireFailed, or
3. 〈c, σ, n〉 ⇓ 〈σ′, n′〉 where 〈σ′, n′〉 |= (P, e).

That is, the InvFailure and QuotaExceeded errors do not occur, and (P, e) holds if
execution terminates normally.
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Definition 3. A tuple (c, (P0, e0), (P, e)) is safe iff (c, 〈σ, n〉, (P, e)) is safe for all states
〈σ, n〉 such that 〈σ, n〉 |= (P0, e0).

That is, (P0, e0) guarantees safety. We can now state the soundness theorem:

Theorem 1. For all c, P, e, (c, scg(c)(P, e), (P, e)) is safe.

Proof: By structural induction on the derivation 〈c, σ, n〉 ⇓ R.

To check whether a given command is safe to execute, we check whether 〈σ0, 0〉 |=
scg(c)(true, 0). That is, we compute the command’s safety condition and check whether
it holds in the initial execution state σ0. If it holds, then c cannot produce the InvFailure
or QuotaExceeded errors. Thus, we do not check for them dynamically in actual prac-
tice, and we do not maintain the static resource pool n. Note that we do still check for
dynamic policy violations, which raise the AcquireFailed error.

4.3 Optimality

The soundness theorem shows that our scg prevents c from raising the InvFailure or
QuotaExceeded errors. The scg is also optimal, meaning that it generates the weakest
such condition, in the sense of:

Definition 4. (P0, e0) � (P1, e1) iff P0 ⇒ (P1 ∧ e0 ≥ e1).

That is, whenever (P0, e0) holds, so does (P1, e1). The optimality theorem states:

Theorem 2. For all c, P0, e0, P, e, if (c, (P0, e0), (P, e)) is safe,
then (P0, e0) � scg(c)(P, e).

Proof: By structural induction on the command c.

That is, whenever (P0, e0) guarantees safety, (P0, e0) implies scg(c) (P, e). Thus,
scg(c) (P, e) is the weakest such condition.

4.4 Prover

In this section, we show how to prove the safety conditions. We observe that the grammar
for predicates restricts the left side of implications to annotations, not full predicates.
Annotations are conjunctions of boolean expressions that are equalities or comparisons
between integer expressions.

We also observe that the our definition of scg respects this restriction. In particular,
all formulas on the left side of an implication arise from loop invariants and pre and post
conditions.

Thus, we use a simple theorem prover prove : a × p → Bool where prove(A,P )
holds if and only if A ⇒ P is valid. Valid means that the formula is true for all values
of the global variables and fresh constants introduced by the rule for universal quantifi-
cation. A predicate P is valid if and only if the prove(true, P ) is true. Figure 8 shows
the definition of prove.

To prove A ⇒ P , prove recursively decomposes P until it reaches a boolean
expression b. It then uses a satisfiability procedure sat to check whether A ⇒ b is valid.
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prove(A, b) = ¬sat(A ∧ ¬b)
prove(A, P1 ∧ P2) = prove(A, P1) ∧ prove(A, P2)
prove(A, A1 ⇒ P ) = prove(A ∧ A1, P )
prove(A, ∀x.P ) = prove(A, [a/x]P ) (a is fresh)
prove(A, cond(b, P1, P2)) = prove(A ∧ b, P1) ∧ prove(A ∧ ¬b, P2)

Fig. 8. Definition of prove

As usual, A ⇒ b is valid if and only if its negation A ∧ ¬b is unsatisfiable. Since the
form of A is restricted, we only call sat on a conjunction of (possibly negated) boolean
expressions. Since prove decomposes P using invertible rules, it is sound and complete
if and only if sat is sound and complete.

There are two notable satisfiability procedures that handle the linear inequalities that
scg generates. One is due to Nelson and Oppen [3] and implemented by the Simplify
prover [4] used in ESC/Java [5]. The other is due to Shostak [6] and implemented in PVS
[7]. In our experiments, we used ESC/Java and Simplify to generate and prove safety
conditions from Java code. For our class of conditions, Simplify is sound and complete.

Although we can probably trust our simple recursive prover, we may not want to
trust the more complex satisfiability procedure at its core. To address this problem, we
can use proof-carrying code [8] and require the program producer to send a safety proof
to the program consumer. If the satisfiability procedure generates verifiable proofs, then
the producer can create a safety proof by running the prove procedure and collecting
all the satisfiability proofs. The program consumer can check the proof by running the
prove procedure, just as the producer did, and checking each of the satisfiability proofs.
We may also choose to use PCC if if we enrich the language of invariants and replace
our simple prover with a more complex first-order prover.

4.5 Annotator

As it stands, our approach requires the programmer manually to insert acquires, write
loop invariants, and add function pre and post conditions. We are currently working on
a tool that automatically and correctly adds these assertions, similar in spirit to Houdini
[9]. Although optimal annotation is undecidable, the tool can “fall back” to inserting an
acquire before each consume. This annotation scheme is verifiable using the trivial
loop invariant true, and it removes the need for hand annotation when the programmer
does not care about efficiency. Beyond this “base line” performance, we plan to include
a knowledge base of common loop idioms and their optimal annotations.

One advantage of manual annotation is that the programmer can decide how early
to acquire resources. It is less costly to acquire all resources at once, but it is also “anti-
social” to hold unused resources, preventing other concurrently running programs from
using them. The programmer can also decide whether to acquire exactly the right amount
of resources, which may be difficult to determine, or whether to over-estimate.
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4.6 Renewable Resources

We can easily extend our framework to handle renewable resources, such as memory
and file handles, by allowing acquire and consume to take negative arguments. In
essence, acquire and consume manage two pools, a static pool and a dynamic pool.
With a positive argument, acquire moves resources from the dynamic pool to the
static pool. With a positive argument, consume moves resources out of the static pool.
With negative arguments, acquire and consume transfer resources in the opposite
direction. The consume operation is part of the TCB in that it represents (or annotates)
trusted library functions such as malloc (with positive argument) and free (with
negative argument). The acquire operation is untrusted, and downloaded code is free
to call it to obtain resources from the run-time system, or to release them back to the
run-time system.

5 Tar Example

In this section, we describe our experience with a version of tar written in Java. We
wanted to see how hard it would be to annotate a “real” program, whether we could report
policy violations earlier, and whether we could reduce the cost of dynamic checks. We
chose a security policy that limits the number of bytes that tar reads and writes to the
file system.

We began with a Java tar program from ICE Engineering [10] but revised it to
simplify the annotation process. Although tar contains 1700 lines of code, we only
needed to examine the 577 lines relevant to I/O.

We prototyped our ideas using ESC/Java [5], which checks pre and post conditions
for Java code using the Simplify theorem prover [4]. Using the definitions of acquire
and consume shown in Figure 9, ESC/Java generates essentially the same verification
condition as the function shown in Figure 7. Although ESC/Java has been excellent
for prototyping our ideas, it is not suitable for verifying code safety. First, it is un-
sound, because it does not throughly check loop invariants and side-effect assertions
(modifies). Thus, it cannot form the basis for a secure system. Second, it does not
generate certificates for later verification. Third, it is too large to run on mobile de-
vices. For these reasons, we are developing a lightweight implementation based on a
certificate-generating prover [11].

The implementation of our ideas in ESC/Java is straightforward. We maintain two
pools, a static pool and a dynamic pool. We represent the static pool using a ghost
variable that exists only at verification time. At the start of execution, the user’s security
policy fills the dynamic pool with the program’s resource quota. The acquire operation
transfers resources from the dynamic pool to the static pool. The consume operation
removes resources from the static pool. The invariants ensure that the pools never drop
below empty. Note that ESC/Java verifies each method’s implementation against its
specification using only the specifications, not the implementations, of the methods that
it calls.
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1 private static long dynamicPoolRead = 0;
2 //@ ghost public static long staticPoolRead = 0;
3 //@ invariant staticPoolRead >= 0;
4 //@ invariant dynamicPoolRead >= 0;
5

6 //@ requires n >= 0;
7 //@ ensures staticPoolRead == \old(staticPoolRead) + n;
8 //@ modifies dynamicPoolRead, staticPoolRead;
9 public static void acquireRead (long n) {

10 if (dynamicPoolRead >= n) {
11 dynamicPoolRead -= n;
12 //@ set staticPoolRead = staticPoolRead + n;
13 } else {
14 System.out.println ("Read quota exceeded!\n");
15 System.exit (1);
16 }
17 }
18

19 //@ requires n >= 0 && staticPoolRead >= n;
20 //@ ensures staticPoolRead == \old(staticPoolRead) - n;
21 //@ modifies staticPoolRead;
22 public static void consumeRead (long n) {
23 //@ set staticPoolRead = staticPoolRead - n;
24 }

Fig. 9. Implementation of acquire and consume in ESC/Java

1 long size = file.length ();
2 long q = size / recordSize;
3 long r = size % recordSize;
4 long size2 = q * recordSize;
5 long size3 = size2 + (r > 0) ? recordSize : 0;
6

7 Resources.acquireWrite (size3 + recordSize);
8 Resources.acquireRead (size);
9 out.writeHeaderRecord (entry);

10

11 for (int i = 0; i < q; ++i) {
12 in.read (buffer, 0, recordSize);
13 out.writeRecord (buffer);
14 }
15

16 if (r > 0) {
17 Arrays.fill (buffer, (byte) 0);
18 in.read (buffer, 0, r);
19 out.writeRecord (buffer);
20 }

Fig. 10. Java tar code excerpt
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The naivetar implementation requires two dynamic checks for each 512-byte block,
one for read and one for write. Using reservations, our implementation perform two
checks per file rather than two checks per block. Figure 10 shows the code to write a file
to the archive. We replaced the usual “while not EOF” loop with a for loop that counts
a definite number of blocks. This structure ensures that tar does not exceed its quota
even if a concurrent process lengthens the file.

Ideally, we would like to perform only two checks to create the entire archive. We
haven’t tried this experiment yet, but the code would need to prescan the directories to
build a table of file sizes. The prover would need to connect the loop that sums the file
sizes to the loop that reads the files.

We annotated each I/O method by computing its resource use in terms of the resource
use of its subroutines. If a method’s use was dynamic or difficult to state in closed form,
we added a dynamic check to stop its upward propagation (“the buck stops here”). Al-
though we experimented with annotations that overestimate resource use, we found that
precise annotations were simple enough. In total, tar required 33 lines of annotation.

We tested tar on a directory containing 13.4 mb in 1169 files, for an average file
size of 11.7 kb. The unannotated program performed 57210 I/O operations on 512-byte
blocks. Since each operation requires a dynamic check, it also performed 57210 dynamic
checks. The annotated program also performed 57210 I/O operations. However, since
it performed one dynamic check per file rather than per block, it only performed 2389
dynamic checks. That is, it performed almost 24 times fewer dynamic checks. Of course,
this ratio is the average file size divided by 512.

Because block I/O operations are much more expensive than dynamic checks, we
did not obtain a corresponding decrease in overall run time. However, our technique also
applies to operations where the check is expensive relative to the operation itself, such
as instruction counting and memory reference counting.

6 Related Work

Our work combines ideas from several areas: Dijkstra’s weakest precondition compu-
tation [2], Necula and Lee’s proof-carrying code [8], partial evaluation’s separation of
static and dynamic binding times [12], and standard compiler optimizations such as
hoisting and array bounds check elimination [13].

Since we combine static and dynamic checking, our work is only tangentially related
to purely static approaches such as Crary and Weirich’s resource bound certification [14]
or purely dynamic approaches such as the Java security monitor [15]. The implemen-
tations based on bytecode rewriting [16, 17, 18, 19, 20, 21, 22] are also purely dynamic,
since they add checks without performing significant static analysis.

Our approach is a non-trivial instance of Necula and Lee’s safe kernel extension
method [23]. They show that the OS designer can export an unsafe, low-level API if he
provides a set of rules for its use, and a static analysis that checks whether clients follow
these rules. By contrast, most designers wrap the low-level API in a safe but inefficient
high-level API that clients can call without restriction. For array bounds checking, the
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low-level API is the unguarded reference, while the high-level API guards the reference
with a bounds check. The usage rule is that the index must be in bounds.

In our case, the low-level API is acquire and consume. The high-level API,
which we intentionally avoid, immediately prefixesconsumebyacquire, so that each
consume has enough resources. This high-level API provides pure dynamic checking.
The usage rule is that we acquire some time before we consume, but not necessarily
immediately before. We extricate this useful, low-level API from its high-level wrapper
and provide a flexible but safe set of usage rules, which we show how to statically check
efficiently. The end result is a novel combination of static and dynamic checking.

On the surface, our work seems similar to approaches that place dynamic checks
according to static analysis, such as Wallach’s SAFKASI system [24] and Gupta’s elim-
ination and hoisting of array bounds checks [13]. These systems limit the programmer to
the safe, high-level API, but they inline and optimize calls to it according to the low-level
API’s usage rules and semantics. By contrast, like PCC, we separate verification from
optimization, which is untrusted and can be performed by the programmer or by an au-
tomated tool. The programmer can also ignore the high-level API and call the low-level
API directly.

Like us, Patel and Lepreau [25] describe a hybrid (mixed static and dynamic) ap-
proach to resource accounting. They use static analysis of execution time to reject some
overly expensive active network router extensions. They use dynamic checks to monitor
other, unspecified resources. At this level of detail, their static and dynamic checks are
not tightly coupled. However, they also use static analysis to locate dynamic network
polling operations. They bind their ideas closely to the complex active network setting
and do not extract a simple, reuseable API or a proof system for reasoning about it.

Independently of us, Vanderwaart and Crary proposed the TALT-R system [26].
They place a yield at most every Y instructions. That is, yield is similar to acquire(Y ).
However, since yield does not itself debit a resource quota, it does not enable the fine-
grained combination of static and dynamic checking.

7 Extensions and Future Work

Our approach can already handle (1) function pre and post conditions and (2) reuseable
resources such as memory, but we do not have space to describe these extensions here.

We are currently engaged in future work in several different areas. First, due to
the limitations of existing tools, we are developing an SCG and prover that can prove
resource-use safety for Java bytecode and produce proof witnesses. This effort presents
several engineering challenges, such as scaling our SCG to a larger language, tracking
source level annotations in bytecode, and building an efficient proof checker that per-
forms well on mobile devices. Second, we are designing a tool that automatically and
correctly annotates bytecode with resource reservations. Third, we are applying our tech-
niques to other security mechanisms such as stack inspection and access control. Fourth,
we are investigating situations where the check is expensive relative to the operation
itself, such as instruction counting and memory reference sandboxing.
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8 Conclusion

We have demonstrated a novel API for resource bounds enforcement that combines the
best of static and dynamic approaches, by providing the means to dynamically reserve
resources within programs and statically verify that the reservations are sufficient. Our
soundness theorem gives the code consumer total confidence that statically verified pro-
grams do not exceed the resource bounds specified in his safety policy. Our approach
gives the code producer (programmer or automated tool) complete freedom to optimize
the placement of dynamic checks. Thus, we provide a system for writing statically verifi-
able resource-safe programs that handles dynamic data and complex program structure.

By adapting ideas from weakest preconditions and proof-carrying code, we showed
how the code consumer can statically verify that resource reservations enforce his re-
source bounds policy. We presented a practical language that was carefully designed
to admit decidable yet efficient verification and proved soundness and optimality the-
orems. Finally, we described our experience in successfully annotating and verifying a
Java version of tar for resource safety.

Furthermore, our approach generalizes to APIs other than resource checking. At
present, code consumers hide these APIs in high-level wrappers that are safe but ineffi-
cient. Using our hybrid approach, code consumers can give code producers direct access
to efficient, low-level APIs without sacrificing safety.
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