
Enforcing Security in the AgentScape Middleware

Thomas B. Quillinan, Martijn Warnier, Michel Oey,
Reinier Timmer and Frances Brazier

Department of Computer Science
Vrije Universiteit

Amsterdam, The Netherlands
{thomasq, warnier, michel, rjtimmer, frances}@few.vu.nl

ABSTRACT
Multi Agent Systems (MAS) provide a useful paradigm for
accessing distributed resources in an autonomic and self-
directed manner. Resources, such as web services, are in-
creasingly becoming available in large distributed environ-
ments. Currently, numerous multi agent systems are avail-
able. However, for the multi agent paradigm to become a
genuine mainstream success certain key features need to be
addressed: the foremost being security. While security has
been a focus of the MAS community, configuring and man-
aging such multi agent systems typically remains non-trivial.
Well defined and easily configurable security policies address
this issue. A security architecture that is both flexible and
featureful is prerequisite for a MAS.

A novel security policy enforcement system for multi agent
middleware systems is introduced. The system facilitates a
set of good default configurations but also allows extensive
scope for users to develop customised policies to suit their
individual needs. An agent middleware, AgentScape, is used
to illustrate the system.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer-
Communication Networks—Distributed Systems

Keywords
Multi Agent Systems, Security Policies, AgentScape

1. INTRODUCTION
Distributed multi agent systems provide a powerful para-
digm for building large scale distributed middleware sys-
tems [11, 12]. Features such as mobility, autonomy and
adaptivity make these systems attractive, particularly in
highly dynamic environments such as e-government, e-health
and e-commerce applications. However, mobility and auton-
omy also provide new challenges, especially if security is of
key concern.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee. MidSec’08, December 1-5, 2008 Leuven,
Belgium. Copyright 2008 ACM 978-1-60558-363-1/08/12... $5.00

The security challenges in multi-agent systems are numer-
ous: agent middleware platforms need to be protected from
malicious agents. Such agents might steal sensitive informa-
tion or use resources without paying for them. Agents also
need to be protected from malicious hosts [18, 3, 16]. This
is especially challenging as in essence the environment is not
under the control of the agent owner and can, thus, not be
trusted. Untrusted hosts can view and alter the state of the
agent, or even delete the agent altogether.

These challenges have been recognised in the multi agent
systems community and have been previously addressed in
two areas. Firstly, they have been addressed through the
development of agent systems that are especially tailored for
security, such as SeMoA [17] and Mansion [22]. Secondly,
dedicated extensions to general purpose agent middleware
systems have been created, such as the SAgent framework [7]
for JADE [2], and in mobile agent application systems, such
as Ajanta [10]. While these systems provide the ability to
enforce security policies for agents, defining, configuring and
auditing these policies is not straightforward. This paper
describes a security architecture that addresses some of the
issues found in existing solutions.

Security policies allow users of agent systems to easily man-
age the security features of the multi agent system of their
choice. Developers of agent systems have the opportunity to
ship a number of security policies with their software. For
example, a good default policy is one that will not prevent
users from performing vital tasks, but will protect against
some of the most common security issues. Another example
is a ‘high security’ policy that should be used in security
critical environments. Such policies would be much more
restrictive. The multi agent middleware system, AgentSc-
ape [9], is used to illustrate the security policy framework.

The remainder of this paper is organised as follows: the fol-
lowing section gives some general background on the Agent-
Scape middleware. The security threats that are common
to all agent middlewares are described in Section 3. Sec-
tion 4 discusses the security architecture. The paper con-
cludes with a discussion.

2. BACKGROUND
AgentScape is an agent platform that provides the middle-
ware infrastructure needed to support mobility, security,
fault tolerance, distributed resource and service manage-
ment, and services access, to agent applications. The multi-

level AgentScape middleware infrastructure [14] has been
designed to be extensible.

2.1 Agents
Intelligent software agents are mobile applications that are
launched by a user or another agent and obtain rights and
permissions to use resources and access data. Agents have
the ability to be created; to migrate between hosts; to com-
municate with other agents and their owner, and to access
resources and services.

Example 1
A simple example of an agent application is an application
that seeks specific products for the agent’s owner on the
Internet. The agent migrates to different websites that the
owner uses and determines the best price for the specific
product. Then the agent relates this price and the details
to the agent’s owner. 4

2.2 AgentScape
Within AgentScape, agents are active entities that reside
within locations, and services are third-party software sys-
tems accessed by agents hosted by the AgentScape mid-
dleware (see Figure 1). Agents in AgentScape can com-
municate with other agents and can access services. This
communication is exclusively managed by the middleware.
Agents can also migrate from one location to another. Lo-
cations are made up of one or more hosts. AgentScape

AgentScape
middleware

AgentScape
middlewaremiddleware

AgentScape AgentScape
middleware

Mac OS X

AgentScape
middleware

Solaris

L
o

c
a

ti
o

n
 B

service

agent

W2K/XPLinux Solaris

L
o

c
a

ti
o

n
 A

Figure 1: Conceptual model showing two AgentSc-
ape locations, each consisting of a number of hosts.

has been designed as a multi-layered architecture with (1)
a small middleware kernel, called the AgentScape Operat-
ing System (AOS) kernel [21], that implements basic mecha-
nisms and (2) high-level middleware services that implement
agent platform specific functionality and policies (see Fig-
ure 2). The current set of middleware services includes agent
servers, host managers, location managers, a lookup service
and a web service gateway. The policies and mechanisms of
the location and host manager infrastructure are based on
negotiation and service level agreements [13]. Agent servers

component

interface of

component

AgentScape

kernel interface

AgentScape

API

AgentScape

Agent

AOS kernel

Agent
Server

Host
Manager

Location
Manager

Service
Gateway

Web

Figure 2: An AgentScape host operating as a loca-
tion manager.

provide agent access to the AgentScape middleware Multi-
ple code base support in AgentScape is managed through
the provision of multiple agent servers, at least one per code
base. All interactions between agents and locations/hosts
are managed by Agent servers.

3. THREATS IN AGENT MIDDLEWARE
Securing agent middleware systems entails first identifying
the security threats that these systems face. There are a
number of basic threats with agents executing on remote
hosts. These threats can be placed into two categories: (i)
Malicious Hosts and (ii) Malicious Agents.

3.1 Malicious Hosts
Malicious hosts intentionally attack agents that are execut-
ing on the host, or possibly on other hosts. There are a num-
ber of attack types, ranging from denial of service attacks
to data stealing or injection attacks. Hosts are assumed to
have complete control over their own systems. The most
straightforward solution is for agents to migrate to hosts
that they ‘trust’ not to be malicious. Another approach
uses trusted hardware to verify the actions of the host are
not malicious. Finally, security protocols, either using a
trusted third party [1], or a threshold scheme [20, 23] can be
used to address the malicious host problem. This problem
is not addressed further in this paper.

3.2 Malicious Agents
Malicious agents attempt to gain access to resources on a
host that they are not authorised to use. Such access in-
cludes attempts to access private data or additional compu-
tational resources that have not been negotiated.

Securing hosts from malicious agents entails monitoring ev-
ery action that the agent attempts on the host. Whenever
an agent makes a call to the middleware API, it is first me-
diated upon by a security manager. The security manager
checks the system policy to determine if an action, such as
migration and resource access, should be allowed or denied.
For example, a host could decide that it is not willing to
allow an agent to migrate anywhere except directly back to
the owner’s host, or, perhaps, to another host that has been
properly authenticated to the current host. This is known
as the home based approach [22]. However, the future mi-
gration to ‘untrusted’ hosts cannot be guaranteed in this
manner.

In Java [6], one of the primary solutions towards securing
mobile code is to execute any remote code in a protection
domain or sandbox. A sandbox limits the set of operations
that the remote code may call. Sandboxing typically encom-
passes network access as well as accessing the local filesys-
tem. Applications that need access to these restricted func-
tions have to use other approaches. The sandboxing tech-
nique is not exclusive to Java–other platforms [21] also use
sandboxing.

3.3 Related Work
Several multi-agent systems have identified security as a
concern, and have developed strategies towards addressing
security threats. The Java Agent Development Platform
(JADE) [2] is a popular FIPA-compliant agent middleware

platform. There are a number of extensions to JADE that
provide a security architecture to the system, in particular
S-Agent [7] and the JADE-S plugin [15].

Secure Mobile Agents (SeMoA) [17] is an extensible Agent
platform, written in Java, designed to counter certain proto-
col attacks and malicious agents. SeMoA has a RBAC-based
access control architecture. The Cougaar Multi Agent Sys-
tem [8] is designed to address scalability, reliability and sur-
vivability. Cougaar does not have an explicit access control
mechanism, but does support role based authentication.

Each of these systems provides centralised access control. In
contrast, in the following section, a security architecture is
presented that addresses the security requirements of a mo-
bile execution environment in a distributed manner. This
architecture has a particular emphasis on design, configura-
tion and management of security policies for an agent mid-
dleware.

4. SECURITY IN AGENTSCAPE
This section outlines a comprehensive solution to the mali-
cious agent threat in an agent middleware system, AgentSc-
ape. Agent communication is described in Section 4.2. Sec-
tion 4.3 then outlines how creation of agents and migration
between hosts and resource and service access is managed.

In AgentScape, a Public Key Infrastructure (PKI) is in-
stalled. Agent owners, locations and hosts have public key
pairs. This ensures that locations and hosts can mutually
authenticate and set up secure communication channels, us-
ing SSL. The agent environment also provides that every
agent has a globally unique identifier (GUID). This GUID
is an identifying reference used by the middleware to address
the agent and perform operations on it, such as deliver mes-
sages, stop and/or pause, migrate or even kill and/or remove
the agent.

The GUID is private to the middleware. Thus, the GUID
cannot be used to publicly address the agents and to allow
agents to send messages to each other. This is achieved by
introduction of additional references for agents called han-
dles. An agent can have as many handles as it requires.
Handles are generated by computing the secure hash (for ex-
ample, SHA-256) of the GUID concatenated with a counter.
Handles can be published publicly, making access to the
agents possible. For example, by publishing the handle in a
lookup service or by communicating the handle directly to
other agents.

4.1 Identity Management
Identity management in the context of agent based systems
requires that agents are somehow ‘bound’ to their owner.
An agent consists of meta-data, (executable) code and data
(that the agent has ‘found’ on a particular host). The meta-
data of the agent contains, at least the following: the GUID
of the agent, the name of the agent owner and a signed (by
the owner) hash of the agent code. The signature ensures
that agent and owner are bound to each other.

When an agent is injected, the agent platform checks if the
agent code is indeed signed. If the verification is successful
the agent obtains a GUID and an owner handle is returned

to the agent owner. Assuming the owner keeps this handle
secret, it can be used to communicate between agent and
owner. Next, the injected agent is started by the agent plat-
form. If the agent misbehaves in some way, the owner can
be contacted and be held responsible for the agent’s actions.

4.2 Communication Security
AgentScape currently supports SSL-based communication
between hosts and/or locations. This provides the basis for
hosts/locations to authenticate each other. Furthermore,
all messages transmitted between hosts/locations, including
migration of agents, are encrypted to ensure confidential-
ity. The PKI is used to link host/location identities in an
organised manner.

Integrity support is also currently provided by AgentScape.
This is implemented through the use of cryptographic prim-
itives to create a digitally signed checksum of data transmit-
ted between AgentScape hosts/locations.

4.3 Access Control in AgentScape
Once the basic security features, such as authentication and
identity management mechanisms, are in place, the next re-
quirement is an authorisation mechanism. There are a num-
ber of principals involved in AgentScape, such as location
and world administrators, resources and their administra-
tors, and agents and their owners. There are also a number
of basic actions that agents use to achieve their goals. This is
a structure that can be readily managed using a Role Based
Access Control (RBAC) [19, 24] mechanism.

RBAC is an access control architecture that models roles,
users and permissions. RBAC is designed to reflect real-
world relations between users and permissions. Roles define
the logical tasks that users can perform. Users become mem-
bers of roles and roles are assigned permissions.

Example 2
Defining roles, users and permissions can be straightforward.
In this simple example, a number of permissions are defined
and assigned to roles. Users are then associated with these
roles. Table 1 shows some example Role, Permission pairs.
In this case, each role has a number of permissions. These
permissions reflect the capabilities of the role.

Role Permission
BasicAgent Migrate, Execute
TrustedAgent Migrate, Execute, AccessRes
AgentOwner Inject, GetResult
ResAdmin AccessRes, ChangePerms, GetLogs

Table 1: RBAC Example Role Permission Table

Role User
BasicAgent SimpleAgent1, SimpleAgent2
TrustedAgent ClaireTradingAgent, DaveStockAgent
DatabaseAccess Alice, Claire
ResAdmin Trent, Steve

Table 2: RBAC Example Role User Table

Extending this example, Table 2 represents a set of users
who have been assigned to the roles shown in Table 1. These

users are shown as textual names, but are represented by a
unique identifier in an AgentScape RBAC policy. 4

Agent owners form the base of the trust mechanism. Own-
ers are ultimately responsible for the actions of their agents.
Therefore, by default, agents hold the permissions granted
to their owners. As access to important resources must be
specifically controlled, agent owners that wish to access such
resources must be explicitly specified in the RBAC policy.
Developing an RBAC system in AgentScape entails deter-

Agent
Server

Security Manager
API

Agent
Policy

PKI

Figure 3: AgentScape Security Manager.

mining the permissions that will be supported. The RBAC
system can be dynamically updated, that is, roles can be
changed, users can be added or removed from roles and per-
missions can be assigned and removed from roles. However,
as the enforcement mechanism is built into the AgentScape
Security Manager (see Figure 3), security relevant actions
are defined by the middleware, and the permissions reflect
these actions. Managing these policies is the responsibility
of the administrator of each location and/or host.

Whenever an agent attempts to perform a security relevant
action, the Security Manager checks that the agent is au-
thorised to perform the action. This is a two step process.
First, the Security Manager determines the GUID of the
agent and determines the role, or roles, that the GUID is a
member of. Second, the Security Manager determines if any
of these roles is authorised to perform the requested action.

A selection of the basic security relevant actions is shown in
Table 3. This is not the complete set of actions, but are the
actions that are most commonly used when writing security
policies for locations.

Action Principal Description
Migrate Agent Migrate from one Location

to another.
Inject Owner Launch an Agent in a

Location.
AccessRes Agent Access a resource

provided by a location.
Negotiate Agent Negotiate access to a

remote location.
Lookup Agent Access yellow or white

pages lookup service.
SendMsg Location/ Send a message to a

Agent remote location.
RecvMsg Location/ Receive a message from a

Agent remote location.

Table 3: Common Security Relevant Actions

The security relevant actions shown in Table 3 represent the

basic set of actions that are found in AgentScape and reflect
the abilities of agents as outlined in Section 2. These ac-
tions are extended with parameters. These parameters are
used to further refine the granularity of permissions. For
example, negotiation can be restricted to specific types of
resources. Parameters are defined in parentheses. A specific
parameter, ‘*’, is supported to allow all types of an action
to be permitted by a role. This is utilised to avoid having
to explicitly specify every type of resource and every loca-
tion when wishing to grant access to them. Permissions are
positive, that is, if permission to access a resource is not
explicitly granted, access to it is denied.

Each location and host can have its own RBAC policy. De-
termining the agent owners and other hosts/locations to
trust is a task for each AgentScape host and location ad-
ministrator. A location administrator defines a set of roles
and assigns trusted principals to these roles and assigns per-
missions to those roles for that location. Hosts can similarly
have different restrictions to the locations. Both policies are
enforced together; actions are only permitted when both
policies agree.

In most cases, locations and hosts typically utilise generic
policies for all agents. That is, most locations and hosts
are not expected to specifically restrict access to resources,
unless these resources are particularly important. For ex-
ample, most hosts will allow all agents access to CPU and
memory resources, but access to special databases will be
more carefully controlled.

Example 3
Consider the Role/Permission table shown in Table 4. In

Role Permission
BasicAgent Migrate(*), Execute,

AccessRes(CPU,Memory)
TrustedAgent Migrate(*), Execute,

AccessRes(CPU,Memory,PriceDB)

Table 4: Database Resource Role-Permission Table

this table, normal (BasicAgent) agents are allowed to exe-
cute and access CPU and Memory resources. Trusted agents,
that is, agents who are in the role TrustedAgent, are autho-
rised to access the price database. 4

Parameterisation of permissions allows more fine-grained ac-
cess to system resources to be defined. This can be utilised
to define policies such as defining the locations that agents
may migrate to from this location.

4.4 Accessing AgentScape Locations
When a principal wishes to inject an agent into an Agent-
Scape location, the principal first contacts the location and
they perform two-way authentication. Once authenticated,
a location will accept agents injected into that location by a
specific principal if, and only if, the principal is authorised
to perform injections.

Once an agent is injected into a location, the location assigns
a GUID to the agent instance. This GUID is also automat-
ically entered as a new user into the Role-User table and

assigned to, at most, the same roles as the owner. Owner
roles are defined by each location individually. Typically, a
default role is used for unknown agents and owners. This
allows the efficient lookup of permissions, without requiring
a separate lookup when performing security mediations. In
order to manage the growth of the Role-User table, when an
agent successfully migrates to another location, or completes
its task, the entry is removed from the table. If owners are
removed from a role, any agent belonging to that owner are
also removed.

The owner generates a public/private keypair and then cre-
ates and signs an X.509 certificate [4] for the agent, including
the GUID, and specifies any access control restrictions that
the owner may wish to place on the agent. These restrictions
are codified in the form of additional attributes, as a X.509
attribute certificate [5]. For example, the owner may wish
to restrict the agent from accessing certain databases that
the owner may have permission to use. These attributes
are used during negotiation and migration to determine the
roles to place the agents. The private key is held by the
agent owner and they use it to sign a hash of the agent code
to allow agents to authenticate themselves with remote lo-
cations. This signed hash is stored in the meta-data of the
agent.

Example 4
Example 1 outlines an agent based solution to purchasing
items on the Internet. In this system, the owner is au-
thorised to purchase items at a large number of websites –
namely the websites with whom the owner has an account.
However, when an owner dispatches an agent for a specific
item, they may not wish the agent to access certain web-
sites. Therefore, while the owner is authorised to access
these websites, the agent must not migrate to these sites. 4

Migration of an agent from one location to another uses a
similar protocol to injection. First, the locations must per-
form mutual authentication. The agent will then authen-
ticate itself with the target location. This is achieved by
sending the certificate of the owner of the agent to the target
location, along with a hash of the agent GUID (the handle)
and a hash of the agent code. These are all signed by the
owner using the agent’s private key created during injection.
The target location can then verify the identity of the owner
of the agent. The agent then negotiates for any resources on
the target location that it will require. If this negotiation is
successful, the target location’s Role-User table is updated
with the GUID of the agent. The agent then migrates to
the target location. Whenever an agent attempts to access
a resource on a location, the agent middleware intercepts
that request and ensures that the agent is authorised to ac-
cess the resource and that access to the resource has been
negotiated.

4.5 AgentScape Security Policies
While security can be a major concern for resource and lo-
cation administrators, it is not always the case that these
principals are either particularly interested, or trained to,
define their own security policies. For this reason, it is ad-
visable to define a set of ‘good default’ policies.

Good default policies range from simple policies, used for
systems where agents are executing in a well known envi-
ronment, to more restrictive policies, where agents are exe-
cuting in a more hostile environment.

While a simple system is common in small, well-understood
environments, the provision of services on the web, with
the associated access of these services by software agents
demonstrates that such an environment cannot be assumed.

Example 5
In a hostile environment, locations are controlled by enti-
ties that are not always known by every principal. Agents
are authenticated to their initial location as before, but the
authorisation mechanism is now used to enforce location-
specific restrictions. The security manager monitors usage
of specified resources and ensures that all accesses are re-
stricted by the negotiated limits. Any breaches of these
limits are logged and execution of the agent responsible is
immediately suspended.

In a hostile environment migration is only authorised be-
tween the original ‘home’ host–the host where injection of
the agent took place–and remote hosts. Therefore, migra-
tion from one remote host to another forces the agent to
first return to the home host. This is enforced to prevent
malicious hosts attempting to inject or read data developed
from a prior migration. For example, the result of a price
check from a prior website should not be available when
performing a price check at a competitor. 4

Within a hostile environment, agents should not only be
constrained to a minimal set of actions that each location
and host provides, but also the actions that the owner of
the agent allows the agent to perform on their behalf. These
actions include the ability to negotiate, migrate, inject and
access resources.

The security architecture for AgentScape outlined in this
section provides a flexible means to define and manage agent
access to specific functionality. Flexibility is provided in two
areas: firstly, hosts and locations have the ability to control
access to resources that they control. Secondly, owners can
constrain their agents from performing actions that, while
they are authorised by the locations and hosts, are not de-
sirable to the owner.

5. CONCLUSIONS AND FUTURE WORK
A security policy management system for multi agent sys-
tems was introduced. This system is based on the analysis
of security threats that apply to all agent middlewares. The
system facilitates a set of good default configurations, but
also allows extensive scope for users to develop customised
policies to suit their individual needs. The agent middleware
AgentScape has been extended to support these security fea-
tures.

While several existing agent middlewares provide a security
architecture, they do not encompass the flexibility and con-
trol that the solution outlined in this paper provides. For
example, SeMoA and Cougaar approach security from the
premise of reliability. While SeMoA does provide an access

control mechanism, it is a centralised system and does not
allow individual hosts and locations to define their own poli-
cies. JADE-S allows decentralised access control policies.
However, these policies are defined in an ad hoc manner, us-
ing trust management credentials. Trust management pro-
vides a decentralised approach to access control. Typically,
credentials are held by the principals that are authorised by
the credential and only produced when needed to prove ac-
cess rights. Therefore, it is difficult to determine a priori
the permissions associated with each principal. While trust
management credentials are also utilised to some extent by
AgentScape, these are used to inform the RBAC system and
are more explicitly defined. In the solution presented in this
paper permissions are stored in a distributed manner, yet the
permissions are held by the resource administrators, not the
users. The trust management credentials serve to limit ex-
isting permissions. Therefore, determining the permissions
associated with principals is much more straightforward.

Acknowledgments
This work is a result of support provided by the NLnet Foun-
dation (http://www.nlnet.nl), the ALIVE project (FP7-
IST-215890), the ACCESS project funded by the NWO To-
ken program and the Dutch Ministry of Economic Affairs,
grant no. BSIK03024 in the Interactive Collaborative Infor-
mation Systems (ICIS) project (http://www.icis.decis.
nl/). The authors would also like to thank the anonymous
reviewers for their help.

6. REFERENCES
[1] J. Algesheimer, C. Cachin, J. Camenisch, and

G. Karjoth. Cryptographic security for mobile code.
Proceedings of the 2001 Symposium of Security and
Privacy, 00:0002, 2001.

[2] F. Bellifemine, A. Poggi, and G. Rimassa. JADE–A
FIPA-compliant agent framework. Proceedings of
PAAM, 99:97–108, 1999.

[3] E. Bierman and E. Cloete. Classification of malicious
host threats in mobile agent computing. In
Proceedings of the 2002 annual research conference of
the South African institute of computer scientists and
information technologists on Enablement through
technology, pages 141–148. RSA, 2002.

[4] CCITT Draft Recomendation. The Directory
Authentication Framework, Version 7, Nov. 1987.

[5] S. Farrell and R. Housley. An internet attibute
certificate profile for authorization. Request for
Comment (RFC) 3281, IETF, April 2002.

[6] L. Gong. Inside JavaT M 2 Platform Security. The
JavaT M Series. Addison Wesley, June 1999. ISBN:
0-201-31000-7.

[7] V. Gunupudi and S. R. Tate. Sagent: A security
framework for jade. In Proceedings of the 5th
International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS06). ACM, 2006.

[8] A. Helsinger, M. Thome, and T. Wright. Cougaar: a
scalable, distributed multi-agent architecture. In IEEE
International Conference on Systems, Man and
Cybernetics, 2004.

[9] IIDS. AgentScape Agent Middleware.
http://www.agentscape.org.

[10] N. M. Karnik and A. R. Tripathi. A security

architecture for mobile agents in ajanta. ICDCS,
00:402, 2000.

[11] D. Kotz and R. Gray. Mobile Agents and the Future
of the Internet. Operating Systems Review, 33(3):7–13,
1999.

[12] M. Luck, P. McBurney, and C. Preist. Agent
Technology: Enabling Next Generation Computing (A
Roadmap for Agent Based Computing). AgentLink,
2003.

[13] D. G. A. Mobach, B. J. Overeinder, and F. M. T.
Brazier. WS-Agreement based resource negotiation
framework for mobile agents. Scalable Computing:
Practice and Experience, 7(1):23–36, 2006.

[14] B. J. Overeinder and F. M. T. Brazier. Scalable
middleware environment for agent-based internet
applications. In Proceedings of the Workshop on
State-of-the-Art in Scientific Computing (PARA’04),
volume 3732 of LNCS, pages 675–679, Copenhagen,
Denmark, 2004. Springer.

[15] A. Poggi, M. Tomaiuolo, and G. Vitaglione. Security
and trust in agent-oriented middleware. In
R. Meersman and Z. Tari, editors, OTM Workshops
2003, number 2889 in LNCS, pages 989–1003.
Springer-Verlag, 2003.

[16] V. Roth. Programming Satan’s agents. In In
Proceedings of the 1st International Workshop on
Secure Mobile Multi-Agent Systems, 2001.

[17] V. Roth and M. Jalali. Concepts and architecture of a
security-centric mobile agent server. In Proc. Fifth
International Symposium on Autonomous
Decentralized Systems (ISADS 2001), pages 435–442.
IEEE Computer Society, 2001.

[18] T. Sander and C. Tschudin. Protecting Mobile Agents
Against Malicious Hosts. Mobile Agents and Security,
60, 1998.

[19] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE
Computer, 29(2):38–47, February 1996.

[20] S. R. Tate and K. Xu. Mobile agent security through
multi-agent cryptographic protocols. In Proceedings of
the 4th International Conference on Internet
Computing, pages 462–468, Las Vegas, NV., 2003.

[21] G. van ’t Noordende, A. Balogh, R. F. H. Hofman,
F. M. T. Brazier, and A. S. Tanenbaum. A secure
jailing system for confining untrusted applications. In
Proc. 2nd International Conference on Security and
Cryptography (SECRYPT), pages 414–423, July 2007.

[22] G. van ’t Noordende, F. M. T. Brazier, and
A. Tanenbaum. Security in a mobile agent system. In
Proceedings of the First IEEE Symposium on
Multi-Agent Security and Survivability, PA, 2004.

[23] M. Warnier, M. A. Oey, R. J. Timmer, B. J.
Overeinder, and F. M. T. Brazier. Enforcing integrity
of agent migration paths by distribution of trust. Int.
J. of Intelligent Information and Database Systems,
2008.

[24] X. Zhang, S. Oh, and R. Sandhu. PDBM: A flexible
delegation model in RBAC. In Proceedings of the 7th
ACM Symposium on Access Control Models and
Technologies (SACMAT 2003), Como, Italy, 2003.

