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Abstract Situation Awareness is defined by Endsley as

‘‘the perception of the elements in the environment within a

volume of time and space, the comprehension of their

meaning, and the projection of their status in the near

future’’ and it deals with the continuous extraction of

environmental information and its integration with prior

knowledge for directing further perception and anticipating

future events. To realize systems for Situation Awareness,

individual pieces of raw information (e.g. sensor data)

should be interpreted into a higher, domain-relevant con-

cept called ‘‘situation’’, which is an abstract state of affairs

interesting to specific applications. The power of using

‘‘situations’’ lies in their ability to provide a simple,

human-understandable representation of, for instance,

sensor data. The aim of this work is to propose an overview

of the applications of Computational Intelligence and

Granular Computing for the implementation of systems

supporting Situation Awareness. In this scenario, several

and heterogeneous Computational Intelligence models and

techniques (e.g. Fuzzy Cognitive Maps, Fuzzy Formal

Concept Analysis, Dempster–Shafer Theory of Evidence,

Ontologies, Knowledge Reasoning, Evolutionary Com-

puting, Intelligent Agents) can be employed to implement

such systems. Moreover, in a Situation Identification pro-

cess, huge volumes of heterogeneous data need processing

(e.g. fusion). With respect to this issue, Granular Com-

puting is an information processing theory for using

‘‘granules’’ (e.g. subsets, intervals, fuzzy sets) effectively

to build an efficient computational model for dealing with

the above-mentioned data. The overview is proposed

coherently to both methodological and architectural view-

points for Situation Awareness.

Keywords Situation awareness � Granular computing �

Computational intelligence � Semantic web

1 Introduction

Endsley (1995) defines Situation Awareness (SA) as ‘‘the

perception of elements in the environment within a volume

of time and space, the comprehension of their meaning, and

the projection of their status in the near future’’. The SA

model proposed by Endsley is shown in Fig. 1.

The model has three levels (Endsley 2011): (i) percep-

tion, which involves the capability to perceive the status,
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attributes and dynamics of the relevant elements of the

environment, (ii) comprehension, which refers to the

understanding of what data and cues perceived mean in

relation to goals and objectives, and (iii) projection, which

relates to the capability of projecting in near future the

elements recognized. Endsley’s model is not linear but

iterative, with understanding driving the search for new

data and new data coming together to feed understanding.

Furthermore, it must not be understood as a pure data-

driven process since factors such as goals, mental models,

attention, working memory, expectations play a pivotal

role in SA. In the following we report and summarize some

of the key factors of the SA model described in Endsley

(2015b) that emphasize other parts of the model:

• goals and goal-directed processing have a key role in

directing attention and interpreting the significance of

perceived information; alternating goal-driven and

data-driven processing in processing information in

the environment is also important;

• the use of mental models for directing attention to

relevant information, providing a means for integrating

different bits of information and comprehending its

meaning (as relevant to current goals), and allowing

people to make useful projections of likely future

events and states;

• pattern matching to schema, prototypical states of the

mental model, is such to provide rapid retrieval of

comprehension and projection for the recognized

situation through critical cues and, in many cases,

single-step retrieval of appropriate actions for the

situation;

• a linkage between goals and mental models is such to

drive the development or selection of plans and scripts

for directing action.

From its conception, several other models of SA have

been defined such as Situated SA, Sensemaking, Dis-

tributed SA that have been reviewed and analysed by

Endsley in comparison to her model in Endsley (2015a, b)

concluding that in many cases these models provide

explanations that are quite similar. Typically, models of SA

foresee the execution of a challenging task, namely Situ-

ation Identification or Recognition (Ye et al. 2012) that can

be exemplified in a generic workflow composed by three

steps: (i) gathering data from a sensor network or other

information sources, (ii) deriving more abstract elements

from sensor data by including contextual information, and

Fig. 1 Endsley’s Model (from Endsley 2011)
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(iii) identifying occurring situations by considering the

elements provided by the second step and their relation-

ships. The complexity of these tasks is due to several

factors like variety of admissible situations, uncertainty and

imprecision of data, dynamic nature of the observed

environments and so on. The survey of Ye et al. (2012)

reports several techniques for situation identification that

are such to deal with the problems above mentioned.

Despite that, it is worth mentioning that situation identifi-

cation is only a phase of SA and processing information

according to SA requires a more articulated framework,

addressing issues of all the three levels of Endsley model

and considering the key factors mentioned in the beginning

of the section.

A concrete help comes from the situation theory (Devlin

2006) and by its implementation in formal models such as

ontology like in the study by Kokar et al. (2009) or also

SAW (Matheus et al. 2003) allowing expressing situations

in a common language with a clear semantic and that can

be processed by agents. To this purpose, the authors in

Jones et al. (2011) have investigated the adoption of agent

technology to support traditional human-based SA and

proposed a framework with a set of recommendations on

how agents can generate, represent and maintain Level 2

and Level 3 SA. On the basis of these recommendations, it

is possible to define a hierarchy of agents that, supported by

semantic web technologies and ontologies representing

contextual information and situations, can cover all the

phases of an SA model.

As the reader understands, a computational theory of

perception can be very useful for agent-based SA. Zadeh

(2001) presents this theory as a way to deal with real-world

problems in which decision-relevant information is a

mixture of measurements and perceptions. According to

Zadeh, perceptions are f-granular, meaning that (1) the

boundaries of perceived classes are unsharp and (2) the

values of attributes are granulated, with a granule being a

clump of values (points, objects) drawn together by indis-

tinguishability, similarity, proximity, and function. Granu-

lar computing (GrC) (Pedrycz 2001; Yao and Zhong 2007;

Yao 2005; Yao et al. 2013; Salehi et al. 2015) is an

information processing paradigm focused on representing

and processing basic chunks of information, namely

information granules, and finds its origin in the intuition of

Zadeh. GrC is today a dynamic research area attracting

many practitioners and researchers. Despite that, there are

not many applications of GrC to SA and it is quite sur-

prising given the importance that both these research areas

give to human-centric information analysis and perception-

based reasoning.

In this paper, we aim to pave the way for an integration

of these areas via (i) the definition of an high-level view

describing how concepts, principles and perspectives of

GrC fit into SA model (Sect. 2), (ii) an overview of GrC

methods and techniques that can be useful to address some

issues of the three levels of the Endsley’s model (Sect. 3),

and (iii) a proposal showing the adoption of computational

intelligence and Semantic Web techniques to support the

development of a multi-agent-based framework for SA

aligned with the GrC principles (Sect. 4). The proposal

described in Sect. 4 currently covers just methodological

and architectural aspects of an SA framework without any

claim of completeness. Some relevant aspects, such as

evaluation of SA and performance measurements, will be

part of future investigations. We conclude the paper with

our final remarks and some perspectives on how SA and

GRC can be integrated in a systematic way (Sect. 5).

2 Granular computing and situation awareness:

the high-level vision

Human understanding and human problem solving involve

perception, abstraction, representation and understanding

of real-world problems, as well as their solutions, at dif-

ferent levels of granularity. The concept of granularity is

pulled by the need for simplification, clarity, low cost,

approximation, and tolerance of uncertainty (Yao 2000). In

this context, GrC attempts to formally analyse and define

methods for granule-oriented problem solving (Yao et al.

2013). Thus, it is easy to understand that GrC is focused on

representing and processing basic chunks of information,

namely information granules. Information granules are

collections of entities that are aggregated together on the

basis of their similarity, functional adjacency, indistin-

guishability or alike. Typically, the process of forming

information granules is referred to as information granu-

lation. Granulation of information is a common activity of

humans carried out with the intent of better understanding

of the problem. Granulation serves as an efficient vehicle to

modularize the problem into a series of well-defined sub-

problems (modules) to reduce an overall computational

complexity and computing effort. Moreover, it serves to

comprehend the problem and offer a better insight into it

rather than get buried in all unnecessary details. In this

sense, granulation acts as an abstraction mechanism that

reduces an entire conceptual load. By changing the size of

the information granules, it is possible to hide or reveal a

certain amount of details.

To better understand how granular computation can

effectively support SA it is important to describe some

basic concepts of granular computing: granules, subgran-

ules, granulation, levels, hierarchies and structures. The

descriptions of these elements come from two works (Yao

et al. 2013; Yao and Zhong 2007), which are well known

by GrC researchers.
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As already affirmed, the basic elements of granular

computing are granules. A granule may be considered one

of the small particles forming a larger unit. For instance, a

granule can be a subset of a set, a class of objects, a section

of an article, and a module, a component or a service of a

system. Granules can be decomposed into smaller or finer

granules called subgranules. To construct or decompose

granules we need to employ a specific two-way operation

called granulation. Granulation is recognizable also in

problem solving processes when humans decompose a

complex problem into less complex subproblems or com-

pose the solutions of subproblems into the solution of the

whole problem. On one hand, construction is related to the

process of forming a larger and higher level granule from

smaller and lower level subgranules. On the other hand,

decomposition represents the basis of the process of

dividing a larger granule into smaller and lower level

granules. The former is a bottom-up process, and the latter

is a top-down process.

Granules and subgranules can be organized by means of

levels, hierarchies and granular structures. Levels consist

of one or more granules that are formed with respect to a

particular degree of granularity. Granules, within a level,

are defined and formed within a particular context and are

related to granules in other levels. A granule captures a

particular aspect, and collectively, all granules in the level

provide a granulated view. Granules in different levels can

be linked by different types of relationships (e.g. ISA,

partial ordering, refinement/coarsening) and operations

(e.g. granulation) on them. The ordering of levels can be

described by the notion of hierarchies. Furthermore, it is

interesting to analyse the internal structure of a granule.

Such structure provides a proper description, interpretation,

and characterization of the granule and can be represented

as a hierarchy consisting of many levels. Granules have at

least three main properties: internal properties, external

properties, and contextual properties. A granule can be

observed as both a collection of individual elements (in-

ternal properties) and an inseparable whole (external

properties). Moreover, the existence of a granule is

meaningful only in a given context (Yao 2006). In what

follows, we describe three different perspectives related to

the application of GrC to SA systems (Sect. 2.1).

2.1 Three perspectives of GrC for situation

awareness

Granular computing can be analysed by considering three

different perspectives (Yao 2005). It can be viewed as: (i) a

general method of structured problem solving, (ii) a para-

digm of information processing, and (iii) a way of struc-

tured thinking. From the point of view of this paper, it is

interesting to note that the three perspectives can be

considered to define solutions for different aspects related

to the design of systems for SA.

In fact, according to the study by Jones et al. (2011)

which introduces the concept of agent-based systems sup-

porting decision making processes and human situation

awareness and Endsley (2011) which proposes a method-

ology to design systems for situation awareness, the first

perspective is useful when we consider the experience of a

human operator interacting with a system for situation

awareness; the second perspective could be considered

during the design of such systems, and lastly, the third

perspective is particularly useful when we are defining

situation identification tasks (performed by the aforemen-

tioned agents) and we need several algorithms to granu-

larize information.

Figure 2 shows how the three perspectives of GrC can

be mapped into the different phases of the life cycle of a

system for situation awareness. In particular, the first per-

spective is used when designers and domain experts exe-

cute the design tasks that provide a first granularization of

the domain according to the goals of the systems. The

results of this phase are exploited by the second phase that

considers the second perspective of GrC. In this phase-

specific techniques of Computational Intelligence are

employed to concretize the information pyramid and real-

ize the granulation of information. The third phase con-

siders the deployment of the constructed hierarchy of

granules to support human situation awareness. As shown

in Fig. 2 these phases can be associated with the phases of a

common process for information systems engineering,

called Systems Development Life Cycle (SDLC)

(Alexander and Maiden 2005).

2.1.1 A paradigm for information processing

According to its computational perspective, GrC focuses

on a paradigm for representing and processing information

in a multi-level architecture. Information granules exhibit

different levels of granularity. Depending upon the prob-

lem at hand, it is possible to group granules of similar size

(that is granularity) together in a single layer. If needed,

smaller granules are analysed and arranged in a higher

level. Thus, such granules are arranged in another layer. In

total, the arrangement of this nature gives rise to the in-

formation pyramid. Information granularity implies the

usage of various techniques that are relevant for a specific

level of granularity (Pedrycz 2001) as reported in Fig. 3.

The bottom level (that is the level where we can find the

highest level of granulation in terms of number of granules)

is typically associated with numeric processing. The

intermediate level provides larger information granules.

Lastly, the top level (usually associated with the lowest

level of granulation) is usually devoted to symbol-based
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processing. The selection of the right techniques at each

level is driven by the specific domain, available resources,

requirements, and so on. Among these techniques, the most

relevant ones associated to GrC will be reviewed and

classified in Sect. 3.

The information pyramid is what we find when dealing

with situation identification task (Ye et al. 2012). Several

works in this field evocate the concept of information

pyramid. Two of these are reported below.

The authors of the study by Mittal et al. (2012) provide

an approach to infer knowledge on situations in a physical

environment, equipped with sensors, by exploiting three

levels of computation. Sensors (light sensors, microphones,

GPS, biosensors, body temperature, etc.) and logical sen-

sors (time of the day, schedule of the day, universal or

known facts, etc.) observe features of the world and pro-

vide data positioned at the lower level of the pyramid.

Sensor data become inputs for the intermediate level where

context information are deduced and positioned. Here,

context is considered as any information about user, his/her

environment or activities. For instance data coming from

accelerometers (at the lower level) provide motion context

as whether a user is walking, sitting or running. Context

information is derived using methods like Fuzzy Logic,

Probabilistic Logic, Bayesian networks, Hidden Markov

models, Dempster–Schafer theory of evidence, Rule-Based

Reasoning and Ontological Reasoning (Ye et al. 2012). At

the top level, a number of context information, occurring

within same time frame, are transformed in abstract

actionable objects, namely situations. This hierarchy of

data organization increases the usefulness of data and

decreases its size. The approach is sketched in Fig. 4a.

The concept of information pyramid is also considered

in Kokar et al. (2009) where the authors introduce four

planes of abstraction by considered both the Endsley’s

Fig. 2 Three perspectives of GrC and situation awareness

Fig. 3 Information pyramid
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Model (Endsley 2000) and the JDL Data Fusion Model

(Hall and Llinas 1997). The bottom plane is the physical

world whose aspects can be monitored. The next plane is

that of perception where we can find the representation of

objects of the physical world that are observed through

sensors. The next plane represents situations, i.e. the

knowledge on all objects in a specific area. At the top

plane, we can find projections, which are symbolic infor-

mation to anticipate future events and their implications.

The multi-plans framework is depicted in Fig. 4b.

2.1.2 A method of structured problem solving

GrC promotes a general approach for describing, under-

standing, analysing, examining, and solving real-world

problems based on a multi-level structure through

abstraction, control, complexity, detail, resolution, and so

on. The generation and utilization of hierarchical organi-

zations and structures, at a more practical level, rely on a

strategy known as ‘‘divide and conquer’’. With this strat-

egy, a problem described with larger granules is decom-

posed into a family of subproblems (top-down) described

with smaller granules, and the solution of the problem is

obtained by combining the solutions of subproblems (bot-

tom-up).

According to the need to support the situation identifica-

tion task by adopting an information pyramid, it is clear that

both top-down and bottom-up directions of granulation are

relevant. In fact, if the bottom-up granulation is needed to

transform sensor data (low-level granules) in coarser units

(middle-level granules) and these units in more abstract

elements (high-level granules), until reaching high-level

granules (situations or projections). On the other hand, the

top-down direction of granulation can be useful to support

the design phase of a system for SA according also to the

methods of structured problem solving. A concrete idea of

such a process is identifiable in the Goal-Directed Task

Analysis (GDTA) proposed by Endsley (2011). GDTA is a

form of cognitive task analysis and focuses on the goals the

human operator must achieve and the information require-

ments that are needed to make appropriate decisions. Infor-

mation is, step-by-step, decomposed until reaching finer

elements that cannot be further decomposed. It is important

to underline that GDTA focuses on dynamic information

requirements rather than static system knowledge, i.e. the

approach considers the information, needed to perform well

a specific task, that has to be acquired and analysed by the

operator in a certain domain during the execution of such

task. The needs for this information are called SA

requirements.

The result of GDTA is an abstract structure (see Fig. 5)

establishing what are the low-level data to be elaborated to

obtain higher level information. The computational tech-

niques allowing this elaboration at different abstraction

levels are matter of the previously analysed perspective.

2.1.3 A way of structured thinking

Hierarchical organizations and structures exist largely in

the real world. It is possible to find them in many natural,

artificial and man-made systems. Human perception and

understanding of the real world mostly depends, to a large

extent, on such nested and hierarchical structures. GrC, as

structured thinking, explores multi-level granularity that

exists in the physical world. This philosophy is consistent

with, and nicely reflects, reality. GrC helps us to arrive at

accurate and natural description, as well as in-depth

understanding, of the inherent structures and complexity of

the real world.

This perspective of granular computing helps to design

systems for SA, and in particular their user interfaces, that

support well the human operators in interacting with the

Fig. 4 Information pyramid in situation awareness
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information (more or less abstract) related to the environ-

ment and relevant for the tasks they are involved in. The

availability of hierarchies, levels and granule structures

supports the definition of user interfaces sustaining human

understanding of situations. Human operators could start

from the higher level of granules and go down until a clear

comprehension of the situation is achievable, by exploiting

operations like, for instance, zooming in and zooming out

(specialization/generalization, more details/less details and

so on).

3 Granular computing and situation awareness:

the low-level vision

This section presents an overview of GrC to support dif-

ferent aspects and phases of SA. With regards to GrC we

refer to the categorization of research focus areas presented

by Salehi et al. (2015) that is based on a systemic mapping

of the most recent contributions in GrC (January 2012–

August 2014). The categories are shown in the following

figure from Salehi et al. (2015) (Fig. 6).

Data analysis techniques are devoted to represent

information granules for spatiotemporal and heterogeneous

data. Two mainstreams of these techniques have been

categorized by Salehi et al. (2015): Human-Centric Way

(HCW) dealing with data representation interpretable by

humans and Interval-Based Evolving Methods (IBEM)

dealing with heterogeneous stream of data in time-varying

systems. Concept formation and learning involve the

adoption of learning strategies to draw correspondences

between granules (and their relationships) and concepts

(and their relationships). Interaction deals with discovering

and modelling interactions of objects in interactive gran-

ular systems. Segmentation, lastly, deals with a set of

approaches suitable for partitioning data (video, images,

Fig. 5 Goal, decisions and SA

requirements resulting from

GDTA

Fig. 6 Research focus area

categories in GrC from Salehi

et al. (2015)
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signals, text) and in some cases classifying the segments.

Additional information of these categories can be found in

the study by Salehi et al. (2015).

Figure 7 proposes a tentative mapping of the above

categories on the Endsley’s model of SA.

Before presenting an overview of GrC techniques suit-

able to address main issues of the three levels, we

emphasize some key aspects of the Endsley’s model that

motivate our mapping:

• the SA requirements are different for different domains

and human roles (a pilot has to perceive elements that

may be different from the ones of an air controller) and

demand for an alternation of data-driven and goal-

driven processes in processing information of the

environment (Endsley 2015b). We argue a granular

approach to data analysis is such to satisfy these

requirements by including in fusion processes’ hetero-

geneous and spatiotemporal streams of data as well as

human-oriented information such as for instance judg-

ments (Kaburlasos and Pachidis 2014).

• it is recognized that most of the problems with SA

occurs at the level 1 because of missing information or

information perceived in a wrong way (Endsley 2011)

or also information not pertinent with respect to the

specific goal. In the Perception level, key tasks relate to

object classification and state estimation. We argue a

granular approach can solve some of the issues

traditionally associated with this level:

– first, the principles of SA-oriented design (Endsley

2011) demands to organize information around

goals and provide a proper level of abstraction of

information (true also for level 2). Grouping

information depends thus on the goal, domain

requirements and knowledge, mental model. The

concept of information granules suits well with

these requirements and the issue here is to design

information granules that are representative of an

objective and a domain, and specific enough to

support easy interpretation at the appropriate level.

Pedrycz and Homenda (2013) proposed the princi-

ple of ‘‘justifiable’’ granularity as a way to design

information granules on the basis of experiential

evidence so that the granules are justified with

respect to experiential data and specific enough to

be meaningful. In Pedrycz et al. (2015) a paramet-

ric version of this principle is defined that includes

an additional interesting aspect for SA, i.e. ‘‘in-

volvement of inhibitory experimental evidence (viz.

data that have to be excluded for the constructed

information granules)’’ and is adopted to define a

collection of meaningful and interpretable descrip-

tors that, as the authors argue, are a first step

towards classification and prediction;

– filtering of extraneous information (not relevant to

SA) and reduction of data is beneficial to SA to

provide a correct classification and understanding of

the relevant elements of the environment. This is

another principle of SA-oriented design (Endsley

2011) but its application is challenging due to the

characteristics of real-world data (imprecise, vague,

uncertain) and the wide number of different data

sources (e.g. sensors). GrC can deal with these issues

and segmentation techniques provide good support

for this aspect. An issue is to filter proper information

and sources on the basis of objectives and goals. For

example, Peters et al. (2001) propose the adoption of

Rough Set Theory and rough integrals to select the

most informative sensors for the specific of the fusion

system, such as object classification.

• Obtaining comprehension of the current situation is the

key issue of level 2. Endsley (2015b) emphasizes the

importance of pattern matching to schemata, i.e.

prototypical states of the mental model, to provide

rapid retrieval of comprehension and projection for the

recognized situation. Also scripts, sequences of key

actions associated to each schema, are useful for this

level. To achieve this, the main task is the recognition

of relevant elements and their relationships. The GrC

techniques categorized under concepts formation and

learning and Interactions support this level. In the work

by Skowron et al. (2012) authors propose an approach

‘‘aimed at inducing compound granules relevant for

solving problems such as approximation of complex

Fig. 7 GrC techniques and SA
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concepts or selecting relevant actions (plans) for

reaching a target goal’’. Based on the rough set theory,

authors use the concept of approximation spaces that

are fundamental granules used in searching for relevant

complex granules called as data models, that approx-

imate more complex concepts and their relations.

Authors present also interesting examples of strategies

for the extension of approximation spaces from samples

of objects (that can be relevant elements of level 2) onto

a whole universe of objects (that can represent a

recognized situation of a schemata).

In the following subsections we present an overview, with

no claim of completeness, of methods and techniques that

can support the three phases of SA (Perception, Compre-

hension and Projection) considering, in many cases,

methods and techniques not surveyed by Salehi et al.

(2015). The criteria for selecting the methods and tech-

niques are based on analysis of SA requirements that arise

from the principles of SA-based design proposed by End-

sley (2011).

As a summary, we anticipate that most of the methods

and techniques analysed in our overview can support the

first level in addressing issues related to a proper organi-

zation of the information around goals and objectives, i.e.

building information granules, and to object assessment

and state estimation via techniques of outlier detection,

attribute reduction and data conflict resolution. For the

second level, we focused our attention on techniques that

can support in understanding the right meaning of the

elements perceived and, thus, mainly techniques of concept

formation. In the third level, we limited to an analysis of

techniques supporting prediction in a future state of some

elements of a recognized situation.

3.1 Perception

The Perception level of the SA model is devoted to per-

ceive and recognize elements of the environment by

combining observations and measurements from different

sources. Despite the fact that GrC enables a human-centric

way of information processing that is a key aspect of the

SA, there are not so much applications of GrC to situation

observability. We argue two main issues related to the

Perception level can be solved with GrC: designing infor-

mation granules around goals and support information fil-

tering via analysis of outlier, conflicting and spurious data

and attribute reduction.

The principle of justifiable granularity (Pedrycz et al.

2015) previously mentioned allows construction of granu-

lar descriptors according to linguistic characterization and

two measures, coverages and specificity, with the first

concerned with the ability to represent (cover) an

experimental data set and the second related to a level of

abstraction conveyed by the granule (Pedrycz 2015). Fuzzy

clustering, in particular Fuzzy C-Means, is employed as a

vehicle to build information granules. The problem of

successive refinement and generalization of prototype

information granules is discussed in Balamash et al.

(2015).

Construction of information granules according to the

principle of justifiable granulation fits well with the SA

requirements of selecting the proper information and at the

right level of abstraction for the specific goal and objective.

These approaches work well when there is the availability

of experimental evidence resulting from previous and

similar situations that can be stored in schemata and

scripts. Moreover, the principle of justifiable granularity is

applicable also to time series (Pedrycz et al. 2014) and, in a

former proposal, applied to signal analysis (Pedrycz and

Gacek 2002). With regard to signal processing, another

interesting perspective (always based on the justified

granularity) is the hybrid method based on neural networks,

GrC and evolutionary computing proposed in Gacek

(2015). In both the cases, the works refer to medical

domain and we did not find an interesting application of

this principle to traditional domains of SA.

Recently, Sanchez et al. (2015) have proposed an

approach for construction of information granules based on

the theory of the uncertain that can be useful in environ-

ments characterized by high level of uncertain and noise,

such as sensor networks. The basic idea employed in the

work is that a reduction of uncertainty can be obtain by the

difference of two uncertain models of the same informa-

tion, e.g. a priori and a posteriori models. In building

information granules, uncertain is evaluated for a first

sample of information in the form of a type 1 Fuzzy

Gaussian membership function, and a similar evaluation of

uncertain is done for a second sample. The difference

between the two membership functions create the Finger-

print Of Uncertain (FOU) and a type 2 fuzzy set is used to

form the granule; in case of no difference type 1 is adopted.

An approach to support SA in life support systems has

been proposed by Drayer and Howard (2012a, b) and is

based on the creation of sensing spaces that are subse-

quently decomposed into perceptual elements or granules

via the adoption of a perception function that is a Fuzzy

Associative Memory. Also in this case, the criteria for

construction of granules is based on human assessment and

these human-input datasets are transformed in granular

structures using particle swarm optimization, and then

adjusted to satisfy a coherence measure based on the

Ruspini’s condition (Ruspini 1969).

A number of GrC techniques can be employed to sup-

port recognition of elements, information filtering and

attribute reduction requirements of SA. Some recent
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methods that can support recognition of the elements of an

environment are employed with Granular Neural Network.

It is the case for instance of the method proposed by

Sánchez et al. (2015) that has been tested with human

recognition based on the face biometric measure. The

method is based on the adoption of a modular neural net-

works optimized with a hierarchical genetic algorithm, and

GrC is used to split the whole database into sub modules.

Granular neural networks have been employed also for

classification of land use/cove images (Meher and Kumar

2015), and for fusions of numeric and linguistic data

(Zhang et al. 2000), and this last case appears of interest in

several SA scenarios where important sources of infor-

mation can be textual (e.g. social media).

With regard to filtering the most relevant data for fusion

and classification objectives, we already mentioned the

work of Peters et al. (2001) on the adoption of rough

integrals to select the most informative sensors for a

specific objective. A similar approach is employed in

Haijun and Yimin (2006), and an hybrid approach com-

bining fuzzy and rough set for classification under uncer-

tainty is presented in Guan and Feng (2004).

Analysis and detection of outlier and spurious data are

investigated in several works by Jiang et al. (2005),

Nyuyen (2008), Shaari et al. (2009), Chen et al. (2010) and

Jiang and Chen (2015). A commonality among these works

on outlier detection is the adoption of Pawlak theory of

rough sets and its capability of approximating sets, via

lower and upper approximation functions, to detect outlier

objects having abnormal attributes and properties (gener-

ally in boundary regions). In the work by Shaari et al.

(2009) is used the concept of Non-Reduct to discover a set

of attributes that may contain outliers, Chen et al. (2010)

proposes the adoption of outlier detection algorithm based

on the neighbourhood rough set model, Jiang and Chen

(2015) introduce the concept of GR-based outliers and

proposes a detection algorithm working on this concept.

With regards to spatiotemporal requirements, a specific

application for detecting spatial and temporal outliers is

proposed in Albanese et al. (2014).

Attribute reduction plays a key role in applications

requiring SA since high-dimension data are common and

this requires computation time and space. Several works

propose rough sets and GrC methods to solve the attribute

reduction problem but few of them indicate or present

applications to specific problems of SA. An application of

rough set theory for attribute reduction to support situation

recognition via classification of precursory information in

reference to earthquake rupture analysis is proposed in

Dutta et al. (2013). Starting from the consideration that

most of these methods concentrate on data only, posing a

difficulty in choosing appropriate attribute reducts for

specific applications, recently Jia et al. (2015) propose a

generalized framework allowing human expert to specify

conditions in terms of group of measures and thresholds

which are relevant to user requirements or real applica-

tions. The proposed framework gives the possibility of

choosing the appropriate reducts on the basis of users and

application requirements, and this can support the goal-

oriented information processing principles of SA-based

design.

An issue that arises in concrete applications demanding

SA is resolving data conflict, e.g. when we have multiple

values of an observation or a variable that are not com-

patible. Resolving the data conflict issue is necessary to

achieve a proper perception of elements. In Yager (2004) it

is presented a multi-sensor data fusion framework includ-

ing voting-like process to resolve conflict among data using

a measure of compatibility. The framework allows char-

acterization of user requirements and needs such as level of

abstraction and results in granular and multi-granular

objects as fused values. An alternative approach to the

voting process can be the adoption of soft-consensus model

supporting human-like perception processes (Herrera-

Viedma et al. 2014).

3.2 Comprehension

The second level of the Endsley’s model is devoted at

understanding what data and cues perceived in the first

level mean with respect to goals and objectives. Compre-

hension is achieved via a meaningful integration and pri-

oritization of the elements of the environment perceived in

the Perception level. Endsley (2011) evidences that errors

in this level typically happen because human operators are

such to see and hear the data and elements of previous level

but are unable to correctly understand the meaning of this

information. GrC for concept formation supports compre-

hension presenting information required to this level.

Based on the triarchic theory of GrC, the approach

described in Yao et al. (2013) proposes two strategies for

concept learning, namely, an attribute-oriented strategy for

searching a space of partitions and an attribute value-ori-

ented strategy for search space of coverings. A perspective

focused on cognition of concept learning via GrC is anal-

ysed in Yao (2009) and Li et al. (2015), and proposals for

building tools for automatic understanding of data via

granular cognitive maps are presented in Homenda and

Pedrycz (2015).

Other approaches leverage of Formal Concept Analysis

(FCA) and concept lattice. It is the case of Singh et al.

(2015), where the authors propose an algorithm for gen-

erating interval-valued fuzzy formal concepts using the

properties of interval-valued fuzzy graph and Galois con-
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nection and incorporation of interval-valued fuzzy graph to

the concept lattice. The authors in Wu et al. (2009) address

the issue of knowledge reduction in formal concept anal-

ysis via the adoption of GrC and, specifically, via the

concept of granular reduct of a formal context (i.e. a

minimal attribute set preserving the object granules of a

concept lattice obtained from a full attribute set). These

approaches can be useful if formal contexts of the situation

to recognize are available in schemata or scripts.

We already discussed the adoption of Granular Neural

Network for object classification and recognition in the

previous subsection. In literature, we have found also an

application of similar methods for situation recognition in a

multi-agent framework devoted at enabling SA. It is the

case of Castellano et al. (2014) that propose the adoption of

fuzzy rules used by agents for situation recognition, and the

adoption of neuro-fuzzy learning to adjust the parameters

of the rules.

In the study by Jankowski et al. (2013) and Skowron

and Jankowski (2015) is defined the approach of Interactive

Rough Granule Computation as a way for modelling

interactive computation with rough set and other soft

computing approaches. The concept of Complex Granule is

defined that allows to link traditional information granules

to physical objects, and can be used by agents to make

decision via adaptive (intuitive or rational) judgment. Via

interactive hierarchies of complex granules, authors evi-

dence how it is possible to approximate vague and complex

concepts that can be relevant in processes of situation

recognition and decision making, such as safe driving in

traffic control applications.

3.3 Projection

This level is devoted to project in the near-future elements

of the situation recognized in the previous level. Some

models useful for the projection step of SA include time

series and regression based (Fricker 2013). Description and

prediction of time series has been deeply investigated in

GrC, and we mention just few recent works. The authors in

Al-Hmouz et al. (2015) propose a framework in which

information granules are based on time windows, ampli-

tude and change of amplitude, and employ fuzzy relations

to predict amplitude and its change. In Wang et al. (2015)

the issue of long-term prediction is addressed via the

development of a forecasting model combining a modified

fuzzy c-means and information granulation. Authors pre-

sent also application of their model for forecast of power

demand and daily temperature. In Lu et al. (2014) authors

employ fuzzy cognitive maps to describe granular time

series (built with fuzzy c-means clustering algorithm) and

perform predictions.

4 Proposed approach

In this section, we describe our proposal for the adoption,

from a methodological and architectural perspective, of

computational intelligence techniques to support some SA

aspects. The whole framework for SA (originally intro-

duced in D’Aniello et al. 2015c; Benincasa et al. 2015) is

sketched in Fig. 8. It consists of four layers which de facto

realize the information processing pyramid introduced in

Sect. 2 (aiming at transforming raw sensor data perceived

from the environment in situations which support decisions

and projections in near future) and by a traversal cognition

layer that supports the information processing flow. In the

following subsections, we analyse the framework from a

methodological and architectural perspective. Moreover,

we propose two examples based on our previous research

findings in Sect. 4.2. A complete case of study involving a

whole SA process, including measurements and perfor-

mance assessments, is part of our future research activities.

4.1 Improving SA with multiviews and multilevels

From a granular computing point of view, the framework

can be considered as an information processing pyramid

consisting of multiple levels of granulation. This can help

in processing information of real-world complex problems

for which is crucial to choose suitable and accurate rep-

resentations of the problem. Along with this strategy, a

problem (such as making human operators aware of the

current situation) which is described with coarse granu-

larity can be decomposed into a family of subgranules

described with smaller granules. The solution of the

problem is obtained by combining the solutions of the

subproblems. Moreover, for the same problem, it could be

possible to view it from many different angles, and asso-

ciate a representation with a particular view. A represen-

tation can make certain features explicit and hide the

others. Multiple views for the same problem could be

exploited to avoid the limitations of a single view repre-

sentation. Moreover, for each view it is possible to consider

multiple levels of abstractions, which represent the prob-

lem at a particular level of details. Thus, a crucial task is to

define criteria for evaluating the selection of levels of

abstraction and views at which searching the most suit-

able solution. This is especially needed, for instance, when

more resources are available, or when new requirements

are given, it is possible to search solutions at further levels

of accuracy or even using a different view (Yao 2010).

Handling representations with multiple views and multiple

levels allows the definition of adaptive systems, which can

autonomously switch among views and, in the same view,

among levels. This switch can be implemented by pre-
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planning all the plausible representations and defining the

rules for changing levels or views. An alternative switch

approach is that the system learns in specific contexts what

are the most suitable couples constituted by views and

levels. This can be accomplished by employing a feedback-

based learning algorithm.

The proposed approach, depicted in Fig. 8, targets this

multiviews and multilevels approach to Situation Aware-

ness. In particular, the highest level of granulation (mainly

associated with numerical data) is the Sensor Data Pre-

processing layer. In this layer, raw data gathered by sens-

ing devices deployed in the environment are pre-processed

by means of data-cleaning techniques, outlier detection,

filtering, and so on. In the next level, namely Generating

Observations layer, these data are processed and aggre-

gated to produce observations: an observation represents

the current value of an environmental phenomenon which

is of interest for the current operators’ goals and it is rep-

resented in a human-understandable format. For instance, it

can be represented by a fuzzy linguistic term set or an

ontological concept. Different expert-based techniques can

be adopted to produce observations. The most common

ones are Fuzzy Cognitive Maps (see Sect. 4.2.1 for an

example of this technique) and Dempster–Shafer Theory of

evidence. Besides the data received by previous layer,

these techniques can also exploit contextual information

and background knowledge (contained in the Cognition

layer) to produce more meaningful pieces of information.

Such observations are further processed and aggregated to

identify situations, which can be seen as the information

granules of the next layer (i.e. Situation Identification

layer) with a lower information granularity. Situations

represent the state of the environment from the point of

view of the operator and are thus related to a specific goal

and to a specific view. A situation is identified by consid-

ering the current observations and by identifying the rela-

tions among them and with the objects (both physical and

abstract) of the environment. The identification and

exploitation of these relations allow for identifying the

situation, which can be represented, for instance, by an

ontological concept. As for the previous layer, several

techniques can be used for situation identification (Ye et al.

2012). A plausible approach is to use rule-based techniques

in which the relations on the observations represent the

antecedent of the rule, while the situation represents the

consequent of the rule. Such rules can be both defined by a

domain expert or learned by means of machine learning

techniques applied on training sets. Lastly, the situations

are processed (and, in some cases, further aggregated) to

support decision making. This happens in the last layer, the

Situation Projection layer, which is characterized by the

lowest level of granularity. Here the operators try to predict

the evolution of the environment by projecting the situa-

tions in the near future, to anticipate such evolution and

make decision according to the effects of the identified

situations.

The proposed approach can be implemented by means

of multi-agents technologies and Semantic Technologies.

Indeed, the agent-oriented paradigm, together with the

Semantic Technologies of the Cognition layer, endows a

flexible behaviour to the whole framework, fostering its

extensibility and instantiation to different application

domains, allowing for the adoption of different computa-

tional techniques for processing information and support-

ing decision making (Castellano et al. 2014). In particular,

Semantic Technologies and, in particular, ontologies, can

be exploited for sustaining the information processing in

each of the four layers of the framework. More in details,

Fig. 8 Proposed approach
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the Semantic Sensor Network Ontology (SSNO) can be

employed for describing information on the sensor net-

work. Each sensor can be described by means of a set of

metadata (including sensor type, measurement types,

quality of service, etc.) which can be exploited (in the first

layer of the proposed approach) to perform data processing.

In the Generating Observation layer, ontologies can be

used to assign meanings (by connecting them to events and,

above all, situations) to the generated observations. In the

Situation Identification layer, ontologies can be used for

describing contextual information that can be helpful for

deriving additional attributes, mostly related to common

knowledge, which can be considered for identifying a

situation.

Lastly, the choice to employ a multi-agent paradigm

allows implementing the different level of granulation that

are required for each specific problem, by selecting the

most suitable computational intelligence techniques

depending on the specific domain of application. In this

scenario, the Semantic Web technologies (e.g. ontologies)

provide the framework to make the heterogeneous agents

operating and cooperating, while the multi-agent paradigm

provides a dynamic elastic layer that works as a glue

among sensors (D’Aniello et al. 2015c).

4.2 Concrete examples

In this section, we describe two examples related to the

application of Computational Intelligence techniques to

address two relevant issues of Situation Awareness: gen-

erating observations and situation identification. The

examples reported relate to the above-mentioned method-

ological and architectural perspective.

4.2.1 Generating observations via fuzzy cognitive maps

Fuzzy Cognitive Maps (FCM) provide a structure allowing

qualitative reasoning on the state of complex systems

(D’Aniello et al. 2015c). Briefly, an FCM is a formal graph

model of a system described in terms of concepts (the

nodes of the graph) and connections (the directed edges of

the graph) (Pedrycz and Homenda 2012). Such connections

represent cause/effect relationships among concepts, and

the strength of the connections is quantified by numeric

values in the [-1, 1] range. Positive values describe a

positive causal interaction between the two nodes, whilst

negative values represent inhibitory character of the con-

nection. The dynamics of the map (i.e. how the values of

the concepts are computed) is described by the following

equation:

At
i ¼ f

X

n

j¼1;j 6¼i

At�1
j Wji þ At�1

j

 !

: ð1Þ

where At
i is the value for the ith concept at time t, Wji is the

weight of the edge between the ith concept and the jth

concept and f is a nonlinear continuous nondecreasing

function assuming values in the unit interval. The function

f produces a level of activation of the ith concept nor-

malizing it to the [0,1] interval (Pedrycz and Homenda

2012).

In the proposed framework, we use an FCM for gener-

ating the value of an observation. In particular, let us

consider that an observation agent obs is committed to

monitor the current value of an environmental phenomenon

u by generating the value for the observation OðuÞ: Thus,

the role of the agent is to express its opinion on this phe-

nomenon by selecting one of the possible values from the

set of admissible opinions X ¼ x1; . . .xn; n� 2 for this

phenomenon. At each instant t, the opinion selected by the

agent obs will represent the value for the observation OðuÞ:

More formally, let S ¼ s1; s2; . . .; sh be the set of sensing

agents that gather data about the phenomenon u: The

behaviour of the observing agent obs1 can be modelled as

the function rðsdTs1 ; . . .; sdTsh ;C
TÞ ! ðx1; . . .; xnÞ, where sd

T
sk

ð1� k� hÞ are the data (list of records) provided by the

sensing agent sk 2 S in the time slice T. In addition, C is a

set of context information valid in T and xj ð1� j� nÞ is a

value in [0, 1] and it indicates the preference degree of the

agent obs for the opinion xj ð1� j� nÞ included in the set X

for the phenomenon u1:

The behaviour of each observing agent consists of an

FCM for each alternative in X. In this map, the value of

each concept in the last layer (output layer) of the map,

represents the preference degree for the corresponding

opinion, allowing us to determine the value for the phe-

nomenon (the opinion with the highest preference degree

will be selected as the value for the observation).

Let us consider the following example (taken from

Perera et al. 2012) and presented also in D’Aniello et al.

(2015c) to explain the behaviour of an observing agent.

The observing agent obs has to monitor the phenomenon

u ¼‘‘health of crops’’ and assume that the set of possible

alternatives is X ¼ ðx1 ¼‘‘infected by Phytophtora dis-

ease’’, x2 ¼‘‘not infected by Phytophtora disease’’).

Moreover, a set of sensors in the environment monitor air

humidity, air temperature and leaf witness. Such data are

pre-processed by three different sensing agents. The output

of each sensing agent is represented by the value for the

linguistic variable {LOW, HIGH} related, respectively, to

the the three fuzzy sets AirTemperature, AirHumidity and
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LeafWitness. Figure 9 shows how raw data are analysed by

sensing agents and then the calculated fuzzy values are

used by the observing agent as input for its two FCM to

generate its opinions on u:

4.2.2 Identifying situations via neuro-fuzzy network

The task of identifying the current situations (carried on by

Situation Identification agents) starting from the generated

observations, can be accomplished by means of different

techniques. Roughly speaking, when the observations are

formally represented (e.g. by means of ontological con-

cepts or fuzzy linguistic term sets), it is possible to use both

learning-based approaches, which try to associate the set of

occurring observations to one or more situations via

machine learning techniques, or specification-based

approaches in which an expert is committed to define the

rules for inferring a situation from the generated observa-

tions (e.g. using ontology-based inference). An example of

a machine learning technique for identifying a situation can

be found in Benincasa et al. (2015), in which an approach

based on Fuzzy Formal Context Analysis has been

exploited to identify the relations among observations

(described as fuzzy sets) and situations. In D’Aniello et al.

(2014, 2015b), instead, approaches based on ontological

reasoning have been proposed.

In this paper, we propose an approach based on Neuro-

Fuzzy Network (an example of such a technique applied in

a blended commerce scenario can be found in D’Aniello

et al. 2015). A neuro-fuzzy network (or neuro-fuzzy sys-

tem) is a ‘‘system similar to a fuzzy controller where the

fuzzy sets and rules are adjusted via neural networks tuning

techniques in an iterative way’’ (Vieira et al. 2004) using

datasets containing input and output system data. In the

learning phase, a neuro-fuzzy system acts de facto as a

neural network that learns its internal parameters whilst, at

run time, it behaves as a fuzzy logic system. The combi-

nation among fuzzy logic and neural network provide us

with the advantages of both techniques, thus to limit their

weaknesses. Specifically, the obtained system benefits from

the capability to learn, which is typical of the neural net-

works, and from the easiness in interpreting the results of a

fuzzy systems and from its robustness in relation to the

possible disturbances in the system.

In the proposed approach, with respect to the classifi-

cation proposed by Vieira et al. (2004) and to the definition

Fig. 9 Behaviour of an observing agents which uses FCMs for generating its opinions on the observed phenomenon (from D’Aniello et al.

2015c)
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provided by Nauck et al. (1997), we adopt a Hybrid Neuro-

Fuzzy System, which is a fuzzy system that uses an

heuristic learning strategy based on neural networks to

determine its parameters (i.e. fuzzy rules and fuzzy sets).

Furthermore, we exploit the a priori knowledge about the

specific situation identification problem to define the set of

fuzzy rules, and then a neural network learning technique is

applied to learn only the parameters of such rules (i.e. the

learning algorithm is not applied to learn the rules but only

the parameters of such rules).

Figure 10 shows an example of the proposed neuro-

fuzzy system. It follows the Adaptive Network-based

Fuzzy Inference System (ANFIS) architecture (Jang 1993),

which is characterized by five layers and it implements a

Takagi Sugeno fuzzy inference system. The first layer

represents the input of the system. In our approach, each

node of this layer represents the value of an observation qi:

The second (hidden) layer represents the fuzzy sets defined

for the input variables, which also represent the antecedents

of the fuzzy rules. Each node in the third (hidden) layer

represents a rule: it is connected with the nodes of layer

two, representing the antecedent of the rule, and with a

node of layer fourth, which represents the consequent of

the rule. Each node of this layer normalizes the strength of

the correspondent rule (by a factor that is learned via the

neural network). In particular, the Fig. 10 implements the

rules reported in Table 1.

Such rules, in the context of a blended commerce sce-

nario, can be interpreted as the rules for identifying the so-

called situation of interest, which represents the situation in

which a number of customers in a shopping mall are

interested in a specific product. It is identified by consid-

ering two observations: (i) q1; the attention time (i.e. the

time customers spent in front of a product) and (ii) q2; the

aggregation (i.e. the number of people in front of a product

or a showcase). Further details on such scenario can be

found in D’Aniello et al. (2015).

Let us consider again the neuro-fuzzy system of Fig. 10.

In this figure, each node of the fourth (hidden) layer rep-

resents a consequent of each rule. Lastly, the fifth layer

calculates the output of the system as the sum of the values

of all the rules and it performs the defuzzification process.

Each node of the output layer represents a situation.

The advantage of this approach relies in the capability

to adapt the parameters of the second and fourth layers

via supervised learning methods (Jang 1993). This allows

to adapt membership functions to different contexts in

which the same rules can be applied but, due to sub-

stantial differences in contextual and environmental

characteristics, different memberships of the variables

need to be considered. Let us consider again the blended

commerce scenario as an example. In this case, it is

useful to consider different membership functions for the

aggregation parameter in the above neuro-fuzzy system,

to take into account that the number of people which

crowds the shopping mall is different on a working day or

on a Saturday afternoon.

5 Conclusions and future works

GrC and SA are two dynamic research areas attracting

many practitioners and researchers. GrC is at the basis of

human perception and of a computational theory of the

perception, and it is easy to recognize its importance in

SA models. Furthermore, as we show along this paper,

GrC and SA share some important concepts and princi-

ples and GrC techniques can be adopted to solve open

issues in the three levels of the Endsley’s model. Despite

that, the two research areas are still today considered as

silos. What is missing is a systematic approach to study

interactions and correlations between GrC and SA. We

recognized this gap and our paper is a first result in this

direction. We evidence two correlated perspectives for

this systematic study.

Regarding the first perspective, we paved a way in this

paper. It relates to a comprehensive adoption of the prin-

ciples, concepts, methods and techniques of GrC to enforce

SA and in particular agent-based SA. We started with an

high-level view of GrC and SA, moved along an overview

of the techniques that can be adopted to enforce SA and

concluded with some methodological and architectural

examples of Semantic Web and Computational Intelligence

techniques supporting our view. What we are working onFig. 10 Neuro-fuzzy network

Table 1 Rules for identifying the situation implemented by the

neuro-fuzzy system of Fig. 10

R1: if q1 is H AND q2 is H THEN r is H

R2: if q1 is L AND q2 is H THEN r is M

R3: if q1 is H AND q2 is L THEN r is M

R4: if q1 is L AND q2 is L THEN r is L
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now is the definition of an overall framework to enforce SA

with GrC. In this framework a key role can be played also

by the Computing with Words paradigm of Zadeh that can

support computation and reasoning on natural language

statements representing humans or agents perceptions of

the reality of an environment. A second perspective relates

to the other direction, that is leveraging on SA as an

information feedback for GrC and granulation process. As

an example, it could be interesting to understand how data,

information, knowledge, acquired on the basis of SA, can

support GrC and, in particular, its principles of justifiable

granulation, thus to support in choosing the right level of

abstraction for information granules in specific situations.

In conclusion, we think a systematic approach to GrC and

SA is mandatory due to the importance that both these

research areas give to human-centric information analysis

and perception-based reasoning. We think that a bivalent

approach that considers both the above-mentioned per-

spectives is useful for this purpose.
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