
This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Atalla, Viktor; Zhang, Igor Ying; Hofmann, Oliver T.; Ren, Xinguo; Rinke, Patrick; Scheffler,
Matthias
Enforcing the linear behavior of the total energy with hybrid functionals

Published in:
Physical Review B

DOI:
10.1103/PhysRevB.94.035140

Published: 19/07/2016

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Atalla, V., Zhang, I. Y., Hofmann, O. T., Ren, X., Rinke, P., & Scheffler, M. (2016). Enforcing the linear behavior
of the total energy with hybrid functionals: Implications for charge transfer, interaction energies, and the random-
phase approximation. Physical Review B, 94(3), 1-17. [035140]. https://doi.org/10.1103/PhysRevB.94.035140

https://doi.org/10.1103/PhysRevB.94.035140
https://doi.org/10.1103/PhysRevB.94.035140


PHYSICAL REVIEW B 94, 035140 (2016)

Enforcing the linear behavior of the total energy with hybrid functionals: Implications for charge

transfer, interaction energies, and the random-phase approximation

Viktor Atalla,1,* Igor Ying Zhang,1 Oliver T. Hofmann,1,2 Xinguo Ren,1,3 Patrick Rinke,1,4 and Matthias Scheffler1

1Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
2Institut fur Festkörperphysik, Technische Universität Graz, Petersgasse 16, 8010 Graz, Austria

3Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, Anhui, Peoples Republic of China
4COMP/Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland

(Received 6 December 2015; revised manuscript received 6 May 2016; published 19 July 2016)

We obtain the exchange parameter of hybrid functionals by imposing the fundamental condition of a piecewise

linear total energy with respect to electron number. For the Perdew-Burke-Ernzerhof (PBE) hybrid family of

exchange-correlation functionals (i.e., for an approximate generalized Kohn-Sham theory) this implies that (i)

the highest occupied molecular orbital corresponds to the ionization potential (I ), (ii) the energy of the lowest

unoccupied molecular orbital corresponds to the electron affinity (A), and (iii) the energies of the frontier

orbitals are constant as a function of their occupation. In agreement with a previous study [N. Sai et al., Phys.

Rev. Lett. 106, 226403 (2011)], we find that these conditions are met for high values of the exact exchange

admixture α and illustrate their importance for the tetrathiafulvalene-tetracyanoquinodimethane complex for

which standard density functional theory functionals predict artificial electron transfer. We further assess the

performance for atomization energies and weak interaction energies. We find that atomization energies are

significantly underestimated compared to PBE or PBE0, whereas the description of weak interaction energies

improves significantly if a 1/R6 van der Waals correction scheme is employed.

DOI: 10.1103/PhysRevB.94.035140

I. INTRODUCTION

Hybrid exchange-correlation (XC) functionals have signifi-
cantly improved the description of molecules and solids [1–5].
They incorporate a fraction α of exact-exchange energy either
in a global or in a range separated fashion. One common
global hybrid functional is the Perdew-Burke-Ernzerhof (PBE)
hybrid functional [6,7], which approximates the XC energy by

EXC(α) = αEEX
X + (1 − α)EPBE

X + EPBE
C . (1)

In this parametrization, a fraction α of exact exchange (EEX
X )

is combined with the complement 1 − α of PBE exchange
(EPBE

X ). The correlation energy (EPBE
C ) is approximated on

the PBE level and is independent of α. There are several
strategies to determine α: a performance driven avenue by
fitting to thermochemical data sets [8,9], theoretical models of
the adiabatic connection path [7,10], or by requiring that the
ensuing functional obeys certain properties that are known for
the exact XC functional.

One common practice is to require the HOMO-I condition,
which states that the eigenvalue of the highest molecular
orbital (HOMO) corresponds to the ionization potential (I ).
α could then be obtained by requiring that the HOMO level
matches the I obtained by the total energy difference of the
neutral and the positively charged molecule (�SCF approach).
Alternatively, the HOMO-I condition can be incorporated by
means of the single-particle Green’s function. In this approach,
α is determined by requiring that the self-energy correction
to the HOMO level within the G0W0 approximation [11]
is minimized. Eventually, this also fixes the starting point
dependence of the perturbative GW approximation [12–14].

*Present address: Qudosoft, Schwedterstrasse 263, D-10119 Berlin,

Germany.

Specifically, the optimum fraction of exact exchange α∗ is
obtained by minimizing the self-energy correction to the
HOMO level [12,15]

α∗ = arg min
α

|〈ψH(α)|�(α) − V DFT
xc (α)|ψH(α)〉|, (2)

where ψH(α) is the HOMO, � is the self-energy in the G0W0

approximation, and �DFT are the exchange and correlation
potentials within the generalized Kohn-Sham (GKS) frame-
work [16]. For the PBE hybrid functional, this takes the form

V DFT
XC (α) = αvNL

x + (1 − α)vPBE
x + vPBE

c , (3)

where vNL
x is the nonlocal exact exchange potential, vPBE

c the
local correlation, and vPBE

x the local exchange potential in the
PBE approximation [6]. The corresponding hybrid functional
will then be called PBEh(α∗), i.e., a PBE hybrid functional that
employs α∗ of exact exchange according to Eqs. (1) and (2).

In this work, we investigate the relationship between this
choice of α∗ (i.e., via the G0W0 self-energy) and the �SCF
approach. We also discuss other possible choices of α such
that certain properties of the exact functional are obeyed,
most notably a theorem by Perdew and coauthors, which
states that the total energy is piecewise linear between integer
charges [17]. We call approximate functionals that violate
this condition to suffer from the deviation of straight line
error (DSLE) and approximate functionals that are piecewise
linear DSLE free. A remarkable consequence of the linearity
condition is that the eigenvalue of the partially filled frontier
orbitals must be constant, which is true for the exact functional
and for DSLE-free approximate functionals. α could thus
be obtained by the requirement that the eigenvalues of the
partially filled frontier orbitals are independent of their occu-
pation. Furthermore, for DSLE-free approximate functionals
that are explicit differentiable functionals of the density matrix
it has been recently shown that the eigenvalue of the lowest
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unoccupied molecular orbital (LUMO) corresponds to the
electron affinity (A) [18]. This implies an alternative criterion
for the choice of α, i.e., the LUMO-A condition. The HOMO-I
and the LUMO-A conditions were applied in previous work
to restore the linearity condition [19–23]. This route has
been predominantly followed with the long-range separated
Baer-Neuhauser-Livshiz (BNL) hybrid functional [24,25].

In this paper, we illustrate these concepts for the tetrathi-
afulvalene (TTF) and tetracyanoquinodimethane (TCNQ)
molecules. We show that the choice of α∗ according to Eq. (2)
gives very similar, albeit slightly larger, values than criterions
that are based on the piecewise linearity condition. We demon-
strate that the DSLE in standard functionals induces artificial
electron transfer from TTF to TCNQ in the noninteracting
limit, which may be remedied by PBEh(α∗).

While PBEh(α∗) HOMO levels are in good agreement
with experiment and reference data [12], we further assess
its performance for weak interaction energies (S66 test set
by Hobza and co-workers [26]), atomization energies (G2-1
test set by Curtiss et al. [27]), and chemical reaction barrier
heights (HTBH and NHTBH test set by Truhlar and co-
workers [28,29]). For weak van der Waals (vdW) interactions,
we examine the compatibility of PBEh(α∗) with the vdW
correction scheme by Tkatchenko and Scheffler (TS) [30].
Alternatively, vdW interactions are automatically included
in advanced density functionals based on the random-phase
approximation (RPA). Most notable is the recent devel-
opment of renormalized second-order perturbation theory
(rPT2) [31,32]. It adds second-order screened exact exchange
(SOSEX) and renormalized single excitation (rSE) from
second-order Rayleigh-Schrödinger perturbation theory to
the RPA correlation energy. RPA and rPT2 are evaluated
perturbatively based on density functional theory (DFT) input
orbitals. We investigate the compatibility of rPT2 with PBE,
PBE0, and PBEh(α∗) by means of a comparative assessment.

This paper is organized as follows. In Sec. II, we give
a comprehensive review of known properties of the exact
and approximate functional that are of importance for charge
transfer systems. In Sec. III, we review existing methods
that rectify deficiencies of standard approximations to the
XC functionals. In Sec. IV, we introduce our computational
approach. In Sec. V, we investigate TTF, TCNQ, and the
TTF-TCNQ complex, and in Sec. VI, we present benchmark
data for weak interaction energies, atomization energies, and
barrier heights. An error analysis is performed in Sec. VII.

II. EXACT AND APPROXIMATE PROPERTIES

OF THE XC FUNCTIONAL

In this section we review properties of the exact XC
functional and their ramifications for approximate functionals.
The informed reader is encouraged to proceed directly to
Sec. IV, in which we introduce our computational approach or
to Sec. V, in which we illustrate and analyze the DSLE and its
consequences for the prototypical TTF-TCNQ donor acceptor
complex.

Linearity condition. In a seminal paper, Perdew et al.

discuss a fundamental property of the exact XC functional,
which states that the total energy (E) is continuous and
piecewise linear between integer charges in the grand canon-

N0-1 N0 N0+1

E
∂

E
/
∂

N

I − A

ε

∆vxc

N0-1 N0 N0+1

convex
concave

N0-1 N0 N0+1

Exact DSLE ∧C1 DSLE free ∧C1

(a) (b) (c)

(d) (e) (f)
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FIG. 1. Summary of properties of the exact functional (left row),

approximate functionals that suffer from the DSLE (middle row),

and approximate functionals that are DSLE free (right row). The top

panel shows the total energy, the middle panel the derivative of the

total energy with respect to particle number, and the bottom panel the

corresponding eigenvalues. Note that for mathematical clarity, there

are two functions in each graph in the last two panels. They correspond

to the two closed domains of definition [N0 − 1,N0] and [N,N0 + 1],

whereas the boundary values correspond to the one-sided limits. For

example, ∂E/∂N (N0) = ∂E/∂N−(N0) if E is considered over [N0 −

1,N0] and ∂E/∂N+(N0) if E is considered over [N0,N0 + 1]. C1

refers to approximate functionals that are explicit and differentiable

functionals of the first-order density matrix.

ical ensemble [17]. For fractional charge N = N0 + ω with
0 � ω � 1 and N0 ∈ N,

E(N ) = (1 − ω)E(N0) + ωE(N0 + 1), ω ∈ [0,1] (4)

as illustrated in Fig. 1.
A consequence of piecewise linearity is that the derivative

∂E/∂N , as illustrated in Fig. 2(b), is constant on integer open
intervals. From Perdew’s theorem the slopes can be readily
extracted [Fig. 2(a)]:

∂E

∂N
=

{

E(N0) − E(N0 − 1) if N ∈ (N0 − 1,N0),
E(N0 + 1) − E(N0) if N ∈ (N0,N0 + 1).

(5)
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FIG. 2. Illustration of the straight line behavior of the total energy

(E) (a) and its derivative (b).

This is just the definition of the ionization potential (I ) and the
electron affinity (A) of the N0 electron system. Thus, Eq. (5)
may be abbreviated as

μ(N ) :=
∂E

∂N
=

{

−I (N0) if N ∈ (N0 − 1,N0),
−A(N0) if N ∈ (N0,N0 + 1),

(6)

where on the left side the definition of the chemical potential
μ and the symbols I and A for the ionization potential and
the electron affinity were introduced. This relation assumes a
fixed external potential, which implies that I and A are the
vertical ionization potential and electron affinity (i.e., it does
not include geometry relaxation in the excitation process).

Janak’s theorem. In Kohn-Sham (KS) DFT, the grand
canonical ensemble is mapped onto a noninteracting system
with frontier orbitals that may be fractionally occupied. A
direct result of Janak’s theorem [33,34] and Eq. (5) is that the
eigenvalues of the Kohn-Sham frontier states are independent
of their fractional occupation,

∂E

∂fi

= ǫi(fi) = ǫi, fi ∈ (0,1) (7)

where fi is the occupation of state i with eigenvalue ǫi [see
Fig. 1(g)].

The HOMO-I condition. In DFT there is no Koopmans
theorem [35], which precludes a direct assignment of the KS
eigenvalues as charged excitation energies. However, in exact
KS theory I is equal to the negative of the HOMO [36–38]:

ǫN0
(N0) = −I. (8)

Furthermore, Chong et al. and Grisenko et al. put forward
theoretical and numerical arguments that the KS energies of
occupied states can be interpreted as approximate but rather
accurate vertical ionization potentials [39–42].

The derivative discontinuity. So far, ∂E/∂N has been re-
stricted to open intervals of integers. In general, the total energy
will exhibit kinks at integer electron numbers. Therefore, at
integer electron numbers ∂E/∂N does not exist (unless A and

I are degenerate). Indeed, the limit from the right and the limit
from the left

∂E

∂N

−

(N0) = −I, (9)

∂E

∂N

+

(N0) = −A (10)

differ by the fundamental gap (i.e., I − A) [see Fig. 1(d)].
The question is what does the Kohn-Sham system for N0

electrons capture and what is the meaning of the HOMO
and LUMO states? While there is consensus that the HOMO
energy of the N0 electron system equals −I , the LUMO level
cannot be assigned to A in the exact theory [17,36–38]. The
reason is the so-called derivative discontinuity of the exchange-
correlation potential �vXC [43–46]. This discontinuity is
responsible for the difference between the Kohn-Sham gap
and the fundamental gap

Efund
gap := I − A = ǫN0+1(N0) − ǫN0

(N0) + �vXC, (11)

�vXC := v+
xc(r) − v−

xc(r), (12)

v±
XC := lim

ω→0

∂E

∂ρ(r)

∣

∣

∣

∣

N0±ω

, (13)

where ǫN0+1(N0) is the KS LUMO and ǫN0
(N0) the KS HOMO

of the N0 electron system. Given that HOMO = −I , it follows
that the LUMO does not correspond to −A but rather differs
from it by �vxc [see Fig. 1(g)].

The deviation from straight line error. An approximate
XC functional that obeys the piecewise linearity condition
is free from the deviation from straight line error (DSLE).
Conversely, a functional that violates this condition is said
to suffer from the DSLE. More specifically, if the DSLE
manifests itself as a convex (concave) total energy function
between integer charges, then it is also called delocalization
(localization) error [47–50] [see Fig. 1(b)].

We note that the DSLE is sometimes also referred to as
many-electron self-interaction error [51–55]. However, we
prefer the wording DSLE because in our opinion “many-
electron self-interaction error” may lead to semantic confusion
with the single-electron self-interaction error [56]. It is
important to distinguish between these two concepts. The
definition of the single-electron self-interaction error is closely
related to the Fock operator in Hartree-Fock theory. There, the
Fock part cancels the interaction of a single-electron orbital
with itself in the Hartree term. This concept of the one-electron
self-interaction error has been adopted in DFT, where for a
one-electron system the Hartree, exchange, and correlation
contributions must vanish in an exact theory [56], which gave
rise to the widely known self-interaction correction (SIC)
by Perdew and Zunger [56–58]. The DSLE and the single-
electron self-interaction error are in general not equivalent.
A counterexample is Hartree-Fock theory, which is single-
electron self-interaction free but not DSLE free [47]. During
the course of this paper we will exclusively use the concept of
the DSLE.

Kohn-Sham vs generalized Kohn-Sham schemes. Kohn-
Sham (KS) and generalized Kohn-Sham (GKS) schemes
differ in their choice of the exchange-correlation potential.
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In Kohn-Sham theory, the exchange-correlation potential is
local (i.e., multiplicative). For the inclusion of exact exchange
this implies that the exchange potential derives from the
optimized effective potential (OEP) method [59,60]. In gen-
eralized Kohn-Sham theory, the exact exchange potential is
treated in a nonlocal fashion as in Hartree-Fock (HF) theory.
GKS is a generalization of KS because it regards the exact
exchange contribution as part of the reference systems rather
than being part of the local effective potential. All previous
statements about the KS scheme carry over to GKS [49,61]
(note, however, that it has been argued that the derivative
discontinuity is smaller in GKS [16]).

The HOMO and LUMO in approximate theories. In exact
DFT, the LUMO cannot be assigned to A. However, in a
recent paper Yang et al. have shown [18] that if the exchange-
correlation energy is an explicit and differentiable functional
of the first-order density matrix, and if the theory is DSLE
free, then

ǫN0+1(N0) = −A(�SCF), (14)

i.e., the LUMO corresponds to the negative of A as obtained
by total energy differences (�SCF). In other words, the limit
from the right of the partially filled LUMO equals the empty
LUMO level [see Fig. 1(i)]. Standard semilocal functionals are
differentiable, because the derivative discontinuity is absent.1

Standard hybrid functionals are also differentiable because
the exact-exchange energy is and because the accompanying
local potential does not exhibit a derivative discontinuity [18].
However, the OEP exact-exchange formalism is not differ-
entiable [18]. Collecting the results for DSLE-free hybrid
functionals that are differentiable in the first-order density
matrix, we thus have the following:

(1) ǫN0
(N0) = −I (�SCF).

(2) ǫN (fN ) = const, fN ∈ (0,1).
(3) ǫN+1(fN+1) = const, fN+1 ∈ (0,1).
(4) ǫN0+1(N0) = −A(�SCF).
Conditions 1–3 are valid for the exact XC functional and

for approximate yet DSLE-free XC functionals. Functionals
that suffer from the DSLE do not obey conditions 1–3 because
the partially occupied frontier orbitals are no longer constant
[see Figs. 1(e) and 1(h)]. Condition 4 holds for DSLE-free
approximate functionals that are explicit and differentiable
functionals of the first-order density matrix [18].

For such a class of DSLE-free approximate XC functionals,
conditions 1–4 may be rewritten more compactly as

ǫN (fN ) = const, fN ∈ [0,1] (15)

ǫN+1(fN+1) = const, fN+1 ∈ [0,1]. (16)

Notation. In the following, we will abbreviate our notation
by referring to the LUMO as ǫN+1(f ) = ǫL(f ) and calling it
fractionally charged LUMO. Similarly for the HOMO we will
write ǫN (f ) = ǫH (f ), which will then be called fractionally
charged HOMO level.

1This “common wisdom” has been recently challenged in the light

of an ensemble generalization of the KS formalism [66,67].

III. EXISTING THEORETICAL APPROACHES

Up until now, several strategies have emerged to incorporate
the straight line conditions (15) and (16) in approximate DFT
functionals. These can be roughly divided into three classes:
the first is to restore the linearity condition for a given standard
(semi)local or hybrid functional [62–64]. In the second class,
the parametrization of hybrid functionals is chosen such that
the straight line condition is satisfied. The third class combines
hybrid functionals with the single-particle Green’s function
from many-body perturbation theory.

There are several approaches in the first class. They either

aim to correct for those terms in the total energy that are nonlin-

ear in the density (i.e., the Hartree and XC energy) [62,65], or

introduce an ensemble generalization of the Kohn-Sham refer-

ence system [63,66–69], or add a penalty functional to the KS

Hamiltonian [64,70–73], or use the DFT+U approach [74].

These approaches do not change the total energy (and for

applications more importantly the total energy differences) at

integer charges and simultaneously restore the straight line

property. This is desirable because these functionals typically

perform very well for, say, �SCF or atomization energy

calculations. Simultaneously, they improve the position of the

HOMO and LUMO levels in describing charged excitation

energies. The main challenge of these approaches is to assure

the unitary invariance of the one-body density matrix [64,75].

Furthermore, if the correction is applied in the KS schemes,

then the orbital-dependent correction needs to be treated with

the effective optimized potential (OEP) method in order to

obtain the corresponding local KS potential. In a slightly

different approach, Sadigh et al. showed recently that by

enforcing the straight line condition with a simple correction,

additional charge can be localized correctly in polaronic states

in solids [76].
The second class of approaches is to employ hybrid

functionals within the GKS framework. The basic idea is
to parametrize the exact-exchange energy such that the
linearity condition is restored [19–23]. This route has been
predominantly followed with the long-range separated Baer-
Neuhauser-Livshiz (BNL) hybrid functional [24,25]. The BNL
functional is based on a separation of the Coulomb potential
into a long- and short-range part via the error function r−1 =

erf(γ r) r−1 + erfc(γ r) r−1. The long-range exchange energy
is then treated with exact exchange and the short-range part is
approximated by the local density approximation (LDA) [77].
In this approach, the range separation parameter γ is optimally
tuned such that the HOMO-I condition [78] is fulfilled. More
precisely, one seeks that value of γ for which the GKS
HOMO coincides with −I obtained from a �SCF calculation.
This is done either for the neutral N electron system or
additionally also for the N + 1 electron system in order to
improve the description of the fundamental gap. In contrast to
the first class of self-interaction corrections, where one seeks
to restore the linearity condition, one a priori requires only the
HOMO-I condition, which does not necessarily imply that
also the straight line behavior is obeyed. However, it has been
observed that once the HOMO-I condition is fulfilled, also the
straight line behavior is significantly improved for the BNL as
well as for other range separated hybrid functionals [78–80].
The advantage of the second class of approaches via
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hybrid functionals is that they incorporate a system-dependent
fraction of exact exchange, which is determined based on
rigorous DFT arguments instead of globally fixing it or by
fitting it to experiment [8]. That the fraction of exact exchange
should be system dependent was argued via its relationship
to the dielectric constant and has also been exploited for the
construction of hybrid functionals [81–84].

The main disadvantage of the second class of approaches is
that they explicitly rely on the �SCF approach, which is dif-
ficult for periodic systems [85]. The third class of approaches
therefore enforces the HOMO-I condition differently, e.g., by
calculating the poles of the single-particle Green’s function,
which correspond to charged excitation energies and thus
also the ionization energy. In this approach, the parameters
of a hybrid functional are determined by minimizing the
self-energy correction of the HOMO level within the G0W0

approximation [11] for the self-energy and thus the Green’s
function [12,15] [see Eqs. (1)–(3)]. For the PBE hybrid func-
tional, we then denote the optimized functional PBEh(α∗). The
advantage of this scheme is that it is applicable to molecules
and solids alike [12,86]. Furthermore, it may also be regarded
as a plausible, albeit not unique [87,88], solution to the
starting point dependence of the G0W0 scheme [89–91] where
the self-energy is evaluated perturbatively using DFT input
orbitals and eigenvalues. The starting point dependence can be
rigorously removed in the fully self-consistent GW (scGW )
approach [92]. However, scGW is computationally much more
expensive than hybrid functionals and can currently not be
applied to large systems. It should be noted that GW is not
an exact theory and, therefore, one cannot expect PBEh(α∗) to
have no DSLE. However, the remaining DSLE is vanishingly
small, as we will demonstrate in the paper.

IV. COMPUTATIONAL METHOD

All calculations reported in this work were performed with
the FHI-AIMS package [93], an all-electron code that employs
numeric atom-centered orbitals (NAOs) as basis functions.
Methods that go beyond a semilocal DFT approximation
(hybrid functionals, GW , RPA) employ a resolution of
identity approach for the nonlocal Fock operator and for the
linear density response function [94]. The basis set hierarchy
in FHI-AIMS is arranged in tiers. Additionally, Gaussian-
type basis sets and valence-correlation consistent are NAOs
available [95,96]. Throughout this work, we employ tight
integration settings [93]. We use a tier 2 basis set for hybrid
functionals, unless stated otherwise. For GW and rPT2, the
basis set convergence is much slower than for standard DFT
functionals [32,94]. For these calculations, we therefore used
a much larger basis set, which will be stated in Sec. VI.

V. EXAMPLE OF TTF, TCNQ, AND THE TTF-TCNQ

COMPLEX

In this section, we apply the principles of Sec. II to the
donor-acceptor complex TTF-TCNQ and to the problem of
erroneous charge transfer in the ground state. Readers that are
interested in our benchmark results for atomization energies,
weak interaction energies, and barrier heights may proceed
straight to Sec. VI.

A. Individual molecules of TTF and TCNQ

We illustrate the DSLE for the TCNQ and TTF molecules.
Figure 3(a) shows the total energy as a function of partial
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occupation for the TCNQ molecule with respect to the neutral
molecule. The same plot for TTF is shown in Fig. 3(b).
However, since TTF is an electron donor, it does not bind
an excess electron and therefore we will only consider partial
electron removal.

To make the deviation from the straight line condition more
visible, we define

�E(N ) :=

{

E(N ) − I (N0 − N ) − E(N0), N � N0

E(N ) − A(N0 − N ) − E(N0), N > N0

(17)

on the interval [N0 − 1,N0 + 1]. This function is a measure for
the deviation of the straight line behavior with slopes obtained
by the �SCF approach. It is by construction zero at integer
values and the sign of �E(N ) is chosen such that a negative
value corresponds to a convex total energy curve, i.e., E(N )
lies below a straight line.

Figure 3(c) shows �E(N ) for the TCNQ molecule. Low
α functionals significantly deviate from the straight line
condition. In particular for α � 0.5 the total energy is a convex
function of electron number and thus exhibits a delocalization
error. In contrast, for α � 0.8 the total energy is concave and
thus exhibits a localization error. For α = 0.7, the straight
line condition is almost obeyed, although there is a small
residual localization error upon partial electron removal and
delocalization error upon partial electron addition. Turning
to TTF, shown in Fig. 3(d), the overall behavior is similar.
However, the α value for which the deviation from linearity
condition is minimized is now at a slightly larger value of about
0.8. Again, this value gives an almost straight line feature for
both the partially occupied HOMO and LUMO levels. Hence,
in agreement with Ref. [19] we conclude that the linearity
condition is best obeyed for large α values (0.7 for TCNQ and
0.8 for TTF). In contrast, the standard values α = 0 or 1

4
which

correspond to the PBE and PBE0 functionals significantly
violate the straight line condition.

The DSLE immediately translates into the eigenvalues of
the frontier orbitals. Figures 3(e) and 3(f) show the eigenvalues
as function of occupation:

ǫH (f ), N0 − 1 � N � N0, f = N − N0 + 1

ǫL(f ), N0 � N � N0 + 1, f = N − N0.

It can be seen that the choice of α that minimizes the deviation
from the straight line behavior gives constant eigenvalues for
the frontier orbitals. This is to be expected because Janak’s
theorem dictates

∂E

∂f
=

{

ǫH (f ), N0 − 1 < N < N0

ǫL(f ), N0 < N < N0 + 1
(18)

which is constant if the total energy is piecewise linear. In this
case, the eigenvalues also correspond to the negative of I and
A as given by the �SCF approach

∂E

∂f
=

{

ǫH (f )=const=−I (�SCF), N0 − 1 < N < N0

ǫL(f )=const=−A(�SCF), N0 < N < N0 + 1.

(19)

For other α values, the eigenvalues depend on the occupation
and their variation can be as large as several eV in the extreme
case of α = 0, which is equivalent to the PBE functional.

Furthermore, for any choice of α, the slope of the eigenval-
ues appears to be constant. It gradually increases from being
positive (α = 0.0) to zero (α ∼ 0.7) and negative for α > 0.7.
This is a consequence of the curvature of the total energy.
For small α values, the total energy is convex. Therefore, its
derivative monotonically increases. For large α values, the total
energy is concave which results in a monotonically decreasing
first derivative. If the total energy is piecewise linear, then its
curvature is zero and therefore its slope is zero between integer
charges.

While the slope of the eigenvalues strongly depends on
α, Fig. 3(e) also shows that all curves cross at a point very
close to N0 ± 0.5, i.e., at half occupation of the HOMO and
LUMO, respectively. In particular, they also cross the constant
eigenvalue lines for which the eigenvalues correspond to the
negative of I and A, respectively. This implies that the Slater-
Janak transition state [97–99], which obtains I and A by the
eigenvalue of the half-filled HOMO and LUMO levels,

I ≈ −ǫH (0.5), (20)

A ≈ −ǫL(0.5), (21)

is a valid approximation, independent of α. In the following,
we argue that this approximation is sensible if the total energy
is, to a good approximation, a quadratic function of the particle
number. The Slater-Janak transition state may be obtained by
integrating Janak’s theorem. For the ionization potential, this
gives

−I =

∫ 1

0

ǫH (f ) = eH (ξ ), (22)

where in the last step the mean value theorem of calculus was
used, that guarantees a ξ ∈ [0,1] such that the integral may be
obtained by the HOMO eigenvalue with certain occupation ξ .
While this is still exact, the Slater-Janak transition state makes
the approximation ξ ≈ 0.5. Now, assume that the total energy
is a quadratic function of f :

E(f ) = E0 + f E′
0 + f 2E′′

0 , (23)

ǫH (f ) = E′
0 + 2f E′′

0 . (24)

With the left-hand side of Eq. (22), we have −I = E′
0 +

E′′
0 = ǫH (0.5). An analogous argument can be given for the

electron affinity. Thus, the closer the total energy follows
a quadratic behavior, the better the Slater-Janak transition
state will perform. That in standard DFT approximations the
Slater-Janak transition state is a good approximation is not very
surprising because the Hartree energy, which is quadratic in
f , gives a large contribution to the total energy. Also, note that
Eq. (24) implies that the eigenvalues are linear as a function of
occupation, with slopes that are given by the curvature E′′. This
is in agreement with Figs. 3(e) and 3(f). Note that Eqs. (23)
and (24) contain the special case where E(f ) is piecewise
linear by setting E′′

0 = 0.
From this perspective, the results of Fig. 3 appear as

different sides of the same coin: for low α values the
total energy is convex E′′

0 > 0 and thus the slope of the
eigenvalues is positive and constant. For straight line segments,
the curvature of each segment is zero E′′ = 0 (at α ∼ 0.7),
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implying constant eigenvalues. For very large α values, the
total energy is convex E′′

0 < 0, which results in a negative but
constant slope of the eigenvalues. On the other hand, the
Slater-Janak transition state remains accurate for any choice
of α. We stress that in the DSLE-free case, the Slater-Janak
transition state is trivial because then the eigenvalues of the
frontier orbitals are independent of their occupation.

Having clarified the connection between the linearity
condition, the GKS eigenvalues at partial occupation, and the
Slater-Janak transition state, we now turn to the eigenvalues at
integer particle number. We first observe from Fig. 3(e) that for
all α values, the HOMO and LUMO of the neutral molecules
correspond to the one-sided limits

ǫH (1) = lim
f →1−

ǫH (f ), (25)

ǫL(0) = lim
f →0+

ǫL(f ), (26)

i.e., the fully occupied HOMO corresponds to the limit from
the left and the empty LUMO corresponds to the limit from
the right (illustrated for α = 0 by the arrows). The fact that the
derivative of the total energy agrees with the eigenvalues for
both the HOMO and the LUMO demonstrates that the PBE
hybrid family is explicit and differentiable in the first-order
density matrix, i.e., it lacks the derivative discontinuity [cf.
Fig. 1(e)].

However, the actual quality of the HOMO and LUMO
eigenvalues strongly depends on the DSLE and thus on
α. Indeed, the HOMO and LUMO values at N0 vary by
more than 2 eV as a function of α. In particular, for low
α values, where the slope of the eigenvalues is positive
(and hence, the total energy is convex) ǫH (1) > ǫH (0.5) or,
equivalently, ǫH (1) > −I . For very large α values, the slope
of the eigenvalues is negative (and hence, the total energy is
concave) ǫH (1) < ǫH (0.5). Therefore, ǫH (1) < −I . Finally,
if the total energy is DSLE free, then ǫH (1) = ǫH (0.5) = −I .
In summary, the situation for the HOMO is

ǫH (1)

⎧

⎨

⎩

> −I (�SCF), E convex
= −I (�SCF), E pw. linear
< −I (�SCF), E concave,

(27)

and similarly for the LUMO

ǫL(0)

⎧

⎨

⎩

< −A(�SCF), E convex
= −A(�SCF), E pw. linear
> −A(�SCF), E concave.

(28)

As a consequence, the fundamental gap A − I is underes-
timated for a convex total energy functional (delocalization
error) and overestimated for a concave total energy functional
(localization error). And, if the total energy is piecewise linear,
both the HOMO and LUMO levels correspond to the negative
of the I and A as obtained by the �SCF approach. Eventually,
also the HOMO-LUMO gap corresponds to the fundamental
gap. However, this does not imply that I and A are exact
because the straight line behavior does not guarantee that the
end points [i.e., E(N0) and E(N0 ± 1)] are correct.

TABLE I. Optimized α values obtained by requiring the HOMO-

I condition via the �SCF and G0W0 approach.

�SCF G0W0

TCNQ 0.66 0.79

TTF 0.77 0.76

B. Comparison of methods to determine the optimum α value

Having illustrated the overall dependence on α, we now
compare two different methods to obtain α: enforcing the
straight line condition and the G0W0 scheme [i.e., the
PBEh(α∗) functional]. The α values of the G0W0 scheme
have previously been reported in Ref. [12] and are listed in
Table I. For both TCNQ and TTF, they exceed 0.75 and are
thus significantly larger than the α range of 0.1–0.3 found for
solids with the same scheme [86]. These different α∗ values
may be rationalized by the inverse relation between α and
the dielectric constant [82]. Small molecules have a dielectric
constant close to one, and therefore their α∗ value is close to
one, too. For solids, the dielectric constant is larger, which
eventually yields a smaller α∗ value [86].

The DSLE-free α values obtained in this work with the
HOMO-I �SCF scheme are also reported in Table I. For TTF,
the G0W0 approach gives virtually the same α value as the
�SCF approach and a slightly larger value for TCNQ. Thus,
the PBEh(α∗) functional significantly reduces the DSLE and
only exhibits a small tendency towards a residual localization
error (concave behavior). This is a rather remarkable feature
of the G0W0 self-energy, given that it is the simplest nontrivial
self-energy in Hedin’s equations [11,100].

C. TTF-TCNQ complex

So far, we have shown that the DSLE is responsible for
the deviation of the GKS frontier levels from I (�SCF) and
A(�SCF). In practical calculations, this does not pose any
mayor problem because one can always resort to a �SCF
calculation or use the Slater-Janak transition state to determine
these values. However, in the following, we will show that
the DSLE may lead to an unphysical ground-state density.
To this end, we consider the complex that is built from TTF
and TCNQ. We study vertical electron transfer from TTF to
TCNQ, i.e., we neglect effects from geometry relaxation in the
transfer process.

We start with the noninteracting case, in which the two
molecules are infinitely separated (sketched in Fig. 4). We
define a transfer energy as

Et (ω) := ETCNQ(N0 + ω) + ETCNQ(N0 − ω)

−{ETCNQ(N0) + ETCNQ(N0)}. (29)

Et is an energetic measure for (partial) ω electron transfer
with respect to the overall neutral molecules with N0 electrons
(note that both neutral molecules have 104 electrons and
therefore share a common N0). For the exact XC functional,
ETCNQ(N0 ± ω) and ETTF(N0 ± ω) is piecewise linear. There-
fore, also Et (ω) is piecewise linear. Using Janak’s theorem,
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FIG. 4. Transfer energy (a) and its derivative (b) for the TTF-

TCNQ complex.

the derivative of Et is given by

∂Et

∂ω
=

{

ǫL
TCNQ(ω) − ǫH

TTF(1 − ω), 0 < ω < 1

ǫL
TTF(ω) − ǫH

TCNQ(1 − ω), −1 < ω < 0
(30)

where we have used the chain rule and expressed the
occupation number of the HOMO f H = 1 − ω and LUMO
f L = ω in terms of ω. Thus, the slope of Et is given by the
difference between the partially occupied TCNQ-LUMO level
and TTF-HOMO level if partial electrons are transferred from
TTF to TCNQ (and conversely if electrons are transferred from
TCNQ to TTF). Using Eq. (6), Eq. (30) may be rewritten for
a DSLE-free functional as

∂Et

∂ω
=

{

ITTF − ATCNQ, 0 < ω < 1
ITCNQ − ATTF, −1 < ω < 0.

(31)

Hence, the slope of Et is given by the difference of I and A

independent of the amount of transferred charge for the exact
functional. In order to facilitate our discussion, we focus on
the process where partial electrons are transferred from TTF
to TCNQ (the reverse process is unphysical because TTF does
not bind an additional electron).

For the exact functional that is piecewise linear ∂Et/∂ω

is constant on the open interval because Et is a linear
combination of piecewise linear functions. For approximate
functionals that lack the derivative discontinuity and are DSLE
free, the one-sided limits are given by the difference of the
neutral GKS eigenvalues

∂Et

∂ω

+

(0) = ǫL
TCNQ(0) − ǫH

TTF(1)

=
∂Et

∂ω
(ω) = ǫL

TCNQ(ω) − ǫH
TTF(1 − ω)

= const, ω ∈ (0,1). (32)

Recall that this is only true for approximate functionals that are
piecewise linear and lack the derivative discontinuity. Indeed,
for the exact functional the first equality sign is not true because
there are contributions from the derivative discontinuity upon
taking the limit ω → 0+. The third and fourth equality signs,
however, hold true because the exact functional is piecewise
linear. For approximate functionals that are not piecewise
linear, Eq. (32) is also not true because they violate the
constancy requirement

∂Et

∂ω
(ω) = ǫL

TCNQ(ω) − ǫH
TTF(1 − ω) 
= const, ω ∈ (0,1).

(33)

This can be seen in Fig. 4, which reports in (a) the transfer
energy and in (b) its derivative as a function of transferred
electrons ω for various α values. For low α values, the
transfer energy is concave. Therefore, its derivative is not
constant. Increasing α gradually reduces the convexity of
Et and the slope of its derivative reduces. At α ≈ 0.7, the
transfer energy is close to piecewise linear, which results into
an almost constant difference in the eigenvalues, irrespective
of transferred electrons. Therefore, condition (32) is met for
α ≈ 0.7. For α � 0.8, the transfer energy is concave, which
results in a negative slope in its derivative.

The convexity of Et for low α values has important
consequences for charge transfer. Recall that Et is an energetic
measure for charge transfer in the asymptotic limit. Now, for
α = 0 (PBE) and α = 1

4
(PBE0), Et crosses the zero line

in Fig. 4. This implies that the system gains energy upon
partial electron transfer even if the two molecules are infinitely
far away. Electrons will be transferred until Et reaches its
minimum as indicated by the black arrows in Fig. 4(a). The
minimum is reached when Et has zero slope [black arrows in
Fig. 4(b)]. From Eq. (33), the slope is zero for a specific ω∞

for which

ǫL
TCNQ(ω∞) − ǫH

TTF(1 − ω∞) = 0. (34)

Thus, in the noninteracting limit, partial electrons will be
transferred from the TTF-HOMO level into the TCNQ-
LUMO level until both partially occupied orbitals align [54].
Numerically, this amounts to ω∞ ≈ 0.2 (PBE) and ω∞ ≈ 0.05
(PBE0) transferred electrons. These are qualitative errors that
arise from the convexity. More precisely, the convexity must be
large enough such that the zero line is crossed. For example,
for α = 0.5, Et is still convex (positive slope of ∂Et/∂ω),
but it does not cross the zero line and thus does not exhibit
asymptotic charge transfer. Furthermore, also functionals that
obey piecewise linearity or are concave to not exhibit this
artifact because they have their minimum at zero charge
transfer.

The definition of Et and thus its physical implications
only give access to the noninteracting limit. In principle, this
picture breaks down if two molecules approach each other and
eventually start to interact. Then, additional effects such as
hybridization or Coulomb stabilization between the transferred
electron and the remaining hole occur, which are not captured
in this simple picture. However, in the specific case of TTF
and TCNQ, the interaction is weak in the binding regime.
Therefore, conclusions from the asymptotic limit carry over to

035140-8



ENFORCING THE LINEAR BEHAVIOR OF THE TOTAL . . . PHYSICAL REVIEW B 94, 035140 (2016)

0 0.1 0.2 0.3 0.4
ω

-0.2

-0.1

0

0.1

0.2

0.3

E
t [

eV
]

PBEh(α
*
)

PBE

0 2 4 6 8
d [Å]

-0.2

-0.1

0

0.1

0.2

0.3
ω

0 1 2 3 4
d [Å]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

E
b [

eV
]

PBEh(α∗)+vdW

PBE+vdW

(c) Binding energy (d) Electron transfer

(a)

(b)

ω
∞

ω
∞

E
∞
b

E
∞
b

FIG. 5. Binding energy (c) and Hirshfeld charge transfer (d) for
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to the equilibrium geometry the dimer would have in the periodic

interface. (b) Shows a zoom of the transfer energy.

the TTF-TCNQ complex. We take as illustrative example the
PBE (α = 0) and the PBEh(α∗) functionals, where α∗ ≈ 0.8.

Figure 5(c) shows the binding energy and the electron
transfer [Fig. 5(d)] as a function of the TTF-TCNQ distance.

The electron transfer was calculated by means of a Hirshfeld
analysis [101]. The geometry [sketch in Fig. 5(a)] was obtained
by cutting out a dimer of a periodic TTF-TCNQ interface.
The reference distance d = 0 corresponds to the equilibrium
distance of the TTF-TCNQ interface obtained with the van der
Waals corrected PBE functional (PBE+vdW).

Both the binding curve and charge transfer curve are very
similar in shape but significantly differ in their offset. The PBE
binding energy does not decay to zero for large intermolecular
distance, but rather approaches a constant negative value. This
value is also given by the y minimum of the transfer energy
as illustrated in Fig. 5(b). The PBEh(α∗) functional is almost
DSLE free. As a consequence, the minimum of Et is located
at the origin. Therefore, the binding energy of PBEh(α∗)
approaches zero in the large-separation limit.

PBE

PBEh(α∗) scGW

LUMO

HOMO

FIG. 6. Charge density difference δρ = ρ(dimer) − ρ(TTF) −

ρ(TCNQ) for PBE, PBEh(α∗), and fully self-consistent GW (scGW ).

Also shown are the TTF-HOMO and TCNQ-LUMO orbitals. Blue

corresponds to electron density depletion and red corresponds to

electron density accumulation. The yellow and pink colors for the

orbitals label the sign of the orbital.

The electron transfer in PBE does not decay to zero, as
indicated by the black arrow in Fig. 5(d). In fact, at very large
intermolecular distance, the electron transfer is given by the
minimum of Et as shown in Fig. 5(b). Near the equilibrium
distance, the electron transfer amounts to about 0.25 electrons.
In contrast, the predicted electron transfer of PBEh(α∗) decays
to zero, as predicted by Et . Only near the equilibrium distance
PBEh(α∗) predicts a very small electron redistribution.

The difference between the ground-state density of PBE and
PBEh(α) at the equilibrium geometry (d = 0) can be also seen
in the charge density difference δρ = ρ(dimer) − ρ(TTF) −

ρ(TCNQ). It is plotted in Fig. 6. δρ qualitatively differs
between PBE and PBEh(α∗). PBE predicts electron transfer
from a spatial distribution that corresponds to the TTF HOMO
to the TCNQ LUMO. This behavior of PBE can already
be anticipated from the aforementioned discussion of the
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asymptotic limit and, in particular, from Eq. (34). In contrast,
PBEh(α∗) only a predicts minor electron redistribution in
an area where the two molecules are close. This feature is
also supported by fully self-consistent GW (scGW ), which
allows to calculate the ground-state density on the GW level
of theory [13,92,102].

We conclude that the convexity error induces artifacts in
the description of the binding energy and charge transfer.
The error occurs for small α values for which the system
might gain energy upon interaction-free charge transfer. This
erroneous behavior may be remedied by larger α values
that give nearly DSLE-free functionals. While such high α

values are unconventional, the question arises if this functional
parametrization is still able to predict total energy differences
as accurately as the well-established PBE0 functional. In
particular for weakly interacting molecules, one needs to
take into account van der Waals (vdW) interactions. This is
also shown in Fig. 5(c). It can be seen that the inclusion of
vdW interactions via the Tkatchenko-Scheffler (TS) scheme
enhances the binding well by several tens of meV. For PBE,
the binding curve artifact is further enhanced upon inclusion
of vdW because of the wrong asymptotics. For PBEh(α∗), the
question remains if the method is compatible with the choice
of high α values. In the subsequent section, we will clarify this
question by means of a comparative assessment for benchmark
sets.

VI. BENCHMARK RESULTS

We will assess the performance of the PBEh(α∗) functional
for weak interaction energies, atomization energies, and barrier
heights. Since the PBE hybrid family does not include the
long-range vdW tail, we will also study two methods that
take them into account: the TS scheme [30] and renormalized
second-order perturbation theory (rPT2) [31,32].

The TS scheme adds the long-range vdW tail to a given
approximate DFT functional (in our case a member of the
PBE hybrid family)

E = EDFT
approx + EvdW, (35)

EvdW = −
∑

a,b<a

fdamp

C6ab[ρ]

|Ra − Rb|6
, (36)

with Ra being the position of atom a, the damping function
fdamp and the isotropic and density-dependent C6ab[ρ] term
that describes the vdW interactions between atoms a and b

within a molecule. The damping function is of the form of an
inverse Fermi-Dirac distribution

fdamp =

{

1 + exp

[

− d

(

|Ra − Rb|

sR

(

R0
a[ρ] + R0

b[ρ]
) − 1

)]}−1

,

(37)

where R0
a is the vdW radius of atom a, d is a fixed parameter,

and sR is a range separation parameter. The damping function
contains the empirical part of the TS theory. It couples the DFT
functional to the vdW tail and damps away the 1/R6 divergence
at close interatomic distances. The most important empirical
ingredient in the damping function is the sR parameter, which
determines the onset of fdamp. In the TS recipe, it is obtained

by a fit for the S22 test set [103,104], that contains 22 weakly
interacting molecules consisting of a few, light elements. The
reference data in S22 were obtained with the coupled cluster
singles, doubles, and perturbative triples [CCSD(T)] approach,
that corresponds to the gold standard for weak interactions.

Alternatively, vdW interactions are automatically included
by methods based on the random-phase approximation (RPA),
in particular in rPT2 [31,32]. The advantage of this approach
is that it includes vdW interactions in a seamless fashion in the
sense that it does not employ an ad hoc damping function (in
contrast to the TS scheme). Furthermore, rPT2 is a promising
candidate for an accurate general purpose method as it has
been shown to give the “most balanced” performance over a
range of different electronic and chemical environments. A
distinct disadvantage of rPT2 is the significant computational
cost, which currently hinders its application to large systems.
In rPT2, the correlation energy is obtained by adding renor-
malized single excitations (rSE) and second-order screened
exchange (SOSEX) to RPA [31,32]:

rPT2 = RPA + rSE + SOSEX. (38)

The total energy is then given by

E = EX + rPT2, (39)

EX = T + EH + EEX
X + Eext, (40)

where EX is the exchange-only total energy. It consists of
the kinetic energy T , the Hartree energy EH , the exact-
(Fock) exchange energy EEX

X , and the external potential energy
Eext. Since rPT2 resides in the framework of many-body
perturbation theory, it depends on the underlying functional.
This means that Eq. (38) and EEX

X are evaluated for DFT
input orbitals. This starting point dependence is denoted
“rPT2@orbital” in the following. For example, rPT2@PBE
means that the rPT2 energy is evaluated for PBE input orbitals.
Up until now, rPT2 calculations have been only reported for
the PBE starting point in the literature [32]. Therefore, we
additionally present the PBE0 and PBEh(α∗) starting point
in order to clarify the starting point dependence of rPT2 in
general and the compatibility with PBEh(α∗) in particular.

A. Weak interaction energies

We start with the S66 test set by Hobza and co-workers [26].
It consists of 66 molecular complexes with CCSD(T) reference
interaction energies. S66 contains most common types of weak
interactions, i.e., hydrogen bonds, dispersion bonds, and mixed
types of bonds.

The mean absolute percentage error (MAPE) for the TS-
vdW scheme is presented in Fig. 7(a) for the underlying
PBE (α = 0), PBE0 (α = 1

4
), and PBEh(α∗) functionals.

Figure 7(b) shows the rPT2 results for the PBE, PBE0, and
PBEh(α∗) starting points. The results for the TS-vdW scheme
were obtained using a tier 3 FHI-AIMS basis set. The rPT2
results were obtained, following Ren et al. [31,32], for the tier
4 basis set augmented with diffuse functions from AUGCC-PV5Z

[95] together with a counterpoise correction to account for the
basis set superposition error [105]. S66 benchmark results for
the TS scheme were already reported in the literature for PBE
and PBE0 as well as for an optimally tuned range separated
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scheme [30] and (b) rPT2 [32] for the S66 test set. The errors are

relative to CCSD(T) reference data [26].

hybrid functional [106–108]. rPT2@PBE results have already
been reported by Ren et al. [31,32].

It can be seen that the performance of both the TS scheme
and rPT2 depends on the underlying functional. In the case
of the TS scheme, the accuracy improves for PBEh(α∗).
In particular for vdW interactions, for which the theory is
designed, the MAPE decreases from about 22% for PBE to
about 6% for PBEh(α∗) (α∗ ∼ 0.7–0.8, depending on the
system). In the case of rPT2, the opposite behaviors occur.
While only hydrogen bonds slightly benefit from a high α

treatment, the description of vdW and mixed interactions
degrades considerably. For these types of interactions, already
the PBE0 starting point, which employs a moderate α = 1

4
value, clearly gives worse results than the PBE starting point.

In short, the TS scheme benefits from PBEh(α∗), whereas
rPT2 exhibits a clear trend of performance loss for α 
= 0. In
the subsequent discussion, we will analyze this observation for
the TS scheme and rPT2, respectively.

1. TS method

We consider the binding curve of the pentane dimer (item
number 34 in the S66 test set), for which PBE+TS exhibits the
largest deviation with respect to CCSD(T). The binding curve
is plotted in Fig. 8. The geometries and CCSD(T) reference
data were taken from the S66 × 8 set [26]. The S66 × 8 data
set contains 8 different intermolecular separations for each
element of the S66 set. These are set by scaling the equilibrium
distance d0 by a factor of d/d0 = 0.9,0.95, . . . ,2.

Figure 8(a) shows that PBE+TS overbinds by about
60 meV near the equilibrium distance (d/d0 ∼ 1). While all
TS corrected functionals predict slightly too large equilibrium
distances, the binding curves are shifted towards the CCSD(T)
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FIG. 8. Binding curves for the pentane dimer (illustrated in the

inset) obtained by the TS method (a), and its contributions from the

(generalized) Kohn-Sham (G)KS functionals (b), the TS-vdW tail (c),

and the TS-vdW tail where the sR parameter is set to one (d). The

binding distance is given by the scaling parameter d with respect to

the equilibrium distance. The CCSD(T) reference curve was taken

from Ref. [26].

reference curve upon increasing the fraction of exact exchange
(α∗ = 0.78 for the pentane dimer). As a consequence, the
PBEh(α∗)+TS binding curve is close to the reference curve.

Tracing the reason for this observation, Figs. 8(b) and 8(c)
show the binding contribution from the (G)KS functionals and
their TS corrections, respectively. Without the TS contribution
[Fig. 8(b)], all functionals predict a basically unbound pentane
dimer due to the lack of the long-range vdW part in the
PBE hybrid family of XC functionals. Near the equilibrium
geometry, all three functionals give binding curves that differ
only slightly and, hence, are not the main reason for the trend
observed in Fig. 8(a). As a consequence, the difference in the
binding curves of Fig. 8(a) must arise predominantly from the
TS correction.

Indeed, Fig. 8(b) shows that the TS correction differs
significantly between the individual functionals, in particular
in a regime near the equilibrium distance. This α dependence
originates either from the density dependence of the C6[ρ]
coefficients [Eq. (36)] or from the range separation parameter
sR in the damping function [Eq. (37)]. Figure 8(d) shows the
TS correction for all three functionals where the sR parameter
is set to one. All three curves are essentially on top of each
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TABLE II. Range seperation parameter sR and MAPEs for the

S22 test set [103] for the PBE, PBE0, and PBEh(α∗) functionals. The

errors are relative to CCSD(T) extrapolated to the complete basis set

limit taken from Ref. [104].

sR H bonds Dispersion Mixed Total

PBE 0.94 8.1% 106.7% 51.8% 57.8%

PBE0 0.96 7.3% 104.6% 46.8% 55.2%

PBEh(α∗) 1.02 6.4% 96.6% 32.2% 47.8%

other, implying that the C6 coefficients do not change with
α. Thus, it is the sR parameter in the damping function that
causes the difference in the curves of Figs. 8(c) and, hence, of
Fig. 8(a).

The sR parameter is the empirical part of the TS method.
In the TS scheme [30], the sR parameter is obtained by a fit
to CCSD(T) reference data extrapolated to the complete basis
set limit [104] of the S22 data set [103]. The sR fit needs to
be performed for each functional; the ensuing sR values are
collected in Table II.

The sR parameter increases as a function of α from 0.94
(PBE) to 1.02 [PBEh(α∗)]. Since sR determines the onset of
the vdW PBEh(α∗)+TS becomes less attractive and alleviates
the overbinding behavior of PBE+TS or PBE0+TS.

The reason for an increase of sR upon increasing α

is also given in Table II. In spite of the large error in
describing interaction energies of the PBE hybrid family of
XC functionals when dispersion contributions are important,
there is a clear trend: the error reduces for all bonding types
present in the S22 upon increasing α. Now, in the TS scheme,
sR is obtained by fitting to the S22 test set. If the underlying
functional is already in better agreement with the CCSD(T)
reference data, the vdW contribution reduces; within the TS
formalism, this can only be achieved by “pushing” the vdW
tail further out via increasing the sR parameter in the damping
function. Hence, PBEh(α) has the largest sR parameter among
all considered functionals.

2. rPT2

The benzene dimer, item number 24 of the S66 data set,
was identified by Ren et al. [31,32] as a challenging system
for RPA based methods. We therefore adopt it here to analyze
the starting point dependence of rPT2. Figure 9 shows the
computed binding curves, whereas the reference CCSD(T)
curve was taken from the S66×8 data set [26].

Near the equilibrium distance, rPT2@PBE [Fig. 9(a)]
underestimates the binding energy by about 30%. An increase
of α in the DFT functional amplifies the underbinding behavior
of rPT2 (α∗ = 0.77 for the benzene dimer). To gain more
insight, we split the rPT2 total energy into its contributions
according to Eqs. (38) and (39). Figures 9(c) and 9(d) display
the corresponding SOSEX and rSE corrections. While all
starting points give the same repulsive SOSEX contribution,
rSE acts slightly attractive for PBE but becomes repulsive for
the hybrid starting points. For PBE reference states, SOSEX
and rSE tend to cancel each other, while they add up in a
repulsive fashion otherwise. As a consequence, rPT2 does not
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FIG. 9. Binding curve for the benzene dimer obtained by (a) rPT2,

(b) EX+cRPA. (c) Shows the SOSEX and (d) the rSE correction.

Also shown is the CCSD(T) reference curve, which was taken from

Ref. [26]. The binding distance is given by the scaling parameter d/d0

with respect to the equilibrium distance.

improve over EX+cRPA for PBE input orbitals and performs
worse for hybrid orbitals.

Also, EX+cRPA exhibits a performance loss upon in-
creasing α as shown in Fig. 9(b). The α dependence of the
exchange-only (EX) contribution and the RPA correlation
energy (cRPA) to the binding energy is shown in Fig. 10(a).

Plotted are the differences with respect to the PBE starting
point

�EX@PBE0 := EX@PBE0 − EX@PBE, (41)

�cRPA@PBE0 := cRPA@PBE0 − cRPA@PBE, (42)

and similar for the PBE0 and PBEh(α∗) functionals. Increasing
α renders cRPA less attractive, while at the same time
the EX contribution gets less repulsive. These α-induced
deviations from EX@PBE and cRPA@PBE cancel each other
only partly; in particular, the cRPA trend towards weaker
binding energies dominates the opposite trend of EX. Thus,
EX+cRPA decreases the intermolecular interaction strength
as α increases.

Returning to the rSE starting point dependence,
Fig. 10(a) also shows �EX@HF = EX@HF − EX@PBE. As
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previously observed by Ren et al. [109], EX@HF is more
attractive than EX@PBE. The rSE correction developed by
Ren et al. [32,109] encompasses this difference between
EX@HF and EX@PBE. For HF, rSE is zero (Brillouin’s
theorem [109,110]). rSE thus corrects towards the HF total
energy. This is shown in Fig. 10(b) for the equlibrium distance
d/d0 = 1 of the benzene dimer. However, for PBE0 and
PBEh(α∗) starting points, the EX contribution to the binding
energy is already lower than in HF. As a consequence,
correcting towards HF via rSE acts repulsive because it shifts
the binding energy towards larger values. Thus, the inclusion
of rSE is only beneficial for the PBE starting point. It does
not improve the notorious underbinding behavior of RPA for
functionals for which the EX contribution to the binding energy
is already lower than HF.

B. Atomization energies

We now investigate atomization energies for the G2-1 test
set [27]. The set contains 55 small molecules with experimental
reference values that are corrected for zero-point effects [111].

Figure 11(a) shows the MAPEs for the PBE (α = 0),
PBE0 (α = 1

4
), and PBEh(α∗) functionals within the GKS

scheme. Also included are the rPT2 results for the PBE, PBE0,
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FIG. 11. MAPE (%) for the G2 test set of atomization ener-

gies [27] for GKS, rPT2. Reference data are from Ref. [111]. The

results were obtained from the Gaussian cc-pV6Z basis set [95].

and PBEh(α∗) starting points. Following Ren et al. [31,32],
a Gaussian cc-pV6Z basis set [95] was used and a coun-
terpoise correction performed [105]. EX+cRPA@PBE and
r2PT@PBE results for the G2-1 have been published by Paier
et al. [112,113] and Ren et al. [31,32].

rPT2 strongly depends on the underlying XC functional.
Among the three considered starting points, rPT2@PBE shows
the best performance with a MAPE of 2.8%. Increasing
the fraction of exact exchange α in the DFT functional
results in an underestimation of the atomization energies. The
pronounced rPT2 starting point dependence emerges from both
the rSE and SOSEX corrections to EX+cRPA. EX+cRPA
itself depends relatively weakly on the starting point but it has
an overall tendency to underestimate atomization energies.
That EX+cRPA@PBE underestimates atomization energies
has been first observed by Furche [114] and repeatedly
reported in the literature for the G2-1 set [31,32,112,113].
The inclusion of the rSE correction increases atomization
energies and thus appears to be beneficial, irrespective of
the underlying functional. However, the magnitude of the rSE
correction depends sensitively on the functional and reduces
upon increasing α. For the PBEh(α∗) functional, in particular,
the rSE correction is very small and only leads to a very small
improvement of 0.2% compared to EX+cRPA@PBEh(α∗).

Unlike in S66, the SOSEX correction depends
more strongly on the starting point. SOSEX@PBE0 or
SOSEX@PBEh(α∗) tend to decrease atomization energies. As
a consequence, adding SOSEX to EX+cRPA degrades the de-
scription of atomization energies for these two starting points.
While this effect is negligible for SOSEX@PBE0 (the MAPE
increases by 0.2% compared to EX+cRPA+rSE@PBE0),
it amounts to a 2.3% higher MAPE for the PBEh(α∗)
starting point [compared to EX+cRPA+rSE@PBEh(α∗)].
On the other hand, SOSEX@PBE increases atomization
energies, with a reduction in error that is similar than
rSE@PBE. As a consequence, adding both (i.e., rPT2@PBE)
abates the notorious underestimation of atomization ener-
gies in EX+cRPA@PBE. This improvement is reduced for
rPT2@PBE0 which still benefits to some extent from the rSE
correction, while the SOSEX correction makes rPT2 perform
worse than EX+cRPA for the PBEh(α∗) starting point. Thus,
among all RPA based methods considered in this study,
rPT2@PBE is the most accurate for predicting atomization
energies.

At the same time, PBE0 gives the overall most accurate
atomization energies for the methods we have considered.
PBE0 has a MAPE of 2.7%, which is slightly lower than the
2.8% MAPE of rPT2@PBE. Figure 11 shows that the error
for the PBE hybrid family of XC functionals itself strongly
depends on the fraction of exact exchange α. PBE tends to
overestimate atomization energies, whereas an increase of α

decreases atomization energies. For this reason, PBEh(α∗)
underestimates atomization energies. The best performing α

value should thus lie in-between zero and α∗, which is met by
PBE0 (α = 1

4
).

C. Reaction barrier heights

Chemical reaction barrier heights, defined as the energy
difference between the reactants and the transition state, play
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a decisive role in the description of chemical reactions. In this
work, we consider the HTBH38 [28] and NHTBH38 [29] test
sets of Truhlar and co-workers. Each set contains forward and
backward barrier heights for 19 hydrogen transfer reactions
(HTBH38) and non-hydrogen-transfer reactions (NHTBH38).

Figure 12(a) shows the MAPEs for the PBE (α = 0),
PBE0 (α = 1

4
), and PBEh(α∗) functionals within the GKS

scheme. Figure 12(b) shows the rPT2 results for the PBE,
PBE0, and PBEh(α∗) starting points. The reference data were
obtained either using the Weizmann-1 theory [115] or by
other “best theoretical estimates,” as detailed in Refs. [28,29].
EX+cRPA@PBE has been benchmarked before by Eshuis
et al. [116], Paier et al. [113], and Ren et al. [31,32], who
also showed rPT2@PBE results. Following the work of Ren
et al., we obtained the results with the Gaussian cc-pV6Z basis
set [95].

In general, the scale of Fig. 12 implies that all considered
methods perform much worse for barrier heights as compared
to atomization energies or weak interactions. In particular,
non-hydrogen-transfer barrier heights appear problematic.
While rPT2@PBE exhibits a slightly better performance than
rPT2@PBE0 for HTBH38, the PBE0 starting point appears
much more accurate than PBE for NHBH38. Therefore, in
contrast to the previous test sets, rPT2@PBE0 shows the best
rPT2 performance for barrier heights. However, for all three
starting points, adding SOSEX and rSE corrections worsens
the results compared to EX+cRPA. On average, adding the rSE
correction to EX+cRPA underestimates barrier heights while
the SOSEX correction exhibits the opposite behavior. These
errors cancel each other partly in rPT2. On the EX+cRPA
level, the starting point dependence is most pronounced for
non-hydrogen-transfer reactions, for which EX+cRPA@PBE
tends to underestimate barrier heights. Increasing α in the
PBE hybrid functional increases EX+cRPA barrier heights,
α = 1

4
, then gives the best agreement with the reference barrier

heights. Further increasing α to PBEh(α) overshoots quite
significantly for non-hydrogen-transfer barrier heights.

The trend of increased barrier heights upon increasing α

is already present for the PBE hybrid family itself. PBE
tends to underestimate barrier heights, whereas PBEh(α∗)
overestimates them. As a consequence, a functional with an
intermediate value of α should give the best compromise.

For the considered set of functionals this is achieved by
PBE0, which exhibits the lowest MAPE while still having
the tendency to underestimate barrier heights.

VII. ERROR ANALYSIS

For ionization potentials [12] and weak interaction energies,
the performance of PBEh(α∗) combined with vdW-TS is en-
couraging. However, this study shows that PBEh(α∗) degrades
the description of atomization energies and barrier heights.
Focusing on atomization energies we proceed with an error
analysis.

One source of error is the size-consistency error. Size
consistency is a sum rule, which states that the total energy of
a system that splits into two well-separated subsystems should
be equal to the sum of the individual subsystems [117]. A
functional that violates this sum rule suffers from the size-
consistency error. Per construction, the PBEh(α∗) functional
is not size consistent because it uses different α∗ values for the
system and its subsystems. This has been already discussed
for optimally tuned range separated hybrid functionals and it
has been shown that the size-consistency errors translate into
errors in the prediction of atomization energies [118]. In order
to estimate this error for the PBEh(α∗) functional, we compare
the errors for the G2 atomization energies [27] in two different
computational setups (Fig. 13). In one setup, we calculate the
atomization energies with the original PBEh(α∗) functional,
i.e., we use for the molecule and its atoms their individual α∗

mol

and α∗
atom values, respectively [∗ in Fig. 13(b)]. In the other

setup, we calculate the atomization energies using the α∗
mol

from the molecule also for the atoms [α∗
mol in Fig. 13(a)]. It

can be seen that the error reduces from 16.3% to 12%, implying
that this error is sizable also for the PBE hybrid family.

However, the residual error is still much larger than for
PBE or PBE0. To analyze the discrepancy between PBE0
and PBEh(α∗), we follow Kim et al. [119,120], and split the
error into a density driven and a functional driven contribution.
PBE0 evaluated for the PBEh(α∗) density [PBE0@PBEh(α∗),
Fig. 13(b)] gives virtually the same performance as PBE0. This
implies that the PBEh(α∗) density is not responsible for the
performance loss of PBEh(α∗). Thus, it is the functional form
of PBEh(α∗) that causes the poor description of atomization
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energies. The reason is probably that the PBE hybrid family
is too restricted. In particular, it neglects the α dependence
of the correlation energy, which should be present in the
exact GKS formalism [121]. Thus, constructing functionals
that are compatible with a high fraction of exact exchange that
yields both good binding energetics and physical meaningful
frontier eigenvalues may be regarded as a challenge for future
functional development [122,123].

VIII. SUMMARY

In summary, we have investigated the deviation from
straight line error for the PBE hybrid family of XC functionals.
We found in agreement with previous studies [19] that rela-
tively high α values of 0.7 ∼ 0.8 of fraction of exact exchange
are needed to restore the straight line condition for the TTF
and TCNQ molecules. We have further demonstrated that the
deviation from straight line error can lead to severe artifacts in
the description of electron transfer and interaction energies for
the TTF-TCNQ complex. These can be cured by using higher α

values. In particular, we have found that our recently proposed
PBEh(α∗) method (that obtains α∗ via the GW self-energy)
significantly reduces the deviation from straight line error
compared to PBE and PBE0, but has a residual concavity error.
We have assessed the performance and the compatibility with
the Tkatchenko-Scheffler scheme and rPT2 method of PBE,
PBE0, and PBEh(α∗). We found that the Tkatchenko-Scheffler
scheme is compatible with PBEh(α∗) for weakly interacting
systems, whereas rPT2 exhibits a significant performance loss
for the PBEh(α∗) starting point. Furthermore, PBEh(α∗) is not
adequate in describing barrier heights and atomization energies
and is clearly outperformed by PBE0.
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