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ABSTRACT 
 

Gasoline compression ignition (GCI) engines are considered an attractive alternative to traditional spark-

ignition and diesel engines. In this work, a Machine Learning-Grid Gradient Algorithm (ML-GGA) approach 

was developed to optimize the performance of internal combustion engines. Machine learning (ML) offers 

a pathway to transform complex physical processes that occur in a combustion engine into compact 

informational processes. The developed ML-GGA model was compared with a recently developed Machine 

learning Genetic Algorithm (ML-GA). Detailed investigations of optimization solver parameters and 

variables limits extension were performed in the present ML-GGA model to improve the accuracy and 

robustness of the optimization process. Detailed descriptions of the different procedures, optimization 

tools and criteria that must be followed for a successful output are provided here. The developed ML-GGA 

approach was used to optimize the operating conditions (case 1) and the piston bowl design (case 2) of a 

heavy-duty diesel engine running on a gasoline fuel with a Research Octane Number (RON) of 80. The ML-

GGA approach yielded > 2% improvements in the merit function, compared to the optimum obtained from 

a thorough computational fluid dynamics (CFD) guided system optimization. The predictions from the ML-

GGA approach were validated with engine CFD simulations. This study demonstrates the potential of ML-

GGA to significantly reduce the time needed for optimization problems, without loss in accuracy compared 

to traditional approaches. 

INTRODUCTION 
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The global demand for energy used in the transportation sector is expected to continue rising at an 

annual rate of 1 – 1.5% by 2040 according to recent projections [1, 2]. This increase is mainly driven by the 

expected rise in population, gross domestic product (GDP) and living standards. Currently, internal combustion 

(IC) engines, fueled by petroleum-derived liquid hydrocarbons (gasoline and diesel), dominate the passenger 

and commercial transportation sectors with over 99% market share. IC engines are expected to remain the 

major source of the transportation energy demand in the interim future, despite significant growth in 

alternative energy and competing technologies (e.g., electric and fuel cells) [1-3]. 

The legislative requirements aimed at reducing tailpipe emissions, improving vehicle efficiency and 

mitigating the impact of transportation on CO2 emissions are the main drivers when it comes to changes in the 

transportation landscape. Those legislative requirements, along with consumer demands for vehicles with 

improved efficiency, drivability, and affordability, are pushing automakers to explore many aspects of engine 

designs, combustion control and after-treatment systems that simultaneously reduce fuel consumption and 

emissions. 

IC engines have been around since the 19th century and their conceptual identity as a fuel-powered 

machine has not changed since. There have been significant technological improvements to their performance 

in response to fuel efficiency and emissions regulations [4]. The tools used to co-optimize the fuel/engine 

system have evolved over the years. Until 20 years ago, experimental prototyping was the main optimizing 

method. It was followed by numerical simulations, including complex three-dimensional (3D) computational 

fluid dynamics (CFD), which played a major role in the engine/fuel system optimization. This development was 

enabled by the significant advancements in computing power (supercomputers, clusters, parallelization, etc.) 

and numerical models (turbulence, combustion, spray, heat transfer, meshing, moving boundaries, etc.). Due 

to high dimensionality, complexity and highly nonlinear dependencies in engine properties and responses, 
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both experimental and numerical optimization approaches can be inefficient, and take a significant amount of 

time and effort to obtain local rather than global optimum designs and operating conditions [5-7]. To 

overcome the issues with manual optimizations, alternative approaches have been developed over the years. 

The design of experiments (DoE) technique is commonly used now to enhance design optimization [8]. Probst 

et al. [8] showed that the sequential design of experiments (DoE) approach, coupled with CFD models can 

successfully and efficiently optimize engines. The sequential DOE optimization was compared to an 

optimization performed using a GA. Their study highlighted the strengths of both methods for optimization. 

The GA (known to be an efficient and effective method) found a better optimum, while the DOE method 

found a good optimum with fewer total simulations. The DOE method also ran more simulations concurrently, 

which is an advantage when sufficient computing resources are available. Genetic algorithms (GAs) [9-14] 

have also been used to facilitate design optimization, where an objective function is defined to represent CFD 

simulations. This GA approach often yields better optimum solutions compared with DoE-based optimization.  

Significant advancements have been made in the area of Artificial Intelligence (AI) in the last couple of 

decades. These advances have enabled machine learning (ML) to be a potentially effective tool to optimize 

engine/fuel systems [15-18]. Particularly, neural networks have been used in several studies to efficiently 

optimize engine/fuel systems. The real-time engine control system correction [19, 20] and the effects of fuel 

properties on engine emissions [7, 21] are examples of some recent applications. Other ML algorithms, such as 

random forest and support vector machines, have also been used in engine and vehicle-related problems [22-

24]. Recently, Moiz et al. [25] proposed an improved Machine Learning-Genetic Algorithm (ML-GA) approach 

based on an ensemble machine learning technique known as SuperLearner [26], to optimize the operating 

conditions of a heavy-duty (HD) gasoline compression ignition engine (GCI). DoE was first performed to 

generate a database to train an ML algorithm. The ML optimization algorithm was then used without any 
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further CFD modeling to search for optimum engine design parameters. Their approach yielded comparable 

optimum operating conditions in significantly less computing time compared to the CFD-GA approach [25]. 

Other studies that implemented ML-GA algorithms for engine optimization may be found in the literature [7, 

10-12].  

Compression ignition engine technologies have been considered as attractive alternatives, because 

they have the potential to combine the best of gasoline and diesel engines. CI combustion mode eliminates 

traditional engine knock observed in spark-ignition (SI) engines and the globally lean operation reduces the 

engine-out emissions. Additionally, lean, throttle-less operation, coupled with higher compression ratios, 

improves engine efficiency. Better mixing of fuel and air prior to combustion (due to the higher volatility of 

gasoline) reduces soot production relative to the conventional mixing-controlled (diesel) combustion. Our 

research group in Saudi Aramco extensively investigated the combustion of various fuels in GCI engines [27-

39]. 

In this work, an ML-GGA (Machine Learning Grid Gradient Ascent) approach, with similar functionality 

to that of Moiz et al. [25] is proposed. The developed ML-GGA code builds upon the work of Moiz et al. [25]. In 

addition, the repeatability of the optimization method is investigated. Also, the validity of the SuperLearner 

when applied with modest extrapolations to the original design space is investigated. Finally, guidelines are 

provided to assess solution robustness. The functionality of the ML-GGA code is then extended using a 

feedback strategy and employed to optimize the piston bowl geometry of a heavy-duty (HD) gasoline 

compression ignition engine (GCI). 

 

ML-GA APPROACH 
 

Definition and details 
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The ML-GA is an optimization technique that can be used to efficiently optimize internal combustion 

engines. More details about this approach can be found in Moiz et al. [25] and only a brief description of the 

main features is provided here. In an engine optimization task, the optimization problem is first posed and the 

different engine design parameters are defined. A sample of cases with different combinations of these 

parameters are solved using detailed CFD simulations or are prototyped to define the effect of these design 

variables on the performance of the studied engine. The performance of the engine is normally measured by a 

merit function that combines a certain set of output parameters which need to be defined before starting the 

optimization process. These sets of input variables and output parameters, are utilized in a supervised ML 

algorithm for training purposes. The trained ML routine is then coupled with an optimization tool — in this 

case a genetic algorithm (GA) — to search for the optimum set of engine design variables that lead to 

improved performance. Moiz et al. [25] used the ML package SuperLearner [26], which is available as an add-

on package to the statistical software R [40]. The super learning technique calculates the optimal combination 

of a pool of prediction algorithms, such as the arithmetic mean (SL.mean), Lasso and Elastic-Net Regularized 

Generalized Linear Models (SL.gmlnet), Breiman and Cutler's Random Forests for Classification and Regression 

(SL.randomForest), Support Vector Machines (SL.svm), Extreme Gradient Boosting (Xgboost), Linear regression 

models (SL.lm) and Feed-Forward Neural Networks and Multinomial Log-Linear Models (SL.nnet). The optimal 

combination is a set of these multiple models with weighting factors that minimize the cross-validated error. 

The GA method used to find the optimal design by Moiz et al. [25] is the genetic algorithm “malschains” 

(memetic algorithms with local search chains) [41]. The implementation in R (Rmalschains [42]) was used in 

their work. Malschains uses a combination of local and global optimization techniques. The idea behind the 

algorithm is to apply a local search method on the most promising regions, which are found to have the 

highest fitness value using a (global) genetic algorithm. The GA in malschains is different from a standard 
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genetic algorithm, where the individuals of the population are subjected to genetic operations simultaneously. 

The malschains algorithm randomly generates an initial population of individuals. The genetic algorithm then 

evaluates the merit values (fitness) of these individuals and builds a set of individuals that can be further 

refined by the local search method. The main advantage of the ML-GA technique is the ability to find an 

optimum design for highly nonlinear problems in a short time for engine optimization tasks, where repeated 

CFD simulations can be time consuming and expensive, as detailed in  Moiz et al. [25]. They showed that ML-

GA reduces the optimization time from about 50 days to one day. 

Repeatability and Enhancements in the ML-GA approach 

In this work, we opted to use the ML-GA methodology of Moiz et al. [25], and proposed some 

modifications/ improvements to it. In this section, a detailed investigation of the repeatability ability of the 

optimization scheme and two additional enhancements are presented and applied to the case study from 

Moiz et al. [25] to demonstrate their utility. More details about the objective, design variables, and 

optimization problem may be found in Moiz et al. [25]. In this section, only the impact of the proposed 

enhancements on the design solution is presented. 

Repeatability 

 Although ML-GA presents a resource-efficient and relatively easily-implemented tool for engine 

optimization, it can suffer from repeatability issues where the optimum set of design variables that yields the 

highest merit are not the same for subsequent runs. This is an anticipated behavior because the Rmalschains 

optimization method in R is based on random selections and hence running it multiple times could lead to 

different local solutions if not set with care. To avoid finding unrepeatable local optimum designs, special care 

has to be taken when using certain optimization schemes. To demonstrate this, the ML-GA code of Moiz et al. 

[25] is reconstructed here. It is then solved using the exact same training data set for five consecutive times 
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while changing the search parameters of the Rmalschains algorithm. The following table summarizes the 

variability among the 5 best designs found using each set of Rmalschains where the first line (case 0) 

represents the base parameters used by Moiz et al. [25]. Higher than 1e-4 variance means that the merit 

values of the 5 best designs are different from each other by more than 1%. It can be clearly seen that all 

Rmalschains parameters affect the repeatability of the solution and hence correctly setting those parameters 

is critical to ensure reaching the absolute optimum design in terms of merit value. For example, the number of 

search iterations has to be around 35000. An iteration number of only 2400 represented by case 1 in Table 1 

leads to 5 different local optimum designs. For illustration purposes, the optimum solutions for case 1 as well 

as that from Moiz et al. [25] are presented in Fig. 1. 

Table 1. Dependence of the optimal solutions on the parameters’ setting of the Rmalschains. 
Case popsize ls istep effort alpha maxevals Variance 

of the 5 

best 

designs 

found 

0 100 sw 100 0.8 1 35000 3.83E-07 

1 200 cmaes 300 0.5 0.5 2400 1.05E-01 

2 100 sw 200 0.8 1 35000 1.63E-07 

3 100 sw 350 0.8 1 35000 5.05E-07 

4 100 sw 3500 0.8 1 35000 2.23E-07 

5 50 sw 3500 0.8 1 35000 7.76E-07 

6 10 sw 3500 0.8 1 35000 1.44E-04 

7 10 cmaes 3500 0.8 1 35000 2.98E-07 

8 10 cmaes 3500 0.8 1 3500 7.29E-04 

9 10 cmaes 3500 0.8 1 500 7.01E-02 

10 10 cmaes 3500 0.5 1 3500 1.30E-03 

11 10 cmaes 3500 0 1 3500 7.58E-03 

12 10 cmaes 3500 0 0.5 3500 1.34E-04 

13 10 cmaes 3500 0 0.2 3500 8.22E-04 

14 10 cmaes 3500 0 0 3500 8.73E-02 

15 10 cmaes 3500 0.5 0 3500 1.88E-03 

16 10 cmaes 3500 0.5 0 3500 1.15E-01 
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 As seen in Fig. 1, the 5 optimal designs obtained here are different from each other despite having 

similar merit value (right y-axis). The observed differences can be significant for some design variables such as 

the number of nozzles (nNoz), start of injection (SOI), total nozzle area (TNA), nozzle angle (NozAngle), swirl 

ratio (SR), exhaust gas recirculation (EGR) and injection pressure (Pinj). Only the obtained optimum intake 

valve closing pressure (Pivc) and temperature (Tivc) are similar for the different runs. Finding the best set of 

optimum solutions using Rmalschains can be a tedious exercise that requires a know-how expertise. As a 

remedy for this, a new method is adopted in this work by utilizing a different GA, Grid Gradient Ascent (GGA) 

which is, although classical and forward, does not include many setup knobs and is easy to implement with no 

black-boxed information. The GGA divides the multidimensional domain (d) of the design parameters into 

equal multidimensional cubes where the axis of each parameter is divided into n equal segments. The center 

of each of the nd cubes is then used as the initial design for the optimization technique that uses the classical 

gradient ascent method. At the end of this step, nd local optimum designs are obtained and the best among 

them is chosen as the global optimum design. Applying the ML-GGA for the case study of Moiz et al. [25] leads 

to an optimal design that has similar merit value as the design reported by their study, as shown in Fig. 2. This 

repeatable optimum design was obtained by setting the value of n to 2 which requires 29 = 512 iterations as 

compared to 35000 iterations for the case of Rmalschains. The optimum designs from five runs are the same 

as the one shown in Fig. 2. 
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Fig. 1. Optimum designs obtained using Rmalschains. The five designs obtained from repeating Rmalschains 

five times are compared with the optimum design parameters reported in Moiz et al. [25]. 

 
Fig. 2. Optimum design by using ML-GA versus ML-GGA method. The ML-GA design is taken from Moiz et al. 

[25]. 

Extension of variable domain 

 The optimum designs reported by Moiz et al. [25] and the best designs obtained in this work have 

some design variables residing on or near the boundaries set by the predetermined limits. These variables are 

the number of Nozzles (nNoz), temperature at injection valve closing (Tivc) and total nozzle area (TNA). 

Extending the design parameters range outside their initial preset limits could potentially lead to better 
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performance. To demonstrate this, the ML-GGA algorithm using Moiz et al.’s case study is repeated by 

allowing 10% extension of the design parameters around their upper and lower limits. Only 10% margin is 

used here so that the predictability of the ML is still acceptable and within the feasible design space. The five 

best optimum designs are presented in Table 2 in absolute values and their normalized values are shown in 

Fig. 3. 

 The actual outputs from CFD simulation for the 5 best designs obtained in this work are also included 

in Table 2. This CFD verification exercise was performed using the same CFD model employed in Moiz et al. 

[25]. For reference, we have also included the predicted ISFC and merit value by the ML where good 

predictability (within less than 0.5%) is achieved. The best ML-GA and CFD-GA results from Moiz et al. [25] are 

also shown in Table 2. As can be seen from Fig. 3 and Table 2, all optimum designs (1 – 5) have slightly higher 

merit values than that of Moiz et al. [25] with extended ranges.  In fact, design 1 has an indicated specific fuel 

consumption (ISFC) that is 0.14% better than the best reported by Moiz et al. [25]. Similarly, the engine-out 

parameters such as emissions, MPRR and PCP are better from the ML-GGA and CFDMLGGA compared to those 

reported in Moiz et al. [25]. Around 10% reductions in soot and NOx were obtained from the new simulations. 

The design parameters that were at their predetermined limits, such as Tivc and Pivc are now residing at the 

edge of the extended ranges (-0.1 and -1.1), suggesting that further extensions are potentially favorable to 

obtain higher merit values. However, more than 10% extension of the training data space could lead to poor 

prediction capability of the ML. 

Table 2: Optimum design properties from CFD, reference [25] and this work. 

Parameter  This work Reference [25] 

 Design 

1 

Design 

2 

Design 

3 

Design 

4 

Design 

5 

ML-

GA 

CFDMLGA CFD-

GA 

nNoz  10 10 10 10 10 10 10 10 

SOI  -7.98 -8.36 -8.17 -8.09 -8.08 -10.65 -10.65 -10.3 

TNA  1.06 1.05 1.07 1.05 1.05 1.05 1.05 1.0 
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NozzleAngle  156.74 157.54 157.5 157.08 157.1 159.26 159.26 158.0 

SR  -1.78 -2.02 -2.02 -1.78 -1.78 -1.81 -1.81 -1.66 

EGR  0.44 0.44 0.44 0.44 0.44 0.45 0.45 0.44 

Pinj  1488.70 1454.73 1496.02 1501.81 1494.11 1492.5 1492.5 1490 

Pivc  2.33 2.33 2.33 2.33 2.33 2.3 2.3 2.3 

Tivc  318.37 318.13 318.34 319.15 319.05 323.0 323.0 323.5 

Engine out parameters 

Soot 

(g/kWh) 

ML-GGA 0.0066 0.0082 0.0071 0.0069 0.0070 
0.011 0.02 0.022 

CFDMLGGA 0.0082 0.0097 0.0087 0.0084 0.0086 

NOx 

(g/kWh) 

ML-GGA 1.33 1.32 1.34 1.33 1.33 
1.32 1.23 1.28 

CFDMLGGA 1.14 1.2 1.22 1.16 1.16 

MPRR 

(bar/CAD) 

ML-GGA 10.32 10.30 10.67 10.36 10.30 
13.28 12.22 11.31 

CFDMLGGA 10.16 10.46 11.06 10.25 10.10 

PCP (bar) 
ML-GGA 157.08 157.27 158.21 157.41 157.21 

166.73 165.23 162.03 
CFDMLGGA 156.78 157.18 157.90 157.20 156.97 

ISFC 

(g/kWh) 

ML-GGA 153.16 153.18 153.18 153.21 153.21 
153.37 153.97 153.85 

CFDMLGGA 153.10 153.09 153.09 153.18 153.17 

Merit 
ML-GGA 104.46 104.46 104.45 104.43 104.43 

104.32 103.91 104.0 
CFDMLGGA 104.51 104.51 104.52 104.45 104.46 

 
Fig. 3. Optimum designs from ML-GGA method with extended limits. The ML-GA design 

and best CFD taken from Moiz et al. [25] are also shown.
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Post-processing and robustness 

 An additional enhancement of the ML-GGA technique is to take advantage of the 

ML algorithm for fast qualification of the optimal design in terms of robustness. In many 

cases, the optimum design is not unique and the optimization process produces multiple 

optimum designs with similar merit values. The challenge then is to further assess these 

results and eventually come up with a selection criterion. For engines, the main criterion 

that a proposed design should offer is robustness. A robust design is a design that will 

not rapidly deteriorate and lose its merit value once its design parameters experience 

small perturbations. Multiple reasons can cause perturbations in the design variables. 

Experimental uncertainties are the main factors for variations in the design variables. 

Intentional perturbations to the design variables to prevent engine-out parameters such 

as maximum pressure rise rate (MPRR), peak firing pressure (PFP), soot and nitric oxides 

(NOx) emissions from hitting their design or regulated limits, can be another factor. To 

prevent the engine performance from significantly deteriorating, a robustness 

parameter is defined here to evaluate the sensitivity of the merit value on the design 

parameters. First, the permitted perturbation ranges of the design variables are defined. 

Subsequently, a new optimization problem can be initiated where the objective is to 

minimize the merit function, such that the search space is confined around the optimum 

design within some perturbation radius. The top five local optimum designs, reported in 

Table 2, are first saved. Afterwards, a sensitivity analysis is used to evaluate the 

robustness of each of the designs. The sensitivity is performed by looking for the worst 

design in the vicinity of each local optimum design. The vicinity space is defined as the 
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multidimensional sphere centered around the local optimum design and with a radius 

equal to the % deterioration rate. Here, we used the Rmalschains to discover the vicinity 

space of each of the 5 best designs. The utilization of a Grid Gradient descent scheme in 

the vicinity of each of the best designs would also be possible. The comparison is 

reported in Fig. 4. It is clear that design 2 is more robust than the other designs. 

 

Fig. 4. Robustness of the five local optimum designs. 

PISTON BOWL OPTIMIZATION 

 

Problem definition 

A different engine application is studied here to test the capability of the 

developed ML-GGA model. The optimization of piston bowl geometry of a heavy-duty 

gasoline compression ignition (HD-GCI) engine is performed here. Pei et al. [39] 

conducted a CFD guided combustion system optimization study of a heavy-duty diesel 

engine running on a gasoline fuel with research octane number (RON) of 80. A two-

stage design of experiments (DoE) approach was adopted in their work. The first stage 
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focused on the piston bowl shape optimization and the second addressed refinement of 

the combustion recipe. For optimizing the piston bowl geometry, a software tool, 

CAESES, was utilized to automatically perturb key bowl design parameters.  

CAESES is a highly specialized computer-aided design (CAD) system for the 

parametric design and optimization of flow-exposed geometries, such as various 

components of internal combustion engines (e.g., ports, manifolds, combustion 

chambers, cooling passages, etc.). Its CAD modeling approach is focused specifically on a 

robust and efficient parametric variation of the geometry within an automated process. 

Models are built up in such a way that inside a pre-defined design space, the generation 

of infeasible variants is prevented, be it from a pure geometry regeneration point of 

view, or with regard to set design constraints. In addition to the modeling environment, 

CAESES also contains tools for process automation, i.e., connection to external 

simulation codes, as well as DoE and optimization algorithms for driving the process. 

The design object of this study is an axisymmetric piston bowl. Hence, the geometry can 

be generated simply as a surface of revolution from a parameterized profile. More 

details about the design generation approach, the constraints and the design variable 

limits may be found in [39]. 

A set of 256 piston bowl designs were generated by CAESES using a Sobol 

sequence and were evaluated at four engine operating conditions using 

multidimensional CFD simulations. Different optimum designs were identified based on 

the CFD simulations and these are shown in Fig. 5 for the four studied engine operating 

points. Further details about the engine, its operating points, optimization techniques 
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and results may be found in [39]; only a brief description is provided here. It may be 

seen that the overall shape of the top five designs at each operating point share some 

key features (bowl depth, bowl width, center height, etc.) but they are different from 

each other. This indicates that all the design parameters are affecting the performance 

of the engine, but some more than others. Subsequently, it will be almost impossible to 

understand the relationships between inputs and outputs depending on visual 

inspection, and therefore ML can be a very useful optimization tool for such a 

complicated problem. 

 

Fig. 5. Top five CFD designs at the four operating conditions (adapted from Ref. [39]). 

Methodology 

Design variables 
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 The purpose of the current work is to extend the  CFD study conducted by Pei et 

al. [39] using the ML-GGA methodology developed here to obtain a better design 

compared to their best CFD design. 

First, the design variables were identified. The piston geometry was 

parametrized using 11 different design variables, as shown in Fig. 6. These 11 variables 

were allowed to change within their predetermined ranges (see Table 5 in [39]). A 

constraint on the compression ratio was imposed. The bowlRadius was set as a 

dependent parameter for achieving the exact compression ratio (16.5). Its value was 

determined by an internal optimization loop that is triggered once all other parameter 

values were set (see Fig. 5 in [39]). 

 

Fig. 6. Piston bowl profile with design parameters. 

The ML-GGA algorithm developed here was modified to be able to optimize 

piston bowl geometries instead of engine operating parameters. The modified code can 

reproduce the piston bowl profile for any combination of design variables while 

maintaining the compression ratio (CR) at 16.5. To obey the compression ratio 

constraint, the volume above the baseline piston bowl profile at the top dead center 

position is first calculated by the code. For other profiles to have the same compression 

ratio, it is mandatory that they result in the same clearance volume at the top dead 
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center. For each new piston bowl profile, the clearance volume is first calculated for the 

bowlRadius of the baseline design. If the clearance volume is different from the baseline 

value, then the bowlRadius is changed in the direction that minimizes this difference 

[39]. If no possible bowlRadius able to match the baseline clearance volume, then the 

suggested design must be discarded. In the Jacobian optimization scheme, this is 

achieved by attributing a very low merit value to this design in order to push the search 

direction away from it.     

Training data 

In ML, training data is critical and generating this data is a key step towards 

obtaining an efficient algorithm that is able to model engine performance with sufficient 

accuracy. The quality of training data is measured by the quantity of information it 

conveys to a learning algorithm. For instance, training data in which the input design 

parameters only cover small ranges of the feasible space (training data 2 in Fig. 7) can 

be described as low quality because they will not teach the algorithm about the 

performance of engine designs in the larger feasible space. Similarly, if the training data 

are only covering designs with a limited range of performance functions (training data 1 

in Fig. 7), the algorithm wouldn’t learn the effect of each of the design parameters on 

improving the merit function. The actual behavior of the design is in blue. All training 

sets contain 9 data points. Training data 3 (green) is the most effective in obtaining good 

predictive capabilities as can be visually seen when comparing the perfect behavior 

(blue line) with the predicted behavior (lines in other colors). 
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Fig. 7. Effect of training data on predictive capabilities of polynomial fitting. 

A number of methods can be applied to select the training data, such as Markov 

Decisions Trees. These algorithms may be categorized as reinforcement learning 

algorithms. Their main drawback is that they have to be run in a sequential manner, 

which limits the use of parallel computing. Other simpler methods may be employed 

where the effect of output is neglected and only the distribution of inputs is diversified 

as much as possible. These design of experiments tools are widely used and 

documented [8, 43-45]. In the work of Pei et al. [39], the 256 designs used as training 

data were generated using a Sobol sequence, which is part of CAESES. 

Many ML algorithms, such as neural networks work better if the input data is 

normalized. This is due to the fact that neural network parameters are usually obtained 

based on gradient calculations. These gradient based problems could easily become ill-

conditioned if the inputs are not normalized and have absolute values that are too 

different. Ill-conditioning of neural networks and the importance of data normalization 

have been discussed in detail by many authors [46, 47]. Therefore, it is recommended to 

normalize the training data before feeding it to the ML algorithm. After specifying the 
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ranges of each input parameter design, it is straightforward to normalize the input data 

using a min-max relation. Normalizing the output data could be tricky, especially if no 

obvious limits of outputs could be anticipated. In this case, the user has to get as wide 

as possible range of outputs and normalize them accordingly, although output 

normalization is not as critical as input normalization. 

Fitting and prediction capabilities of the ML model 

One of the main properties of an unsupervised ML algorithm is its fitting 

capability. It is important that the ML model is able to fit the performance of the engine 

design to its design parameters. This fitting capability can be tested on the training data. 

The ML model should reproduce very well the engine performance of the training data. 

However, this is not the main objective of the ML model. In fact, the ML model is used 

to predict the performance of engine designs that are not within the training data, and 

hence a better qualification of the ML model is its prediction capability. Usually, there is 

a compromise between fitting and prediction capability and hence care should be taken 

to avoid over-fitting where the ML model may fit the training data very well but fails to 

correctly predict new points. In R, a cross-validation routine is available where it is 

possible to divide the training data into test data and training data and perform a test of 

the prediction capability of the ML algorithm. Figure 8 presents a comparison between 

the predicted and actual relevant outputs such as the nitric oxides (NOx), soot emissions 

(Soot), indicated specific fuel consumption (ISFC), the maximum pressure (Pmax) and 

the maximum pressure rise rate (MPRR) of 51 randomly selected test designs when the 

ML is trained using the remaining 205 designs for the operating case B25 (see Pei et al. 
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[39] for load conditions). The SuperLearner (that is a combination of many submethods 

including Xgboost) and Xgboost (only) were tested here. 

It is clear from Fig. 8 that SuperLearner performs slightly better than Xgboost. 

For example, the R2 of the SuperLearner ISFC prediction is 0.935 compared to 0.913 of 

Xgboost. Although the prediction accuracy has some uncertainty, the SuperLearner is 

able to capture the trend of all relevant outputs for the 51 designs. Increasing the size of 

the training data would eventually lead to enhancement in the prediction capability, but 

would also require more CFD simulations. 

Fig. 9 reports the 5-fold cross validation error in the prediction of ISFC by the ML 

model as we increase the size of the training data from 56 to 256 designs. It is noted 

that the designs chosen in each validation set are randomly selected and hence the 

trend of the cross-validation error is subject to some random error and is presented 

here for illustration. A firm conclusion about what is the optimal size of the training data 

to have minimum prediction error is hard to obtain from Fig. 9 but it is clearly larger 

than 256. In this work, the final ML model was based on the SuperLearner code and it 

was trained using all 256 designs for better prediction accuracy. 
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Fig. 8. Comparison between predicted and actual CFD results of NOx and Soot 

emissions, fuel consumption (ISFC), Maximum pressure (Pmax) and maximum pressure 

rise rate (MPRR) for 51 testing designs. 
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Fig. 9. Evolution of the cross-validation error of the Superlearner ML a function of the 

training data size. 5-fold cross validation error is divided by the number of test designs 

to get the average 5-fold CV error. 

Merit function 

The merit function used here is a modification of that used by Pei et al. [39]. 

Here, output normalization and smoothing (making the merit function differentiable) 

were taken into account. The merit function is defined as: 𝑀𝑒𝑟𝑖𝑡 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
= 100 − (𝑤𝑓1 × 𝐼𝑆𝐹𝐶 − 𝑙𝑖𝑚𝑖𝑡𝑙𝑖𝑚𝑖𝑡 − 𝑚𝑖𝑛(𝐼𝑆𝐹𝐶) + 𝑤𝑓2 × 𝑓(𝑃𝑚𝑎𝑥∗ ) + 𝑤𝑓3 × 𝑓(𝑀𝑃𝑅𝑅∗))∑ 𝑤𝑓𝑖7𝑖=1
− 𝑤𝑓4 × 𝑓(𝐹𝑆𝑁∗) + 𝑤𝑓5 × 𝑓(𝑠𝑁𝑂𝑥∗) + 𝑤𝑓6 × 𝑓(𝑠𝐻𝐶∗) + 𝑤𝑓7 × 𝑓(𝑠𝐶𝑂∗)∑ 𝑤𝑓𝑖7𝑖=1      

                                                                                                              (1) 

with: 

    𝑓(𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟∗) = { 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟−𝑙𝑖𝑚𝑖𝑡𝐿𝑖𝑚𝑖𝑡−min(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) ,  𝑖𝑓 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 > 𝐿𝑖𝑚𝑖𝑡0,  𝑖𝑓 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ≤ 𝐿𝑖𝑚𝑖𝑡 }             (2) 
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where wfi and limits of the various parameters are summarized in Table 3. 

The merit function used is the square of the normalized merit defined as: 

 

      𝑀𝑒𝑟𝑖𝑡 = |𝑀𝑒𝑟𝑖𝑡 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑| × 𝑀𝑒𝑟𝑖𝑡 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑100       (3) 

 

The new merit function definition is consistent with that of Pei et al. [39] 

resulting in the same order of designs based on the merit values. In our case, the order 

of the best 30 designs out of the 256 CFD designs are the same for both merit functions 

(Eq. (3) and Pei et al. [39]). This property is very important to ensure consistency of the 

results given by the optimization scheme later. 

Table 3: Limits and weighting factors used for the merit function calculation. 

Parameter Weighting factor (wfi) 

Limits 

B25 B50 A100 C100 

Pmax (bar) 100 220 

MPRR (bar/CAD) 1 12 

Soot (g/kWh) 0.1 0.05 0.12 0.1 0.1 

NOx (g/kWh) 1 1 1 1.5 1.5 

ISFC (g/kWh) 1 170.7 

 

The same fitting/prediction capability tests were performed for the merit 

function as well. Figure 10 presents the prediction capability of the merit function using 
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the SuperLearner and Xgboost algorithms. As seen in Fig. 10, the prediction capability of 

SuperLearner is better than that of Xgboost. This is expected because SuperLearner was 

shown to predict the engine output parameters better than Xgboost (Fig. 8). In general, 

the SuperLearner is able to depict the trend of the merit value of engine designs 

correctly. 

 

Fig. 10. Prediction versus actual merit values of the 51 testing designs. 

Optimization scheme 

As seen from  Fig. 8 and Fig. 10, having only 256 designs for an 11-dimension 

problem to train the ML algorithm poses a potential issue with predictability. To 

improve the predictability, an iterative process was implemented here where the ML-

GGA was first run using the 256 training data sets. Subsequently, the design variables 

and the engine output parameters of the 5 best designs identified by ML-GGA were 

added to the training dataset. The optimum designs identified by the ML-GGA model 

were solved using CFD before adding them to the training data. This loop was repeated 

until no further improvements were observed after adding new designs from the 
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previous iteration (see Fig. 11). This process ensures that the predictability of ML around 

the good designs enhances from one iteration to another. In general, three or four 

iterations were required to achieve convergence. 

 

Fig. 11. ML-GGA piston bowl geometry optimization scheme. 

Results 

 The ML-GGA optimization scheme described herein was used to identify piston 

bowl geometries that would yield better engine performance compared to the ones 

obtained by Pei et al. [39] at the four operating conditions. Better piston bowl designs 

were obtained from the ML-GGA optimization algorithm at only two operating 

conditions (B25 and B50). The design variables, engine output parameters, merit values 

and improvement in merit for the best CFD and ML-GGA designs are presented in Table 

4 for the four operating conditions. The ML-GGA results shown in Table 4 are from the 

CFD simulations of the proposed optimum designs by the ML-GGA model. Evidently, 

2.13 and 0.7% improvements in merit were obtained by the ML-GGA for B25 and B50 
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operating points, respectively. The best CFD and ML-GGA piston bowl designs are shown 

in Fig. 12. The optimum designs obtained from the ML-GGA approach for B25 and B50 

share the same high-level features with those from the best CFD case. This is expected 

because the ML-GGA code essentially refines the search for optimum designs in the 

vicinity of the best CFD designs. Considering the set of weighting factors derived from 

the EPA SET Weights shown in Table 6 of Ref. [39], the overall weighted average 

improvement in merit obtained from the current work is 2.13%×0.278 + 

0.7%×0.278=0.78%. Finally, the robustness of the best CFD and ML-GGA designs at all 

operating conditions is investigated. Figure 13 shows the sensitivity of the merit 

function on the merit deterioration rate for all optimum designs at the four operating 

conditions. The deterioration rates are similar for the best CFD and ML-GGA designs at 

B25, B50 and C100 conditions. The decay of the merit of the ML-GGA design at A100 is, 

however, higher than that of the best CFD. This indicates that the best CFD at A100 is a 

more robust design despite having similar merit values to the ML-GGA best designs. 

Table 4: Design variables, emissions, fuel consumption, merit values and merit 

improvements of the best CFD and ML-GGA designs at all operating conditions. 

 B25 B50 A100 C100 

 
Best CFD 

[39] 
ML-GGA 

Best CFD 

[39] 
ML-GGA 

Best CFD 

[39] 

Best CFD 

[39] 

Piston design variables 

lipAngle -14.53 -18.59 -7.97 -1.20 11.17 11.17 

lipCircleRadius 3.30 3.29 4.16 3.31 3.29 3.29 

lipRadius 38.98 38.50 42.27 41.50 43.79 43.79 

slopeAngle 2.77 -4.91 -5.20 -8.22 -10.95 -10.95 

stepCurvature 0.10 0.07 0.01 0.03 0.02 0.02 

stepRatio 0.98 0.78 0.52 0.75 0.76 0.76 

stepLength1 12.98 10.17 9.70 10.28 11.70 11.70 

stepLength2 2.09 3.66 3.29 3.12 1.89 1.89 

centerDepth 2.56 3.77 3.69 4.18 4.41 4.41 
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bowlRadius 12.00 10.85 12.00 10.78 8.83 8.83 

lipDepth 9.77 11.58 8.54 6.49 7.65 7.65 

Engine-out parameters 

ISFC (g/kW.hr) 161.07 160.54 160.85 160.61 165.76 161.77 

Soot (g/kW.hr) 0.01 0.01 0.10 0.10 0.05 0.11 

NOx (g/kW.hr) 0.82 0.79 0.99 0.99 1.48 1.49 

MPRR (bar/CAD) 9.88 10.18 10.69 10.48 10.03 10.07 

Pmax (bar) 97.42 97.19 151.97 151.77 215.69 209.30 

Merit 153.29 156.55 137.82 138.79 154.44 142.56 

Improvement in 

merit (%) 
2.13 0.70 0.0 0.0 

 

 
Fig. 12. The best designs from CFD [39] and ML-GGA for all operating points. 

 

0 10 20 30 40 50 60 70
 

 

Solid lines: ML-GGA

Dashed lines: CFD

X (mm)

B50

B25

A100 and C100

0 1 2 3 4 5
130

140

150

160

Solid lines: ML-GGA

Dashed lines: CFD

M
e
ri

t

Deterioration rate (%)

B25

C100

B50

A100



Journal of Energy Resources Technology 

 

29 

JERT-20-1594-Badra 

Fig. 13. Robustness of the best designs from CFD [39] and ML-GGA for all operating 

points. 

CONCLUSIONS 

In this work, a methodical approach for tackling engine optimization problems 

using machine learning is presented. Critical precautions, recommended algorithms and 

suitable optimization techniques are discussed. Internal combustion engine optimization 

is a highly complex problem because it is coupled and highly nonlinear. Therefore, 

multidimensional optimization approach can avoid design failure in operation modes 

beyond the focal optimization criteria. A careful definition of the objective function for 

optimization is a critical step. Training data for these machine learning algorithms has to 

be cleverly prepared to improve the prediction efficiency. Global optimum search 

optimization methods have to be adopted to avoid local optimum designs with reduced 

merit value. Post-processing of the optimization outputs is also needed to evaluate the 

recommended design by employing sensitivity and robustness analysis. A Machine 

Learning-Genetic Algorithm (ML-GGA) code was developed here and validated against 

literature data. Additional analyses and improvements were introduced to the ML-GA 

code and its potential was demonstrated using two case studies. The first case study 

reproduced and analyzed the recent work performed by Moiz et al. [25], which focused 

on optimizing the operating conditions of a heavy-duty engine operating in GCI mode. 

Our analysis showed that extending the parameter range outside the training data limits 

and performing a sensitivity study has the potential to yield better optimal conditions. 

The second case study was aimed at optimization of the piston bowl geometry of a 
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heavy-duty GCI engine at different operating conditions. Improved piston bowl 

geometries compared to the best CFD designs were obtained from the ML-GGA code 

developed here with up to 2.13% improvements in the merit value. 
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NOMENCLATURE 

 

p pressure 

T temperature 

Subscripts 

 

inj injection 

max maximum 

ivc intake valve closing 

Acronyms and Abbreviations 

 

3D three dimensional 

AI artificial intelligence 

CAD computer-aided design 

CFD computational fluid dynamics 

DoE design of experiments 

EGR exhaust gas recirculation 

GA genetic algorithm 

GCI gasoline compression ignition 

GGA grid gradient ascent 

GPD gross domestic product 

HD heavy duty 
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HD-GCI heavy duty gasoline compression ignition 

IC internal combustion 

ISFC indicated specific fuel consumption 

ML machine learning 

ML-GA machine learning Genetic algorithm 

ML-GGA machine learning grid gradient ascent 

MPRR maximum pressure rise rate 

nNoz number of nozzles 

NozAngle nozzle angle 

NOx nitric oxides 

PFP peak firing pressure 

Pinj injection pressure 

Pivc pressure at intake valve closing 

Pmax maximum pressure 

RON research octane number 

SI spark ignition 

SOI start of injection 

SR swirl ratio 
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Tivc temperature at intake valve closing 

TNA total nozzle area 
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