
Engineering a Compact Parallel Delaunay Algorithm in 3D ∗

Daniel K. Blandford
Carnegie Mellon University

dkb1@cs.cmu.edu

Guy E. Blelloch
Carnegie Mellon University

blelloch@cs.cmu.edu

Clemens Kadow
Carnegie Mellon University

clemens.kadow@web.de

ABSTRACT
We describe an implementation of a compact parallel algo-
rithm for 3D Delaunay tetrahedralization on a 64-processor
shared-memory machine. Our algorithm uses a concurrent
version of the Bowyer-Watson incremental insertion, and
a thread-safe space-efficient structure for representing the
mesh. Using the implementation we are able to generate sig-
nificantly larger Delaunay meshes than have previously been
generated—10 billion tetrahedra on a 64 processor SMP us-
ing 200GB of RAM.

The implementation makes use of a locality based rela-
beling of the vertices that serves three purposes—it is used
as part of the space efficient representation, it improves the
memory locality, and it reduces the overhead necessary for
locks. The implementation also makes use of a caching tech-
nique to avoid excessive decoding of vertex information, a
technique for backing out of insertions that collide, and a
shared work queue for maintaining points that have yet to
be inserted.

Categories and Subject Descriptors
J.0 [Computer Applications]: General

General Terms
Algorithms, Performance.

Keywords
Delaunay, meshing, parallel, space-efficient

1. INTRODUCTION
We present a parallel algorithm for 3D Delaunay tetra-

hedralization. The algorithm is based on previous work [9]
involving a compact data structure for representing 2D and
3D meshes, with an accompanying sequential algorithm. In
this paper we discuss the design issues involved in creating a
parallel algorithm to run on a 64-processor shared-memory
machine.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’06, June 5–7, 2006, Sedona, Arizona, USA.
Copyright 2006 ACM 1-59593-340-9/06/0006 ...$5.00.

The sequential algorithm is based on incremental inser-
tion using the well-known Bowyer-Watson kernel [12, 43].
During the course of the algorithm a Delaunay triangula-
tion of the current pointset is maintained. An incremental
step inserts a new vertex into the mesh by determining the
tetrahedra that violate the Delaunay condition. We use the
idea of Clarkson and Shor [18] and maintain an association
between uninserted vertices and the tetrahedra containing
those vertices. We keep a work queue of tetrahedra whose
interiors contain points; threads draw tetrahedra at random
from the queue for processing.

The data structure we use is space-efficient: it maintains
the meshing data in a compressed format in main mem-
ory, uncompressing the data only when necessary to process
queries and updates. This allows it to consume only 50 bytes
per vertex (in 3D) for meshing data. Using this structure
we were able to build a sequential meshing algorithm that
requires much less space than conventional algorithms (such
as the Pyramid algorithm of Shewchuk [36]).

This algorithm can be made parallel by allowing parallel
insertions. Implementing this efficiently, however, is non-
trivial. We discuss the modifications necessary to improve
the memory locality of the algorithm (very important on an
SMP machine), avoid concurrent accesses to the same region
of the mesh, and maintain a work queue that will avoid con-
tention between threads. We also show how to bootstrap the
algorithm using Pyramid, and discuss why this is required.

As a preprocessing step, our algorithm relabels the input
vertices using x-y-z cuts so that vertices that are close spa-
tially have similar labels. This is necessary for the compres-
sion of the structure and can be used to improve memory
locality as well. For this purpose, our algorithm partitions
the vertices into groups with contiguous labels. The data
for each vertex is stored in a compact hashtable [8] corre-
sponding to its group. This makes it likely that data for the
vertices in an insertion will share a small number of cache
lines.

To prevent concurrent accesses to the same region of the
mesh, we use OpenMP [1] test-locks (not wait-locks) at-
tached to the hashtables for each vertex group. We also use
test-locks to prevent concurrent accesses to the work queue.
The work queue is divided into subqueues, each with its own
lock. Section 3 describes our experimentation comparing dif-
ferent queueing disciplines for their effect on performance.

We bootstrap the algorithm by growing the mesh sequen-
tially (using the Pyramid algorithm of Shewchuk [36]) until
it is sufficiently large to avoid excessive contention between
threads. We then run parallel point location to associate all

292

uninserted vertices with simplices in the mesh. This parallel
point location is very fast, so this bootstrapping represents
an improvement even for the sequential algorithm.

We present results from running the algorithm on several
distributions of data, plus a real-world mesh based on oc-
tree decomposition from the Quake project [40]. We analyze
the effect of high-degree vertices on the algorithm’s perfor-
mance.

We have used the algorithm to generate a mesh of over 10
billion tetrahedra (using 1.51 billion vertices randomly cho-
sen from the unit cube). Constructing this mesh took 5512
seconds for 64 1.15-GHz EV67 processors on an HP GS 1280
SMP machine. For comparison, using one processor on 1/64
as many vertices took 3202 seconds. Delaunay tetrahedral-
ization requires O(n log n) work on uniform data, so it is
not appropriate to compare runtimes on different problem
sizes to measure speedup. However, we can say that our
algorithm can insert 64 times as many vertices using 64 pro-
cessors using only 1.7 times as much time.

All data (including vertex coordinates, mesh connectivity
data, and the work queue) fits within a memory footprint of
197GB of RAM. For comparison, a conventional 3D meshing
structure would require 9 eight-byte pointers per tetrahe-
dron (four vertices, four neighboring tetrahedra, and a data
pointer), for a total of 720GB for the mesh connectivity data
alone.

The algorithm as presented is only used to construct a De-
launay mesh over a given set of points; however, the general-
ization to Delaunay refinement described for the sequential
version [9] would apply equally well in the parallel case.

The main contributions of this work are as follows. We
show that a 3D incremental insertion algorithm can be par-
allelized without assigning processors to separate regions
of the mesh. We develop a concurrent thread-safe version
of our compressed mesh representation. We describe tech-
niques for improving the locality of access of our insertions
(particularly important on an SMP machine). We demon-
strate a tradeoff between queueing disciplines for the work
queue of our insertion algorithm. Finally, we provide results
for the largest 3D Delaunay mesh that has been generated,
as far as we know.

1.1 Related Work

Parallel Delaunay. There has been significant previ-
ous work on parallel Delaunay algorithms, using three main
approaches to avoid conflicts between threads.

The first approach is that of divide-and-conquer: The
mesh is (recursively) partitioned in two regions, with each
partition built by a separate processor. The border between
the regions must be constructed separately. Aggarwal [3] de-
scribed a 2D algorithm which constructed the border by
joining the regions after they were built. Goodrich et al.
[23] described a parallel 3D convex hull algorithm (the 3D
convex hull problem is equivalent to the 2D Delaunay prob-
lem). Chen et al. [14] described a 2D algorithm which as-
signed certain points to both regions; this resulted in some
duplicate work but meant that joining the regions involved
only discarding duplicate triangles. Hardwick [26], Blelloch
et al. [11], and Lee et al. [31] described algorithms that
project the 2D points to a paraboloid in 3D, compute the
lower convex hull, and use that to derive a border before
building the regions. Amato et al. [4] and Chan et al. [13]

gave parallel divide-and-conquer algorithms for the 4D con-
vex hull problem, which is equivalent to the 3D Delaunay
problem. Many of these algorithms are strictly theoretical
(they do not have experimental results).

The second technique for parallel Delaunay meshes in-
volves incremental insertion (using the Bowyer-Watson ker-
nel [12, 43]). Most algorithms for incremental insertion
avoid collisions by assigning a region of the mesh to each
processor. Operations involving multiple regions of the mesh
are handled by message-passing between processors. For
this technique it is necessary to perform load-balancing be-
tween regions while still ensuring that each region’s border
is small. In 2D this was done by Okusanya and Peraire
[33] and Chrisochoides and Sukup [17].

The region-per-processor technique was also used by Chriso-
choides and Nave [15, 16] to produce a 3D parallel algorithm
for a message-passing architecture. That work focused on
minimizing the latency from interprocessor communication,
a problem which we can avoid since our concern is with a
shared-memory machine. Also, our work is on a greater
scale: our largest mesh is 5000 times larger than theirs.

Kohout et al. [30, 29] describe a 2D incremental insertion
algorithm which does not assign a region to each processor;
instead, all processors draw from a global queue, similar to
our own work. They report a speedup of up to 5.84 on eight
processors. Their algorithm uses a DAG data structure for
point location (whereas our algorithm associates points with
tetrahedra to save memory). Kohout et al. also give a good
survey of related work.

None of these consider space-efficiency of their represen-
tations. Our previous work [9] describes a 3D compact
mesh representation supporting queries in O(d(v1, v2)) time,
and updates in expected amortized O(d(v1, v2)) time, where
d(v1, v2) is the number of vertices having edges to both v1

and v2. That work also presents experimentation showing
that the structure is time-efficient compared to the Pyramid
algorithm of Shewchuk [36]. In more recent work [8] we de-
scribe a 3D compact mesh representation permitting queries
in O(1) time and updates in O(1) expected amortized time;
the associated constant on the space usage is significantly
larger, though (we estimate by a factor of 2.6), so in this
work we use the more compact representation of [9].

Compressed Meshes. There has been considerable work
involving compressed meshes [20, 25, 39, 34, 35, 38, 28,
27, 22]. In three dimensions these methods can compress
the topology of a mesh to less than a byte per tetrahe-
dron [38]—about 6 bytes/vertex (not including vertex coor-
dinates). These techniques, however, are designed for stor-
ing meshes on disk or for reducing transmission time, not
for representing a mesh in main memory. They therefore do
not support dynamic queries or updates to the mesh while
in compressed form.

Another option for handling larger meshes is to maintain
the mesh in external memory. To avoid thrashing, this re-
quires designing algorithms for which the access to the mesh
is carefully orchestrated. Several such external memory al-
gorithms have been designed [24, 21, 19, 32, 42, 6, 41, 5]. Of
particular note is the bucketed randomized insertion order
scheme of Amenta et al. [5], which improves the memory
locality of an out-of-core tetrahedralization algorithm by al-
tering the insertion order of the vertices. This insertion or-
der might combine with our own work to form an improved

293

out-of-core algorithm using compressed data structures with
very strong memory locality. We discuss this further in Sec-
tion 4.

2. THE SEQUENTIAL ALGORITHM
The sequential version of our algorithm is described in

detail in our previous paper [9]; we will summarize it here.
The compressed data structure is described in Section 2.1.

Reordering for Locality. For several purposes, involv-
ing both compression quality and locality of memory access,
we found it important to ensure that vertices that were close
spatially (e.g., those likely to share edges in the mesh) had
similar labels. To ensure this, as a preprocessing step we
relabeled the vertices using x-y-z cuts.

Given a set of points, our algorithm first finds which of the
x, y, and z axes has the greatest diameter. It finds the ap-
proximate median of that diameter and partitions the points
using that median. The points on one side are labeled first,
then the points on the other side. This is done recursively
(and in parallel) to produce a labeling in which points that
are near each other have similar labels.

In previous work dealing with graph compression [7] we
showed that, as long as each cut made in a mesh of size
n intersects O(nc) edges for c < 1, and for bounded-degree
vertices, the labeling produced leads to compression to O(n)
bits. For our Delaunay meshing application, we cannot guar-
antee ahead of time that each cut will intersect O(nc) edges
(since the edges do not yet exist when we perform the rela-
beling). However, we find that using x-y-z cuts works well
in practice.

If not all vertices are known before the algorithm begins,
our algorithm can assign a sparse labeling to the initial ver-
tices. When a new vertex is added, it is assigned a label
that is close to the labels of its neighbors. In previous work
[9] we presented results for a Delaunay refinement algorithm
that made use of this technique. This algorithm could be
made parallel in a straightforward fashion. We note that if
a large number of vertices are inserted in one region of the
mesh, it may be necessary to stop insertion and perform a
global relabeling.

Sequential Insertion. We employ the well-known Bowyer-
Watson kernel [12, 43] to incrementally generate the mesh.
The algorithm maintains a Delaunay triangulation of the
current pointset at all times. An incremental step inserts
a new vertex into the mesh by determining the tetrahedra
that violate the Delaunay condition. Those tetrahedra form
the Delaunay cavity. The faces that bound the cavity are
called the horizon. The mesh is modified by removing the
tetrahedra in the cavity and connecting the new vertex to
the horizon.

We use the idea of Clarkson and Shor [18] and maintain
an association of every point p not yet inserted into the mesh
with the tetrahedron tp that contains p. The search for the
cavity of p starts at tp. With each tetrahedron we keep data
indicating which uninserted points are contained in it. We
maintain a work queue of tetrahedra which contain points.

At each step, the algorithm draws a tetrahedron from the
the work queue. The algorithm checks that the tetrahedron
is still in the mesh (that is, that an update has not deleted
that tetrahedron since it was added to the queue). If so,
the algorithm extracts a point p from the tetrahedron and

314

311

5 319 312 306 309 315

5 5 −2 −8 −5 1

306

319

309

312

315

Figure 1: The neighborhood and corresponding dif-
ference code data for the edge 314 → 311. The first
entry, 5, is the degree of the vertex. Other entries
are the offsets of the neighbors from 314.

performs the insertion. It uses the bulldozing idea described
in [10] to reassociate points from the cavity with new tetra-
hedra. Any new tetrahedra that contain points are added
to the work queue.

2.1 Concurrent Compressed Data Structure
Here we summarize the data structure we use to represent

our 3D meshes. The structure is adapted from that of our
previous work [9]. In addition to supporting operations for
adding a tetrahedron with associated data, deleting a tetra-
hedron, and finding a tetrahedron given a face, it supports
operations for locking a vertex and unlocking all locked ver-
tices. A vertex needs to be locked before any incident tetra-
hedra can be added or deleted.

Our structure represents the mesh by storing the link for a
set of edges (1-simplices), such that every face is represented
by at least one edge in this set. The link of an edge is the
oriented cycle of vertices that connect to both endpoints of
the edge (see Figure 1 for an example). The link is stored in
a variable-bit-length hashtable [8] that maps the two vertices
of the edge to the list of vertices in the link, and the data for
the tetrahedra. For our incremental Delaunay algorithm the
data is a uninserted vertex that lies within the tetrahedra.
The link is compressed by difference encoding the vertex
labels relative to one of the vertices on the edge and using
variable bit-length codes for each difference [44].

Uninserted Points. A tetrahedron may contain more
than one uninserted point. We represent these points using
a linked list. We keep an array next[0..N − 1] such that,
if point p is contained within a tetrahedron, then next[p] is
the index of another point within the same tetrahedron (or
−1 if there is no such point). The first point in the list is
stored with the tetrahedron in the mesh data structure.

Memory Locality. In an environment in which multiple
threads are accessing a data structure, it is important to en-
sure that memory accesses involved in a query go to a small
set of cache lines. Hashtables have notoriously poor memory
locality; to address this, we divide the vertices into vertex
groups of size G. (We used G = 16 in our experiments.)
Each vertex group is allocated with its own hashtable; all
data associated with the hashtable is kept in the same con-
tiguous block. (If the hashtable requires resizing, the ad-

294

ditional memory must be allocated elsewhere.) Edges are
stored in the hashtable corresponding to their first vertex.
We take special care to avoid thread contention for memory
pages by allocating all data for a vertex group in contiguous
memory.

Along with the hashtable data we keep a data lock, shared
by the G vertices of the vertex group; a thread must acquire
the lock in order to read from or write to the hashtable. The
space of the lock is amortized across the vertices. This can
cause “false sharing” of locks since locking one vertex will
lock all vertices in the group, but because of the locality of
the labeling this is not a problem in our experiments.

Caching. To improve the efficiency of lookups our imple-
mentation uses a caching system. When a query or update
is made, the compressed codes associated with the appro-
priate edge are decoded. The information is represented in
uncompressed form as a linked list with one listnode per
vertex in the link of the edge. The lists are kept in a cache.
Update operations may affect the lists while they are in the
cache. As part of an update, the application may delete
simplices, producing holes in the mesh; however, we main-
tain the invariant that edge links that are written out of the
cache must be full cycles. Thus the cache is only flushed
after a new vertex insertion is complete.

We maintain the invariant that each thread has the lock
on any lists that are in its cache. A thread releases all its
locks at once, when the cache is flushed after an insertion.

2.2 Parallel Algorithm
The parallel version of the algorithm is the same as the

sequential version except that we maintain a set of parallel
threads, each of which draws work from the queue. To avoid
overlapping reads and writes between threads we use data
locks in two ways: on the mesh and on the work queue.
All data locks are “test-locks” rather than “wait-locks”: if a
thread fails to acquire a lock, it aborts the operation rather
than waiting for the lock to become free.

As a thread explores the cavity for a point p, it secures
the lock on each vertex it encounters. (Recall that the ver-
tices have been relabeled so that vertices with similar labels
are close together; it is likely that many of the vertices for a
cavity will share the same few locks.) If a thread encounters
a vertex that is locked by another thread, it aborts the inser-
tion: it releases all of its locks and returns the tetrahedron
to the work queue. Otherwise, once the thread has secured
the locks on all of the vertices of the cavity, it performs the
insertion as normal and releases the locks when finished.

The work queue is also secured by locks to prevent concur-
rent access. In the parallel version for p processors the work
queue contains 10p subqueues. (We experimented with sev-
eral queue configurations—see Section 3 for details.) Each
subqueue has its own separate lock; when a thread accesses
the work queue, it probes the subqueues at random until
it acquires the lock on one. The thread operates on the
queue (adding a number of tetrahedra to be processed, or
randomly extracting a tetrahedron for processing) and then
releases the lock.

In rare cases it may be necessary for a thread to allocate
more memory using calls to malloc. (For example, this is
needed if a hashtable overflows.) To do this a thread must
wait until it acquires a global lock. This is the only time in
our algorithm when a thread waits to acquire a lock.

Contention. When the mesh is very small compared to
the number of threads operating on it, there is danger of con-
tention: multiple threads may all compete for the same few
vertices, such that for a long time, no thread is able to ac-
quire enough vertex locks to perform an insertion in a certain
area of the mesh. This may result in a few very large tetra-
hedra remaining untouched, with many uninserted vertices
on them, while other areas of the mesh are tetrahedralized
to a fine resolution.

An easy solution to the contention problem is to hold
some threads back at the start of the algorithm. Experi-
mentally we find that restricting the density of threads to
one per 214 vertices in the mesh is sufficient to eliminate
contention almost entirely. Unfortunately, this causes other
types of slowdown: for the initial 214 vertex insertions, only
one thread is active in the mesh.

To see why this is a problem, recall that our point-location
scheme involves keeping an association between each tetra-
hedron and the uninserted vertices contained in it. After
each insertion, our algorithm must perform planeside tests
for the uninserted vertices that lay in the deleted tetrahe-
dra. If k of the n vertices have been inserted, then there
are an expected Ω(n/k) vertices per insertion that require
planeside tests. (In particular, the first insertion performed
requires Θ(n) planeside tests for the uninserted vertices.)
Performing all of these tests with one thread is inefficient.

Bootstrapping via Pyramid. To run our algorithm in
parallel, we need to build the mesh sufficiently large that
all threads can use it at once. To do this we make use of a
separate tetrahedralization algorithm—the serial Pyramid
algorithm of Shewchuk. That algorithm is different from
ours in that it does not associate uninserted vertices with
tetrahedra; instead, to insert a vertex v, it walks through
the mesh using plane-side tests to locate the tetrahedron
that should contain v. If the mesh has size k, then the ex-

pected path length to the target vertex is O(k
1
3); the use of

multiple-starting-point heuristics reduces this cost to O(k
1
4).

Our bootstrapping algorithm works as follows. Given n
vertices and p processors, we first relabel the vertices using
x-y-z cuts, as in the standard algorithm. We then sam-
ple k vertices for insertion via Pyramid. (We could perform
the sampling at random; however, since we have already re-
labeled the points using x-y-z cuts, we instead sample at
evenly spaced intervals. This produces a better point distri-
bution.) Once the Pyramid mesh data structure is built, we
perform point location on the remaining vertices to associate
them with tetrahedra in the mesh.

Each processor performs point location on a contiguous
block of vertices. Since this does not involve modifying the
mesh it produces no conflicts between threads. Shewchuk’s
point location routine allows us to begin the walk from any
tetrahedron in the mesh. Since the vertices have high spatial
locality (due to our reordering via x-y-z cuts), we begin the
walk for each vertex v from the tetrahedron that contained
vertex v − 1. The cost for this point location is thus quite
low.

When all the vertices have been mapped to tetrahedra,
the Pyramid mesh structure is deallocated. The work queue
is allocated, and the tetrahedra are inserted into it. (The
space used for Pyramid is reused for the work queue, so that
it does not add to the total space cost of the algorithm.) Our
parallel insertion algorithm then begins as normal.

295

There is a tradeoff between insertion of vertices using
Shewchuk’s mesh-walking code and our bulldozing code. If
there are n total points, and k points have been inserted into
the mesh, then inserting a vertex using our code requires
Θ(n/k) work (spent using planeside tests to reassociate the
points in the cavity with new tetrahedra). The cost of the

same insertion using Pyramid is Θ(k
1
4) serial time, which is

equivalent to Θ(pk
1
4) work.

To optimize performance we must select a k such that

these costs are balanced. Solving the expression n
k

= pk
1
4

yields k = (n
p
)

4
5 . For our experimental setup, however, we

always use n = 224.5p: the same k should be valid through-
out. Experimentally we find that k should be between 219

and 220 for best performance. With 64 processors, our ini-
tial mesh needs roughly 220 vertices to avoid contention.
Accordingly we use bootstrapping of 220 vertices for all of
our tests.

Cleanup. As the algorithm nears termination, it may
occur that only one region of the mesh still contains unin-
serted vertices. In this case, the algorithm may encounter
contention. To prevent this, threads leave the mesh as the
number of remaining uninserted vertices decreases: thread
k leaves the mesh when fewer than 2048k uninserted ver-
tices remain. Since the last insertions are quite rapid (as
they involve almost no planeside tests), this does not cause
significant slowdown. Other techniques, such as exponential
backoff on contention, might also have worked here.

3. EXPERIMENTATION

Experimental Setup. The system used for our experi-
ments was rachel.psc.edu [2], a pair of HP GS 1280 SMP
machines with 64 1.15-Ghz EV67 processors each. The op-
erating system was Tru64 Unix. We used the OpenMP [1]
library to provide parallel functionality. Our code was writ-
ten in C and C++; we compiled using the command cxx -O

-fast -arch ev7 -tune ev7 -omp.
There were 4 Gbytes of RAM available per processor.

Given our space usage (discussed below) this was sufficient
to build a mesh of about 224.5 (about 23 million) vertices
per processor.

We used the exact arithmetic predicates of Shewchuk [37]
for all geometric tests. Additionally we used the beta ver-
sion of Shewchuk’s Pyramid code [36] to bootstrap our main
parallel algorithm, as described above.

Main Results. We ran our algorithm on points with the
uniform distribution using between 1 and 64 processors. In
all cases we used 224.5 (about 23 million) points per pro-
cessor; thus, if our algorithm featured perfect speedup, all
runs would take the same amount of time. We used a fixed
amount of bootstrapping (220 vertices) for each run. In the
one-processor case our algorithm took 3202 seconds, for an
average of 7410 vertices/second. In the 64-processor case our
algorithm averaged 275490 vertices/second. The vertex in-
sertion rate increased by a factor of 37.18 in the 64-processor
case. However, note that (for uniform random data) this
algorithm requires O(n log n) work, so it is not correct to
compare two runs of different sizes for speedup. The work
done per processor in the 64-processor case is a factor of 30.5

24.5
more than the work per processor in the one-processor case.

After accounting for this, we estimate the actual speedup of
our algorithm to be 46.28 on 64 processors.

We decompose the runtime of our algorithm into several
factors (see Table 1). The total runtime listed includes all
steps of the algorithm from x-y-z reordering to termination.
The next time measurement given includes only the paral-
lel loop (that is, without the bootstrapping, reordering, or
initialization phases). For convenience of analysis we divide
the parallel loop into stages s0 . . . s15, each of which involves
inserting 1/16 of the total pointset. We give the insertion
rate during s0, s10, and s15 as examples of how the cost of an
insertion changes over time. Note that, at the start of phase
s0, 220 vertices have already been inserted by bootstrapping.
The 64−processor case begins with many more uninserted
vertices per tetrahedron than the 1−processor case, so the
algorithm must perform more point location work per in-
sertion. This accounts for the dramatic slowdown during
s0.

Finally, we give three measures of contention. A lock fail-
ure is classed as an initialization failure if the thread fails
to obtain the lock on one of the vertices in the initial tetra-
hedron, or a dig failure if the thread fails to obtain the lock
on a some other vertex while computing the cavity for the
insertion. If the failure occurs immediately after a previous
failure, it is instead classed as a repeat failure. We give the
average number of each type of failure per processor. The
large number of initialization failures is due to our use of
the FIFO queueing discipline, as discussed below.

The 64-processor run inserted 1, 518, 041, 200 points, pro-
ducing 10, 274, 246, 916 tetrahedra. As far as we know this
is the largest tetrahedral Delaunay mesh that has been gen-
erated.

Queueing Disciplines. In our algorithm there is a cen-
tral work queue from which all threads draw tetrahedra for
processing. To avoid concurrency issues, the queue is di-
vided into a number of subqueues; when a thread wishes to
access the queue, it chooses randomly from the subqueues
until it finds one that is not in use. Here we discuss the
issues involved in design of the work queue.

We considered three possible queueing disciplines for our
work queue. The first we considered was the standard FIFO
queueing discipline. A concern with the FIFO discipline is
that, on completion of an insertion, our threads may add
to the queue a large number of tetrahedra that all share
the same vertex (the newly inserted point). If two or more
threads attempt to handle the tetrahedra resulting from a
single push, then most (or all) of the threads will encounter
locked vertices and abandon the job.

A second discipline we considered was the random queue
(RAND): tetrahedra are added to the tail of the queue but
extracted at random from any point within the queue. This
ensured that our threads’ access patterns were random. Un-
fortunately we found experimentally that it led to larger
queue sizes than the FIFO queue: large numbers of “garbage”
tetrahedra (those that no longer existed in the mesh) col-
lected in the queue and were not removed until near the end
of the algorithm.

The third option we considered was the “queue-random”
discipline (QR), a compromise between the first two disci-
plines. A thread would initially attempt to draw a tetrahe-
dron from the front of the queue; if work on that tetrahedron

296

processors: 1 2 4 8 16 32 64
Total runtime 3202s 3769s 4352s 4435s 4686s 5090s 5512s
Parallel loop 2995s 3553s 4063s 4159s 4416s 4725s 5064s
s0, vtxs/p/sec 7130 5388 4221 3990 3454 3170 2853
s10, vtxs/p/sec 7768 6809 6183 6043 5779 5439 5101
s15, vtxs/p/sec 7678 7152 6596 6510 6263 5935 5712
Init Fails/p 0 3.8M 5.4M 6.2M 6.5M 6.7M 6.7M
Dig Fails/p 0 40K 65K 80K 90K 99K 106K
Rep Fails/p 0 1.1M 2.2M 2.9M 3.1M 3.3M 3.2M

Table 1: Performance measurements per processor for our algorithm. We inserted 224.5 (about 23 million)
vertices per processor.

Init Rep Maximum Runtime
Discipline Fails Fails Queue Size (main loop)
FIFO (2p) 113M 234M 181M 4620s
FIFO (10p) 51M 23M 160M 4321s
QR (2p) 68M 19K 257M 4165s
QR (10p) 37M 11K 200M 4234s
RAND (2p) 32K 107 595M 4249s
RAND (10p) 32K 47 589M 4300s

Table 2: Impact of various queueing disciplines on
our algorithm using 2 or 10 subqueues per proces-
sor. Our tests used 227.5 (about 190M) vertices and
8 processors.

failed due to contention, the thread would next draw from
a random point within the queue.

In addition to experimenting with various queueing disci-
plines, we performed experiments with varying the numbers
of subqueues in the work queue. The FIFO queueing disci-
pline problem occurred when multiple threads accessed the
same subqueue within a short amount of time; by increasing
the number of subqueues we hoped to make this event less
likely. For p processors we experimented with using 2p and
10p subqueues.

The results of our experiments are shown in Table 2. We
ignore failed attempts to lock the work queues, as these are
rare and do not have a large cost. When attempting to
lock the mesh, we classify lock failures as initial failures or
as repeat failures depending on whether the thread had en-
countered a lock failure just prior to the current one. The
increase in failures for the FIFO queueing discipline is quite
dramatic, and the increase in queue size for the random dis-
ciplines equally so. However, the corresponding increase in
runtime was fairly small since most of the failures occurred
before significant work was performed. Thus, we chose to
minimize the space used by the work queue: for our ex-
periments we use the FIFO queueing discipline with 10p
subqueues.

Space usage. Our algorithm allocates space for several
purposes. The vertex coordinates use 24 bytes per vertex
(three eight-byte floating-point values). The array next[p],
used to link together vertices in the same tetrahedron, uses
4 bytes per vertex. For the work queue we allocate two
entries per vertex, each of which holds three vertices a, b, c
of a tetrahedron containing uninserted vertices. (To find the
fourth vertex, the algorithm performs a lookup on (a, b, c).)
The work queue uses 24 bytes per vertex.

The mesh structure divides vertices into groups of G =
16; for each group it allocates a structure of 1160 bytes,
or 72.5 bytes per vertex. This includes 160 6−byte blocks
of memory for storing encodings of the links of edges, 16
7−byte blocks of memory mapping edges to the encodings of
their links, a bit vector to handle allocation of the memory,
and a pointer to additional memory if necessary. It also
includes an OMP data lock.

When the hashtable for a group overflows, additional mem-
ory is allocated from the heap. The algorithm multiplies the
size of the hashtable by 1.5, then performs a rehash of all
data in the group. To save memory, the hashtable reuses
the 160 6−byte blocks from the main structure, so that for
the first rehash only 80 6−byte blocks are allocated from
the heap. (The hashtable numbers the old blocks 0 . . . 159
and the new blocks 160 . . . 239.)

We chose settings such that an overflow occurs on 13.8%
to 15.4% of groups in the tests for Table 1. The average cost
of overflows is 4.30-4.77 additional bytes per vertex.

The algorithm allocates some fixed-size structures as well
(caches and pools of linked list nodes), but the memory for
these is negligible. The total space cost for our algorithm,
then, is less than 130 bytes per vertex. Thus our 10−billion-
tetrahedron computation used 197GB of RAM.

Point Distributions. We tested our algorithm on sev-
eral different distributions of data, including uniform, Gaus-
sian, kuzmin, and line-singularity distributions. Details on
these distributions can be found in [11]. For each distribu-
tion we ran 224.5 vertices on one processor and 227.5 vertices
on eight processors. We computed the total runtime re-
quired and the number of additional bytes of memory per
vertex allocated. (The numbers given are in addition to the
124.5 bytes per vertex required in all cases.) Results are
shown in Table 3.

We also ran tests on real-world data: a set of grid points
based on an octree decomposition generated by the Quake
project [40]. We used eight processors to compute a mesh
over 227 points. The problem of computing a tetrahedral
mesh over grid points proved difficult, as our algorithm was
not designed to handle the perfectly flat tetrahedra that re-
sult when four vertices lie at the vertices of a square. To
handle this we introduced small random perturbations: we
added a small random value to each coordinate of each ver-
tex.

Even after doing this, though, we encountered some dif-
ficulty with the tetrahedralization. Our insertion algorithm
begins with a single tetrahedron on four artificial “bound-
ary” vertices v1 . . . v4, chosen such that the tetrahedron con-

297

Additional
Distribution Time Bytes/Vtx
uniform 3136s 4.30
normal 3164s 4.67
kuzmin 3182s 4.56
line 3147s 2.80

Additional
Distribution Time Bytes/Vtx
uniform 4296s 4.69
normal 4301s 4.79
kuzmin 4478s 4.80
line 4301s 3.67

Table 3: Space used and time required by our algorithm for 224.5 vertices and one processor (left) and for
227.5 vertices and eight processors (right).

Random Boundary Contention Time
Perturbation Size (Rep Fails) (sec)
(uniform random) 9K 16M 3132
0—1 99K 20M 3054
0—.5 138K 62M 3230
0—.2 203K 316M 3895
0—.1 274K 836M 3954
0—.05 370K 2207M 7397
0—.02 525K 7976M 16544
0—.01 (too much contention, aborted)

Table 4: Performance of our algorithm on 227 fully
random points (from the unit cube) versus 227 points
derived from the Quake project [40]. The points pro-
vided have a very large boundary, resulting in con-
tention for the lock on the four bounding vertices.
Adding randomness to the point locations makes less
of the boundary “visible” to the boundary vertices,
making the problem more tractable.

tains all of the points to be inserted. As the points are
inserted, the vertices v1 . . . v4 connect to the boundary of
the mesh. For the random distributions we tested this did
not pose a problem: the boundary of the mesh was no
more than a few thousand vertices at most. For our octree-
decomposition data, however, the boundary of the mesh was
much larger. The degree of the vertices v1 . . . v4 grew large
enough that there was significant contention between pro-
cessors attempting to perform insertions near the boundary
of the mesh. This decreased the performance of our algo-
rithm considerably.

We were able to solve the problem by adding more ran-
domness to the points. The smallest distance between any
two points in our octree-decomposition data was 6 units; we
added a random value between 0 and 1 to every vertex co-
ordinate. By doing this we decreased the boundary of the
mesh to a reasonable size. Results are shown in Table 4.

One interesting feature of our octree-decomposition data
was its labeling. For random data, as a preprocessing step
our algorithm relabels the points using x-y-z cuts (as de-
scribed in Section 2). For our octree-decomposition data
we found this step was unnecessary: the points came pre-
ordered, with a labeling that produced compression superior
to what our relabeling algorithm provided. (For uniformly-
random points with our reordering, the mesh data for 227

vertices required 1.13G blocks for edge data. For the 227 oc-
tree points with our reordering, mesh data required 1.09G
blocks for edge data. For the octree points without reorder-
ing, mesh data required 0.97G blocks, which left the hashta-
bles somewhat underfull.) Accordingly, the results in Table
4 use the labeling provided by the data.

4. FUTURE WORK

Out-Of-Core Algorithms. Our algorithm and data
structure could be extended to work in an out-of-core set-
ting: because the vertices are relabeled for locality, most of
the memory accesses for an insertion should be very close to-
gether. Keeping the representation compressed means that
more of it could fit in RAM at once. Unfortunately, our algo-
rithm as described performs insertions in an almost-random
order. This could be improved by using a BRIO (“biased
randomized insertion order”) [5] to provide some locality be-
tween insertions. The work queues of our algorithm would
need to be replaced with a series of O(log n) groups of work
queues, one for each level of the BRIO.

High-Degree Meshes. We have shown that the al-
gorithm behaves well on several distributions as long as
the maximum degree of a vertex is bounded. When the
mesh contains vertices of high degree (as for the octree-
decomposition data, as discussed in Section 3), the com-
peting threads suffer from contention for the high-degree
vertices. Experimentally it seems that our code is toler-
ant of four vertices with total degree 138K (out of a total of
128M vertices shared among 8 processors), but performance
suffers when the degree grows larger.

Part of this problem is from our coarse-grained locking
mechanism: we divide our data structure into hashtables,
and force threads to lock each hashtable they access. We
allocate one hashtable per G = 16 vertices, and store the
data for each edge in a hashtable corresponding to one of
its vertices. We require that a thread acquire the lock on
all of the vertices adjoining the cavity before performing
an update. For correctness it is only necessary to lock the
edges adjoining the cavity, not the vertices. A more conser-
vative locking mechanism might be able to exploit this to
tolerate high-degree vertices. However, to do this it would
be necessary to distribute the edges of a high-degree vertex
evenly among many hashtables, which might sacrifice the
good memory-locality properties of the representation.

Also, even with this improvement, there exist 3D meshes
in which all vertices have high degree. It is not clear how any
parallel incremental-insertion algorithm could handle such
meshes efficiently.

5. REFERENCES
[1] OpenMP. http://www.openmp.org/.

[2] rachel.psc.edu.
http://www.psc.edu/machines/marvel/rachel.html/.

[3] A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dunlaig,
and C. Yap. Parallel computational geometry.
Algorithmica, 3:293–327, 1998.

298

[4] N. M. Amato, M. T. Goodrich, and E. A. Ramos.
Parallel algorithms for higher-dimensional convex
hulls. In IEEE Symposium on Foundations of
Computer Science, pages 683–694, 1994.

[5] N. Amenta, S. Choi, and G. Rote. Incremental
constructions con BRIO. In Proc. ACM Symposium on
Computational Geometry, pages 211–219, June 2003.

[6] L. Arge. External memory data structures. In Proc.
European Symposium on Algorithms, pages 1–29, 2001.

[7] D. Blandford, G. Blelloch, and I. Kash. Compact
representations of separable graphs. In Proc.
ACM-SIAM Symposium on Discrete Algorithms, 2003.

[8] D. K. Blandford and G. E. Blelloch. Dictionaries using
variable-length keys and data, with applications. In
Symposium on Discrete Algorithms, 2005.

[9] D. K. Blandford, G. E. Blelloch, D. E. Cardoze, and
C. Kadow. Compact representations of simplicial
meshes in two and three dimensions. In 12th
International Meshing Roundtable, 2003.

[10] G. Blelloch, H. Burch, K. Crary, R. Harper, G. Miller,
and N. Walkington. Persistent triangulations. Journal
of Functional Programming (JFP), 11(5), Sept. 2001.

[11] G. Blelloch, J. Hardwick, G. L. Miller, and D. Talmor.
Design and implementation of a practical parallel
Delaunay algorithm. Algorithmica, 24(3/4):243–269,
1999.

[12] A. Bowyer. Computing Dirichlet tessellations. The
Computer Journal, 24:162–166, 1981.

[13] Chan, Snoeyink, and Yap. Primal dividing and dual
pruning: Output-sensitive construction of
four-dimensional polytopes and three-dimensional
voronoi diagrams. GEOMETRY: Discrete &
Computational Geometry, 18, 1997.

[14] M. Chen, T. Chuang, and J. Wu. Efficient parallel
implementations of 2D Delaunay triangulation with
high performance Fortran. In Proceedings of 10th
SIAM Conference on Parallel Processing for Scientific
Computing, 2001.

[15] N. Chrisochoides and D. Nave. Simultaneous mesh
generation and partitioning for Delaunay meshes. In
Proceedings of the Eighth International Meshing
Roundtable, pages 55–66, 1999.

[16] N. Chrisochoides and D. Nave. Parallel Delaunay
mesh generation kernel. International Journal for
Numerical Methods in Engineering, 58:161–176, 2003.

[17] N. Chrisochoides and F. Sukup. Task parallel
implementation of the Bowyer-Watson algorithm. In
Proceedings of the Fifth International Conference on
Numerical Grid Generation in Computational Fluid
Dynamic and Related Fields, 1996.

[18] K. L. Clarkson and P. W. Shor. Applications of
random sampling in computational geometry, II.
Discrete & Computational Geometry, 4(1):387–421,
1989.

[19] A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, and
E. Ramos. Randomized external-memory algorithms
for some geometric problems. In Proc. ACM
Symposium on Computational Geometry, pages
259–268, June 1998.

[20] M. Deering. Geometry compression. In Proc.
SIGGRAPH, pages 13–20, 1995.

[21] F. K. H. A. Dehne, D. Hutchinson, A. Maheshwari,
and W. Dittrich. Reducing I/O complexity by
simulating coarse grained parallel algorithms. In Proc.
IPPS/SPDP, pages 14–20, 1999.

[22] P.-M. Gandoin and O. Devillers. Progressive and
lossless compression of arbitrary simplicial complexes.
In Proc. SIGGRAPH, 2002.

[23] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S.
Vitter. External-memory computational geometry. In
Proceedings of the 34th Annual Symposium on
Foundations of Computer Science, pages 714–723,
1993.

[24] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S.
Vitter. External-memory computational geometry. In
Proc. IEEE Symposium on Foundations of Computer
Science, pages 714–723, Nov. 1993.

[25] S. Gumhold and W. Strasser. Real time compression
of triangle mesh connectivity. In Proc. SIGGRAPH,
pages 133–140, 1998.

[26] J. Hardwick. Implementation and evaluation of an
efficient parallel Delaunay triangulation algorithm. In
Proceedings of Ninth Annual Symposium on Parallel
Algorithm and Architectures, 1997.

[27] M. Isenburg and J. Snoeyink. Face fixer: Compressing
polygon meshes with properties. In Proc. SIGGRAPH,
pages 263–270, 2000.

[28] Z. Karni and C. Gotsman. Spectral compression of
mesh geometry. In Proc. SIGGRAPH, pages 279–286,
2000.

[29] J. Kohout, I. Kolingerov, and J. Zara. Practically
oriented parallel Delaunay triangulation in E2 for
computers with shared memory. Computers and
Graphics, 28:703–718, 2004.

[30] I. Kolingerov and J. Kohuou. Optimistic parallel
Delaunay triangulation. The Visual Computer,
18(8):511–5, 2002.

[31] S. Lee, C. Park, and C. Park. An improved parallel
algorithm for Delaunay triangulation on distributed
memory parallel computers. Parallel Processing
Letters, 11:341–352, 2001.

[32] S. McMains, J. M. Hellerstein, and C. H. Squin.
Out-of-core build of a topological data structure from
polygon soup. In Proc. Symposium on Solid Modeling
and Applications, pages 171–182, June 2001.

[33] T. Okusanya and J. Peraire. 3D parallel unstructured
mesh generation. AMD, 220:109–115, 1997.

[34] R. Pajarola, J. Rossignac, and A. Szymczak. Implant
sprays: Compression of progressive tetrahedral mesh
connectivity. In Proc. Visualization 99, pages 299–306,
1999.

[35] J. Rossignac. Edgebreaker: Connectivity compression
for triangle meshes. IEEE Transactions on
Visualization and Computer Graphics, 5(1):47–61,
1999.

[36] J. R. Shewchuk. Pyramid mesh generator software.
(http://www.cs.berkeley.edu/~jrs/). Personal
Communication.

[37] J. R. Shewchuk. Adaptive precision floating-point
arithmetic and fast robust geometric predicates.
Discrete and Computational Geometry, 18(3):305–368,
1997.

299

[38] A. Szymczaka and J. Rossignac. Grow & Fold:
compressing the connectivity of tetrahedral meshes.
Computer-Aided Design, 32:527–537, 2000.

[39] G. Taubin and J. Rossignac. Geometric compression
through topological surgery. ACM Transactions on
Graphics, 17(2):84–115, 1998.

[40] T. Tu and D. R. O’Hallaron. A computational
database system for generating unstructured
hexahedral meshes with billions of elements. In
Proceedings of SC2004, 2004.

[41] T. Tu, D. R. O’Hallaron, and J. C. Lopez. ETREE - a
database-oriented method for generating large octree
meshes. In Proc. International Meshing Roundtable,
pages 127–138, Sept. 2002.

[42] J. S. Vitter. External memory algorithms and data
structures: dealing with massive data. ACM
Computing Surveys, 33(2):209–271, June 2001.

[43] D. F. Watson. Computing the n-dimensional Delaunay
tesselation with application to Voronoi polytopes. The
Computer Journal, 24:167–172, 1981.

[44] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes. Morgan Kaufman, 1999.

300

