
Open Research Online
The Open University’s repository of research publications
and other research outputs

Engineering Adaptive Model-Driven User Interfaces

Journal Item

How to cite:

Akiki, Pierre A.; Bandara, Arosha K. and Yu, Yijun (2016). Engineering Adaptive Model-Driven User Interfaces. IEEE
Transactions on Software Engineering, 42(12) pp. 1118–1147.

For guidance on citations see FAQs.

c© 2016 IEEE

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/TSE.2016.2553035

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/doi:10.1109/TSE.2016.2553035
http://oro.open.ac.uk/policies.html

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 1

Engineering Adaptive Model-Driven
User Interfaces

Pierre A. Akiki, Arosha K. Bandara, Member, IEEE, and Yijun Yu, Member, IEEE

Abstract—Software applications that are very large-scale, can encompass hundreds of complex user interfaces (UIs). Such

applications are commonly sold as feature-bloated off-the-shelf products to be used by people with variable needs in the required

features and layout preferences. Although many UI adaptation approaches were proposed, several gaps and limitations

including: extensibility and integration in legacy systems, still need to be addressed in the state-of-the-art adaptive UI

development systems. This paper presents Role-Based UI Simplification (RBUIS) as a mechanism for increasing usability

through adaptive behavior by providing end-users with a minimal feature-set and an optimal layout, based on the context-of-

use. RBUIS uses an interpreted runtime model-driven approach based on the Cedar Architecture, and is supported by the

integrated development environment (IDE), Cedar Studio. RBUIS was evaluated by integrating it into OFBiz, an open-source

ERP system. The integration method was assessed and measured by establishing and applying technical metrics. Afterwards, a

usability study was carried out to evaluate whether UIs simplified with RBUIS show an improvement over their initial

counterparts. This study leveraged questionnaires, checking task completion times and output quality, and eye-tracking. The

results showed that UIs simplified with RBUIS significantly improve end-user efficiency, effectiveness, and perceived usability.

Index Terms—Design Tools and Techniques, Software Architectures, Support for Adaptation, User Interfaces

—————————— ——————————

1 INTRODUCTION

oftware applications that are very large-scale, can en-
compass hundreds of complex user interfaces (UIs).

Such applications are commonly sold as feature-bloated
off-the-shelf products to be used by people with variable
needs of the required UI feature-set and layout prefer-
ences. For example, end-users with different job descrip-
tions could require a variable sub-set of a UI’s features.
Additionally, each end-user’s layout preferences in terms
of UI factors, e.g. font-size, widget grouping, widget
types, etc., can be driven by context-of-use facets that we
refer to as aspects, e.g. computer literacy, culture, motor-
abilities, screen-size, etc. Enterprise applications, e.g. en-
terprise resource planning (ERP) systems, are a common
example of such types of software applications. Hence, it
is not surprising that these applications suffer from many
usability problems [1], some of which are caused by their
complex off-the-shelf UIs. Due to these considerations,
enterprise applications are used in this paper to illustrate
and evaluate our approach for engineering adaptive UIs.

1.1 Adaptive Model-Driven User Interfaces

There are existing solutions, which attempt to address some
usability problems by adapting UIs to the context-of-use.

Adaptive UIs are aware of their context-of-use and are
capable of providing a response to changes in this con-
text, by adapting one or more of their characteristics us-
ing rules that are either predefined or deduced by learn-
ing over time. For example, an adaptive UI can automati-

cally increase the font-size for end-users with a vision-
impairment. On the other hand, an adaptable UI can al-
low end-users to manually adapt desired characteristics,
e.g. adding and removing toolbar buttons. Adaptive UIs,
i.e. semi/fully-automated adaptation, could be a more fea-
sible approach for complex large-scale systems (e.g., en-
terprise applications), than adaptable ones, i.e. manual
adaptation, mainly due to two reasons. First, the scope
of variability, based on which the UI can be adapted,
might not be known at design-time. Second, it could be
very costly to manually develop several context-
dependent UI variations for a large number of UIs.

There is an increased need for user-adaptivity, accom-
panied by an increase in the feasibility of realizing adaptive
systems due to advances in research [2]. Adaptation can
provide benefits in certain cases such as improving an end-
user’s performance [3]. Existing studies have reported cer-
tain conditions that affect the benefit of adaptive UIs. Add-
ing adaptation capabilities to a system depends on dif-
ferent variables such as the task and the user [4]. For
example, users performing complex tasks could benefit
more from adaptation than those performing simple
tasks. Also, end-users tend to take more advantage of an
accurate adaptive UI, due to the establishment of trust
[5]. Another important point to consider when adopting
adaptive UIs, is providing the end-users with a prefer-
ences area where they can provide feedback to adjust the
adaptive behavior [6]. Our approach leverages the results
of existing works, in order to provide a better outcome.

The model-driven UI development approach formed
the basis for many works researching adaptive UIs. This
approach has advantages such as offering technology
independence, and providing the ability to support veri-
fication of model properties and traceability. It also of-
fers the possibility of applying different types of adapta-

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

 Pierre A. Akiki is with the Department of Computer Science, Notre Dame
University – Louaize, P.O. Box: 72, Zouk Mikael, Lebanon.
E-mail: pakiki@ndu.edu.lb

 Arosha K. Bandara and Yijun Yu are with the Computing and Communi-
cations Department, The Open University, Walton Hall, Milton Keynes,
MK7 6AA, United Kingdom E-mail: firstname.lastname@open.ac.uk

S

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

tions on the various UI levels of abstraction. More de-
tails about the advantages of using this approach for
developing adaptive UIs can be found in our survey of
the state-of-the-art [7].

1.2 Limitations of Existing Adaptive Model-Driven
User Interface Development Systems

We assert that an adaptive model-driven UI development
system should comprise three parts: a reference-architecture
depicting the various characteristics of the proposed ap-
proach, a practical adaptation technique for achieving
the sought after adaptive behavior based on this refer-
ence-architecture, and a support tool for allowing stake-
holders, e.g. developers and IT personnel, to develop UIs
and adapt them with the proposed adaptation technique.

The state-of-the-art adaptive model-driven UI devel-
opment systems provide at least one of the parts men-
tioned above. However, several gaps and limitations
still need to be addressed in these systems to obtain a
solution that can be applied to large-scale software sys-
tems such as enterprise applications. For example, fea-
ture-set adaptation techniques suffer from at least one of
the following problems: lack of a practical implementation
mechanism, e.g. training wheels UI [8]; lack of generality,
e.g. SAP’s GuiXT [9]; or restriction to design-time UI adapta-
tion, e.g. (de)composition [10]. There are also gaps and
limitations that pertain to adaptive model-driven UI
development systems in general, which include: lacking
the ability to define adaptive behavior both visually and
through code, e.g. Supple [11]; not supporting adaptive
behavior for an extensible number of UI adaptation as-
pects and factors, e.g. MASP [12]; and limited end-user
feedback techniques, e.g. MyUI [13], etc. This paper pre-
sents a novel adaptive model-driven UI development
system that includes a reference-architecture, a UI adap-
tation technique, and a supporting tool, which address
some of the gaps and limitations surveyed in the exist-
ing state-of-the-art.

The approach described in this paper can be used to

provide newly developed applications with adaptive UI
capabilities. Nonetheless, an adaptive UI development
system also needs to support mature legacy software
applications. The proposed UI adaptation technique has
to integrate within existing legacy systems, in order to
empower them with adaptive UI capabilities. Addition-
ally, the integration method should work without incur-
ring a high development cost or significantly changing
the way legacy systems function. This integration chal-
lenge must be overcome to allow legacy software appli-
cations to benefit from adaptive UIs at a reasonable cost.
However, this challenge has not been addressed by ex-
isting state-of-the-art adaptive UI development systems,
which were mostly tested by developing new prototype
UIs or redeveloping UIs from existing software systems.
Therefore, as part of our approach, we present a method
for integrating our UI adaptation technique into legacy
software systems.

1.3 Our Contributions to Engineering Adaptive UIs

This paper presents a UI adaptation technique (TE) called
Role-Based User Interface Simplification (RBUIS), which is
based on a reference-architecture (AR) called the Cedar
Architecture with tool (TL) support provided by the Ce-
dar Studio integrated development environment (IDE).

The Cedar Architecture offers a high-level reference
for developing adaptive model-driven UIs. RBUIS real-
izes some of the high level components of the Cedar
Architecture to support two types of adaptation, namely
feature-set minimization and layout optimization. We
define a feature as a functionality of a software system
and a minimal feature-set as the set with the least fea-
tures required by a user to perform a job. An optimal
layout is the one that maximizes the satisfaction of con-
straints imposed by certain adaptation aspects, by adapting
the properties of concrete UI widgets. With RBUIS, the
adaptation starts with feature-set minimization, which
eliminates (e.g., hides, disables, etc.) the UI subset that is
not required by particular end-users. Afterwards, layout

Fig. 1. An Example on Adapting a User Interface with RBUIS by Minimizing its Feature-Set and Optimizing its Layout

PIERRE A. AKIKI ET AL.: ENGINEERING ADAPTIVE MODEL-DRIVEN USER INTERFACES 3

optimization makes the UI better-suited for the context-
of-use aspects, e.g. computer literacy, culture, motor-
abilities, screen-size, etc., by adapting UI factors such as:
font-size, widget grouping, widget types, etc. For exam-
ple, novice users might prefer the UI to be displayed as
a step-by-step wizard, whereas advanced users might
feel more productive if the UI is presented on one page.
A study that we conducted showed that UIs adapted
with RBUIS improve usability by increasing the per-
ceived usability of end-users and helping them in ful-
filling their daily tasks more efficiently and effectively.
Cedar Studio offers visual-design and code-editing tools
for supporting the development of model-driven UIs
and adapting them to the context-of-use using RBUIS.

An example of a UI, which was adapted using RBUIS,
is illustrated in Fig. 1. It shows the “Product Store” UI of
an open-source ERP system called Apache Open For Busi-
ness (OFBiz). We integrated RBUIS into OFBiz to evalu-
ate our integration method based on several metrics. We
showed that it is possible to integrate RBUIS into legacy
systems without increasing the development cost or sig-
nificantly changing the way these systems function. En-
terprise applications such as OFBiz generally have box-
like Window-Icon-Menu-Pointer (WIMP) UIs. The con-
tributions made in this paper can work for software sys-
tems other than enterprise applications given that the
same box-like WIMP UI paradigm is used. More exam-
ples of RBUIS being applied in practice can be viewed
online in demonstration videos [74].

The related work is evaluated in Section 2 in order to
identify its possible gaps and limitations. The gaps and
limitations are addressed by presenting three novel
technical contributions including: the Cedar Architec-
ture, the Role-Based UI Simplification (RBUIS) mecha-
nism, and their supporting IDE Cedar Studio in Sections
3, 4, and 5 respectively. An integration method for em-
powering legacy software applications with adaptive
behavior using RBUIS is presented in Section 6 along-
side a metric-based technical evaluation. In Section 7,
we conduct a human-centered evaluation through a
laboratory study, which tests whether RBUIS can signif-
icantly improve usability.

We have previously presented parts of this work includ-
ing: [7], [14], [15], [16], [17], and [18], over the course of
three years. This paper provides the first complete presen-
tation of the technical underpinnings of our system, in ad-
dition to a comprehensive evaluation that covers both the
technical and human perspectives.

2 RELATED WORK

This section presents the criteria that we used for evaluat-
ing the related work. Afterwards, the state-of-the-art adap-
tive model-driven UI development systems, i.e. reference-
architectures, adaptation techniques, and supporting tools,
are briefly evaluated based on these criteria. This section
covers some of the criteria, which showed major gaps and
limitations in the existing state-of-the-art. A more elabo-
rate review, with more evaluation criteria and details, can
be found in a separate survey paper [7]. These criteria
include: completeness, control over the UI, multiple data
sources, etc. We should note that some existing works

focus on other important areas such as multi-modality
and UI distribution. This section does not cover these
works unless they support UI adaptation, in order to stay
within the scope of this paper.

2.1 Evaluation Criteria

In order to conduct a sound and objective critical review
of the existing systems, we produced the following list of
criteria by drawing on direct recommendations from the
literature and combining features from multiple existing
systems. Some of these criteria are implementation-
dependent, thereby can only be used to evaluate practical
UI adaptation techniques or tools. Other criteria are also
suitable for evaluating reference-architectures. The codes
AR, TE, and TL indicate the applicability of each criterion
to: architectures, techniques, and/or tools respectively.
— Extensibility is important for new UI development
approaches [19]. We refined its meaning as follows:

— Extensibility of adaptation aspects and factors in-
dicates that a UI adaptation approach can accommo-
date an extensible number of adaptation aspects on
which basis any UI factor can be adapted. (TE, TL)
— Extensibility of adaptive behavior indicates the
approach’s ability to support the definition of new
adaptive behavior at runtime as needed. (AR, TE, TL)

Supporting the extensibility of adaptation aspects and fac-
tors, and adaptive behavior, allows an approach to provide
more coverage in terms of possible UI adaptations.
— Expressive leverage “is where the designer can ac-
complish more by expressing less” [20] (p. 255). We con-
sider that expressive leverage can be achieved by promot-
ing the reusability of UI model parts, e.g. the same way
visual-components are reused in traditional IDEs, and
adaptive behavior, e.g. visual-parts or scripts. (TL)

— An approach that can integrate in existing systems
without incurring a high integration cost or significantly
changing the system, could have a higher adoption rate for
mature legacy systems. Providing a new advance while
maintaining legacy code is desirable [20]. (AR, TE, TL)
— Using interpreted runtime models as a modeling ap-
proach can support more advanced runtime adaptations
than code generation. Also, a major drawback of genera-
tive approaches is that, over time, models may get out-of-
sync with the running code [21]. (AR, TE)

— Scalability is an important criterion to check for every
new system [20]. If the scalability of an adaptation tech-
nique is not demonstrated with real-life scenarios, its adop-
tion for complex software systems could decrease. (TE)
— An ideal tool would have low threshold and high ceil-
ing [22]. The “threshold” represents the difficulty in
learning and using the tool, and the “ceiling” relates to
how advanced the tool’s outcome can be. (TL)

— User feedback on the adapted UI provides end-users
with awareness of automated adaptation decisions and
the ability to override them. It can increase the end-users’
UI control [23] and feature-awareness [24] affected by
adaptive/reduction mechanisms. Creating a representa-
tion for end-users and the automation to communicate is
a challenge in human-automation interaction [25]. (AR, TE)
— Visual and code-based representations allow different

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

stakeholders, e.g. developers and IT personnel, to imple-
ment adaptive behavior. A textual representation, e.g.
CSS in Comet(s) [19], can be advanced but a visual nota-
tion can simplify the creation of UI adaptation rules by
hiding the complexity of programming languages [26].
(TE, TL)

2.2 Reference Architectures

Several architectures have been proposed as a reference
for applications targeting adaptive UI behavior and other
UI related features such as: multimodality, distribution,
etc. This section focuses on the adaptive behavior part of
existing architectures since it is our paper’s main focus.

A 3-layer architecture was presented for devising
adaptive smart environment UIs [27]. Its modeling ap-
proach is based on generative runtime models, which are
less flexible than interpreted runtime models for per-
forming advanced adaptations. This architecture does
not support user feedback but refers to another work [28],
which does not offer an architecture but uses user-
feedback for refining initial situation models at runtime.

CAMELEON-RT is a reference architecture model for
distributed, migratable, and plastic UIs within interac-
tive spaces [29]. It provides a good conceptual represen-
tation of the extensibility of adaptive behavior through the
use of open-adaptive components [30], which allow new
adaptive behavior to be added at runtime.

FAME is an architecture that targets adaptive multi-
modal UIs using a set of context models in combination
with user inputs [31]. It only targets modality adapta-
tion, hence it is not meant to be a general-purpose refer-
ence for adapting other UI characteristics.

Malai is an architectural model for interactive sys-
tems [32] and forms a basis for a technique that uses
aspect-oriented modeling (AOM) for adapting UIs [33].
Extensibility of adaptive behavior is partially fulfilled in
Malai since multiple presentations are defined at design-
time by the developer, and later switched at runtime. Its
modeling approach relies on generating code to represent
the UI. Malai allows developers to define feedback that
helps end-users to understand the state of the interactive
system, but the end-users cannot provide feedback on
the adaptations (e.g., reverse an unwanted adaptation).

User feedback was not addressed by any of the architec-
tures reviewed in this section. Also, in spite of the im-
portance of integration in legacy software systems, these
architectures were evaluated by building new prototypes.

2.3 Adaptation Techniques

 A variety of UI characteristics can be targeted by adapta-
tion techniques. The characteristics that are the most
common in the existing literature are the UI's features and
layout. Other characteristics that can be adapted include:
modality [31], navigation [34], content [35], etc. Despite
the importance of feature and layout adaptation, the ex-
isting works that target these characteristics still suffer
from limitations and gaps. Therefore, our UI adaptation
technique focuses on feature-set minimization and layout
optimization. In order to remain within our scope, this
section presents the strengths and shortcomings of the
state-of-the-art UI adaptation techniques, which target

feature-set minimization, layout optimization, or both.

2.3.1 Feature-Set Minimization

Since existing feature-set minimization solutions focus on
design-time adaptation rather than runtime adaptive be-
havior, we did not evaluate them according to the criteria
established in Section 2.1. Instead, we categorized them
and generally evaluated their strengths and shortcomings.

Several theoretical propositions were made for reduc-
ing a UI’s feature-set based on the context-of-use, includ-
ing: universal usability [36], two UI versions [23], training
wheels UI [8], etc. These works present a sound theoreti-
cal basis for reducing the bloat of feature-bloated soft-
ware applications. Yet, in addition to lacking a technical
implementation, the given examples: basic text editor
[36], Word menu [23], etc., do not match the complexity
of large-scale systems such as enterprise applications.

Approaches from software product-line (SPL) engi-
neering [37] are used to tailor software applications and
some particularly address tailoring UIs. MANTRA [38]
adapts UIs to multiple platforms by generating code
particular to each platform from an abstract UI model.
Although SPLs can be dynamic [39], the SPL-based ap-
proaches for UI adaptation focus on design-time (prod-
uct-based) adaptation, whereas runtime (context-based)
adaptive behavior is not addressed.

Several commercial software applications use role-
based tailoring of the UI’s feature-set. Microsoft Dynam-
ics CRM [40] and SAP’s GuiXT [9] offer such a mecha-
nism. Yet, it is not generic enough to be used with other
applications, and it requires developing and maintain-
ing multiple UI copies manually. An approach that op-
erates at the model level could be more general-purpose.

Graceful degradation [41] and (de)composition [10],
relied on decomposing UIs into small fragments that fit
the context-of-use better. These approaches depend on
design-time activities (e.g., designer annotations with “grace-
ful degradation”). However, runtime adaptation is more
desirable for situations that are not known at design-time.

The main limitations in approaches attempting to tar-
get feature-set minimization are: lack of a practical im-
plementation mechanism, lack of generality of the solu-
tions, or restriction to design-time adaptation without
offering a runtime adaptive solution.

2.3.2 Layout Optimization

Existing works use different approaches for layout opti-
mization. We provide a brief description of each of these
works and argue their strengths and shortcomings based
on the criteria we established in Section 2.1.

Comet(s) is a set of widgets, which support UI plastic-
ity [42]. It is claimed that extensibility of the adaptive be-
havior is supported through cascading-style-sheets. A
comet can only adjust its shape, whereas other types of
adaptation (e.g., feature-set), which are related to the
overall UI design, cannot be supported by this architec-
tural-style. We consider the modeling approach criterion
to be partially fulfilled since it requires a code-based
implementation as opposed to the possibility of using
interpreted runtime models.

DynaMo-AID [43] is a design-process and runtime-
architecture for devising context-aware UIs and is part

PIERRE A. AKIKI ET AL.: ENGINEERING ADAPTIVE MODEL-DRIVEN USER INTERFACES 5

of the Dygimes UI framework [44]. The support of in-
terpreted runtime models provides a good modeling ap-
proach. Adaptive behavior is extensible but is restricted to
one type of adaptation, namely the UI dialog. DynaMo-
AID is particularly criticized for using a “Task Tree For-
est” [32], where each tree corresponds to the tasks pos-
sible in a given context. The combinatorial explosion
affects the approach’s scalability for complex systems.

Supple supports automatic generation of UIs adapted
to each user’s motor and vision abilities, devices, tasks,
and preferences [11]. Supple interprets and renders UI
models at runtime, hence making the fulfillment of more
advanced adaptations easier. Yet, the inability to have
human input at the different levels of abstraction, at
least at design-time, makes it difficult to adopt for large-
scale systems. Supple has built-in algorithms for adapt-
ing the UI and does not provide a means for extending
the adaptive behavior through either a visual or a code-
based representation. Vision and motor capabilities are
the primary supported adaptation aspects, and 40 UI
factors, e.g. font size, widget size, etc., are supported.
Supple does not provide the means for extending adapta-
tion aspects, and factors. Also, it was criticized [13] for
exceeding acceptable performance times. Supple is com-
plemented by a system called Arnauld [45], which is
responsible for eliciting user preferences to adapt the UI
at runtime. Arnauld could serve as a feedback mecha-
nism, but the sole reliance on runtime elicitation can be
time consuming and might not provide sufficient data.

MASP is a system for developing ubiquitous model-
driven UIs for smart homes [12]. It supports: multimo-
dality [46], distribution [47], synchronization [48], and
adaptation [49]. MASP demonstrates powerful capabili-
ties in UI distribution and multimodality, but we focus
on its adaptation capabilities to stay within our scope.
The modeling approach bases the final UI on generated
code or markup [46], thus allowing less advanced adap-
tations to be performed at runtime as opposed to a fully-
dynamic approach. A limited number of UI adaptation
factors are supported (e.g., orientation, size, etc.), and no
means are provided for extending the adaptation as-
pects and factors. MASP provides a tool to visually di-
vide the layout into boxes. Yet, it does not support the
definition of visual and code-based adaptation rules that can
cover a variety of layout optimization factors, which go
beyond changing the font-size, and layout grouping.

One technique uses aspect-oriented modeling (AOM)
for adapting UIs [33] based on the Malai architecture
(reviewed in Section 2.2). The adaptive behavior could be
extended, but this can only be done at design-time since
the modeling approach relies on code. Hence, the UI varia-
tions have to be manually defined by the developer. The
meta-model does not support the extension of adaptation
aspects and factors. Also, no mechanism is provided for
adding adaptive behavior visually. Scalability is demon-
strated with complex interactive system adaptations.

MyUI is a UI development infrastructure for improv-
ing accessibility through adaptive UIs [13]. It is possible
to extend the adaptive behavior by modifying the state-
chart models. However, this extension is performed at
development-time and could require a redeployment of
the application. Although MyUI allows the end-users to

reverse the adaptations, its feedback mechanism can be
enhanced further by offering users an explanation of the
reason behind the adaptation. The adaptive behavior in
MyUI is defined visually using a state-chart model. How-
ever, its basic adaptation examples (e.g., changing font-
size) do not show whether the state-charts have the po-
tential for defining more advanced usability-related ad-
aptations (e.g., layout grouping, widget types, etc.).

Roam is a framework that allows developers to build
applications, which can adapt to different devices [50].
One of the adaptation approaches supported by Roam is
having multiple device-dependent implementations, which
are created by the developers at design-time and instan-
tiated by the system at runtime. Another approach is the
implementation of a single device-independent presen-
tation, which is built using a device-independent GUI
toolkit. This device-independent implementation gets
transformed at runtime to run on a target device. In both
approaches, UIs are developed using a toolkit rather than a
model-driven approach. Roam focuses on adapting UIs to de-
vice properties such a display size and the available in-
put methods but does not support extensibility of adapta-
tion aspects and factors. Additionally, it does not provide
a way to express the adaptive behavior (transformations)
using both visual and code-based representations.

Like Roam, XMobile is another environment that lim-
its its focus to the adaptation of UIs based on variations
in device properties [51]. XMobile is model-based, but it
relies on generating code at design-time rather than us-
ing an interpreted runtime modeling approach.

Quill is a web-based development environment that
focuses on cross-platform deployment by supporting
collaborative model-based design of UIs [52]. Quill is
limited to web-applications and cross-platform deploy-
ment and does not support extensibility of adaptation as-
pects and factors. Also, it does not support both visual and
code-based representations of adaptive behavior.

We noticed that several criteria were not addressed by
the existing layout optimization techniques. Supple and
MyUI support, to different extents, user feedback on the
adapted UI. The existing techniques were evaluated by
developing new prototype UIs instead of showing the
ability to integrate in legacy software systems. For example,
MASP was evaluated by (re)-building home automation
applications, and Supple was evaluated by developing a
variety of simple UI dialogs. These techniques do not
support an extensible number of adaptation aspects and fac-
tors but merely a limited number them. We also noticed
that only a few works conducted scalability tests.

2.4 Support Tools

This section provides an overview of the state-of-the-art
tools for developing (adaptive) model-driven UIs and
evaluates them according to the criteria from Section 2.1.

There are a few commercial tools that partially sup-
port MDE in UI development such as Leonardi1, Open-
Xava2 and Himalia3. There are several tools, which are
the products of academic work. The ConcurTaskTrees
Environment (CTTE) [53] is a tool for developing and

1 Leonardi: www.w4.eu
2 OpenXava: www.openxava.org
3 Himalia: www.bit.ly/HimaliaDotNet

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

analyzing task models using the CTT notation. The
MARIA [54] language also has a separate authoring en-
vironment. Several tools were presented for supporting
the UIDL UsiXML [55], including: UsiComp [56] and
Xplain [57], SketchiXML [58], IdealXML [59] and
GraphiXML [60]. A few supporting tools were also pre-
sented as part of MASP [61]. Gummy supports multi-
platform graphical UI development [62]. Damask [63] is
a tool for prototyping cross-device UIs. CIAT-GUI sup-
ports model-driven UI development and offers visual-
design tools for the various levels of abstraction [64].

Several criteria were not addressed by most of the
surveyed tools. Some tools are intended for developing
model-driven UIs but do not support adaptation capa-
bilities. Hence, the extensibility of the adaptive behavior and
the definition of visual and code-based adaptive behavior are
only supported partially by MASP, UsiComp, CIAT-
GUI, and MARIA. Also, apart from Leonardi and CIAT-
GUI, the tools do not provide a mature IDE-style UI for
easing the development process. Besides Leonardi, the
surveyed tools do not support reusability of UI model
parts (e.g., the way visual components are reused in tra-
ditional IDEs). Also, adaptive behavior reusability is not
demonstrated but could be in principle possible in MA-
RIA, MASP, CIAT-GUI, and UsiComp, which support
transformation rules. Hence, we consider that these
tools partially fulfill the expressive leverage criterion.
Achieving a low threshold and a high ceiling is considered
a major criticism regarding model-driven UI develop-
ment tools. Therefore, building models graphically was
suggested to achieve a lower threshold [65]. Damask,

Gummy, and Leonardi potentially have a lower thresh-
old than other tools since they promote a development
technique that could start with the concrete UI similar to
the techniques adopted by classic IDEs, which are more
familiar to designers. In terms of achieving a high ceil-
ing, since most of the tools are research prototypes, it is
hard to consider them as alternatives for commercial
IDEs that can be used to develop real-life software ap-
plications. Leonardi is an exception since it is a commer-
cial IDE, but it does not support adaptive behavior.
Hence, we considered the surveyed tools to partially
fulfill both the threshold and ceiling criteria. Since the
UI adaptation techniques do not support the integration
in legacy software systems, naturally the existing tools do
not fulfill this criterion either.

2.5 Summary

Our evaluation of the state-of-the-art systems is aggregat-
ed and presented in Table 1. This table shows the gaps
and limitations that we determined and aim to address
with the work presented in this paper. Additionally, a
major gap lies in the need for a feature-set minimization
technique, which offers: a practical implementation, gen-
erality, and the ability to apply it at runtime. Detailed
tables showing how each state-of-the-art architecture,
technique, and tool fulfills each of the evaluation criteria
can be found in a separate survey paper [7].

Fig. 2. The Cedar Architecture: A Reference for Developing Adaptive Model-Driven User Interfaces

PIERRE A. AKIKI ET AL.: ENGINEERING ADAPTIVE MODEL-DRIVEN USER INTERFACES 7

Table 1
Aggregated Evaluation

 Arch. Tech. Tool

Extensibility of aspects and factors

Extensibility of adaptive behavior

Expressive leverage

Integration in legacy systems

Modeling approach

Scalability

Threshold

Ceiling

User feedback

Visual/code-based representation

 Completely Fulfills Criterion Partially Fulfills Criterion
 Does not Fulfill Criterion Not Applicable

3 THE CEDAR ARCHITECTURE

This section gives an overview of the components compris-
ing the Cedar Architecture, which is based on: Cameleon
Reference Framework (CRF) [66] (UI abstraction), Three
Layer Architecture [67] (adaptive system layering), and
MVC (implementation). This architecture comprises three
server-side layers (decision components, adaptation com-
ponents, and adaptive behavior and UI models), which are
accessed through web-services from the client-components
layer and Cedar Studio.

3.1 Layers Comprising the Cedar Architecture

The section discusses the layers comprising the Cedar
Architecture, shown in Fig. 2, and offers an explanation of
the components they encompass.

Client Components Layer: The components in this
layer are deployed to the client machine, and are ac-
cessed through an API by the software system, e.g. en-
terprise application, which requires adaptation.

In “context-aware” computing, a “context” is com-
posed of a triplet: user, platform, and environment [66].
In the Cedar Architecture, the context-monitor compo-
nent is responsible for monitoring any changes to this
triplet such as changes in the end-user’s role, device, etc.
This component was allocated to the client since it
would be able to monitor changes to the environment,
end-user’s profile, and selected platform.

The feedback-monitor allows end-users to report their
feedback on the UI adaptations presented by the system.
The end-users have the ability to reverse adaptations or
choose other possible alternatives.

An important part of any dynamic approach is data
caching. The ability to cache data on the client allows
dynamically rendered UIs to load more efficiently. The
client-side caching-engine is responsible for caching UIs
on the client machine to give interpreted models the
performance of compiled code, thus providing the nec-
essary robustness, without diminishing the ability to
perform runtime adaptations.

The UI-presenter is responsible for presenting the UI
model to the end-user in the form of a running interface
using an existing presentation technology. This compo-
nent also handles: event management, data binding, and

validation, by linking the dynamic UI layout to the ap-
plication’s code-behind.

Decision Components Layer: The components in this
layer are deployed to the application server to handle
decision making in various adaptive UI scenarios.

The context-evaluator handles the information submit-
ted by the context-monitor in order to evaluate whether
the change requires the UI models to be adapted.

The server-side caching-engine assumes a role similar to
that of its counterpart on the client. Yet, in this case, the
caching is not made on the session level for each indi-
vidual user but on the application level for all the users.
The UI models cached at this level would have already
been adapted. Hence, in case the same adaptation is re-
quired by a different user, the models could be loaded
from the cache rather than re-performing the adaptation,
which could be more time consuming.

Adaptation Components Layer: The components in
this layer are deployed to the application server to per-
form the adaptation on the models.

The adaptation-engine is responsible for taking a UI
model as input and adapting it by executing the relevant
adaptive behavior.

Since software applications can make use of multiple
adaptation aspects, trade-off is needed in certain situa-
tions, where conflicting rules make it impossible to fully
meet all the constraints. In such situations, the trade-off
manager assumes the role of balancing the trade-offs be-
tween different sets of adaptation constraints to meet
each set as much as possible.

The adapted UI must be transmitted to the client in a
standard format. This allows the adaptation techniques,
which are based on the Cedar Architecture, to be con-
sumed as a generic service through APIs from different
applications. The format could be one of the known UI
description languages (UIDLs) such as: UsiXML [55],
UIML [68], etc. The UIDL-converter is responsible for
handling the conversion between the UI model (stored
as relational data) and the selected UIDL format.

Adaptive Behavior and UI Models Layer: This layer
contains the various models, which are stored in a rela-
tional database hosted on the database server.

The adaptive-behavior represents a generic set of
rules according to which the UI will be adapted. Such
rules would be based on various adaptation aspects.

The UI is represented on multiple levels of abstrac-
tion, which were suggested by the Cameleon Reference
Framework (CRF), including: task model, domain mod-
el, abstract UI (AUI), and concrete UI (CUI). The adap-
tive behavior could be applied on any of the UI abstrac-
tion levels. Afterwards, the UI models are transferred to
the client to be presented to the end-user as a running UI.

Adaptive behavior data is needed for the adaptation pro-
cedure to make decisions on how to adapt the UI. Sections
3.2 and 3.3 discuss this data and procedure respectively.

3.2 Adaptive Behavior Data

Making decisions about the ways of adapting the UI can
be obtained from a variety of sources such as adaptive be-
havior (adaptation rules) that are based on empirical stud-
ies or expert knowledge, end-user feedback that is obtained
through the feedback-monitor, and monitoring behavior

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

change that is done by the behavior-monitor(s).
The adaptive behavior is stored in a relational database,

and represents different adaptation aspects pertaining to
any context-of-use dimension. Empirical studies could
be conducted within an enterprise to identify how the
UI should be adapted for particular adaptation aspects
such as computer literacy. On the other hand, expert
knowledge could be enough to define these models for
other adaptation aspects such as different screen-sizes.

The client-side monitor components serve as feedback
loops that provide the server-side layers with data for
refining the predefined adaptive behavior. On the other
hand, the server-side evaluator components check whether
the information sent by the monitors requires a new ad-
aptation to be performed, and whether the sent data
should be used to update the adaptive behavior.

The Behavior Monitor(s) detect new situations and be-
havior changes on the Client Components Layer and
report them to the Decision Components Layer. Some
example changes that could be monitored include: an
end-user’s usage rate of input fields, new updates in-
stalled on the platform, information collected about the
environment using sensors, etc. For example, an end-
user could be initially given access to part of a UI’s fea-
tures. However, a behavior monitor may detect that
even in this part of the UI, there are still some unused

fields. In this particular example, when the end-users
conduct an activity, the Behavior Monitor could send the
identifiers of the fields and a value indicating whether
the field was used to the server. Hence, the behavior
monitor can trigger an update to the behavior data to
indicate that these fields should be removed as well. The
Behavior Evaluator(s) could, in this case, check whether
the usage rate of certain UI elements, e.g. input fields, is
low enough to exclude these elements from the UI.

The Feedback Monitor can collect end-user feedback on
the Client Components Layer, and report it to the Deci-
sion Components Layer. One example of end-user feed-
back could be choosing to show features that were re-
moved from the UI by an adaptation. In this case, the
Feedback Monitor would send a list of identifiers repre-
senting the features that were enabled by the end-user to
the server. The Feedback Evaluator could check whether
showing one feature requires other features to be shown
as well due to interdependency.

3.3 Adaptation Procedure

Some systems such as MASP [69] and MyUI [13], directly
adapt UIs while the end-user is working (direct adapta-
tion) due to the ubiquitous nature of their target applica-
tions. On the other hand, McGrenere et al. [23] promote
offering the adapted UI as an alternative version (indirect

Fig. 3. User Interface Adaptation Procedure

PIERRE A. AKIKI ET AL.: ENGINEERING ADAPTIVE MODEL-DRIVEN USER INTERFACES 9

adaptation) because direct adaptation could confuse the
end-users. We think that both approaches are necessary
to cater for a wider variety of adaptations. For example, if
an end-user is working on a mobile phone while sitting
down, and then suddenly stands up and begins to walk at
a fast pace, the UI could be adapted directly to cater for
this change in the context-of-use. On the other hand, if the
UI requires adaptation to each end-user’s computer liter-
acy level, this level could be known and stored in the da-
tabase in advance. Hence, when the end-users log into the
application, they will be given access to an adapted ver-
sion of the UI that meets their particular profile.

With WIMP-style UIs that are used in an office envi-
ronment, e.g. with enterprise applications, proposing
the adapted UI version as an alternative could be a bet-
ter adaptation choice. However, our architecture sup-
ports both direct and indirect adaptation to also cater for
UIs, such as the ones running on mobile phones, which
have to directly adapt to an evolving context-of-use.

The adaptation procedure is shown as a part of the ar-
chitecture in Fig. 2 by steps S1 to S5. These steps could

be mapped to the flow chart in Fig. 3, which illustrates
them in more detail. A direct UI adaptation could occur
once a context-change is detected by the context-monitor
(S1) and reported to the context-evaluator in case the cli-
ent-side cache does not have the necessary UI. A deci-
sion is made on whether the UI should be adapted. The
server-side cache is checked for an existing version. If
the required UI version does not exist in the cache, the
adaptation engine is called (S2) for obtaining the new
UI. The adaptive-behavior, data, and UI models includ-
ing: Task Model, Abstract UI (AUI), and Concrete UI
(CUI) are loaded (S3) from the database server. The ad-
aptation procedure is then performed by applying the
adaptive behavior to the UI models (S4). Finally, the
adapted UI is sent back to the client-side in order to be
presented to the end-user (S5). We can see that only the
Final UI (FUI) is transmitted to the client-side, whereas
the other UI models are used on the server-side when
performing the adaptation. On the other hand, with an
indirect adaptation, the UI is not adapted while the end-
user is working but rather when he or she launches a UI
(S1’). However, the adaptation procedure goes through

Fig. 4. Meta-Model Representing the Levels of Abstraction of a Model-Driven UI

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

the same steps, but the UI is adapted based on prede-
fined parameters such as the end-user’s computer litera-
cy level rather than dynamic parameters that are detect-
ed by the context-monitor like data collected from sensors.

The adapted UIs are cached based on the parameters
that prompted the adaptation. Hence, for example, if a
request is issued to adapt a UI for a certain screen-size,
the client-side cache is checked first to see if the concerned
end-user had previously requested the same UI to be
adapted for the same screen-size. If not, then the server-
side cache is checked to see if another end-user had al-
ready requested the same adaptation. If both cache repos-
itories are empty, then the adaptation operation is per-
formed by loading the UI models from the database and
executing the appropriate adaptive behavior.

The behavior-change and feedback monitor(s) constantly
run in parallel with the other functionality. Once a be-
havior change is detected, the new data is stored on the
database-server. This data is collected over time and
processed in order to refine the adaptations. Feedback
submitted by the end-users is also stored on the data-
base server in order to refine the adaptations. Since the
end-users are manually submitting the feedback, the
adaptation engine is called after storing the feedback
data in order to directly reflect the change.

3.4 Representing Model-Driven UIs

The meta-model in Fig. 4 shows our representation of the
UI levels of abstraction suggested by the Cameleon Refer-
ence Framework (CRF) [66], namely the task, abstract UI
(AUI), and concrete UI (CUI) models. We should note
that we are not claiming that this meta-model is the most
comprehensive, but that it contains the concepts required
for supporting our UI adaptation technique. The example
in Fig. 5 depicts a “Login” UI represented on three levels of
abstraction, and shows how the elements on one level can
be mapped to their counterparts on another level. The fol-
lowing subsections explain the meta-model shown in Fig. 4.

3.4.1 Task Models

We adopted the ConcurTaskTrees (CTT) [70] notation for
depicting the Task Models, which represent the activities
that the UI is required to support.

Following the CTT notation, a Task Model is composed

of several Tasks each having a type from those enumer-
ated by Task Type. The Tasks are connected in a hierar-
chical manner to indicate parent/child relationships.
The Tasks are also connected to each other with temporal
relationships (Task Relation) indicating interdependency
between them. For example, a calculated field can de-
pend on values from other fields. Each relation can be
assigned one of the temporal operators, which were
specified by CTT [71] such as: choice, concurrency, etc.

3.4.2 Abstract User Interface (AUI) Models

The AUI Model is a modality-independent representation
of the user interface. It is composed of AUI Elements, each
of which has a type from those enumerated by the AUI
Element Type. These elements could be grouped inside the
model using container elements. Each AUI Element could
be mapped to many Tasks in the Task Model and vice-versa.

3.4.3 Concrete User Interface (CUI) Models

The CUI Model is a modality-dependent representation of
the UI. The CUI Elements can be of different types, each
representing a certain modality such as: graphical, charac-
ter, voice, etc. However, since most applications use
graphical UIs (GUIs), we only define a Graphical CUI Ele-
ment (widget) class as a specialization of the CUI Element
class. Nevertheless, the meta-model can be extended in
the future for supporting other modalities.

A Graphical CUI Element has standard properties (e.g.,
height, width, etc.), which are common for all graphical
UI widgets. These elements also define Graphical CUI
Element Properties, which depend on each element’s type.
For example, a data-grid widget could have a property
called “alternating row color”, which is not defined in
other widgets. The names of such type-dependent prop-
erties are stored as a string in the PropertyName attribute
of the Graphical CUI Element Properties class. Developers
using Cedar Studio can specify values for these proper-
ties. These values are stored as a string in the CUI Proper-
ty Value association class. By default, the value of each of
these properties is “null”, and is ignored by the UI-
Presenter. In case the value is not “null”, the UIPresenter
is responsible of casting it to the appropriate type and
assigning it to the property of the widget it is presenting
from the selected toolkit.

Fig. 5. An Example “Login” UI Represented on Multiple Levels of Abstraction: Task Model (Left), AUI (Middle), and CUI (Right)

PIERRE A. AKIKI ET AL.: ENGINEERING ADAPTIVE MODEL-DRIVEN USER INTERFACES 11

We adopted a relative positioning approach for the UI
layout, whereby Graphical CUI Elements can be embed-
ded inside one another, e.g. text-boxes inside a group-
box, and positioned using the top and left position prop-
erties. This approach is supported by many presentation
technologies such as: HTML, Java Swing, and Windows
Forms. To support multi-lingual UIs, Graphical CUI Ele-
ments are assigned a Multilingual Caption.

Each Graphical CUI Element has a Graphical CUI Element
Type such as: button, text-box, etc. These types define a
Toolkit Path property, which indicates where the UI Pre-
senter (Section 3.1) component could locate the relevant
widget inside the toolkit. For example, if Windows Forms
is adopted, the Toolkit Path property can store the widg-
et’s assembly path (e.g., “System.Windows.Forms.Button”).
End-users can access the UI by activating Windows through
links in a navigation structure such as a menu.

3.4.4 Mapping the UI Levels of Abstractions

It is important to connect the different UI levels of ab-
straction. This connection is done by mapping the ele-
ments on each level to the corresponding elements on
another. It is important to allow developers to define and
adjust these mappings [72], [73].

As depicted by the meta-model in Fig. 4, there are one-
to-many relationships connecting the Task to the AUI
Element and the latter to the CUI Element. Since we are
storing these models in a relational database, these one-
to-many relationships are translated by copying the
primary keys from the entities on the one side as foreign
keys in the entities on the many side. These keys pro-

vide the necessary traceability between the elements of
the different levels of abstraction. Cedar Studio allows
developers to define and modify these mappings, as will
be explained later in the paper. Although in many cases,
such as the example shown in Fig. 5, the relationships
between the model elements is one-to-one, there are
many cases where they are one-to-many, hence the latter
was our design choice. Consider the example shown in
Fig. 5, the “prompt for user name” and “enter user name”
tasks could be kept as one abstract task, which is mapped to
the same two AUI input and output elements. Similarly,
for example, an output element on the AUI model could
be mapped in certain cases to two graphical widgets on
the CUI model. One example can be that of a read-only
sales invoice total, which could be represented as one
output element on the AUI model and mapped on the
CUI model to both a label displaying the name of the
field and a read-only textbox containing the value.

4 ROLE-BASED USER INTERFACE SIMPLIFICATION

This section presents Role-Based UI Simplification (RBU-
IS), a mechanism for improving usability by providing
end-users with a minimal feature-set and an optimal lay-
out based on the context-of-use. RBUIS is a UI adaptation
technique, which realizes the components of the Cedar
Architecture shown in Fig. 2.

We define a feature as a functionality of the software
system and a minimal feature-set as the UI sub-set with
the least features required by an end-user to perform a
job. An optimal layout is the one that maximizes the

Fig. 6. Class Diagram Depicting the Concepts of RBUIS Including both Feature-Set Minimization and Layout Optimization

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

satisfaction of the constraints imposed by a set of as-
pects. An optimal layout is achieved by adapting con-
crete widget properties such as: type, grouping, size,
location, etc. RBUIS is based on the Cedar Architecture,
which we presented in Section 3, and implements sever-
al of its high-level components.

4.1 Utilization of Roles in RBUIS

RBUIS utilizes the concept of roles from the standard for
role-based access control (RBAC) [74]. In RBAC, resources
can be made accessible only for certain roles. Hence, upon
assigning a role to a user, he or she will gain access to all
the resources that are accessible by this role.

In RBUIS, UIs and their related adaptations are treat-
ed as resources, which are only made accessible to end-
users holding User Accounts that were allocated particu-
lar roles. However, the concept of a Role in RBUIS is not
ultimately related to security but to usability. The class
diagram illustrated in Fig. 6 depicts the utilization of
roles in RBUIS. A Role is used to indicate a member of a
Role Group, which represents an Adaptation Aspect on
which basis the UI can be simplified. Some example ad-
aptations aspects could be the end-user’s computer lit-
eracy level, the device’s screen-size, and the environ-
ment’s brightness. A Role is neither only related to the
job that the end-user performs, nor is it only related to
one dimension of the context-of-use, but it can represent
Context Elements related to any of the three context-of-
use dimensions: “user”, “platform” and “environment”.
For example, if one would like to adapt a UI based on
each end-user’s computer literacy, a possible Role Group
could be “computer literacy level” with the following
Roles: novice, intermediate, and expert. An example Role
Group that is related to the “platform” is device screen-
size, with the following Roles: 5.5 inch mobile phone, 10
inch tablet, 17 inch laptop, etc. An example Role Group
that is related to the “environment” dimension of the
context-of-use could be brightness level with the follow-
ing Roles: high, medium, and low. Nevertheless, it is
possible for a Role Group used for representing UI Adap-
tation Aspects to contain roles traditionally used for secu-
rity purposes. For example, a job title Role Group includ-

ing the Roles secretary and accountant, can be used to of-
fer end-users holding different jobs an adaptation of the
UI, which allows them to accomplish their daily tasks
with a higher efficiency and effectiveness.

The allocation of Roles to User Accounts can be done in
two different ways depending on the Role at hand. For
example, Roles belonging to Role Groups such as computer
literacy and job title can be allocated to a User Account
when it is created. These role allocations can be manually
modified at a later stage if, for example, the end-user’s
computer literacy level or job title change. When an end-
user logs into the system with a User Account that has
one or more Roles, the adaptive behavior relevant to
these Roles is executed on the UI models in order to
adapt the UI to the context-of-use. On the other hand,
Roles belonging to Role Groups such as device’s screen-size
and environment’s brightness are usually only known at
runtime. Hence, these Roles are allocated dynamically to a
User Account for an individual session based on data re-
ported by the Context Monitor component of the Cedar
Architecture (Fig. 2). For example, the Context Monitor can
obtain the device’s screen-size from the operating system,
and it can detect changes to the brightness in the envi-
ronment by reading data from a sensor. These changes to
the context-of-use are then reported to the server-side
layers of the Cedar Architecture to dynamically perform
Roles associations, and to execute the adaptive behavior
pertaining to these Roles, on the UI models.

4.2 UI Simplification Operations in RBUIS

RBUIS realizes several of the Cedar Architecture compo-
nents previously illustrated in Fig. 2 and explained in
Section 3. The class diagram illustrated in Fig. 6 presents
the main concepts of RBUIS. These concepts cover the
two supported UI adaptation types namely, feature-set
minimization that is applied on task models, and layout
optimization that is applied to the concrete UI models.

There are three types of operations, which realize the
UISimplification interface:

1. Task-Role-Assignments are used to achieve context-
dependent feature-set minimization. Roles can be al-
located to Tasks in Task Models to indicate that these

Fig. 7. Assigning Roles to Tasks in Order to Achieve Feature-Set Minimization (Inventory Item UI – Example)

(a) All the role groups and roles except those that are already assigned (b) The roles assigned to the task at hand (c) Specifying whether the
task overrides or merges the inherited role assignments from its parent task (d) Specifying the source of the role priority

PIERRE A. AKIKI ET AL.: ENGINEERING ADAPTIVE MODEL-DRIVEN USER INTERFACES 13

tasks should be blocked for User Accounts that are as-
signed these roles.

2. Workflow-Role-Assignments are used to achieve
context-dependent layout optimization. The notion
of a workflow is used in this paper for referring to
adaptive behavior represented using programming
constructs (e.g., control structures). For example, a
workflow for switching combo-boxes with list-boxes
could contain: (1) a “for” loop that iterates on the CUI
widgets, (2) an “if” statement nested in the “for” loop
to check if a widget is a combo-box, and (3) an as-
signment nested in the “if” statement to change the
widget-type from “combo-box” to “list-box”. Roles
are allocated to Adaptive Behavior Workflows, which
are executed on CUI Models to adapt their characteris-
tics for User Accounts that are assigned these roles. An
Adaptive Behavior Workflow is composed of Adaptation
Operation Implementations, which can be: Visual Pro-
gramming Constructs, Compiled Libraries or Dynamic
Scripts. Adaptive Behavior Workflows are grouped under
Workflow Groups, each representing a particular adapta-
tion factor. For example, a Workflow Group called “UI
Grouping” could contain three Adaptive Behavior Work-
flows, which adapt the UI’s widget grouping to: tab-
pages, group-boxes, or sub-windows.

3. Rule-Role-Assignments are used to achieve context-
dependent feature-set minimization and layout op-
timization. An RBUIS Rule is represented by code in-
structions that dynamically select Tasks to be blocked
or CUI Models to be adapted based on certain condi-
tions. RBUIS rules are assigned Roles to indicate the
User Accounts to which they apply.

Defining the adaptive behavior and configuring the
role-assignments is done after deploying the software in
the enterprise, and can be a joint effort between person-
nel from the software company and the enterprise’s IT
department.

Model Constraints are supported by RBUIS, primarily
for verifying possible human errors in the role assign-
ments. For example, someone might mistakenly perform
a task-role assignment, which undesirably blocks a task
from all the users. By executing these constraints against
the models and the role-assignments, our supporting

tool is able to issue appropriate warnings and errors.
We adopted the Structured Query Language (SQL) for

defining RBUIS Rules and Model Constraints since many
developers and IT personnel are familiar with its syntax.
Also, it is easy to query UI the models and adaptive behav-
ior using SQL since they are stored in a relational database.

4.3 Feature-Set Minimization

Following the concept of multilayer UI design [36], RBUIS
creates separate layers containing various features, and
end-users can gain access to these layers at different stag-
es. Before RBUIS is applied, the UI is initially designed
based on the least constrained context-of-use. From the
feature-set perspective, the initial UI design can be con-
sidered as a layer containing all the features. Additional
layers are created with RBUIS when access is revoked by
allocating roles to tasks. For example, a novice user can be
initially given access to a layer containing a primitive sub-
set of the tasks, and later promoted to a more advanced
layer by changing his or her role from novice to expert.

When a task is blocked based on roles, a property
called concrete operation (Fig. 6 - TaskRoleAssignment class)
is used to specify how the blocking is translated on the
CUI level. A task can become: invisible, disabled, faded
until first use, etc. The task model is mapped to the AUI
and then to the CUI to get the UI widgets relevant to the
task(s) to which the role(s) were allocated.

The task model example illustrated in Fig. 7 (left) rep-
resents part of a UI for managing inventory items. With
RBUIS, each task is presented with a lock-shaped button
next to it. Upon clicking any of these buttons, the win-
dow illustrated in Fig. 7 (right) is launched to allow the
assignment of roles to the task. The UI shows a list of all
the role-groups and their roles (Fig. 7 – a). Upon assign-
ing one or more roles to a task (Fig. 7 – b) its status
changes from “Initial” to “Simplified”. The tasks shown
in Fig. 7 (left) encircled with a dashed line were allocat-
ed roles. In the case of the “Weight” task, the roles were
directly assigned to it, whereas tasks under “Pricing”
inherit their role allocation from their parent task. Since
sub-tasks inherit the access rights of the parent tasks, the
person performing the task-role-allocation can specify
whether a child task overrides or merges its own access
rights with those inherited from its parent (Fig. 7 – c).

Since each user can be simultaneously allocated mul-
tiple roles, e.g. novice and sales officer, a certain order
should be followed at runtime to perform the elimina-
tion. The class diagram in Fig. 6 shows priorities on dif-
ferent levels. The person in charge of the role allocation
can specify the source, e.g. “RoleGroup”, “Role”, “Task-
Role”, or “UserRole”, from which the priority is read (Fig.
7 – d). By default, task-based assignments have a higher
priority than rule-based ones unless specified otherwise.
We consider this to be the case because a rule can be
applied to a large set of tasks at once, whereas manually
assigning a role to a task is more explicit.

In comparison to several other approaches, e.g. Roam
[50], RBUIS is more general in the sense that it does not
focus one adaptation aspect, e.g. display size, but sup-
ports the extensibility of adaptation aspects and factors.
Furthermore, RBUIS supports the definition of adaptive
behavior using both a visual and a code-based represen-

Fig. 8. Example of an Adaptive Behavior Workflow that Changes the
Simple Selection Widgets to Radio-Button-Groups

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

tation, e.g. using workflows.

4.4 Layout Optimization

As discussed in Section 4.3 on feature-set minimization,
the UI is initially designed based on the least constrained
context-of-use. From the layout perspective, the proper-
ties of the CUI model elements (e.g., height, width, type,
etc.) are chosen to fit the context-of-use that requires the
least adaptation. Since it is possible to use multiple adap-
tation aspects, the initial UI design can be the least con-
straint for all aspects in consideration. For example, in
terms of the aspects related to the platform part of the con-
text-of-use, a platform can be considered more constraint
if it has a lower resolution, supports a limited number of
widgets, becomes less usable with certain widgets due to
the lack of a keyboard, etc. [41]. Hence, for example, a UI
can be initially designed based on the screen-size of a
desktop computer and later optimized for a mobile phone
screen. The choice of which context-of-use is considered
the least constraint is based on the designer’s perspective.

Layout optimization is achieved by executing adap-
tive behavior workflows on the CUI models to adapt the
properties of their widgets. As depicted by the class dia-
gram in Fig. 6, adaptive behavior workflows can en-
compass a mixture of visual and code-based constructs.

We implemented adaptive behavior workflows using
the Windows Workflow Foundation (WF), which is part
of the .NET Framework. An example of an adaptive be-
havior workflow is illustrated in Fig. 8. It shows visual
programming constructs including a “for-loop” iterating
around a UI’s widgets. Inside the “for-loop”, there is an
“if-condition”, which checks whether or not the type of
the widget is a simple selection widget (e.g., combo-box,
list-box, etc.), in order to change it to a radio-group. The
checking is done using a helper class called “LMgr”
(layout manager), which has a method called “IsSimple-
SelectionWidget”. This helper class was defined in a C#
library and used to extend the functionality of the adap-
tive behavior workflows. We should note that since the
adaptive behavior workflows use WF, they can support
more advanced examples than the one shown in Fig. 8.

The visual programming constructs supported by WF
can be extended using external compiled class libraries
developed in a .NET language such as C# or VB.NET.
One extension that we created is a construct that calls a
dynamic script. Currently, this construct supports Iron
Python code, but it can be extended in the future to sup-
port other languages.

The adaptive behavior workflows are executed on the
CUI model by the Adaptation Engine depicted as part of

Fig. 9. Feature-Set Minimization, Layout Optimization, and User Feedback (Inventory Item UI – Example)

PIERRE A. AKIKI ET AL.: ENGINEERING ADAPTIVE MODEL-DRIVEN USER INTERFACES 15

the Cedar Architecture in Fig. 2. Afterwards, the Final
UI (FUI) is transferred to the client as an XML file and
presented dynamically to the end-user by the UI Present-
er, as shown by the adaptation procedure in Fig. 3. As is
the case of feature-set minimization, selecting which
workflows to apply for a particular end-user with mul-
tiple roles depends on priorities.

4.5 Implementation and UI Simplification Examples

This section demonstrates the algorithms behind RBUIS
with their running times and a few examples.

The following example demonstrates the feature-set
minimization process assuming the priorities were set at
the “TaskRole” level.
— UserA: Novice, Sales Officer
— TaskX: 1. All-Roles (Allow)

2. Cashier (Deny- Hide)
3. Novice (Deny-Disable)

An excerpt of our feature-set minimization algorithm
is shown in Listing 1. Following this algorithm “UserA”
has access to “TaskX” since the role “Sales Officer” has
the highest priority. In contrast, if the role “Novice” had
a higher priority than “All-Roles”, then “UserA” would
have been denied access to “TaskX” hence disabling its re-
lated CUI elements as indicated by the concrete operation
next to the role “Novice”.

The running time of our algorithm is polynomial: 𝑂 (𝑚 × (𝑛 × 𝑙 × 𝑝 × (2 𝑗 log 𝑗 + 𝑘) + 𝑛)), where m is the
number of task models, n is the number of tasks in a
task model, j is the number of user roles, k is the num-
ber of blocked CUI model elements for a task, p is the
number of parent tasks for a task, and l is the number of
task roles. The full algorithm and complexity analysis can
be found in a technical report [75]. The part of this algo-
rithm, which uses CTT temporal constraints to check for
conflicts that could occur when features are removed,
also has a polynomial running time of 𝑂 (𝑚), and can be
found in a separate paper [17].

An excerpt of our layout optimization algorithm is
shown in Listing 2. This algorithm is responsible for se-
lecting the relevant workflows that are to be executed on
a UI model for a particular end-user. The running time

of this algorithm is polynomial: 𝑂 (2 𝑚 log 𝑚 + 2 𝑛 log 𝑛), where m is the number of user roles, n is the number
of workflows to be executed.

As we indicated in Section 4.4, dynamic Iron Python
scripts can be embedded in adaptive behavior work-
flows. The algorithm presented in Listing 3 is an exam-
ple of an Iron Python script, which switches combo-
boxes with radio-button groups, in case the combo-box
contains less than three items.

Continuing with the inventory item UI example previ-
ously shown as a task model in Fig. 7 (left), an initial non-
adapted version of this UI is illustrated in Fig. 9 – Step 1.

After applying the feature-set minimization, the UI’s
features are reduced in this example by hiding the unre-
quired widgets as shown in Fig. 9 – Step 2. Then, an
adaptive behavior workflow like the one presented in
Fig. 8 is executed on the UI with reduced features in or-
der to change the simple selection widgets (e.g., combo-
boxes) to radio-button-groups. After the execution of
this workflow, the “Type” combo-box is replaced with a
radio-button-group replacing all the combo-box-items
with radio-buttons as illustrated in Fig. 9 – Step 3.

4.6 User Feedback on the Adapted UI

As mentioned in Section 2.1, supporting user feedback in
adaptive software systems provides end-users with
awareness of automated adaptation decisions, and the
ability to override them when needed. It can also increase
the end-users’ feature-awareness and control over the UI.
Meta-UIs have been suggested as a set of functions, which
provide end-users with the ability to control and evaluate
the state of a UI [76]. For example, meta-UIs have been
used for allowing end-users to understand ubiquitous
UIs, and control operations such as adaptation [77]. In a
similar sense, RBUIS provides end-users with the ability

Listing 1. Feature-Set Minimization Algorithm (Excerpt)

1.Simplify-Task(TaskID,UserRoles[],TaskRoles[],UIModel)
2. //Determine the primary role
3. foreach ur in UserRoles
4. tr ← TaskRoles.GetRole(ur.RoleRef)
5. if tr = null then tr ← TaskRoles.GetRole(All-Roles)
6. ur.Priority ← tr.Priority;
7. UserRoles.OrderBy(Priority)
8. PrimaryRole ← UserRoles.First()
9. if PrimaryRole.RoleRef ≠ All-Roles
10. //Apply the concrete operation to the CUI model
11. blockedAUI←GetBlockedAUI(TaskID,UIModel.TMToAUIMap)
12. blockedCUI←GetBlockedCUI(blockedAUI,UIModel.UIToCU

IMap, UIModel.CUI)

13. foreach element in blockedCUI
14. switch PrimaryRole.ConcreteOperation
15. case Hide: element.Visible ← false; break;
16. case Disable: element.ReadOnly ← true; break;
17. case Protect: element.ReadOnly ← true;
18. element.MaskChar ← '*'; break;
19. case Fade: element.Opacity ← '30%'; break;

Listing 2. Layout Optimization Algorithm (Excerpt)

1.Optimize-Layout (UserRoles[],Roles[],UIModel,LayoutID)
2. //Determine the primary role

3. foreach ur in UserRoles
4. tr ← Roles.GetRole(ur.RoleRef)
5. if tr = null then tr ← Roles.GetRole(All-Roles)
6. ur.Priority ← tr.Priority
7. UserRoles.OrderBy(Priority)
8. PrimaryRole ← UserRoles.First()
9. WorkflowsToExecute[] ← GetWorkflows(

PrimaryRole,LayoutID)
10. WorkflowsToExecute.OrderBy(ExecutionOrder)
11. //Execute workflows
12. foreach workflow in WorkflowsToExecute
13. //Execution time depends on the workflow’s content
14. workflow.Execute(UIModel)

Listing 3. Iron Python Script for Switching Combo-Boxes with Radio-
Groups if the Combo-Box Contains less than Three Items

1. import sys

2. def AdaptUI(UIModelMgr):

3. for widget in UIModelMgr.UIDataSet.UIWidgets.Rows:

4. if str(widget["ControlType"])== "ComboBox":

5. if str(widget["DataSource"])!= "":

6. if UIModelMgr.GetListItems(int(

 widget["DataSource"])).Rows.Count< 3:

7. widget["ControlType"] = "RadioGroup"

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

to list all the simplification operations that have been per-
formed on a UI, and the ability to reverse them or choose
alternatives when possible.

The class diagram in Fig. 6 shows a UML interface
called UISimplification, which is realized by all adapta-
tion operations in RBUIS. This interface defines attrib-
utes called ReasonMessage and IsReversibleByUser, which
are used by RBUIS’s user feedback mechanism to indi-
cate the reason behind the simplification and whether
end-users can reverse it.

Each UI adapted using RBUIS is extended with a
chameleon icon in its top right corner (e.g., Fig. 9). By
clicking this icon, the end-users gain access to a list of
the simplification operations that have been applied to
the UI. An example list is shown in Fig. 9 based on the
inventory item UI example. End-users can uncheck any
reversible feature-set minimization or layout optimiza-
tion operation. They can also choose from multiple pos-
sible layout optimization alternatives. These alternatives
are the adaptive behavior workflows, which have been
assigned to the same workflow group (refer to class dia-
gram in Fig. 6). For example, a workflow group can con-
tain workflows for changing the type of the simple selec-
tion widget (e.g., combo-box, list-box, etc.).

End-users can apply the feedback changes for one
time only or store them for future use. After an end-user
applies the changes, a request will be sent to the server
to re-simplify the UI and exclude unchecked simplifica-

tion operations. If an operation is set to be irreversible
by end-users, for example due to security reasons, the
check-box pertaining to this simplification becomes dis-
abled, and the end-user gets notified of the reason.

In case end-users try to enable features that depend
on disabled features, they are informed that this depend-
ency dictates that those features should be enabled as
well. The dependency among features is determined based
on the CTT temporal operators. The recursive relation-
ship “Depends On” on the Task class in the meta-model
shown in Fig. 4 indicates the dependencies among tasks.

5 CEDAR STUDIO

Cedar Studio is an Integrated Development Environment
(IDE), which allows technical stakeholders such as devel-
opers and IT personnel, to develop adaptive model-driven
UIs, which leverage RBUIS (Section 4) and are based on
the Cedar Architecture (Section 3).

As presented earlier in Section 2, there are several
gaps in the existing adaptive model-driven UI develop-
ment tools. Cedar Studio is an initiative for filling these
gaps. It offers technical stakeholders, e.g. developers
and IT personnel, the ability to devise model-driven UIs
using easy-to-use tools similar to those provided by ex-
isting IDEs such as: Visual Studio.NET, Eclipse, etc.
With the existence of tool support, the adoption rate of
model-driven UIs could increase. This paper merely
provides a brief overview of Cedar Studio. More infor-

Fig. 10. Cedar Studio CUI Model Design Tool Showing a ‘Bank Account’ UI

PIERRE A. AKIKI ET AL.: ENGINEERING ADAPTIVE MODEL-DRIVEN USER INTERFACES 17

mation about this IDE can be found in a separate paper
[16]. It is also possible to observe Cedar Studio in opera-
tion by watching its demonstration videos online [78].

5.1 Overview of Cedar Studio’s Features

Cedar Studio offers several visual-design and code-
editing tools that allow stakeholders to create and man-
age all the artifacts associated with RBUIS and the Cedar
Architecture. This IDE can be used during development
(design-time), deployment and post-deployment phases.
The deployment phase is the stage where the software
that requires adaptation is being installed for the first
time and configured. The post-deployment phase is the
stage of maintenance and further configuration after the
software has been deployed. The UI models are created
at development-time, and the adaptive UI behavior can
be added and maintained during the deployment and
post-deployment phases.

Visual-design tools are provided for creating and
managing the UI models (refer to the meta-model in Fig.
4), which the Cedar Architecture (Fig. 2) adopts from the
Cameleon Reference Framework (CRF). These models
include: (1) task models, (2) domain models, (3) abstract
UI (AUI) models, and (4) concrete UI (CUI) models. Ce-
dar Studio’s CUI model visual-design tool is illustrated
as an example in Fig. 10.

In order to save time and effort, stakeholder using
Cedar Studio can automatically generate one level of
abstraction from another. For example, in a top-down
design approach, the AUI model can be generated from
the task model, and the CUI model can be generated
from the AUI model. The inverse can be done in a bot-
tom-up approach. One step has to be conducted manual-
ly, and that is the specification of the mappings between
the elements of one level of abstraction and another. For
example, we can specify that an AUI input element should
be mapped to a text-box on the CUI model. Cedar Stu-
dio has default mappings between the levels of abstrac-
tion. It also provides a UI through which the default
mappings can be overridden. Manual changes that occur
after the automatic generation on any level of abstraction
can be automatically synchronized to the other levels.

Cedar Studio supports a combination of visual-design
and code-editing tools for implementing adaptive UI
behavior using RBUIS. These tools include: (1) visual
adaptive behavior workflows (Fig. 8) and (2) dynamic scripts
for optimizing a UI’s layout, (3) visual role-assignments
and (4) code-based rules for minimizing a UI’s feature-set
to a particular context-of-use, and (5) SQL-based model con-
straints used for model verification.

5.2 Testing Cedar Studio

Cedar Studio was assessed by constructing UIs based on
examples from existing enterprise applications, and ap-
plying adaptive behavior to them. The UIs we construct-
ed are data entry interfaces for managing different types
of records including: bank accounts, customers, inventory
items, sales invoices, etc. The adaptations that we applied
to these UIs represent practical scenarios, which can po-
tentially occur in real-life enterprise systems.

One of the main observed strengths of using Cedar
Studio in practice is in its AUI, CUI, and Workflow de-

sign-tools, which are based on existing mature Visual
Studio components. The task model design-tool can be
developed further to reach the same level of maturity,
and the code editors can be enhanced by providing ad-
ditional functionality such as intelligent-sense.

Sections 6 and 7 present an evaluation of the contribu-
tions made in this paper, from the technical and the hu-
man perspectives respectively.

6 TECHNICAL EVALUATION

This section presents a method for integrating RBUIS’s adap-
tive UI capabilities in legacy software applications without a
major integration effort. We evaluated this method by estab-
lishing and applying technical metrics to measure several
of its properties using scenarios from the open-source
enterprise application Apache Open for Business (OFBiz).

6.1 Integrating RBUIS in Legacy Software Systems

The server-side components presented by the Cedar Ar-
chitecture (Fig. 2) can be accessed through web-services
by any software system that needs to leverage RBUIS’s
adaptive UI capabilities. However, software systems have
to integrate the client-components of the Cedar Architec-
ture within them to be able to communicate with the
server-side components and benefit from RBUIS. In case a
software system is being newly developed, it can be de-
signed to make use of RBUIS. However, a technique is
needed to allow mature legacy systems to perform this
integration without a major effort. Furthermore, it is like-
ly that legacy applications adopt a code-based UI repre-
sentation rather than a model-driven UI one. Hence, the
integration technique has to provide means for reverse-
engineering the code-based UIs into a model-driven rep-
resentation based on the meta-model illustrated in Fig. 4.

Since OFBiz represents its UIs using HTML, we de-
veloped a JavaScript version of the Cedar Architecture’s
client components that would work with HTML-based
UIs. We also devised a technique for reverse-engineering
HTML forms into a model-driven representation. This
technique adopts a bottom-up approach, whereby it
generates an XML document representing the HTML UI.
This document is imported into Cedar Studio to create
the CUI model and generate the upper levels of abstrac-
tion from it. Although the UIs are reverse-engineered at
design-time, our technique launches the HTML UI and
generates the XML document using JavaScript to in-
clude any HTML elements that might have been gener-
ated by server-side code (e.g. ASP.NET, JSP, etc.).

By using our integration method, legacy applications,
e.g. OFBiz, only need to add a few lines-of-code globally
to leverage RBUIS’s adaptive UI capabilities. These few
lines-of-code will load the client-side API of the Cedar
Architecture, use it to call the web-service and access the
server-side components implemented by RBUIS, and
apply the obtained result on the running HTML page.

The steps presented in Fig. 11 explain the process of
reverse-engineering legacy UIs into a model-driven rep-
resentation, and the empowerment of these systems
with adaptive UI capabilities by integrating RBUIS into
them. The process is demonstrated using excerpts of our
algorithms and a simple login UI as an example.

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

Step1: Generate XML from HTML and Use XML to
Generate UI Levels of Abstraction

Step 2: Integrate RBUIS in Legacy System and
Use RBUIS’s Adaptive UI Capabilities

(a) Example HTML UI Login Form (Excerpt)
This simple example assumes that the UI is from a legacy system.
Similar to this example, OFBiz uses HTML tables to represent its

data entry UIs (forms).

<table id="frmLogin">

 <tr>

 <td>User Name</td>

 <td><input type="text" id="txtUserName"/></td>

 </tr>

 <tr>

 <td>Password</td>

 <td><input type="password" id="txtPassword"/></td>

 </tr>

</table>

(d) Code for Enabling Adaptive UI Capabilities in Legacy Systems

 //Load the API Scripts
1: <script type="text/javascript"

src="http://[Service Address]/CedarScripts.js" />
2: <script type="text/javascript">
3: $(document).ready(function() {
4: Initialize('[ServiceAddress]'); //Setup the API

//Call the API to adapt the UI and
//pass the logged-in user id as a parameter)

5: LoadAdaptedUI(getUserID()); }); </script>

The “LoadAdaptedUI” method calls the server-side im-
plementation of RBUIS, which will return an XML repre-
sentation of the adapted UI. The following XML document
represents an adapted “Login” UI example with a larger
font-size and a different layouting of the widgets.

(e) XML Representing the Adapted UI (Excerpt)

<CUI Name="frmLogin">

 <GraphicalCUIElement Name="lblUserName" Text="User Name"

 Visible="True" Type="Label" Top="0" Left="0" FontSize="18"/>

 <GraphicalCUIElement Name="txtUserName" Visible="True"

 Type="TextBox" Top="50" Left="0" FontSize="18"/>

 <GraphicalCUIElement Name="lblPassword" Text="Password"

 Visible="True" Type="Label" Top="100" Left="0" FontSize="18"/>

 <GraphicalCUIElement Name="txtPassword" Visible="True"

 Type="Password" Top="150" Left="0" FontSize="18"/>

</CUI>

(f) API Algorithm for Applying the Adapted UI (Excerpt)

 1: function ApplyAdaptedUI(UIXML){

 //Iterate around the UI widgets
 2: $(UIXML).find("GraphicalCUIElement").each(
 function () {
 //Get each widget’s properties
 3: var elementName=$(this).attr('Name');
 4: var isVisible = $(this).attr('Visible');
 5: var fontSize = $(this).attr('FontSize');
 6: var top = $(this).attr('TopPosition');
 7: var left = $(this).attr('LeftPosition');

 8: var element = GetElement(elementName);
 9: if (typeof (element)!= 'undefined') {
10: if(isVisible == 'false') {
11: element.style.visibility = 'collapse'; }
12: element.style.fontSize = fontSize;
13: element.style.top = top;
14: element.style.left = left;
16: } }); }

The algorithm above adapts the running HTML UI by
changing its properties based on the adapted XML.
In this example, the adapted UI would look as follows:

(b) Algorithm for Generating XML from HTML Table (Excerpt)

 1. function ConvertHTMLTableToXml(TableID) {

 2. var xml = "";

 3. $("#" + TableID + " tr").each(function () {

 4. var cells = $("td", this);

 5. /*Parse Cells*/

 6. for(var cellCtr=0;cellCtr<cells.length;++cellCtr){

 7. var inputs = $("input", cells.eq(cellCtr));

 8. /*Parse Input Fields*/

 9. for(var inpCtr=0;inpCtr<inputs.length;++inpCtr){

10. var fieldType=inputs.eq(inpCtr).attr('type'),

11. fieldID = GetFieldID(inputs.eq(inpCounter)),

12. element = GetElement(fieldID);

13. /*Generate XML for Element*/

14. var xmlInput = GetInputFieldXml(element,

 fieldType, fieldID) + "\n";

15. xml += xmlInput; } } }

16. return xml;

17. }

The JavaScript algorithm above parses an HTML UI and gener-
ates an XML representation similar to the one below.

(c) XML Generated from HTML UI (Excerpt)

<CUI Name="frmLogin">

 <GraphicalCUIElement Name="lblUserName" Text="User Name"

 Visible="True" Type="Label" Top="0" Left="0" FontSize="12"/>

 <GraphicalCUIElement Name="txtUserName" Visible="True"

 Type="TextBox" Top="0" Left="100" FontSize="12"/>

 <GraphicalCUIElement Name="lblPassword" Text="Password"

 Visible="True" Type="Label" Top="40" Left="0" FontSize="12"/>

 <GraphicalCUIElement Name="txtPassword" Visible="True"

 Type="Password" Top="40" Left="100" FontSize="12"/>

</CUI>

The XML is imported into Cedar Studio, and the UI models are
generated using a bottom-up approach, CUI to AUI and AUI to
task model. The resulting UI models for this example will be the
ones previously presented in Fig. 5.

Fig. 11. Method for Integrating RBUIS into Legacy Software Systems Demonstrated with a Simple Example and Excerpts of Its Algorithm

PIERRE A. AKIKI ET AL.: ENGINEERING ADAPTIVE MODEL-DRIVEN USER INTERFACES 19

6.2 Evaluating the Integration Method

After establishing the technique for integrating RBUIS
into legacy software systems, we established and applied
technical metrics for evaluating our integration method in
its different stages including: reverse-engineering, inte-
gration process, and runtime performance. Scenarios from
OFBiz were used as examples for applying the metrics.
Since this work only aims at adapting UIs, the integration
method does not change an application’s functional core
(business logic), but extends the application with func-
tionality that allows its UIs to become adaptive.

6.2.1 Degree of Automation in Reverse-Engineering of UIs

The process we devised for reverse-engineering code-
based (e.g., HTML) UIs to a model-driven representation
is automated. However, before this process can run au-
tomatically, some mapping rules have to be defined to
indicate how certain elements on one level of abstraction
map to their respective counterparts on another level. For
example, an HTML div can map to a label at the CUI level,
and the label can map to an output at the AUI level.

We defined a metric for estimating the number of
consecutive UIs that have to be manually examined dur-
ing the reverse-engineering phase before the process can
become mostly automated. We should note that systems
that have more diverse UIs could yield mapping rules,
which are more uniformly distributed. We called this
metric: approximate mapping rule detection saturation
point (SP). The saturation point is the sequence number
of a UI in the sequence of reverse-engineered UIs, after
which the number of newly detected mapping rules stabi-
lizes. We consider the metric’s result to be positive if the
Pareto principle (70-30 rule) holds. In practice, the applica-
bility of the 70-30 rule indicates that 70% of the mapping
rules are detected in the first 30% of the UIs that require
reverse-engineering. Therefore, some manual work will be
needed to reverse-engineer the first 30% of the UIs, thereaf-
ter most of the process becomes automated. We should
note that our choice of the 70-30 rule does not indicate that

this ratio is going to always be the same for all cases. Other
rules can also apply, e.g. 80-20, 90-10, etc. As long as the
majority of the mapping rules can be detected early on in a
small percentage of the UIs, we can consider that the prin-
ciple holds. A higher number of mapping rules detected
early on in a smaller number of UIs, helps in automating a
larger part of the process.

The following equation checks whether the Pareto
principle (70-30 rule) holds: 𝑃 = |{𝑅}||{𝑀𝑅}| ∶ 𝑆𝑃({𝑀𝑅}) ≤ 0.3

- {R} is the set of rules detected in the UIs before SP
- {MR} is the set of all the detected mapping rules

The saturation point SP is defined as follows: 𝑆𝑃({𝑀𝑅}) = 𝑈𝐼𝑎𝑇 | ∀ 𝑈𝐼𝑏 | 𝑏>𝑎 : 𝐶𝑏 = 𝐶𝑏+1 ± 𝜀

- UI is a user interface being reverse engineered
- C is the number of new mapping rules detected in UI
- b of C is the sequence number of the next UI in the

sequence of UIs that should be reverse-engineered
- T is the total number of UIs to be reverse-engineered

We applied the SP metric on a sample of the 19 main
input UIs from the Catalog and Human-Resources mod-
ules of OFBiz. We deduced the rules necessary for re-
verse-engineering these UIs to a model-driven represen-
tation. We were able to deduce two types of mapping
rules. The most common type of rule maps HTML ele-
ments to CUI elements, which are in turn mapped to AUI
elements then tasks in the task model. The second type of
rule is related to defining logical groups containing widg-
et pairs composed of a label and an input widget, and
reflecting these groups in the AUI and task models. We
should note that these types of mapping rules are specific
to OFBiz, which we selected as an example for this study.
Other systems could have similar types of rules and differ-
ent ones. The distribution of these rules across the sequence
of reverse-engineered UIs is illustrated in Fig. 12 (left).

Fig. 12. Results of Applying the Approximate Mapping Rules Detection Saturation Point Metric to UIs from OFBiz

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

Most of the mapping rules were detected in the first 2
UIs (10% of the total 19 UIs). Hence, SP=2/19=0.10 indi-
cating that after the second UI, the mapping rules be-
come minimal as shown in Fig. 12 (left). Using SP=0.1, P
is: 7/9=0.77 (77%) in the best case scenario and 6/9=0.66
(66%) in the worst case one. The average mapping rule
distribution is 71.5% in the first 10% of the UIs (Fig. 12 -
right). This indicates a high similarity in the UIs of
OFBiz and a possibility of obtaining similar results for
other enterprise applications using the same UI paradigm.

The completeness at the saturation point can be expressed
using the following equation by Virzi [79]: 1 - (1 - p)n, where
p is the probability of detecting a rule and n is the num-
ber of UIs (sample size). The value for p is 7.5/9, the av-
erage number of rules between the best and worst case
scenarios at the saturation point (UI #2), and the value
for n is 2, the number of the saturation point UI. The
value would then be: 1 – (1 – 7.5 / 9)2 = 0.9722.

6.2.2 Change Impact of Integrating Different UI Adaptation

Approaches in Legacy Software Applications

To measure the level of change that adaptive UI capability
integration will have on legacy software systems, we de-
fined the lines-of-code and change-impact metrics.

The lines-of-code (LOC) metric measures the code,
which should be added locally in each UI or globally in
the software application for making a certain UI adapta-
tion operational. A line-of-code that can be added once
per application, e.g. in a global class or web-page, and
still achieve the desired integration functionality is con-
sidered global. In terms of integration, global lines-of-
code are more desirable because they have a much lower
change impact than local lines-of-code, which must be
repeated in every UI. The API code is excluded from this
metric since it is reusable with any software application.

This metric is only applicable for runtime approaches
like ours since it represents the code that empowers an
application with runtime adaptive UI capabilities. The
lines-of-code metric is defined as follows: 𝐿𝐿𝑂𝐶(𝐴, 𝑈𝐼) ∈ N, 𝐺𝐿𝑂𝐶(𝐴, 𝑆𝐴) ∈ N

- LLOC is the number of local lines-of-code added in a UI
- GLOC is the number lines-of-code added globally for the
whole software application SA
- A is the adaptation to be applied to a user interface UI

The LOC metric is simple enough to use but cannot be
applied to approaches that adapt the UI at design-time.
Since we aim to compare our choice of an interpreted
runtime model-driven approach to other approaches in
the literature, we established the change-impact (CI)
metric, which can be applied to different approaches by
calculating UI change in terms of widgets as follows: 𝐶𝐼(𝐴, 𝑈𝐼) = ∑ 𝑙𝑘 × |∆{𝑊}𝑘|𝑛

𝑘=1 × 𝑣 (4)

- A is the adaptation being applied to a user interface UI
- k is a type of widget (e.g., text box, combo box, etc.)
- n is the number of widget types in the UI
- lk is the number of lines required for representing each

widget type (e.g., number of HTML tags)
- |∆ {W}k| is the number of widgets of a certain type

that have been changed by the adaptation
- v is the number of generated UI versions and is > 1 for

approaches that cannot adapt the same UI copy

A higher change-impact indicates that more time and
effort could be needed to integrate a UI adaptation tech-
nique such as RBUIS in a legacy software application.

We applied the LOC metric to OFBiz UIs using the
adaptations listed in Table 2 as a set of examples {AE}.
The lines-of-code needed to make these adaptations
work in OFBiz using our method are: ⩝ x | x ∊ {AE},
GLOC (x, OFBiz) = 5 lines-of-code (shown in Fig. 11 - d),
and LLOC (x, AnyUI) = 0 since our approach does not
modify the local UI code.

We should note that our adaptation technique is not
only limited to the examples shown in Table 2. Further-
more, our intention is not to establish a taxonomy of ad-
aptations, because RBUIS and Cedar Studio are general
purpose and can support a wide variety of adaptations
depending on the application being adapted and the con-
text-of-use. We only selected a few adaptations for the
purpose of performing this technical evaluation. Other
example adaptations that can be supported include, but
are not limited to: multi-document interface (window,
page, or tab), multi-record visualization (grid, cards, or

Table 2
User Interface Adaptations Used as Examples

 Adaptation

A1 Reduce features (e.g., hide or disable widgets)

A2 Switch widget type (e.g., combo-boxes to radio-buttons)

A3 Change layout grouping (e.g., group-boxes to tab-pages)

A4 Change font-size (e.g., large fonts for visually impaired)

* A1 is a feature-set min. A2, A3, and A4 are layout optimizations

Table 3
Change Impact of Applying an Adaptation that Switches

Combo-boxes with Radio-buttons, List-boxes, and
Lookups to a Sample of 19 UIs from OFBiz

 Change-Impact

Approach v (Eq. 4) Mean Total

Widget Toolkits 1 6.94 132

Generative Design-Time
Model-Driven

3 106.73 2028

AOM & Design-Time Manual
Adaptation (e.g., [33])

3 106.73 2028

Interpreted Runtime Model-
Driven (our adopted approach)

0 0 0

* From Equation 4, n = 1 since we are only adapting combo-boxes.
Each combo-box is represented by a single HTML tag hence and l = 1.

- Two versions of the same UI have the same 10 fields that are
data selection widgets (e.g., marital status)
- In v1 the 8 fields are combo-boxes and 2 are list-boxes
- In v2 the 10 fields are combo-boxes

Fig. 13. Backward Compatibility Example

PIERRE A. AKIKI ET AL.: ENGINEERING ADAPTIVE MODEL-DRIVEN USER INTERFACES 21

detailed form), accessibility of functions (high, medium,
or low), information density (high, medium, or low), text
versus graphics (high, medium, or low), etc.

 We used the CI metric to compare the different types
of UI adaptation approaches, which we encountered in
the literature. We applied adaptation A2 (Table 2) to the
19 main input UIs of the Catalog and Human Resources
modules of OFBiz. As an example, we assumed that adap-
tation A2 should switch combo-boxes in these UIs with one
of the following alternatives: radio-buttons, list-boxes,
and lookups. We calculated CI for the different possible
adaptation approaches, based on our application of ad-
aptation A2 to the selected samples of UIs. The results
are presented in Table 3.

We can notice that v (Equation 4) is equal to 3 for the
generative design-time model-driven and AOM approach-
es, because these approaches generate a different code ver-
sion for each adapted UI. In this case, these approaches
would generate a different version for each of the three
combo-box alternatives. The high value for v for these two
approaches resulted in a high CI (Mean = 106.73). The CI
was less for widget toolkits (Mean = 6.94), because this
approach only replaces the combo-boxes once with a
generic adaptive widget from a custom toolkit. This
widget would in principle be capable of adapting itself
to any of the three alternatives at runtime. The integra-
tion time of the interpreted runtime model-driven ap-
proach, which we adopted, has v = 0 resulting in CI = 0.
The yielded result is due to the fact that this approach
does not cause any changes to the UIs at design-time but
merely adapts them at runtime by executing adaptive
behavior (e.g., workflows in RBUIS). Therefore, we can
say that the UI adaptation approach we adopted allows
developers to maintain their standard work procedure
on the legacy application without major disruptions,
while empowering these applications with RBUIS’s
adaptive UI capabilities.

6.2.3 Backward Compatibility of Different UI Adaptation

Approaches with Legacy Software Applications

An adaptation can be considered backward compatible if

it works with previous UI versions successfully and with-
out reintegration effort.

We defined the backward compatibility (BC) metric
as a ratio that determines the success of an adaptation: 𝐵𝐶(𝐴) = |{𝐴𝑊(𝑈𝐼𝑣𝑛)} ∩ {𝐴𝑊(𝑈𝐼𝑣𝑛−𝑘)}||{𝐴𝑊(𝑈𝐼𝑣𝑛)} ∩ {𝑊(𝑈𝐼𝑣𝑛−𝑘)}| (5)

- UIvn is a UI from the software application version into
which the adaptation A was integrated for the first time
- UIvn-k is a UI from one of the previous application versions
- {W} is the set of widgets that a UI contains
- {AW} is the set of widgets affected by an adaptation A

Consider the example presented in Fig. 13. If a UI adap-
tation was defined in UI-v2 for switching the data selection
widgets with radio-buttons, it might ignore list boxes. In
this example, BC = 8/10 = 0.8; hence there is an 80% suc-
cess rate when considering UI-v1. With approaches that
adapt the UI at design-time, two adapted UIs have to be
generated and integrated into each respective UI version in
order for the adaptation to fully work. Widget toolkit
approaches can provide backward compatibility as long
as a new version of the toolkit can be loaded at runtime.
On the other hand, with dynamic approaches such as
ours, only the adaptive behavior, e.g. workflows in
RBUIS, have to be adjusted to take into consideration
list-boxes as well as combo-boxes to achieve a full back-
ward compatibility.

6.2.4 RBUIS’s Runtime Efficiency and Scalability

We benefited from the highly dynamic nature of RBUIS in
terms of providing a low change impact and a good
backward compatibility as explained in Sections 6.2.2 and
6.2.3 respectively. However, we had to test whether the
dynamism might degrade RBUIS’s runtime efficiency and
scalability, especially since end-users expect UIs to load in
real-time.

We defined our efficiency metric as a function of an
adaptation A and a user interface UI: 𝐸(𝐴, 𝑈𝐼) = 𝑡0𝑎 + 𝑡0𝑏 + 𝑡1 + 𝑡2

(a) Efficiency (b) Scalability

- t1 is 15ms over a 1Gbps corporate network, based on the aver-

age XML file size for the selected UIs is 20kb

- t0b was calculated to be 30ms

- t0a and t2 are shown in the graph for each UI

- The fitting curve above shows the mean response times and is

polynomial of the 4th order with R2 = 0.9999431

- < 500 ms response time at 3000 requests per 5 minutes

Fig. 14. RBUIS Runtime Efficiency and Scalability (Load-Testing) Test Results

22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

- t0a is the server-side time required to apply A
- t0b is the common server-side time for any number of
adaptations (e.g., time for loading common data)
- t1 is the time it takes to transmit the adapted UI as XML
to the client-side
- t2 is the time it takes the API to adapt a running UI using
the XML returned from the sever-side after applying A

If the caching components of the Cedar Architecture are
implemented, the metric becomes as follows:

- With Client-Side Caching: E (A, UI) = t2
- With Server-Side Caching: E (A, UI) = t1 + t2

We measured RBUIS’s efficiency using this metric af-
ter executing the example adaptations listed in Table 2
on three UIs from the Catalog module of OFBiz. These
UIs were selected, because they contain the largest num-
ber of widgets. Hence, if RBUIS can adapt them efficient-
ly, it is bound to be at least as efficient with smaller UIs.
The efficiency test was carried out on one machine with
an Intel Core 2 Duo 2.93 GHz CPU and 4 GB of RAM
running Windows 7 (32 bit). The Firefox web-browser
was used to run OFBiz during the test.

The results of the efficiency test are illustrated in Fig.
14 – a. Based on this data, we determined the average
efficiency for each adaptation to be as follows: E(A1)=75ms,
E(A2)=115ms, E(A3)=150ms, and E(A4)=90ms. The general
average is (75+115+150+90)/4=107.5ms. By subtracting
the fixed values t0b (30ms) and t1 (15ms), this average is
reduced to 62.5ms. Based on this number, we can say
that RBUIS can apply around 15 different adaptations on
the same UI, transmit the adapted UI’s XML representa-
tion to the client-side, and adapt the running UI using
the XML in less than 1 second (62.5×15+30+15=982.5ms).

The complexity analysis presented in Section 4
showed that RBUIS’s algorithms are theoretically scalable.
In this section, we demonstrate RBUIS’s scalability by
load-testing its web-service. We applied the four adapta-
tion operations shown in Table 2 to the Product Store
UI, which encompasses 170 widgets and is the largest
among the three UIs we used for the efficiency test. The
load-testing results are illustrated in Fig. 14 – b and are
calculated as: t0a + t0b based on Equation 6.

The web-service was hosted on an Amazon cloud ma-
chine running Windows Server 2012 (64-bit edition) and
the IIS 7 web-server. The machine has a single Intel
Xeon CPU with 2 cores (2.40 GHz, 2.15 GHz) and 3.75
GB of RAM. This configuration is considered moderate
in comparison to that of large-scale enterprise servers

with multiple CPUs and much more RAM. We devel-
oped our own application to perform the load-testing by
calling the server. We ran three different instances of this
application on three client machines.

7 HUMAN-CENTERED (USABILITY) EVALUATION

It is important to empirically assess UIs that are adapted
to a particular context-of-use. For example, multi-target
UIs that are generated using a model-driven approach
can be evaluated by collecting both quantitative and qual-
itative data [80], [81]. We conducted a study to determine
if RBUIS can significantly improve usability when ap-
plied to real-life enterprise application UIs.

Adaptive behavior can have benefits in terms of im-
proving usability, but there could also be costs associat-
ed with it [4]. For example, if the adaptation is not accu-
rate, the end-users might not trust it enough to use it
and benefit from it [5]. One could expect an improve-
ment, especially when simplifying a UI’s feature-set,
since the end-users are presented with fewer fields. Yet,
the main question in this study is on the significance of this
improvement. Since implementing adaptive UIs can add
some overhead cost in comparison to using one generic
off-the-shelf UI, the significance of the improvement in
usability is important. A marginal improvement might
not justify the investment in adaptive UIs.

In total, the study involved 23 participants × 8 UIs (4
initial and 4 simplified) × 3 criteria (efficiency, effective-
ness, and perceived usability) = 552 samples. Eye-
tracking was also performed with the same participants
using 4 UIs (2 initial and 2 simplified): 23 × 4 × 2 criteria
(fixation duration and fixation count) = 184 samples.

7.1 Study Design

This study has two parts, one on feature-set minimization
and another on layout optimization.

In the feature-set minimization part, the participants
were presented with two pairs of UIs on a desktop com-
puter connected to a Tobii4 eye-tracker. The UIs were
selected from the SAP ERP system. The first pair includ-
ed an initial and a simplified version of the Material UI.
The second pair represented the Vendor maintenance
UI. The initial version of these UIs contains several tab-
pages and a lot of fields, and can be simplified for roles
that require more basic functionality. An existing docu-

4 Tobii eye-tracker: www.tobii.com

Fig. 15. Participant Demographic Information

PIERRE A. AKIKI ET AL.: ENGINEERING ADAPTIVE MODEL-DRIVEN USER INTERFACES 23

ment provides information and examples on the varia-
tion in SAP’s end-user needs, and helped us in deter-
mining what features to remove from the UIs [9]. The
fields unrequired by a role were hidden in the simplified
UI version, and the widgets were regrouped accordingly.

The initial UIs we used in the study had six tab-pages.
As provided by SAP, these UIs originally have a larger
number of tab-pages. However, we only used six be-
cause we wanted to keep the time required to complete
the study reasonable for the participants. Nevertheless, a
UI with six tab-pages offers enough complexity for
evaluating the significance of usability improvement
provided by feature-set minimization. Hence, if the sim-

plified UI provides a significant improvement in com-
parison to an initial UI with six tab-pages, it is likely to
yield similar or even better results when compared to an
initial UI with more tab-pages.

In the layout optimization part, the participants were
also given two pairs of UIs. The first pair was presented
to them on an iPad tablet and consisted of an initial and
a simplified version of the Sales Transaction UI, which
was selected from Microsoft’s Dynamics ERP system. Its
initial version has a desktop-style input grid and a
lookup list for selecting items. Many enterprise systems
maintain this UI style on tablets. The simplified UI had a
point-of-sale style. It offered a panel containing buttons
for selecting items and a grid with up/down arrows for
changing an item’s quantity. The second pair was pre-
sented on an HTC Desire mobile phone and consisted of
an initial and a simplified version of a Contacts (busi-
ness partners) UI from the SAP ERP system.

Several measurements were made to compare the us-
ability of both the initial and simplified versions of the
UIs presented in this study. For both parts of the study,
the participants were asked to answer the System Usa-
bility Scale (SUS) [82] questions to determine their per-
ceived usability. In addition to SUS, the participants
were asked to select three terms from the Microsoft
Product Reaction Cards [83] to describe the UI. The SUS
questionnaire was adopted because it has been validated
and widely used in the literature. Additionally, SUS can
be used to quantitatively measure the end-users’ per-
ceived usability, allowing a statistical evaluation of the
results’ significance. We used the Microsoft Product Re-
action Cards, because this technique allows end-users to
qualitatively express their opinion about a UI by select-
ing descriptive terms, and is hence complementary to SUS.
The time taken to complete each task was also recorded in
both parts to measure the end-users’ efficiency with a UI.

In the feature-set minimization part of the study, eye-
tracking was also used to determine how lost the partic-

Table 4
Results of Wilcoxon Signed Ranks Test for

Perceived Usability and Efficiency

UI Perc. Usability (SUS Score) Efficiency (Time)

Material Z = -4.200, p = 0.000027 Z = -4.197, p = 0.000027

Vendor Z = -4.199, p = 0.000027 Z = -4.198, p = 0.000027

Sales Trx. Z = -4.109, p = 0.000040 Z = -4.167, p = 0.000031

Contacts Z = -2.617, p = 0.008877 Not Measured (very short)

Fig. 16. End-User Perceived Usability Results (SUS Scores)

Fig. 17. End-User Efficiency Results (Time Taken to Complete Tasks)

Fig. 18. Aggregated Product Reaction Card Results

24 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

ipants were in the initial UI versus the simplified one.
The sessions were video-recorded, and the partici-

pants were asked to express their thoughts out loud to
give us insights on their experience. The video recordings,
especially in the feature-set minimization part, helped us
in identifying if a participant missed a field because of
the UI’s complexity or due to a simple human error.

7.2 Participant Demographics and Given Tasks

We recruited 23 participants, who volunteered to take
part in this study without receiving any financial com-
pensation. The study took an average of 45 minutes. The
participants were recruited at random and had diverse
demographics in terms of: gender, age group, education,
computer literacy, and enterprise application expertise.
Details about the participants’ demographics are present-
ed in Fig. 15. The study passed ethics approval and was
advertised by email to Open University staff and stu-
dents. The recruited participants included both academic
and non-academic members of staff, PhD students, and
one visiting high school student. They attended to the
university’s eye-tracking lab to participate in the study.

In the feature-set minimization part, the participants
were asked to fill a new record in each of the initial and
simplified Material and Vendor UIs.

In the layout optimization part, the participants were
asked to perform a simple task with each UI. For the
first pair of UIs, they were asked to select a customer,
add four items, and change the quantities for two of the
added items. As for the second pair, the participants
were asked to call a contact assuming that the UI is be-
ing used while running down the street. They were pre-
sented with the ability to shake the phone, hence

prompting it to change from one UI version to another.
Since some users have a tendency to like the first UI

that they see, we presented half of the participants with
the initial UI first, and the other half with the adapted
one first. This technique, referred to as counterbalanc-
ing, helps in avoiding potential bias in experiments with
same participant (within subjects) design. “Counterbal-
ancing neutralizes possible unfair effects of learning from the
first task, known as the order effect” [84]. Furthermore,
once a participant saw the UI, performed the task, and
answered the SUS questionnaire, he or she was not al-
lowed to go back and change their answers after seeing
the second UI version. As shown by the results present-
ed in the coming sections, in all cases, when either the
adapted UI or non-adapted one was presented first, the
participants gave the adapted UI a better SUS score. This
result is confirmed by the time it took the participants to
complete the tasks, which does not depend on their per-
ception, but is automatically measured by the system.

7.3 Perceived Usability and Efficiency Results

We used a Wilcoxon signed-ranks test to check if there
are statistically significant differences between the initial
UIs and the simplified ones. Upon observing the Quan-
tile-Quantile plots, we found that the data we collected
did not have a normal distribution. Therefore, we used
the Wilcoxon signed-rank test, nonparametric equivalent
to the dependent t-test, because it does not assume nor-
mality in the data. Additionally, this test can be applied to
continuous variables, which is our case with the task
completion times and SUS scores. Since we are only com-
paring two UIs, the Wilcoxon signed-rank test works ac-
curately with a sample of n ≥ 20, versus the need of n ≥ 30

Fig. 19. Product Reaction Cards Selected More than Two Times by the Participants

PIERRE A. AKIKI ET AL.: ENGINEERING ADAPTIVE MODEL-DRIVEN USER INTERFACES 25

in ANOVA when comparing more than two UIs.
The results presented in Table 4 show that simplifying

the UI based on roles elicited a statistically significant
improvement in both perceived usability based on the
SUS score and efficiency based on the task completion
time. The asymptotic significance (2-tailed) is the p val-
ue for the test, and the Wilcoxon signed-ranks test is
reported using the Z statistic. The p value is < 0.01 for
all cases, indicating that the simplified UI versions show
a very strong improvement over the initial ones in terms
of perceived usability and efficiency. We should note
that the time taken by the participants to complete the
task was not measured for the Contacts UI because the
task is trivial and only takes a few seconds.

The results of the SUS scores are illustrated by the
box-plots in Fig. 16. We can observe three outliers, but
these are not extreme cases. The results of the time taken
to complete the tasks are illustrated by the box-plots in
Fig. 17. We can observe three outliers, but these are very
close to the boundary of the box-plot.

The reaction cards selected by the participants to de-
scribe each UI confirm the improvement of the end-users’
perceived usability achieved by the simplified UIs over
the initial ones. The participants were asked to select
three reaction cards to describe each UI. The pie-charts
illustrated in Fig. 18 show that they selected a majority
of positive terms when describing the simplified UIs,
whereas they described the initial UIs with a majority of
negative terms.

In addition to the reaction cards, the participants also
mostly expressed dissatisfaction with the initial UIs in
their verbal and written comments. For example, one
participant said: “I do not want a job where I have to use

this UI (initial version), whatever the job may be”. On the
other hand, the simplified UIs mostly got positive com-
ments. For example, although the task was exactly the
same for both versions of the same UI, one participant
described a simplified UI as follows: “The interface is
simple, and the task is easier and more familiar”. The terms
that were selected more than two times for each UI by
the participants are shown by the bar-charts in Fig. 19.

The mean SUS scores and task completion times are
presented in Table 5 and Table 6 respectively. The im-
provement percentage, presented in the tables, for each
of the UIs used in the study show the advantage of the
simplified UI versions over the initial ones for all cases.

7.4 Effectiveness Results

The effectiveness is related to the “accuracy and complete-
ness with which specified users can achieve specified goals in
particular environments” [85]. To measure and compare
the effectiveness between the initial and simplified UIs,
we checked the number of fields that were left blank by
the participants. We were able to determine the reason
behind the effectiveness results because the sessions
were video-recorded.

In the layout optimization part, the participants were
able to complete the tasks successfully in most cases.
The task given in the contacts UI (calling one of the con-
tacts) was quite simple; hence all the participants were
able to perform it. In the Sales Transaction UI, very few
participants missed entering one of the items or increas-
ing a quantity. As pointed out by the participants them-
selves, this mistake was not due to the UIs but to a sim-
ple human error when reading the instructions.

The case was not the same for the feature-set minimi-

Table 5
Improvement in End-User Perc. Usability after UI Simplification

 Mean SUS Score

UI Initial Simplified Improvement

Material 34.09 (se=2.785) 68.78 (se=4.273) 101.76% (2.01×)

Vendor 41.65 (se=3.942) 86.13 (se=2.788) 106.79% (2.06×)

Sales Trx. 54.09 (se=4.488) 88.48 (se=2.830) 63.58% (1. 63×)

Contacts 66.70 (se=3.703) 83.74 (se=3.727) 25.55% (1. 25×)

Table 6
Improvement in End-User Efficiency after UI Simplification

 Mean Task Completion Time (In Seconds)

UI Initial Simplified Improvement

Material 406.39 (se=23.005) 129.96 (se=9.010) 68.02% (3.12×)

Vendor 236.30 (se=12.043) 84.57 (se=6.943) 64.21% (2.79×)

Sales Trx. 148.87 (se=8.035) 63.83 (se=4.331) 57.12% (2.33×)

Table 7
Improvement in End-User Effectiveness after UI Simplification

 Mean Missing Required Fields per Participant

UI Initial Simplified Improvement

Material
1.36 fields (6.33 %)

(se=0.381)

0.14 fields (0.93 %)

(se=0.100)
 89.92 % (9.92×)

Vendor
0.95 fields (7.91 %)

(se=0.259)

0.27 fields (2.25 %)

(se=0.117)
 71.57 % (3.51×)

Fig. 20. Eye-Tracking Results of Fixation Duration and Fixation Count

Table 8
Improvement in Fixation Data after Simplification

 Mean Fixation Duration (In Seconds)

UI Initial Simplified Improvement

Material 137.68 (se=15.03) 29.77(se=2.748) 78.37% (4.62×)

Vendor 71.98 (se=8.693) 14.97 (se=1.365) 79.20% (4.80×)

 Mean Fixation Count

UI Initial Simplified Improvement

Material 599 (se=48.336) 128 (se=9.552) 78.63% (4.67×)

Vendor 312 (se=34.755) 63 (se=5.217) 79.80% (4.95×)

26 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

zation part where the participants left more blank fields
with the initial UI than with the simplified one. A Wil-
coxon signed-ranks test showed that the simplified UIs
elicited a strong statistically significant improvement (p
< 0.01) in both the Material (Z = -2.728, p = 0.0063) and
the Vendor (Z = -2.655, p = 0.0079) UIs. The average per-
centages of the missing fields per participant are pre-
sented in Table 7.

Very few fields were missed with the simplified UIs
constituting an average of 1.59% per participant. This
percentage indicates that there is on average 1 missing
field for every 5 participants. As we observed in the vid-
eo-recordings, the main reason for missing a field in the
simplified UI is a simple human error when reading the
instructions (e.g., skipping a field by mistake).

The percentage of missing fields was higher with the
initial UI versions having an average of 7.12%. This per-
centage indicates that there is on average 1 missing field
for each participant. By observing the video-recordings,
we noticed that there were two main reasons behind the
missing fields in the initial UI. The first reason is that in
some cases the participants tried to fill a field whenever
they spotted it, thereby causing them to forget some
fields because of not working sequentially. The second
reason was knowingly skipping a field after getting
frustrated from searching thoroughly and not finding it.
Some participants tried using the search feature availa-
ble in the web-browser to find certain fields. Yet, as we
observed, this was not helpful in all the cases since the
participants still had to go through the tabs and apply
the search on each one separately.

7.5 Eye Tracking Results

The eye-tracking that we conducted in the feature-set

minimization part of the study on the Material and
Vendor UIs, helped to determine and compare how

lost the participants were when using each of the UI
versions. We discarded the eye-tracking data for 4 of our
23 participants because their eye-glasses prevented the
eye-tracking device from recording sufficient data. We
used two metrics, namely the fixation duration and fixa-
tion count, from the eye-tracking data to determine how
lost the participants were when using the different UI
versions. The fixation duration is the measurement of
how much time a participant spent focusing directly on
certain points in the UI, while the fixation count is the
measurement of the number of times that each partici-
pant directly focused on certain points.

The difference between the initial and simplified UIs,
in terms of fixation duration and fixation count, is illus-
trated by the box-plots in Fig. 20. By observing the box-
plots, we can notice the improvement between the initial
and simplified UI versions for all cases. These numbers
represent the eye-tracking data of the part of the screen
that shows the data entry form. The task instructions
that were also displayed on the screen were excluded by
defining an area-of-interest around each UI using the
software tool provided by the Tobii eye-tracker. The
areas-of-interest allow us to get accurate data about how
much gazing each participant did on the UI itself.

The mean values of the fixation duration and fixation
count are presented in Table 8 alongside the improve-
ment percentages, which show that the simplified UIs
have a significant advantage over the initial ones.

The heat maps in Fig. 21 show the aggregated fixation
data. The improvement provided by the simplified UI
versions can be observed visually. We can notice that
the highest amount of gazing is done on the left-hand-
side of the input fields in the initial UI, where the labels

Material Initial Version Material Simplified Version

Vendor Initial Version Vendor Simplified Version

Legend

More Gazing
(More Lost)

Less Gazing
(Less Lost)

Fig. 21. Heat Maps Showing Aggregation of the Participants’ Gazing

Material Initial Version Material Simplified Version

Vendor Initial Version Vendor Simplified Version

Fig. 22. Gaze Plots of One Participant with Data Close to the Mean

PIERRE A. AKIKI ET AL.: ENGINEERING ADAPTIVE MODEL-DRIVEN USER INTERFACES 27

are presented. This indicates that the participants were
carefully checking the labels because it was difficult for
them to find the fields in which they were required to
enter data. On the other hand, with the simplified ver-
sions, the overall gazing was much less intense. The
gaze plots in Fig. 22 illustrate an example of one partici-
pant whose data came close to the means presented in
Table 8. We can observe that even in an average case the
significance of the improvement is visually noticeable.

8 THREATS TO VALIDITY

In terms of the technical evaluation (Section 6), the data
presented is based on applying our UI adaptation ap-
proach to scenarios from OFBiz. The figures we obtained
by applying the saturation point (SP) metric (Section
6.2.1) give us an indication about the nature of enter-
prise application UIs, and potentially other systems that
use WIMP-style UIs, without claiming generalizability
to all software applications. When we compared our
approach to others from the literature using the change-
impact (CI) and backward compatibility (BC) metrics,
we aimed at giving a general conceptual idea about the
differences, while acknowledging that there could be
some variations between the low-level adaptation tech-
niques using the same approach. The load-testing curve,
presented in Fig. 14 – b, is intended to show that our UI
adaptation mechanism is scalable. Determining an accurate
regression equation is not the purpose of this test and re-
quires a larger sample of mean execution times.

Concerning the usability evaluation (Section 7), one
might ask about the effect of learning over time on the
results, which we obtained from the usability study.
Would learning eventually make the end-users more
effective, efficient, and satisfied with the initial UIs? We
can say that as the end-users learn, their efficiency and
effectiveness are likely to improve for both the initial
and the simplified UIs. Learning however is unlikely to
improve their perceived usability with the initial UIs.
Subjecting the end-users to the complexity of the initial
UIs could drive them to reject the software application,
e.g. ERP system, in the early stages of the training, hence
causing an implementation failure. An additional ra-
tionale for using the simplified UIs is that training the
end-users on the initial UIs requires more time and
money, whereas the simplified ones are likely to be
learned more quickly.

9 CONCLUSIONS

This paper contributes an approach for engineering adap-
tive model-driven UIs. Our approach is not intended to
replace any of the stakeholders involved in the process of
designing and developing UIs. It is merely meant to help
them in producing UIs that fit the context-of-use better,
thereby providing end-users with an improved usability.
We evaluated the state-of-the-art after classifying it un-
der: architectures, techniques, and tools. The evaluation
identified gaps, which we filled by presenting three novel
technical contributions: the Cedar Architecture, the Role-
Based UI Simplification (RBUIS) mechanism, and their
supporting IDE, Cedar Studio.

We presented the Cedar Architecture in Section 3, as

a reference for the stakeholders interested in developing
adaptive model-driven UIs. This architecture is based on
existing works including: the Three Layer Architecture
[67] and the Cameleon Reference Framework (CRF) [66].
The Cedar Architecture has three server-side technolo-
gy-independent layers including: decision components,
adaptation components, and adaptive behavior and UI mod-
els. It also has a technology-specific client components
layer. This layer’s components are part of an API, which
integrates in a software application’s code and allows it
to connect to the server-side layers in order to adapt its
user interfaces. The Cedar Architecture adopts inter-
preted runtime models (Section 2.1) as a modeling ap-
proach, in order to support more advanced runtime ad-
aptations.

In Section 4, we presented Role-Based User Interface
Simplification (RBUIS), a mechanism for improving usa-
bility through adaptive behavior by providing end-users
with a minimal feature-set and an optimal layout based
on the context-of-use. RBUIS merges role-based access
control (RBAC) with adaptive behavior for simplifying
UIs. In RBUIS, roles are divided into groups represent-
ing the aspects (e.g., computer literacy, job title, etc.)
based on which the UI will be simplified. RBUIS sup-
ports feature-set minimization by assigning roles to task
models for providing end-users with a minimal feature-
set based on the context-of-use. The assignment could be
done by IT personnel, but there is also a potential for
engaging end-users in the process. Layout optimization is
supported by assigning roles to workflows that repre-
sent adaptive UI behavior visually and through code
before being applied to CUI models. RBUIS fills a major
gap in the existing state-of-the-art feature-set minimiza-
tion techniques, which lack: a practical implementation,
generality, and/or the ability to be applied at runtime.
Furthermore, RBUIS fulfills several of the criteria pre-
sented in Section 2.1. It promotes user-feedback for refin-
ing the adaptation operations. Hence, end-users are al-
lowed to reverse feature-set minimizations and layout op-
timizations, and to choose possible alternative layout
optimizations. The extensibility of aspects and factors and
extensibility of adaptive behavior is achieved through the
use of role-based workflows and scripts and role-assignments
to task models. Visual/code-based representation of adaptive
behavior can be done using visual workflows and visual
role-assignments, in addition to scripts and RBUIS rules.

A brief overview of Cedar Studio was presented in
Section 5. This IDE supports the development of adap-
tive model-driven UIs based on the Cedar Architecture
and using RBUIS. Cedar Studio provides stakeholders
such as developers and IT personnel, with visual-design
and code-editing tools for defining and managing artifacts
such as UI models and adaptive behavior. Using these
tools, the adaptive behavior and the adaptation aspect and
factors can be extended as needed. More information
about this tool can be found in a separate paper [16]. It
can be also seen in operation through several demon-
stration videos [78]. Cedar Studio provides expressive
leverage (Section 2.1) by supporting the use of reusable
visual-components and scripts as part of the adaptive
behavior workflows. It also achieves a balance between
threshold and ceiling (Section 2.1). For example, it sup-

28 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

ports automated generation and synchronization be-
tween models (low threshold), alongside the possibility
of conducting manual adjustments (high ceiling). Also,
if developers understand the semantics of the meta-
model, then they can use the visual-design tools to pro-
duce an advanced outcome (medium threshold/high
ceiling). In the cases where coding could be used, a vis-
ual-design tool alternative was provided.

In Sections 6 and 7, the contributions were evaluated
from technical and human perspectives. In the tech-
nical evaluation, RBUIS was integrated into an existing
open-source enterprise application called OFBiz. Several
metrics were defined and applied to measure technical
characteristics related to: reverse-engineering, integra-
tion, and runtime execution. We showed that RBUIS
could be integrated into existing legacy software appli-
cations without causing major changes to the way they
function or incurring a high integration cost. We also
showed that it can run efficiently in real-time and that it
is scalable. The technical evaluation showed that our
approach fulfills two criteria from Section 2.1: integrating
in legacy systems and scalability.

Concerning the human perspective, we evaluated
whether our UI adaptation approach can significantly
improve the usability of complex UIs, by conducting a
usability study with real-life UIs. This study showed
that UIs with a minimized feature-set and an optimized
layout elicited a very strong statistically significant im-
provement over their initial versions in terms of end-
user efficiency, effectiveness, and perceived usability.
Eye-tracking was also conducted, and it showed that
minimizing the feature-set of complex UIs significantly
decreases the extent to which end-users are lost when
searching for input fields.

By presenting our approach for adapting UIs to the
context-of-use, we aim to support the design of interfac-
es that can provide better usability than a single static
off-the-shelf UI design. As a future outlook, we think
that collaboration between academics researching adap-
tive model-driven UI development systems, and indus-
trial partners who are really interested in adopting these
systems, could help in improving the research outcome
in this area. Furthermore, such collaboration could help
in producing tools, which rival traditional commercial
IDEs, and are more widely adopted in industry. The
work presented in this paper can be considered as a
strong starting point towards this objective.

ACKNOWLEDGMENT

This research was funded by the Computing and Com-
munications Department at The Open University and
ERC Advanced Grant 291652. We would like to thank
Shanghai Banff Technology Ltd and all the participants of
our study for their valuable feedback.

REFERENCES

[1] H. Topi, W. T. Lucas, and T. Babaian, “Identifying Usability
Issues with an ERP Implementation.,” in Proceedings of the 7th

International Conference on Enterprise Information Systems, Miami,
USA, 2005, pp. 128–133.

[2] A. Jameson, “Adaptive Interfaces and Agents,” J. A. Jacko and A.
Sears, Eds. Hillsdale, NJ, USA: L. Erlbaum Associates Inc., 2003,
pp. 305–330.

[3] B. Rosman, S. Ramamoorthy, M. M. H. Mahmud, and P. Kohli,
“On User Behaviour Adaptation Under Interface Change,” in
Proceedings of the 19th International Conference on Intelligent User

Interfaces, New York, NY, USA, 2014, pp. 273–278.
[4] T. Lavie and J. Meyer, “Benefits and costs of adaptive user

interfaces,” Int. J. Hum.-Comput. Stud., vol. 68, no. 8, pp. 508 – 524,
2010.

[5] K. Z. Gajos, M. Czerwinski, D. S. Tan, and D. S. Weld, “Exploring
the Design Space for Adaptive Graphical User Interfaces,” in
Proceedings of the Working Conference on Advanced Visual Interfaces,
New York, NY, USA, 2006, pp. 201–208.

[6] R. Kniewel, C. Evers, L. Schmidt, and K. Geihs, “Designing
Usable Adaptations,” in Socio-technical Design of Ubiquitous

Computing Systems, K. David, K. Geihs, J. M. Leimeister, A.
Roßnagel, L. Schmidt, G. Stumme, and A. Wacker, Eds. Springer
International Publishing, 2014, pp. 211–232.

[7] P. A. Akiki, A. K. Bandara, and Y. Yu, “Adaptive Model-Driven
User Interface Development Systems,” ACM Comput. Surv., vol.
47, no. 1, pp. 64:1–64:33, 2014.

[8] J. M. Carroll and C. Carrithers, “Training Wheels in a User
Interface,” Commun. ACM, vol. 27, no. 8, pp. 800–806, Aug. 1984.

[9] Synactive GmbH, “GuiXT - Simplify and Optimize the SAP ERP
User Interface,” 2010. [Online]. Available:
http://bit.ly/SAPGuiXTSimplifyUI. [Accessed: 04-Sep-2012].

[10] S. Lepreux, J. Vanderdonckt, and B. Michotte, “Visual Design of
User Interfaces by (De)composition,” in Interactive Systems.

Design, Specification, and Verification, vol. 4323, G. Doherty and A.
Blandford, Eds. Springer Berlin Heidelberg, 2007, pp. 157–170.

[11] K. Z. Gajos, D. S. Weld, and J. O. Wobbrock, “Automatically
Generating Personalized User Interfaces with Supple,” Artif.

Intell., vol. 174, no. 12, pp. 910–950, Aug. 2010.
[12] S. Feuerstack, M. Blumendorf, and S. Albayrak, “Bridging the

Gap between Model and Design of User Interfaces,” in GI

Jahrestagung (2), Dresden, Germany, 2006, vol. P-94, pp. 131–137.
[13] M. Peissner, D. Häbe, D. Janssen, and T. Sellner, “MyUI:

Generating Accessible User Interfaces from Multimodal Design
Patterns,” in Proceedings of the 4th ACM SIGCHI Symposium on

Engineering Interactive Computing Systems, Copenhagen, Denmark,
2012, pp. 81–90.

[14] P. A. Akiki, A. K. Bandara, and Y. Yu, “Integrating Adaptive User
Interface Capabilities in Enterprise Applications,” in Proceedings

of the 36th International Conference on Software Engineering,
Hyderabad, India, 2014, pp. 712–723.

[15] P. A. Akiki, A. K. Bandara, and Y. Yu, “RBUIS: Simplifying
Enterprise Application User Interfaces through Engineering Role-
Based Adaptive Behavior,” in Proceedings of the 5th ACM SIGCHI

Symposium on Engineering Interactive Computing Systems, London,
UK, 2013, pp. 3–12.

[16] P. A. Akiki, A. K. Bandara, and Y. Yu, “Cedar Studio: An IDE
Supporting Adaptive Model-Driven User Interfaces for
Enterprise Applications,” in Proceedings of the 5th ACM SIGCHI

Symposium on Engineering Interactive Computing Systems, London,
UK, 2013, pp. 139–144.

[17] P. A. Akiki, A. K. Bandara, and Y. Yu, “Crowdsourcing User
Interface Adaptations for Minimizing the Bloat in Enterprise

PIERRE A. AKIKI ET AL.: ENGINEERING ADAPTIVE MODEL-DRIVEN USER INTERFACES 29

Applications,” in Proceedings of the 5th ACM SIGCHI Symposium

on Engineering Interactive Computing Systems, London, UK, 2013,
pp. 121–126.

[18] P. A. Akiki, A. K. Bandara, and Y. Yu, “Using Interpreted
Runtime Models for Devising Adaptive User Interfaces of
Enterprise Applications,” in Proceedings of the 14th International

Conference on Enterprise Information Systems, Wroclaw, Poland,
2012, vol. Volume 3, pp. 72–77.

[19] A. Demeure, G. Calvary, and K. Coninx, “COMET(s), A Software
Architecture Style and an Interactors Toolkit for Plastic User
Interfaces,” in Proceedings of the 15th International Workshop on

Interactive Systems Design Specification and Verification, Kingston,
Canada, 2008, pp. 225 – 237.

[20] D. R. Olsen,Jr., “Evaluating User Interface Systems Research,” in
Proceedings of the 20th ACM SIGCHI Symposium on User Interface

Software and Technology, Newport, Rhode Island, USA, 2007, pp.
251–258.

[21] J. Coutaz, “User Interface Plasticity: Model Driven Engineering to
the Limit!,” in Proceedings of the 2nd ACM SIGCHI Symposium on

Engineering Interactive Computing Systems, Berlin, Germany, 2010,
pp. 1–8.

[22] B. Myers, S. E. Hudson, and R. Pausch, “Past, Present, and Future
of User Interface Software Tools,” ACM Trans. Comput.-Hum.

Interact., vol. 7, no. 1, pp. 3–28, Mar. 2000.
[23] J. McGrenere, R. M. Baecker, and K. S. Booth, “An Evaluation of a

Multiple Interface Design Solution for Bloated Software,” in
Proceedings of the 20th SIGCHI Conference on Human Factors in

Computing Systems, Minneapolis, Minnesota, USA, 2002, pp. 164–
170.

[24] L. Findlater and J. McGrenere, “Evaluating Reduced-
Functionality Interfaces According to Feature Findability and
Awareness,” in Proceedings of the 13th International Conference on

Human-Computer Interaction, 2007, pp. 592–605.
[25] C. Miller, H. Funk, P. Wu, R. Goldman, J. Meisner, and M.

Chapman, “The PlaybookTM Approach to Adaptive Automation,”
in Proceedings of the 49th Human Factors and Ergonomics Society

Annual Meeting, Florida, U.S.A., 2005, vol. 49, pp. 15–19.
[26] V. López-Jaquero, F. Montero, and F. Real, “Designing User

Interface Adaptation Rules with T:XML,” in Proceedings of the 14th

International Conference on Intelligent User Interfaces, Sanibel Island,
Florida, USA, 2009, pp. 383–388.

[27] G. Lehmann, A. Rieger, M. Blumendorf, and S. Albayrak, “A 3-
Layer Architecture for Smart Environment Models,” in
Proceedings of the 8th Annual IEEE International Conference on

Pervasive Computing and Communications, Mannheim, Germany,
2010, pp. 636 –641.

[28] O. Brdiczka, J. L. Crowley, and P. Reignier, “Learning Situation
Models for Providing Context-Aware Services,” in Universal

Access in HCI, C. Stephanidis, Ed. Springer-Verlag, 2007, pp. 23–
32.

[29] L. Balme, R. Demeure, N. Barralon, J. Coutaz, and G. Calvary,
“Cameleon-RT: A Software Architecture Reference Model for
Distributed, Migratable, and Plastic User Interfaces,” in
Proceedings of the 2nd European Symposium on Ambient Intelligence,
Eindhoven, The Netherlands, 2004, pp. 291–302.

[30] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimhigner, G.
Johnson, N. Medvidovic, A. Quilici, D. S. Rosenblum, and A. L.
Wolf, “An Architecture-Based Approach to Self-Adaptive

Software,” Intell. Syst. Their Appl. IEEE, vol. 14, no. 3, pp. 54–62,
1999.

[31] C. Duarte and L. Carriço, “A Conceptual Framework for
Developing Adaptive Multimodal Applications,” in Proceedings of

the 11th International Conference on Intelligent User Interfaces,
Sydney, Australia, 2006, pp. 132–139.

[32] A. Blouin and O. Beaudoux, “Improving Modularity and
Usability of Interactive Systems with Malai,” in Proceedings of the

2nd ACM SIGCHI Symposium on Engineering Interactive Computing

Systems, New York, USA, 2010, pp. 115–124.
[33] A. Blouin, B. Morin, O. Beaudoux, G. Nain, P. Albers, and J.-M.

Jézéquel, “Combining Aspect-Oriented Modeling with Property-
Based Reasoning to Improve User Interface Adaptation,” in
Proceedings of the 3rd ACM SIGCHI Symposium on Engineering

Interactive Computing Systems, Pisa, Italy, 2011, pp. 85–94.
[34] G. Rossi, D. Schwabe, and R. Guimarães, “Designing

Personalized Web Applications,” in Proceedings of the 10th

International Conference on World Wide Web, Hong Kong, 2001, pp.
275–284.

[35] M. Pazzani and D. Billsus, “Content-Based Recommendation
Systems,” in The Adaptive Web, vol. 4321, P. Brusilovsky, A.
Kobsa, and W. Nejdl, Eds. Springer Berlin Heidelberg, 2007, pp.
325–341.

[36] B. Shneiderman, “Promoting Universal Usability with Multi-
Layer Interface Design,” in Proceedings of the Conference on

Universal Usability, Vancouver, Canada, 2003, pp. 1–8.
[37] A. Pleuss, G. Botterweck, and D. Dhungana, “Integrating

Automated Product Derivation and Individual User Interface
Design,” in Proceedings of the 4th International Workshop on

Variability Modelling of Software-Intensive Systems, Linz, Austria,
2010, pp. 69–76.

[38] G. Botterweck, “Multi Front-End Engineering,” in Model-Driven

Development of Advanced User Interfaces, vol. 340, H. Hussmann, G.
Meixner, and D. Zuehlke, Eds. Springer, 2011, pp. 27–42.

[39] N. Bencomo, P. Sawyer, G. S. Blair, and P. Grace, “Dynamically
Adaptive Systems are Product Lines too: Using Model-Driven
Techniques to Capture Dynamic Variability of Adaptive
Systems,” in Proceedings of the 12th International Conference on

Software Product Lines, Limerick, Ireland, 2008, vol. 2, pp. 23–32.
[40] Microsoft, “Role based UI - Dynamics CRM 2011,” 2011. [Online].

Available: http://bit.ly/DynamicsRoleBasedUI. [Accessed: 31-
Aug-2012].

[41] M. Florins and J. Vanderdonckt, “Graceful Degradation of User
Interfaces as a Design Method for Multiplatform Systems,” in
Proceedings of the 9th International Conference on Intelligent User

Interfaces, Funchal, Madeira, Portugal, 2004, pp. 140–147.
[42] G. Calvary, J. Coutaz, O. Dâassi, L. Balme, and A. Demeure,

“Towards a New Generation of Widgets for Supporting Software
Plasticity: The ‘Comet,’” in Engineering Human Computer

Interaction and Interactive Systems, vol. 3425, R. Bastide, P.
Palanque, and J. Roth, Eds. Springer, 2005, pp. 306–324.

[43] T. Clerckx, K. Luyten, and K. Coninx, “DynaMo-AID: a Design
Process and a Runtime Architecture for Dynamic Model-Based
User Interface Development,” in Engineering Human Computer

Interaction and Interactive Systems, R. Bastide, P. A. Palanque, and
J. Roth, Eds. Springer, 2005, pp. 77–95.

[44] K. Coninx, K. Luyten, C. Vandervelpen, J. Van den Bergh , and B.
Creemers, “Dygimes: Dynamically Generating Interfaces for

30 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

Mobile Computing Devices and Embedded Systems,” in
Proceedings of the 5th International Symposium on Human-Computer

Interaction with Mobile Devices and Services, Udine, Italy, 2003, pp.
256–270.

[45] K. Gajos and D. S. Weld, “Preference Elicitation for Interface
Optimization,” in Proceedings of the 18th ACM Symposium on User

Interface Software and Technology, Seattle, USA, 2005, pp. 173–182.

[46] M. Blumendorf, S. Feuerstack, and S. Albayrak, “Multimodal
Smart Home User Interfaces,” in Proceedings of the Workshop on

Intelligent User Interfaces for Ambient Assisted Living, Gran Canaria,
Spain, 2008.

[47] M. Blumendorf, S. Feuerstack, and S. Albayrak, “Multimodal
User Interaction in Smart Environments: Delivering Distributed
User Interfaces,” in Constructing Ambient Intelligence, M.
Mühlhäuser, A. Ferscha, and E. Aitenbichler, Eds. Berlin:
Springer-Verlag, 2007, pp. 113–120.

[48] M. Blumendorf, S. Feuerstack, and S. Albayrak, “Event-based
Synchronization of Model-Based Multimodal User Interfaces,” in
Proceedings of the 2nd International Workshop on Model Driven

Development of Advanced User Interfaces, Genova, Italy, 2006, pp.
1–5.

[49] V. Schwartze, S. Feuerstack, and S. Albayrak, “Behavior-Sensitive
User Interfaces for Smart Environments,” in Proceedings of the 2nd

International Conference on Digital Human Modeling, San Diego,
USA, 2009, pp. 305–314.

[50] H. Chu, H. Song, C. Wong, S. Kurakake, and M. Katagiri, “Roam,
a seamless application framework,” J. Syst. Softw., vol. 69, no. 3,
pp. 209 – 226, 2004.

[51] W. Viana and R. M. C. Andrade, “XMobile: A MB-UID
environment for semi-automatic generation of adaptive
applications for mobile devices,” J. Syst. Softw., vol. 81, no. 3, pp.
382 – 394, 2008.

[52] V. Genaro Motti, D. Raggett, S. Van Cauwelaert, and J.
Vanderdonckt, “Simplifying the Development of Cross-platform
Web User Interfaces by Collaborative Model-based Design,” in
Proceedings of the 31st ACM International Conference on Design of

Communication, New York, NY, USA, 2013, pp. 55–64.
[53] G. Mori, F. Paternò, and C. Santoro, “CTTE: Support for

Developing and Analyzing Task Models for Interactive System
Design,” IEEE Trans. Softw. Eng., vol. 28, no. 8, pp. 797–813, 2002.

[54] F. Paterno’, C. Santoro, and L. D. Spano, “MARIA: A Universal,
Declarative, Multiple Abstraction-Level Language for Service-
Oriented Applications in Ubiquitous Environments,” ACM Trans.

Comput.-Hum. Interact., vol. 16, no. 4, pp. 19:1–19:30, Nov. 2009.
[55] Q. Limbourg and J. Vanderdonckt, “USIXML: A User Interface

Description Language Supporting Multiple Levels of
Independence,” in Engineering Advanced Web Applications:

Proceedings of Workshops in connection with the 4th International

Conference on Web Engineering, Munich, Germany: Rinton Press,
2004, pp. 325–338.

[56] A. García Frey, E. Céret, S. Dupuy-Chessa, G. Calvary, and Y.
Gabillon, “UsiComp: An Extensible Model-Driven Composer,” in
Proceedings of the 4th ACM SIGCHI Symposium on Engineering

Interactive Computing Systems, Copenhagen, Denmark, 2012, pp.
263–268.

[57] A. García Frey, G. Calvary, and S. Dupuy-Chessa, “Xplain: An
Editor for Building Self-Explanatory User Interfaces by Model-

Driven Engineering,” in Proceedings of the 2nd ACM SIGCHI

Symposium on Engineering Interactive Computing Systems, Berlin,
Germany, 2010, pp. 41–46.

[58] A. Coyette and J. Vanderdonckt, “A Sketching Tool for Designing
Anyuser, Anyplatform, Anywhere User Interfaces,” in
Proceedings of 10th IFIP TC 13 International Conference on Human-

Computer Interaction, Rome, Italy, 2005, pp. 12–16.
[59] F. Montero and V. López-Jaquero, “IdealXML: An Interaction

Design Tool,” in Computer-Aided Design of User Interfaces V, G.
Calvary, C. Pribeanu, G. Santucci, and J. Vanderdonckt, Eds.
Springer, 2007, pp. 245–252.

[60] B. Michotte and J. Vanderdonckt, “GrafiXML, a Multi-target User
Interface Builder Based on UsiXML,” in Proceedings of the 4th

International Conference on Autonomic and Autonomous Systems,
Cancun, Mexico, 2008, pp. 15 –22.

[61] S. Feuerstack, M. Blumendorf, V. Schwartze, and S. Albayrak,
“Model-based Layout Generation,” in Proceedings of the Working

Conference on Advanced Visual Interfaces, Napoli, Italy, 2008, pp.
217–224.

[62] J. Meskens, J. Vermeulen, K. Luyten, and K. Coninx, “Gummy for
Multi-Platform User Interface Designs: Shape me, Multiply me,
Fix me, Use me,” in Proceedings of the 8th Working Conference on

Advanced Visual Interfaces, Napoli, Italy, 2008, pp. 233–240.
[63] J. Lin and J. A. Landay, “Employing Patterns and Layers for

Early-Stage Design and Prototyping of Cross-Device User
Interfaces,” in Proceedings of the ACM SIGCHI Conference on

Human Factors in Computing Systems, Florence, Italy, 2008, pp.
1313–1322.

[64] A. I. Molina, W. J. Giraldo, J. Gallardo, M. A. Redondo, M.
Ortega, and G. García, “CIAT-GUI: A MDE-compliant
environment for developing Graphical User Interfaces of
information systems,” Adv. Eng. Softw., vol. 52, pp. 10–29, 2012.

[65] J. Vanderdonckt, “Model-Driven Engineering of User Interfaces:
Promises, Successes, Failures, and Challenges,” Romanian J. Hum.

- Comput. Interact., vol. 1, no. 1, pp. 1–10, 2008.
[66] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and

J. Vanderdonckt, “A Unifying Reference Framework for Multi-
Target User Interfaces,” Interact. Comput., vol. 15, no. 3, pp. 289–
308, 2003.

[67] J. Kramer and J. Magee, “Self-Managed Systems: an Architectural
Challenge,” in Proceedings of the Workshop on the Future of Software

Engineering, Minneapolis, USA, 2007, pp. 259–268.
[68] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M. Williams,

and J. E. Shuster, “UIML: An Appliance-Independent XML User
Interface Language,” Comput. Netw., vol. 31, no. 11, pp. 1695–
1708, May 1999.

[69] M. Blumendorf, G. Lehmann, and S. Albayrak, “Bridging Models
and Systems at Runtime to Build Adaptive User Interfaces,” in
Proceedings of the 2nd ACM SIGCHI Symposium on Engineering

Interactive Computing Systems, Berlin, Germany, 2010, pp. 9–18.
[70] F. Paternò, Model-based Design and Evaluation of Interactive

Applications, 1st ed. London, UK: Springer, 1999.
[71] F. Paternò, C. Mancini, and S. Meniconi, “ConcurTaskTrees: A

Diagrammatic Notation for Specifying Task Models,” in
Proceedings of the 6th International Conference on Human-Computer

Interaction, Sydney, Australia, 1997, vol. 96, pp. 362–369.
[72] F. Montero, V. López-Jaquero, J. Vanderdonckt, P. González, M.

Lozano, and Q. Limbourg, “Solving the Mapping Problem in

PIERRE A. AKIKI ET AL.: ENGINEERING ADAPTIVE MODEL-DRIVEN USER INTERFACES 31

User Interface Design by Seamless Integration in IdealXML,” in
Interactive Systems. Design, Specification, and Verification, vol. 3941,
S. Gilroy and M. Harrison, Eds. Springer Berlin Heidelberg, 2006,
pp. 161–172.

[73] A. Puerta and J. Eisenstein, “XIML: A Multiple User Interface
Representation Framework for Industry,” in Multiple User

Interfaces, John Wiley & Sons, Ltd, 2005, pp. 119–148.
[74] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R.

Chandramouli, “Proposed NIST Standard for Role-Based Access
Control,” ACM Trans. Inf. Syst. Secur., vol. 4, no. 3, pp. 224–274,
Aug. 2001.

[75] P. A. Akiki, A. K. Bandara, and Y. Yu, “Cedar: Engineering Role-
Based Adaptive User Interfaces for Enterprise Applications,”
Technical Report, 2012.

[76] J. Coutaz, “Meta-User Interfaces for Ambient Spaces,” in Task

Models and Diagrams for Users Interface Design, vol. 4385, K.
Coninx, K. Luyten, and K. Schneider, Eds. Springer Berlin
Heidelberg, 2007, pp. 1–15.

[77] D. Roscher, G. Lehmann, M. Blumendorf, and S. Albayrak,
“Design and Implementation of Meta User Interfaces for
Interaction in Smart Environments,” presented at the Supportive
User Interfaces (SUI 2011), Pisa, Italy, 2011.

[78] “Cedar Studio - Demo Video.” [Online]. Available:
http://adaptiveui.pierreakiki.com.

[79] R. A. Virzi, “Refining the Test Phase of Usability Evaluation:
How Many Subjects Is Enough?,” Hum. Factors J. Hum. Factors

Ergon. Soc., vol. 34, no. 4, pp. 457–468, 1992.
[80] N. Aquino, J. Vanderdonckt, N. Condori-Fernández, Ó. Dieste,

and Ó. Pastor, “Usability Evaluation of Multi-Device/Platform
User Interfaces Generated by Model-Driven Engineering,” in
Proceedings of the 4th International Symposium on Empirical Software

Engineering and Measurement, Bolzano-Bozen, Italy, 2010, pp.
30:1–30:10.

[81] S. Abrahão, E. Iborra, and J. Vanderdonckt, “Usability Evaluation
of User Interfaces Generated with a Model-Driven Architecture
Tool,” in Maturing Usability, E.-C. Law, E. Hvannberg, and G.
Cockton, Eds. Springer London, 2008, pp. 3–32.

[82] J. Brooke, “SUS: A Quick and Dirty Usability Scale,” in Usability

Evaluation in Industry, vol. 189, P. W. Jordan, B. Weerdmeester, A.
Thomas, and I. L. Mclelland, Eds. London, UK: Taylor and
Francis, 1996.

[83] J. Benedek and T. Miner, “Measuring Desirability: New methods
for Evaluating Desirability in a Usability Lab Setting,” Proc.

Usability Prof. Assoc., vol. 2003, pp. 8–12, 2002.
[84] J. Preece, H. Sharp, and Y. Rogers, “Experimental Design,” in

Interaction Design: Beyond Human - Computer Interaction, 4th ed.,
John Wiley & Sons, p. 486.

[85] ISO 9241, “ISO 9241-12:1998 - Ergonomic Requirements for Office
Work with Visual Display Terminals (VDTs) -- Part 12:
Presentation of information,” 2008. [Online]. Available:
http://bit.ly/ISO9214. [Accessed: 14-May-2012].

Pierre A. Akiki received a BSc. and a
MSc. in Computer Science from Notre
Dame University – Louaize, Lebanon in
2004 and 2007 respectively. He also
received a MSc. in International Business
from Bordeaux Business School (now
KEDGE), France and a M.B.A. from Notre
Dame University – Louaize, Lebanon
through a joint program in 2011. Pierre
received a Ph.D. in Computing from The

Open University, U.K. in 2014. Since then, he has been an assistant
professor of computer science at Notre Dame University – Louaize,
Lebanon and a visiting research fellow in computing at The Open
University, U.K. Previously, he had worked part-time in academia as
a computer science instructor and full-time in industry as an
application architect focusing on enterprise systems. Pierre is mainly
interested in researching adaptive model-driven interactive software
systems. His work on adaptive model-driven user interfaces was
published in several venues including ICSE and ACM Computing
Surveys, and it received the best paper award at ACM SIGCHI EICS’13.
Further information about Pierre's research work and publications can be
found at: http://www.pierreakiki.com.

Arosha K. Bandara received a MEng and
PhD from Imperial College London in 1998
and 2005 respectively. He is now a senior
lecturer in computing at The Open Universi-
ty, where he is a member of the Software
Engineering and Design research group and
the Security and Privacy Laboratory.
Arosha's research focusses on building and
maintaining self-managing (adaptive) sys-
tems by combining rigorous formal tech-
niques with concrete implementations and

applications of those techniques. He is a co-investigator on projects
funded by the European Research Council (Adaptive Security and
Privacy), the UK Engineering and Physical Sciences Research
Council (Privacy Dynamics, Monetize Me), and the Qatar National
Research Foundation (Adaptive Information Security).

 Yijun Yu graduated from the Department of
Computer Science at Fudan University (B.Sc.
1992, M.Sc. 1995, Ph.D. 1998). He was a
postdoc. Research Fellow at the Department
of Electrical Engineering in Ghent University,
Belgium (1999-2002), then a Lecturer at the
Department of Computer Science in Universi-
ty of Toronto, Canada (2003-2006). Since
October 2006, he has become a Senior Lec-
turer in Computing at The Open University,
UK. He is interested in developing automated

and efficient software techniques and tools to better support human
activities in software engineering. He was interviewed by BBC Radio
4 Today and BBC World Services on his vision of applying Cloud
Computing to improve Aviation Security. His research won an ACM
SIGCHI Best Paper Award at EICS’13, an IEEE Best Paper Award at
TrustCom’14, an IEEE Distinguished Paper Award at RE’11, a BCS
Distinguished Paper award at BCS’08, and an ACM SigSoft Distin-
guished Paper Award at ASE’07. He serves as an Associate Editor of
the Software Quality Journal, Secretary of BCS Specialist Group on
Requirements Engineering, and PC of international conferences on
Requirements Engineering (RE'10-16, CAiSE’10-16), Software
Maintenance (SEW'13, CSMR'12, ICSM'10) and IoT (WF-IoT’15-16).
He is a member of the IEEE and the British Computer Society. He is
a PI for successful knowledge transfer projects at Huawei, IBM and a
co-investigator on projects of Adaptive Security And Privacy (ERC
Advanced Grant, 2012-2017), Relating Requirements and Designs
of Adaptive Information Systems (QNRF, 2012-2015), Lifelong Secu-
rity Engineering for Evolving Systems” (EU FP7, 2009-2011), Usable
Privacy for Mobile Apps (Microsoft SEIF, 2012).

