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Emitters coupled simultaneously to distant positions of a photonic bath, the so-called giant atoms,
represent a new paradigm in quantum optics. When coupled to one-dimensional baths, as recently
implemented with transmission lines or SAW waveguides, they lead to striking effects such as chiral
emission or decoherence-free atomic interactions. Here, we show how to create giant atoms in dynamical
state-dependent optical lattices, which offers the possibility of coupling them to structured baths in arbitrary
dimensions. This opens up new avenues to a variety of phenomena and opportunities for quantum
simulation. In particular, we show how to engineer unconventional radiation patterns, like multidirectional
chiral emission, as well as collective interactions that can be used to simulate nonequilibrium many-body
dynamics with no analog in other setups. Additionally, the recipes we provide to harness giant atoms in
high dimensions can be exported to other platforms where such nonlocal couplings can be engineered.
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The design and exploration of novel forms of light-matter
interaction have been a driving force in quantum optics
triggering both fundamental and technological advances. A
paradigmatic example of this was the observation that atomic
lifetimes renormalize within cavities [1], which opened the
field of cavityQED [2,3]. This seemingly simple light-matter
coupling led to many other fundamental discoveries, such as
the creation of mixed light-matter particles (polaritons), and
applications, e.g., in quantum information [4]. Another
timely example is the interaction of (natural or artificial)
emitters with the structured propagating photons (or matter
waves) which appear in nanophotonic structures [5–14],
circuits [15–17], or state-dependent optical lattices [18–22].
In these systems, the bath displays structured energy dis-
persions, leading to a plethora of effects absent in other
environments. On the fundamental level, they generate
nonexponential relaxations [23–29], whereas in the more
applied perspective they lead to the emergence of bound
states outside [30–35] or in the continuum [36–45], which
can be harnessed for (out-of) equilibrium quantum simu-
lation [46–49].
In all these setups the emitters are typically much smaller

than their associated wavelength, leading to inherently
local light-matter couplings. This picture, however, has
been recently challenged with the design of the so-called
“giant atoms,” which are emitters coupled to several points
of SAW waveguides [50–54] or transmission lines [55]
separated beyond their characteristic wavelength. These
giant atoms represent another paradigm change in quantum
optics since the coupling to different bath positions induces
strong interference effects which can be exploited for

applications [20,21,56–58]. For instance, when coupled
to one-dimensional baths they lead to decoherence-free
atomic interactions [58], or to chiral emission [20,21]
without exploiting polarization, something impossible to
realize with “small” emitters. Exporting this paradigm to
higher dimensional baths, where, for example, quantum
simulation will show its full power, is a desirable, but
challenging, goal. On the one hand, to our knowledge
there is still no implementation to do so, since wiring up
high-dimensional circuits becomes complicated. On the
other hand, even if achieved, it is not obvious how to
harness giant atoms when coupled to high-dimensional
baths. The reason is that the resonant photons mediating the
interactions, defined by the isofrequencies of ωðkÞ at the
emitters’ frequency, are contours (or surfaces) in k space,
instead of points, making perfect interference more difficult.
In this Letter, we address both issues showing the

following: (i) A proposal to engineer effective giant-atom
coupling to baths with high dimensions. We use ultracold
atoms in dynamical state-dependent optical lattices
[18,19,22] (see Fig. 1), such that by moving the relative
position between the potentials [59–61] fast enough, the
giant emitter couples effectively to several bath positions.
(ii) A way to harness them to observe phenomena with no
analog in other setups by coupling them to structured
photonic reservoirs with a van Hove singularity [37–39,49].
In particular, we show how giant quantum emitters (QEs)
can modify the non-Markovian nature of the dynamics,
and lead to unconventional emission patterns, e.g., chiral
emission in one or several directions, which translate into
unconventional collective QE interactions when several
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of them couple to the bath. Even though we make the
discussion of items (i) and (ii) together throughout this
Letter, the recipes that we provide for (ii) can be exported to
other implementations where such couplings can be
engineered.
Let us first recall how to obtain the standard quantum

optical Hamiltonian with ultracold atoms [18,19,22]; see
Fig. 1(a). One needs an atom with two states a and b
subject to different potentials Va;bðRÞ, whose dimension-
ality can be optically controlled [62]. The b atoms are
trapped in a deep potential such that they mostly localize
within a lattice site, and in the strongly interacting regime,
which means that there will be at most one b excitation per
lattice site such that their excitations can be represented by
spin operators σ

nj
ge, with σnαβ ¼ jαinhβj. On the contrary,

when the atoms are in the a state, they can hop to their
nearest neighbours at a rate J without interactions, mimi-
cking photon propagation. In addition, one needs an extra
field that transfers the b excitations into a ones (and vice
versa), which can be obtained via a Raman or microwave
transition [22,63] (or a direct one in the case of alkaline-
earth atoms [64–66]). Let us denote asΩnj

the a-b coupling
at site nj, which can be controlled in both magnitude and
phase though the lasers. As derived in Refs. [18,19], the
Hamiltonian describing the dynamics of the excitations of
the a and b atoms mimics the one standard light-matter
interactions, that is, H ¼ HS þHB þHint, where

HS ¼ ωeσee; HB ¼
X
k

ωðkÞa†kak; ð1Þ

Hint ¼ ðΩne
a†ne

σge þ H:c:Þ; ð2Þ

where for illustration we restrict to a single QE, dropping
the superindex in σα;β. The akða†kÞ are the annihilation
(creation) operator of a matter-wave excitation with
momentum k, whose energy dispersion ωðkÞ is controlled

by the geometry of VaðRÞ. The QE is in the strong
confinement limit such that its coupling will be local like
with optical photons [67].
To effectively transform this local coupling into a non-

local one among fnαgNp

α¼1 positions, one can dynamically
move the relative position between the Va;bðRÞ potentials
in a periodic fashion, e.g., changing the relative phase
between the lasers creating the potentials [62]. If the
movement is adiabatic, that is j _RðtÞj ≪ dωt for all t,
where d is the ground state size, and ωt the trap frequency
[59–61], the atoms remain in their motional ground state
and can still be described by a Hamiltonian as in Eqs. (1)
and (2) but with time-dependent parameters. For example,

assuming that the simulated QE probes the fnαgNp

α¼1

positions and that the laser parameters change as needed
in each position, the Hamiltonian will now read

Hint → Hint;movðtÞ ¼
XNp

α¼1

½Ωnα
ðtÞa†nα

σge þ H:c:�: ð3Þ

Now, to formally derive how the desired nonlocal
couplings emerge using Floquet analysis, we consider that
the QE moves periodically along Np positions with period
T (and frequency ω ¼ 2π=T), probing each position during
a constant time interval T=Np with coupling strength gnα

[68]. With that assumption, we can apply Floquet theory
[69] to obtain an effective Hamiltonian description in the
high-frequency limit. To the lowest order, it corresponds to
the nonlocal light-matter couplings that we want to obtain
(see Supplemental Material [70]):

Hint;eff ≈
XNp

α¼1

�
gnα

Np
a†nα

σge þ H:c:

�
; ð4Þ

where gnα
=Np is the time average of Ωnα

ðtÞ. We can also
calculate the next-order term contribution which is of order
∼4jgmaxj2N2

pζ½3�=ðπ2ωÞ ≪ max jgnα
j for our situations of

interest. Summing up, to obtain the desired behavior the
periodic movement has to be slow enough to stay within the
lowest band of the tight-binding Hamiltonians of Eqs. (1)
and (2), but fast compared to the induced QE timescales,
such that it effectively couples to several positions, i.e.,
ωt ≫ ωðL=dÞ ≫ max jgnα

j (assuming a constant speed
over the distance L that we displace the potentials).
Since the couplings are tunable and they can always be
made small, the lower bound of these inequalities will be
ultimately provided by the decoherence rate Γ� of the setup,
which should be smaller than the simulated parameters.
To provide some estimation, we can first take the recent
realization of our proposed setup [22], where two hyperfine
87Rb levels were used to engineer the optical potentials,
ja; bi ¼ jF ¼ 1=2; mF ¼ −1=0i, with trap depths of the
order ωt ∼ 2π × 10 kHz, and typical decoherence rates

(a) (b)

FIG. 1. (a) State-dependent optical lattice scheme to simulate
quantum optical phenomena: one deep lattice VbðRbÞ (blue) traps
the atomic state that mimics the QE behavior, whereas a
shallower one, VaðRaÞ, lets matter-wave propagation at rate J.
The two atomic states can be connected through a local laser(s) or
microwave field (green) with strength Ωnj

. The relative position
between the lattices, and of the local laser can be dynamically
tuned RbðtÞ. (b) Pictorial representation on how the effective
giant atom couplings emerge from the stroboscopic movement
between the lattices.
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∼10–100 Hz. Another possibility is to use the ground or
excited metastable state in alkaline-earth atoms (see
Ref. [64] for a concrete proposal with strontium). This
platform shows similar ωt, but decoherence can be sub-
stantially decreased since it will be mostly determined by
the excited state lifetime which can be Γ�=ð2πÞ ≲ 0.01 Hz,
thus leaving several orders of magnitude to adiabatically
move the lattice.
Let us now show how to exploit giant QEs coupled to

higher dimensional baths to obtain phenomena with no
analog in other setups. In particular, we illustrate it by
studying the spontaneous decay of an excited QE coupled
to a two-dimensional bath with ωðkÞ ¼ ωa −
2J½cosðkxÞ þ cosðkyÞ�. When the QE interacts locally in
space with frequency ωe ¼ ωa, it couples equally to all the
resonant k’s defined by kx � ky ¼ �ð∓Þπ. This contour,
which includes points with zero group velocity
[vgð0;�πÞ ¼ vgð�π; 0Þ ¼ ð0; 0Þ] responsible for a van
Hove singularity in the density of states [71], leads to
two remarkable effects in the QE spontaneous decay
[37–39]: (i) its emission pattern is highly anisotropic, as
shown in Fig. 2(a), emitting mostly in four directions with
some diffraction due to the inhomogeneous group velocity
of the wave packet; (ii) its dynamics is intrinsically non-
Markovian due to divergence of the density of states at this
frequency [38,39]. Now, we will show how building upon
this behavior, giant QEs can lead to very flexible and
unusual emission patterns and interactions.
Quasi-1D emission.—First, we show how to cancel the

emission in one of the diagonals of Fig. 2(a) by coupling to
two lattice sites n1=2 ¼ ð0; 0Þ=ð1; 1Þ. To numerically show
how the Floquet averaged Hamiltonian Hint;eff emerges, we

assume that the movement between the lattices is such that
Ωn1

ðtÞ ¼ g cos2ðωt=2Þ, Ωn2
ðtÞ ¼ g sin2ðωt=2Þ, and solve

the dynamics using Hint;movðtÞ. In Figs. 2(b)–2(d) we plot
the bath population in real space after a time tJ ¼ N=4
using g ¼ 0.1J, and for several ω’s. As expected, for
ω ≪ g, the emission occurs in four directions as if the
QE was locally coupled. However, as ω increases, the
interference between the bath emission in two different
points occurs, until it cancels the emission in one of the
diagonals. This behavior can be understood from the
asymptotic bath state in the perturbative limit [39]:

Ckðt → ∞Þ ∝ GðkÞe−iωðkÞt
ωðkÞ − ωe þ iΓM=2

; ð5Þ

where ΓM is the Markovian decay rate, and GðkÞ is the
effective light-matter coupling between the emitter and the
k modes, Hint;eff ¼

P
k½GðkÞa†kσgs þ H:c:�, which reads

GðkÞ ¼ 1

Np

XNp

α¼1

gnα
e−ik·nα : ð6Þ

In this case G1DðkÞ ∝ 1þ e−iðkxþkyÞ, which satisfies
G1Dðkx;�π − kxÞ≡ 0. Thus, the giant QE is effectively
uncoupled from the k modes responsible of the forward or
backward direction in the diagonal where the giant QE is
coupled to, and does not decay into them. After having
numerically seen how Hint;eff emerges from Hint;movðtÞ for
this example, from now on we use Hint;eff to analyze the
dynamics.
Trapped emission.—Let us now consider that the QE

moves around four positions, i.e., ð�1; 0Þ; ð0;�1Þ. The
effective k coupling will be GtrapðkÞ ¼ gðeikx þ e−ikx þ
eiky þ e−ikyÞ=4, which cancels the coupling among the four
resonant k lines. Thus, the giant QE will not decay, while
keeping some of the photon population trapped between the
four positions (not shown). As in the 1D counterpart [58],
these confined photons will mediate coherent interactions
between these decoherence-free QEs.
Filtering non-Markovian emission.—Another feature

that can be achieved by coupling to few lattice sites is
the effective decoupling from zero-group velocity terms
occurring at k ¼ ð0;�πÞ and ð�π; 0Þ. For that, we can
couple the QE to the positions ð�1;�1Þ; ð�1;∓1Þ, with
an alternating �1 phase, such that GpurðkÞ ¼ g sinðk1Þ
sinðk2Þ. This has two consequences: first, the QE shows a
more homogeneous directional emission, as observed in
Fig. 3(a). Second, it smooths the effective spectral density
probed by the QE, as plotted in Fig. 3(b), making its
dynamics more Markovian. Thus, giant QEs provide a way
of decoupling directional emission from non-Markovian
dynamics in van Hove singularities.
Reverse design: Chiral and V -type emission.—In the

previous examples it was possible to guess the spatial

(a) (b)

(c) (d)

FIG. 2. Bath population at a time tJ ¼ N=4 after the deexcitation
of a single QE that moves between two lattice sites at positions
(0,0), (1,1), such that gn1 ½n2� ¼ g cos2ðωt=2Þ ½sin2ðωt=2Þ�, with
g ¼ 0.1J and ω as depicted in the legend. Bath linear size is
N ¼ 512.
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couplings required to obtain the desired behavior. An
alternative approach consists of first guessing the GðkÞ
required to obtain a given behavior, and then Fourier trans-
forming it to get the spatial dependent couplings; that is

GðnÞ ¼ 1

N2

X
k

GðkÞe−ik·n: ð7Þ

For example, let us imagine we want to obtain perfect
chiral emission in one or two orthogonal directions out of
the four appearing with local couplings. It is easy to see that

GchiðkÞ ∝ cos

�
k1 − k2

2

��
1þ sin

�
k1 þ k2

2

��
; ð8Þ

GVðkÞ ∝
�
1 − sin

�
k1 − k2

2

���
1 − sin

�
k1 þ k2

2

��
; ð9Þ

cancels the coupling to the light emitted in three (or two) of
the four directions, respectively. Then, using Eq. (7) we
obtain the spatial profile of the couplings whose absolute
value jGðnÞj is plotted in the inset of Figs. 4(a) and 4(b).
The coupling spatial pattern is more intricate than in the
previous situations because it requires adding complex
phases (not shown), and involves the coupling to many
lattice sites. Since this will be experimentally challenging,
one needs to adopt a truncation strategy in which one
approximates the sum by a finite number ntr of terms,
GðnÞ ≈Gtruncðn; ntrÞ. This is what we do in Figs. 4(a) and
4(b), where we observe that even for a small ntr, the QE
emits approximately with the desired behavior. Finally, in
Figs. 4(c) and 4(d) we show how by increasing ntr, the light
collimated in the desired directions can go close to 100%.
Interactions.—Let us finally point how these unconven-

tional emission patterns will translate into exotic QE

interactions when Ne QEs are coupled to the bath. For
simplicity, let us assume that each QE has a k-dependent
coupling GjðkÞ ¼ GðkÞe−ik·nj , where e−ik·nj is a global
phase factor which indicates the giant QE central position
(nj), and GðkÞ is a common k-dependent coupling defined
by the nonlocal couplings around the position nj. Then, if
we trace out the bath degrees of freedom under the
Born-Markov approximation, the QE reduced density
matrix (ρ) dynamics is governed by [72] ∂tρ¼i½ρ;HS þP

i;jJijσ
i
egσ

j
ge�þ

P
i;jðγij=2Þð2σigeρσjeg−σjegσigeρ−ρσjegσigeÞ.

The collective interactions Ji;j, γij are

iγij þ Jij ¼
1

N2

X
k

jGðkÞj2
ωe − ωðkÞ − i0þ

eik·ðni−njÞ; ð10Þ

whose integrand is directly connected with the asymptotic
emission pattern described in Eq. (5). This tells us, for
example, that using the couplings G1DðkÞ or GchiðkÞ we
will be able to simulate standard or chiral [73] waveguide
QED couplings in two-dimensional baths, as well as other
QE interactions with no counterpart in other setups, i.e.,
V-type collective decays.
Conclusions.—Summing up, we propose a method to

engineer effective nonlocal light-matter couplings using
ultracold atoms in dynamical state-dependent optical lat-
tices. Controlling the confinement and relative position
of two optical potentials, one can simulate giant atoms
coupled to structured photonic baths in one, two, and three
dimensions. Irrespective of the implementation, we also
numerically illustrate the potential of giant emitters to yield

(a) (b)

FIG. 3. (a) Bath probability amplitude at a time tJ ¼ N=4 for a
single giant QE coupled with GpurðkÞ, g ¼ 0.1J and bath linear
size is N ¼ 512. (b) Comparison of the density of states of
the structured bath (black), with the effective spectral density
which includes the k dependence of GpurðkÞ, i.e., DeffðEÞ ¼P

kjGpurðkÞj2δ(E − ωðkÞ).
FIG. 4. (a),(b) Bath probability amplitude at a time tJ ¼ N=4
for a single giant QE coupled with Gtruncðn; ntrÞ, respectively,
g ¼ 0.1J and bath linear size is N ¼ 512. Inset: Corresponding
spatial coupling profile jGðnÞj using Eq. (7). The red outline
indicates the truncation we use to plot the figure. (c)–(d) 1 − F,
where F is the fraction of the emission into the desired directions
for the parameters of panels (a) and (b), as a function of the
number of terms in the sum Gtruncðn; ntrÞ.
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unconventional quantum optical behavior when coupled to
a two-dimensional structured bath. In particular, we exploit
the interplay between the structured energy dispersion
and nonlocal couplings to obtain exotic emission patterns
and collective dissipative interactions. These recipes can be
immediately adapted to other platforms where such non-
local couplings can be engineered, or to higher dimensions
[70,74].
Beyond the fundamental interest of the phenomena

explored throughout the Letter, there are many possible
follow-up applications. From the quantum simulation
perspective, giant atoms provide a very flexible playground
to probe equilibrium [46,47] and nonequilibrium many-
body physics [75,76] with no analog in other setups. In
addition, one can increase their tunability exploiting the
interplay with the polarization degree of freedom [77–79],
or through additional bath engineering [80]. Other pos-
sibilities, if one is able to engineer it with optical photons,
is to exploit the multidirectional chiral emission to transfer
simultaneously quantum information into several nodes,
or for generating high-dimensional photonic entangled
states [81], which can be used for fault-tolerant measure-
ment based quantum computation [82].
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