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Abstract

Nowadays, the recycled fine aggregate sourced from construction and demolition waste is not frequently used in manufac-
turing of epoxy resin coatings. Therefore, the main novelty of the article is to prepare green epoxy resin coatings modified 
with recycled fine aggregate in a replacement ratio of natural fine aggregate ranged from 20 to 100%. The microstructural 
properties of the aggregates and epoxy resin were analyzed using micro-computed tomography, scanning electron micros-
copy and nanoindentation. The macroscopic mechanical properties were examined using pull-off strength tests. The highest 
improvement of the mechanical properties was observed for epoxy resin coatings modified with 20% of natural fine aggregate 
and 80% of recycled fine aggregate. It has been found that even 100% of natural fine aggregate can be successfully replaced 
using the recycled fine aggregate with consequent improvement of the pull-off strength of analyzed epoxy resin coatings. In 
order to confirm the assumptions resulting from the conducted research, an original analytical and numerical failure model 
proved the superior behavior of modified coating was developed.

Keywords Manufacturing · Wear · Composite · Epoxy resin coating · Recycled aggregate · Green material

1 Introduction

Worldwide manufacturing development [1] in the twentieth 
and twenty-first century is based on the fast-growing con-
struction industry [2, 3]. However, due to this development, 
the construction industry is responsible for generating the 
highest amount of waste in the EU (924 million tons in 2016 
[4]; Fig. 1a). Most constructions are designed as reinforced 
concrete buildings, and the concrete mixture in 75% of such 
objects is based on aggregate [5]. Thus, the extraction of 
aggregates is around two billion tons per year (Fig. 1b), 
with a growing tendency within the past few years [6]. The 
extraction of river sand has a negative impact on the environ-
ment due to it not being easily renewable in the ecosystem. 
This process of environmental degradation should therefore 
be avoided, or at least decreased.

Prosperous cities collect public funds that can be spent on 
the renovation of historical structures [7–9]. However, the 
renovation is not taken into account if there are no histori-
cal reasons to save the building, or if it does not meet the 
standard safety requirements. In such cases, old structures 
are prepared for demolition [10, 11]. After the demolition of 
an old building, millions of tons of waste concrete are stored 
[12], which can be used to obtain recycled aggregate [13]. 
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Recycled coarse aggregate is commonly used as a replace-
ment for standard aggregate in concrete mixtures [14–16], 
and is also widely used to strengthen road substrates [17, 
18]. In literature, there are well-known approaches of using 
marble [19–21], granite [22–24], ceramic [25, 26], electric 
arc furnace slag [27], and steel slag [28, 29] as recycled 
coarse aggregate. Gao et al. [30] performed tests on recycled 
aggregate concrete strengthened with polyester FRP-PVC 
(fiber reinforced polymer-polyvinyl chloride) tubes. The 
application of the PVC tubes did not provide an increase 
in the compressive strength, but significantly improved 
ductility.

The utilization of recycled fine aggregate (RFA) is prob-
lematic, and its volume continues to grow around the world, 
in turn destroying the surrounding environment [31, 32]. It 
should be noted, however, that fine aggregate has the same 
properties as the old concrete structure that it came from 
[33–35]. Therefore, actions should be taken in order to find 
applications for this material.

Moreover, due to the rapid growth of industry, there is a 
need to build new storage halls, the indoor floors of which 
can be covered with cement mortar [36–38] or epoxy resin 
coatings [39, 40]. Epoxy resins are widely used in the coat-
ing industry. Wei et al. [41] stated that this material has 
become more common because of its excellent performance. 
It can be applied on the surfaces of metal and non-metal 
structures for protection and/or decoration purposes. A con-
crete substrate covered with epoxy coating is well protected 
due to the coating’s high chemical and mechanical resistance 
[42–45] and high pull-off strength to the concrete substrate 
[46–48]. Sadowski and Szymanowski [49, 50] pointed out 
that pull-off strength provides high durability of epoxy resin-
concrete composite. The epoxy resin can be used in epoxy/
glass fiber composite formulations. Colangelo et al. [51] 
determined the pull-out strength between an epoxy resin and 
three different substrates: conventional concrete, artificial 
aggregate concrete, and geopolymer. The study highlighted 

their potential use for civil engineering applications. In a 
previous study [52], the authors of the present paper used 
texturing as a surface treatment method for concrete sub-
strates to increase the pull-off strength between the epoxy 
resin and the concrete substrate layer. The results were satis-
fying, but texturing increased the coarseness of the concrete 
substrate, which resulted in the higher consumption of epoxy 
resin. The manufacturers of epoxy resin allow river aggre-
gate (0–2 mm) to be added as an extender to epoxy resin 
coatings to increase their volume. However, the extraction 
of river aggregate mostly takes place far away from where 
it is used. The source of this material is not renewable and 
its high extraction around the globe has a negative impact 
on the environment.

Some researchers have tried to use different types of 
recycled materials as an additive to epoxy resin. For exam-
ple, Huan et al. [53] used recycled short carbon fibers in 
high-performance epoxy composites. The authors achieved 
significant enhancements of tensile and flexural properties, 
interlaminar shear strength, storage modulus, and electro-
magnetic interference shielding. However, this proposal 
cannot be used for industrial floor coatings because of the 
too complicated preparation process of this composite (e.g. 
preparation in a temperature of around 100 °C for a few 
hours). This even makes it impossible to prepare this type 
of coating in large-area halls. The other possibility is to 
use nanoparticles [54] or powders [55] which significantly 
enhance mechanical and thermal properties of epoxy res-
ins. However, this solution seems to be too expensive. The 
answer is to utilize the waste [56–59]. The preliminary stud-
ies show that the utilization of RFA in epoxy resin could 
reduce preparation costs of coating [57]. However, it does 
not change compressive and flexural tensile strength of 
epoxy resin-concrete composite. The preliminary studies 
also show that with high amount of RFA filler the pull-off 
strength of epoxy resin to concrete substrate may increase 
significantly [60].

Fig. 1  Statistics for twenty-eight European countries: a waste generation in 2016 by economic activities and households (based on the data pre-
sented in [5]); b sand and gravel extraction in recent years (based on the data presented in [6])
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When considering the above, the aim of this article was 
to obtain an epoxy resin with improved parameters with the 
use of RFA. In order to present the research gaps, a litera-
ture survey was performed for the combination of keywords 
“Coating”, “Resin”, “Epoxy” and “Recycled aggregate” 
using the Scopus Elsevier database. The results are sum-
marized in Table 1.

As can be seen in Table 1, the research interest in epoxy 
resin coatings is large and consists of more than 6 000 pub-
lications until 2020. However, there is a significant lack of 
knowledge in the field of epoxy resin coatings with recy-
cled aggregates. Only one article, published in 1989, was 
found with regards to this research area [61]. This may be 
due to the fact that current papers describe studies in which 
recycled aggregate is used in the construction of roads or 
as a component of concrete. Thus, the novelty of this study 
is associated with the application of RFA in epoxy resin 
coatings. The main focus of this research is to analyze the 
influence of the partial replacement of river sand with RFA 
on the properties of epoxy resin coatings and concrete com-
ponents. Moreover, in this article, the failure mechanism of 
thin epoxy resin coatings with fine aggregate as an extender 
during the pull-off strength test is explained by analyti-
cal and numerical calculations. To the best of the author’s 
knowledge, this type of approach has not yet been investi-
gated for floor layers.

2  Research signi�cance

The development of production lines or the chemical indus-
try requires the use of more advanced techniques of protect-
ing floors. Therefore, epoxy resin is becoming more popular 
in the civil engineering industry and is widely used as a floor 
coating. The increasing interest in epoxy resin coatings, and 

the low knowledge concerning their durability, was a reason 
to conduct the study on epoxy resin coating extended with 
different fine aggregates. In this paper, the pull-off strength 
of epoxy resin coating was taken into account as a basic 
property of industrial floors. There is not a sufficient num-
ber of research studies that accurately describe the pull-off 
strength mechanism of epoxy resin coatings that are applied 
to concrete substrate, and most of them just present the 
results. Furthermore, there is a lack of research involving 
the analysis of the mechanism of the pull-off strength of 
epoxy resin extended with fine aggregate, especially with 
RFA. Damage to a composite made of epoxy resin coating 
and concrete substrate occurs in its weakest layer, which is 
usually the concrete substrate. However, the stress transmis-
sion by epoxy resin coating extended with fine aggregate 
has a significant influence on the pull-off strength of com-
posites. Therefore, in this paper, the type of extender and its 
effect on the pull-off strength of epoxy resin coating were 
deeply analyzed. A detailed analysis of the pull-off strength 
mechanism was shown using an analytical and numerical 
approach. The presented results fill the knowledge gap in 
the literature concerning epoxy resin floor coatings. This 
study also presents the possibility of utilizing RFA obtained 
from demolition wastes in thin epoxy resin floor coatings. In 
addition, the presented approaches that describe the failure 
mechanism can be easily used when analysing epoxy resin 
coatings that contain other types of fillers.

3  Materials and Methods

3.1  Substrate

The substrate was prepared in a wooden form-
work with dimensions of 900 × 300 × 40  mm. This 

Table 1  Number of articles 
in 2020 related to “epoxy 
resin coatings with recycled 
aggregates” searched for in 
the article title, abstract and 
keywords in the Scopus Elsevier 
database (date of search: 
29.04.2020)

No Keyword Number of articles

1 keyword

1 Coating 396 425

2 Resin 270 257

3 Epoxy 106 232

4 Recycled aggregate 5 174

2 keywords

1 Coating + resin 16 167

2 Coating + epoxy 10 095

3 Coating + recycled aggregate 78

3 keywords

1 Coating + epoxy + resin 6 051

2 Coating + epoxy + recycled aggregate 2

4 keywords

1 Coating + epoxy + resin + recycled aggregate 1
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substrate was divided into twelve smaller samples each 
of 150 × 150 × 40 mm. In order to decrease the friction 
between the form and the sample, internal walls were cov-
ered with oil. The substrate was prepared using a ready 
concrete mixture of class C16/20. This composition con-
sists of limestone powder, Type I Portland cement, quartz 
aggregate with a grain size of 0–4 mm, and other addi-
tives. In this research, the weight ratio of the water-ready-
mix was 0.1, and the average mixing time was 180 s.

3.2  Preparation of the Substrate Surface

As recommended by the manufacturer of the epoxy resin, 
the concrete substrate surface has to be treated by grind-
ing and by applying a bonding agent [62–64] in order to 
obtain a pull-off strength higher than 1.5 MPa (normative 
minimal admissible value of the pull-off strength after 
7 days according to [65]). In this research, after 28 days of 
curing, the concrete substrate surface was grinded with-
out applying the bonding agent. In paper [52], the con-
crete substrate surfaces were also prepared in such a way. 
The pull-off strength values for these specimens were 
around 1.8 MPa. Therefore, the authors decided not to 
use the bonding agent, as it could significantly affect the 
obtained test results. The samples (150 × 150 × 40 mm) 
were grinded mechanically using a diamond grinding 
wheel (Fig. 2a). Then, the concrete surface was analysed 
using machine vision [66, 67] in order to detect possible 
defects occurred after mechanical treatment. Damaged 
specimens were dismissed.

3.3  Epoxy Resin Coating

The coating was made of commercially available epoxy resin 
with a Young modulus of 6.1 GPa. It consisted of three com-
ponents: component A (base)—an epoxy resin based on bis-
phenol; component B—a hardener based on aliphatic poly-
amines; and component C—the manufacturer of the epoxy 
resin allows aggregate to be added to the mixture when the 
coating thickness is around 1–3 mm, and therefore the third 
component is a fine aggregate acting as an extender. For 
3 mm coatings, the weight ratio of A:B:C was 100:25:75. 
The weight ratio of components was based on the sugges-
tion of the best proportion declared by the manufacturer for 
epoxy resin (A), hardener (B), and sand extender (C) [68]. 
All the components were mixed together in a container for 
3 min using a drill with a paddle to obtain a uniform con-
sistency (Fig. 3). During the mixing, special attention was 
paid to mixing the epoxy resin that was covering the walls 
of the container. The speed of mixing was 280 rpm, and the 
maximum speed declared by the manufacturer should not 
be higher than 300 rpm. The concrete sample covered with 
epoxy resin was cured in a controlled laboratory environ-
ment with relative humidity of less than 60%, and at a tem-
perature of 21 ± 2 °C. In these conditions, the epoxy resin 
obtains its full load capacity after 3 days of curing; chemical 
resistance after 7 days of curing; and water resistance after 
16 h of curing [68]. A macroscale test was performed 7 days 
after applying the epoxy resin.

3.4  Aggregate

In this study, due to economic reasons, natural fine aggre-
gate (NFA) was used as a filler in epoxy resin. Not using a 

Fig. 2  The surface of the substrate after mechanical grinding: a optical view, b 3D isometric view
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filler in the case of 3 mm thick coatings leads to enormous 
costs associated with the purchasing of epoxy resin. How-
ever, river aggregate comes from natural sources, and its 
extraction has a negative impact on the environment. In 
order to reduce the volume of NFA, the researchers used 
RFA to partially replace NFA. The RFA was prepared in a 
way to obtain the same particle size distribution curve as 
was obtained for the NFA. X% of the RFA and Y% of the 
NFA were mixed for each fraction to prepare the aggre-
gate mixture (Fig. 4a). All the fractions were then mixed 
together. One sample with 100% of the NFA content, four 
samples with different proportions of RFA and NFA, and 
one sample with the 100% RFA content were prepared 
(Fig. 4b). This procedure aimed to select the best propor-
tion of aggregates, with a particular emphasis on improv-
ing the pull-off strength between the epoxy resin coating 
and the concrete substrate. Similar approach of mixing 
aggregates was performed in [57, 60].

River aggregate is the most popular material in the 
building industry, and is extracted in most countries 
around the world. It is commonly used for complete con-
crete mortar mixes. In this study, NFA with a grain size of 
0–2 mm was used as an extender for the epoxy resin coat-
ing. Figure 5d compares the particle size distribution curve 
for the RFA and NFA with the minimum and maximum 
particle size distribution curve for the sand that is com-
monly used in the concrete mix. The information from the 
manufacturer of the sand concerning the NFA is presented 
in Table 2.

In this study, the RFA (Przedsiębiorstwo Rodzinne 
Merta & Merta Sp.z o.o., Wroclaw, Poland) was prepared 
with regards to the particle size distribution curve that was 
obtained for the NFA (Fig. 5). This procedure enabled 
the obtained test results to be compared for two different 
aggregates.

3.5  Macroscale Laboratory Tests

The effect of different percentages of the NFA and RFA 
in the epoxy resin coating was analyzed with regards to its 
adhesion and cohesion to the surface of the concrete sub-
strate. The adhesion and cohesion were tested using the pull-
off strength test. Pull-off strength tests using an automatic 
adhesion tester (DY-216, Proceq, Switzerland; Fig. 6c) were 
performed according to ASTM D4541 [69]. Each sample 
was tested three times in order to obtain the average value of 
its pull-off strength, as was the case in paper [70]. In order 
not to disturb the results, the increase in the tensile strength 
transmitted to the steel disc was very slow and smooth. The 
load increasing speed was 0.05 MPa/s. According to the 
ASTM D4541 standard [69], the failure or the maximum 
stress should occur in 100 s or less. In this study, all the 
failures occurred in less than 40 s.

3.6  Microscale Laboratory Tests

The best combination of NFA and RFA can be defined with 
the use of micro tests. For a better understanding, micro-
scale laboratory tests were performed, in which X-ray micro-
computed tomography (micro-CT) was used to characterize 
the morphology of the NFA and RFA. Scanning electron 
microscopy (SEM) with energy dispersive X-ray spectros-
copy (EDS) was used to compare the differences in their 
elemental composition. Finally, the mechanical properties, 
such as indentation modulus (M) and hardness (H), were 
evaluated using the nanoindentation technique and then 
compared.

Three samples of the aggregate (NFA, RFA and mixed 
fine aggregate (MFA)) were scanned separately in cylindri-
cal containers (diameter: 2 cm, height: 4 cm) without com-
paction of the aggregate grains. 3D images were obtained 

(a) (b)

Fig. 3  Epoxy resin coating: a Components—A, B & C; b sample after pouring fresh epoxy resin
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using an X-ray micro-CT scanner with an 11 MP CCD cam-
era (GE phoenix v|tome|x s, General Electric Measurements, 
Boston, USA). All projections (1028) were reconstructed 
with Phoenix Datos|x CT software (General Electric Meas-
urements, Boston, USA). Each sample was scanned using 
140 kV source energy and a 0.5 mm Cu filter. Image pro-
cessing was done in a similar way as in paper [71] by using 
CTAnalyser software version 1.17 (SkyScan, Kontich, Bel-
gium). Prior to the evaluation of morphological parameters, 

the grains connected to the edge of the analysed volume 
were rejected. Erosion and dilation operations were per-
formed in order to separate the grains. As a result, the mor-
phological factors were determined, i.e. the distribution of 
the sphericity, surface and size of grains.

The particle/element content analysis was performed 
using SEM and EDS for the NFA and the RFA, respec-
tively. Five measurements for each type of aggregate were 
performed in order to ensure repeatability. The content of 

(a)

(b)

(c)

(d)

Fig. 4  Scheme of the preparation process of the samples: a mixing 
RFA and NFA fractions; b epoxy resin with different amounts of 
RFA and NFA; c top view of the specimens after the application of 

epoxy resin on the concrete substrate—a darker color of the sample 
means a higher amount of RFA in the epoxy resin; d cross section of 
the prepared specimen
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elements/particles below 1% was not taken into account in 
the analysis.

In order to compare the mechanical parameters of the 
NFA and RFA, an MCT microindenter (Anton Paar) with 

a Berkovich probe was used. For each sample, the standard 
loading program was used, i.e. one loading–unloading cycle 
up to the maximum force of 50 mN with a constant load rate 
of 100 mN/min. The classical approach by Oliver and Pharr 
was applied to evaluate the indentation parameters (M and 
H) [72, 73].

Moreover, the epoxy resin was characterized by means 
of nanoindentation using a Berkovich indenter. A series of 
measurements with 15 µm spacing, in the direction paral-
lel to the interface and in the direction perpendicular to 
the interface, was provided. An X–Y indentation grid with 
34 × 16 measuring points, and an indentation force of 20 
mN, was applied. The loading and unloading rates were 

Fig. 5  The preparation process of the aggregates: a appearance of the two types of aggregate after the sieve process; b the aggregates’ grain size 
distribution

Table 2  NFA properties Property Description

SiO2 [%] 87.78

Loose bulk den-
sity of material 
[g/cm3]

1.50

Aggregate bulk 
density [g/cm3]

2.60

Fig. 6  The pull-off strength test (a, b) and cohesive failure (c)
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about 40 mN/min. More information about the nanoinden-
tation procedure is given in [74].

4  Results and Discussion

4.1  Microscale Analysis

4.1.1  Micro-computed Tomography

Three-dimensional (3D) reconstructed micro-CT images 
of the NFA, MFA, and RFA are presented in Fig. 7. The 
figure shows the segmented grains of each type of inves-
tigated aggregate. The volume fractions of the aggregate 
were 64.0%, 62.4%, and 62.2% for the NFA, MFA, and 
RFA, respectively. The sphericity value, grain surface, 
and Dmax to Dmin ratio were established for each selected 
volume (Fig. 7). The exemplary histograms of the grain 
surface for all the aggregate types are shown in Fig. 8. 
Gamma and Gaussian distributions were fitted to the 
experimental data. It can be seen that the most commonly 
used Gaussian distribution does not properly reflect the 
obtained data. Therefore, the Gamma distribution was 
used while describing the micro-CT results (see Fig. 9), 

as it much better correlates with the experimental data 
(Fig. 8). Based on the k (shape factor) and θ (scale factor) 
parameters, the mean value and variance were determined 
for each measurement. These values are summarized in 
Table 3. Comparable sphericity was obtained for each 
aggregate type. In turn, a slightly lower (by 5%) object 
surface can be noticed for the MFA when compared to 
the OFA and RFA. For all the aggregate types, the Dmax 
to Dmin ratio is within the range of 1–2.5, with the mean 
value equal to ~ 1.7. This indicates that the grains have 
a high variability of shapes, which are far from perfect 
spheres. Although the micro-CT results are highly vari-
able, they did not show any significant differences in the 
basic morphological characteristics for all the investi-
gated types of aggregates.   

4.1.2  Scanning Electron microscopy

Exemplary SEM images of the NFA and RFA are presented 
in Fig. 10a–b. The performed EDS analysis revealed the 
presence of Si, Ca, Al, and Fe (in at. %) (see Fig. 10c). No 
significant difference in the atomic percent was found with 
regards to the Si, Ca, and Al. There was a residual content 

Fig. 7.  3D micro-computed tomography images for samples: a NFA, b MFA and c RFA

Fig. 8  Experimental grain surface distribution and its fitted Gamma and Gaussian distributions for samples: a NFA, b MFA and c RFA
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of Fe in the RFA (4.0% when compared to 0% in the NFA). 
This may be due to the contact of the concrete with a cor-
roded reinforcement.

4.1.3  Nanoindentation

For each aggregate type (NFA and RFA), 140–180 ran-
domly located indentations were performed. As a result, 
histograms of their indentation modulus (M) and inden-
tation hardness (H) were obtained (see Fig.  11). The 
indentation modulus for the NFA and RFA was equal to 
70.8 ± 12.9 GPa and 56.0 ± 15.8 GPa, respectively. The 
RFA was characterized by a lower mean value of M (of 
about 20%), and a higher standard deviation of M (of 
about 25%) in comparison to the NFA. The same trend 
occurred for the H values; H = 8.3 ± 2.3 GPa for the NFA, 
and H = 6.9 ± 2.9 GPa for the RFA.

According to Fig. 12b–d, the hardness of the resin with 
embedded aggregate ranges from 0.4 to 22.7 GPa, with an 
average value of around 0.8 GPa. In turn, the indentation 
modulus changes from 1 to 97 GPa, with an average of 14 
GPa. The hardness of the epoxy resin itself was 0.4 ± 0.1 
GPa, and its elastic modulus was 6.1 ± 1.3 GPa.

Fig. 9  Micro-computed tomography results of: a sphericity, b object surface and c Dmax/Dmin ratio of the aggregate—Gamma distributions fitted 
to the experimental results

Table 3  Gamma distribution parameters (k and θ), as well as mean 
values and variance, for the sphericity, object surface, and Dmax to 
Dmin ratio

Measurement Aggregate k θ Mean value Variance

Sphericity NFA 122 0.00612 0.747 0.00457

MFA 137 0.00554 0.757 0.00419

RFA 116 0.00652 0.757 0.00494

Object surface 
 [mm2]

NFA 3.25 0.186 0.604 0.1124

MFA 3.56 0.162 0.577 0.0935

RFA 2.58 0.235 0.606 0.1424

Dmax/Dmin ratio NFA 30.8 0.0548 1.686 0.0924

MFA 32.8 0.0522 1.713 0.0894

RFA 25.4 0.0659 1.674 0.1103

Fig. 10  Exemplary SEM images for the NFA (a) and RFA (b), as well as a graph of the atomic concentrations (wi) of Si, Ca, Al and Fe (c)
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4.2  Macroscale Analysis

According to Fig. 13, the sample with 100% NFA (0% 
RFA) added to the epoxy resin mixture (1.19 MPa ± 0.29) 
has the lowest pull-off strength. A slightly better result of 
fb = 1.48 MPa (± 0.30) was obtained for the sample with 
40% of the RFA. Samples with 80 and 100% of RFA have 
similar pull-off strengths: 1.89 MPa (± 0.09) and 1.93 MPa 
(± 0.09), respectively. The negative deviation of the strength 
for 40% of RFA is within the range of accuracy due to the 

dispersion of the selected places for the test. The destruction 
model for each sample was cohesive. Thus, the influence 
of the parameters of the subsurface zone of the concrete 
substrate, which is heterogeneous, may also significantly 
affect the results. However, each sample with the addition 
of RFA obtains better results in comparison to the reference 
sample with NFA. The cohesive failure mechanism shows 
that the adhesion between the epoxy resin coating and the 
concrete substrate surface is sufficient to transfer the pull-
off stress. For the sample with the 100% RFA content, the 

Fig. 11  Histograms of: a indentation modulus (M) and b indentation hardness (H) for the NFA and RFA

Fig. 12  a Optical micrograph of the epoxy-aggregate-composition with the indentation zone marked; b hardness (H) map; c indentation modulus 
distribution over the sample; d indentation modulus (M) map within the indentation zone
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highest pull-off strength (with the smallest standard devia-
tion) was obtained in the case of three measurements. The 
thickness of the detached concrete substrate was between 
2 and 7 mm. In a previous study [52], the thickness of the 
detached concrete substrate was much greater in the case of 
textured surfaces, in turn significantly increasing the pull-off 
strength. Nevertheless, a higher RFA content (60–100%) in 
the coating when not texturing the surface of the concrete 
substrate provides very good results.

4.3  Compilation of the Obtained Results

It can be seen in Fig. 14 that the type of extender (NFA or 
RFA) has an influence on the pull-off strength of the epoxy 
resin to the concrete substrate. The low value of the indenta-
tion modulus and the high mean object surface significantly 
improved the pull-off strength.

4.4  Failure Mechanism

Khedmati et al. [75] pointed out that mixtures that include 
crushed recycled aggregates have multiple complex aggre-
gate/paste interphase regions when compared to conven-
tional concrete mixtures, which in turn means that there are 
significant technical challenges in understanding and char-
acterization of their properties. In this study, the authors 
wanted to explain the failure mechanisms during the pull-off 
strength tests, which occur in composite elements made of 
epoxy resin with RFA and concrete substrate.

Stress and strain are correlated using Young’s modulus 
and Poisson’s ratio (for isotropic material) [76]. Materials 
with a lower value of Young’s modulus are more deformable. 

Lower values of the indentation modulus (which is related to 
Young’s modulus) show that RFA is a more deformable and 
flexible material than NFA. The larger surface of the RFA 
grains when compared to the NFA grains probably results 
in a better interaction with the epoxy resin, which may be 
the reason for a more even stress distribution in the epoxy 
resin layer. All the failures that occurred during the pull-off 
strength tests were cohesive, which means that the crack 
origin is in the concrete substrate. The coating layer only 
transfers the stress.

Based on the analyses and obtained results, the authors 
designed a scheme to explain the behavior of the composite 
elements during the pull-off strength tests (Fig. 15). The 
stress transmission in epoxy resin coating is not uniform. 
This is mostly related to different Young’s modulus values 
for each material in the composite. Therefore, stress σ2, 
which is transmitted by the bonds between the epoxy resin 
and aggregate, is stronger than the stress σ1 that is transmit-
ted by the epoxy resin (during the pull-off strength test). 
When comparing the two materials (NFA and RFA) and 
their indentation modulus, it is evident that they have dif-
ferent deformability. In the case of the parallel static model, 
the stress σ2 in the coating with the NFA will always be 
stronger than the stress σ2 in the coating with the RFA. This 
is due to the fact that RFA has more similar properties to 
epoxy resin (than NFA), and that there is a better interaction 
during loading.

When summarizing the above, due to the fact that there 
is less uniform stress transmission in the epoxy resin coat-
ing with the NFA, the stress σ2,NFA that causes the crack-
ing of the concrete layer is stronger than the stress σ1,NFA. 
The stress σ2,NFA in also greater than the stress σ2,RFA in 
the coating with the RFA (when analyzing models loaded 
with the same force F). It means that there is a faster crack 

Fig. 13  Pull-off strength test results

Fig. 14  Relationship between the obtained results
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propagation in the sample with NFA when compared to the 
sample with RFA. As a result, the samples with the bigger 
amount of NFA obtained the maximum value of concrete 
subsurface tensile strength when loaded with a lower pull-
off load F.

4.4.1  Analytical Approach

Based on the previously presented mechanism, the authors 
carried out analytical calculations, which enabled the 
share of the aggregate in the destruction mechanism to be 
confirmed.

To calculate the crack load F2 in concrete, Eq. (1) is used 
to develop a static model (presented in Fig. 16). The static 
model was prepared based on three assumptions:

• because of the volume ratio of the aggregate to the epoxy 
resin of 0.6, the epoxy resin always covers the aggregate,

• due to the limited height of the coating (3 mm) and the 
greater volume of the epoxy resin than the aggregate, the 
flexible springs that define the behavior of the epoxy resin 
surround the less flexible springs of the aggregate,

• the simplified static model distinguishes different Young 
moduli E, areas A and lengths L for each material (based 
on Sects. 2 and 3.1.3).

Based on the adopted static model, it was possible to cal-
culate the stiffness for each elastic spring (2), (3), (4) and (5).

(1)k =

EA

L
=

F

�
.

(2)k1,NFA
=

1

1

k
e1

+
1

k
c1

,

F=σA

Recycled Fine Aggregate (RFA)

Natural Fine Aggregate (NFA) σ

σ1

σ1 σ1

σ1
σ2

σ2

σ1,NFA < σ2,NFA

x
N

F
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σ

σ1

σ1 σ1

σ1σ2

σ2
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x

R
F

A
xNFA < xRFA

Epoxy resin
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σ1,NFA< σ1,RFA< σ2,RFA< σ2,NFA

Crack

Crack

Fig. 15  Scheme of the failure mechanism of the composite during the pull-off strength test
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When the elastic springs are parallel, their force is dif-
ferent (depending on their stiffness k (6)).

According to the model, for the same pull-off force for 
two different coatings (7), it is possible to show (using (8)) 
that k2,NFA is greater than k2,RFA and that xNFA is lower than 
xRFA (10). Due to the different deformations for each of the 
coatings, and the same values of k1,NFA and k1,RFA, force F1 
in the epoxy resin with the RFA is higher than that in the 
epoxy resin with the NFA (11). In contrast, the force F2 is 

(3)
k2,NFA

=
1

1

k
a,NFA

+
1

k
e2

+
1

k
c2

,

(4)k1,RFA
=

1

1

k
e1

+
1

k
c1

= k1,NFA
,

(5)
k2,RFA

=
1

1

k
a,RFA

+
1

k
e2

+
1

k
c2

.

(6)F = F
1
+ F

2
= k

1
∙ x + k

2
∙ x.

higher for the epoxy resin with the NFA when compared 
to the epoxy resin with the RFA (12)

When substituting the actual values for parameters E, A, 
and L for the coatings with the NFA and RFA, force F2 was 
larger than force F1 (13), (14):

(7)F
NFA

= F
RFA

,
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∙ x
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Fig. 16  Static model of the coatings during the pull-off strength test
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Based on the results from (11), (12), (13), and (14), the 
forces are organized in (15) from the lowest value to the 
highest:

The bigger the differences between the forces (16) in the 
analyzed static model, the less uniform the stress transferred 
in the concrete is. The calculations show that larger differ-
ences occur for coatings with NFA than for coatings with 
RFA (17). Therefore, cracks can occur faster in the concrete 
substrate layer when the sample is loaded with a smaller 
force F during the pull-off test.

4.4.2  Numerical Approach

To confirm the assumed failure mechanism, as well as the 
behavior of the coatings with different extenders, a numeri-
cal model was prepared based on the values obtained in the 
study. ZSoil software was used to set up the numerical model 
(Fig. 17).

According to the model, the shear stress σxy is higher 
in the coating with NFA than in the coating with RFA 
(Fig. 18). The maximum shear stress in the concrete sub-
strate is − 20.98 MPa for the NFA, and − 20.61 MPa for 
the RFA.

(14)F1,RFA
< F2,RFA

.

(15)F1,NFA
< F1,RFA

< F2,RFA
< F2,NFA

.

(16)� = F2 − F1,

(17)�
NFA

> �
RFA

.

Therefore, the cracking, which always occurs in the con-
crete layer, is obtained with a lower pull-off force in the 
coatings with the NFA. This is due to a less uniform stress 
transmission when compared to the coatings with the RFA 
The failure propagates faster in mortar when a coating made 
of epoxy resin with NFA is used.

For the pure epoxy resin, the shear stress within the 
substrate was almost zero (Fig. 18a). If an aggregate has 
properties close to those of epoxy resin, the transmission of 
stress is more uniform. This can help to obtain better pull-off 
strength results and improve the durability of the coating.

5  Conclusion

Environmental protection plays a key role for humanity. Pro-
cesses with a damaging impact on the environment should 
be regulated or changed in order to reduce their negative 
effects. In this work, the negative effects of demolishing 
buildings were reduced by substituting natural fine aggre-
gate with recycled fine aggregate from industrial wastes. 
When summarizing the test results, each sample with the 
RFA obtained better pull-off strength results, whereas the 
sample with the 100% RFA content obtained the best result 
(1.93 MPa ±  0.15). The replacement of NFA with RFA has 
a positive impact on the pull-off strength of epoxy resin. 
Micro-computed tomography results indicated that the 
preparation process of RFA was very efficient. Sphericity 
and object surface histograms of the NFA and RFA were 
very similar. The mean value of sphericity for the NFA was 
0.747, and for the RFA was 0.757 (with a 0.010 difference). 
The mean value of the object surface for the NFA was 0.604 
 mm2, and for the RFA it was 0.002  mm2 higher. The mean 

Fig. 17  Numerical model for the epoxy resin (a), epoxy resin with the NFA (b), and epoxy resin with the RFA (c)
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value of the Dmax to Dmin ratio for the NFA and RFA was 
1.686 and 1.674, respectively. The variance for all the meas-
ured properties was similar for both aggregates. It shows 
that the preparation process of the aggregates was accurate 
enough to obtain a very similar aggregate grain size distri-
bution for each sample with different amounts of RFA and 
NFA. The hardness of the RFA, NFA and epoxy resin was 
6.9, 8.3 and 0.8 GPa, respectively. Nanoindentation revealed 
lower values (by about 20%) of indentation modulus, as well 
as hardness, for the RFA (56.0 GPa) samples when com-
pared to the NFA (70.8 GPa) samples. Therefore, the wear 
resistance of the epoxy resin coatings as a function of the 
RFA-content will be part of our subsequent research. The 
lower indentation modulus of the RFA when compared to 
the NFA may be the reason for the more even transfer of 
stresses to the concrete substrate. Higher pull-off strength 
results for the samples with the RFA were obtained. The 

assumed failure mechanism was confirmed by analytical 
calculations and the numerical model of stress distribution 
during the pull-off strength test. A potential decrease of the 
cost of coatings, combined with a high pull-off strength and 
a Young modulus that is close to that of epoxy resin, will 
qualify RFA as a good extender that can be used in epoxy 
resin coatings. The presented studies show that samples with 
RFA do not have a worse pull-off strength than samples that 
contain mainly NFA. Moreover, an increasing RFA content 
in a coating allows a better pull-off strength to be obtained. 
From an environmental point of view, it is profitable to use 
RFA in epoxy resin coating compositions.
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