
Auton Agent Multi-Agent Syst (2011) 23:193–223
DOI 10.1007/s10458-010-9135-4

Engineering and verifying agent-oriented requirements

augmented by business constraints with B-Tropos

Marco Montali · Paolo Torroni · Nicola Zannone ·

Paola Mello · Volha Bryl

Published online: 14 May 2010
© The Author(s) 2010

Abstract We propose B-Tropos as a modeling framework to support agent-oriented sys-

tems engineering, from high-level requirements elicitation down to execution-level tasks. In

particular, we show how B-Tropos extends the Tropos methodology by means of declarative

business constraints, inspired by the ConDec graphical language. We demonstrate the func-

tioning of B-Tropos using a running example inspired by a real-world industrial scenario, and

we describe how B-Tropos models can be automatically formalized in computational logic,

discussing formal properties of the resulting framework and its verification capabilities.

1 Introduction

Requirements engineering provided a number of approaches that address various aspects of

information systems modeling. In particular, agent-oriented approaches support the under-

standing of the organizational setting in which a system will operate [9,13,24,52], and goal-

oriented approaches support the modeling and analysis of stakeholders’ strategic goals and

thus they allow one to represent the rationale beyond the introduction of the system and the

M. Montali · P. Torroni (B) · P. Mello
University of Bologna, Bologna, Italy
e-mail: paolo.torroni@unibo.it

M. Montali
e-mail: marco.montali@unibo.it

P. Mello
e-mail: paola.mello@unibo.it

N. Zannone
Eindhoven University of Technology, Eindhoven, The Netherlands
e-mail: n.zannone@tue.nl

V. Bryl
FBK-IRST, Povo, TN, Italy
e-mail: bryl@fbk.eu

123

194 Auton Agent Multi-Agent Syst (2011) 23:193–223

design choices made [7,16,17]. Some requirements engineering methodologies have also

been used to address the definition of business processes [12,27,35], but most of them result

to be inadequate to represent all aspects of business processes, especially when spanning

across different organizations (or different divisions of the same organization) [8,31].

Early requirements engineering techniques such as those we will refer to in this paper, are

concerned with early stage requirements elicitation. At the far end of information systems

design, we find implemented systems, and tools that support synthesis (system prototyping

and simulation), run-time execution, monitoring and analysis. In between these two activi-

ties of information systems development, a number of other activities span from high-level

architectural to low-level detailed design. Among them we find business process modeling

and specification. Each one of these design activities typically relies on its own tools, lan-

guages and methodologies. The differences and variety in the approaches are justified by

the different aims that each activity has. Early requirements focus on “why” questions, in

order to support the definition of a model of an information system and on the corresponding

goal model. Declarative business process modeling focuses on “what” questions, to specify

in a declarative way the business process of an information system starting from a high-

level model. The purpose of operational model development and tools is to throw bridges

between “what” is declaratively specified and “how” this is operationally achieved, and to

support execution-level tasks such as prototyping and system monitoring and analysis. Such

heterogeneous aspects are typically not to be found in a single unified design framework.

Business process modeling is a fundamental part of the software development process

[37]. However, understanding whether or not defined business processes provide support for

the business strategies of an organization is still a challenge [8]. This issue has been partially

addressed in both requirements engineering and business analysis research areas, but sepa-

rately. The lack of interaction between these two areas caused that the duties of requirements

engineers and business analysts, and their role in the software development process are not

clear [43]. For instance, Haglind et al. addressed the issue of the integration of business

analysis and requirements engineering by means of the impact that business analysis has on

ensuring requirements engineering activities [23].

To allow for a systematic design of business processes, we have to understand the busi-

ness goals and requirements of an organization, its structure and the dependencies among

business partners, and then link business processes to business goals [31]. Many problems

might also arise from organizational theory and strategic management perspectives due to

limits on particular resources (e.g., cost, time, etc.). In this setting, if business processes are

defined before identifying business goals and eliciting business requirements, the defined

business processes may not meet the actual needs and capabilities of individual business

partners participating in the process.

In our previous works [11], we have proposed B-Tropos to facilitate the interaction

between requirements engineers and business analysts in order to bridge the gap between

requirements analysis and business process modeling. In particular, we proposed to model

and analyze business goals and then define business processes upon goal models. To this

end, we have extended Tropos [9], an agent-oriented, goal-oriented software engineering

methodology, with declarative business process-oriented constructs inspired by DecSerFlow

[46] and ConDec [45]. One of the main features of Tropos is the prominent role given to early

requirements analysis that concerns the understanding of the domain by studying the orga-

nizational setting within which the system will operate. However, a drawback of Tropos, as

well as of many other agent-oriented and goal-oriented approaches, is that it does not clearly

define how to move from requirements models to business process models. For example,

Tropos does not allow modeling temporal and data constraints between the tasks an agent is

123

Auton Agent Multi-Agent Syst (2011) 23:193–223 195

assigned to, which is essential when specifying the partial ordering between activities of a

business process [29]. The integration with declarative business process languages provides

Tropos with these capabilities. In [11] we have also shown how these complementary aspects

(i.e., agent-, goal-, and process-oriented) can be formalized in the SCIFFframework [6], a

computational logic-based framework for the specification and verification of interaction pro-

tocols in an open multi-agent setting. In particular, we have demonstrated how the mapping

of B-Tropos into SCIFF can be used to implement the skeleton of logic-based agents.

Since [11] was published, the application of the framework to a case study in collaboration

with industrial partners has allowed us to evaluate its expressiveness and usability, and prove

its applicability in industry. The attempt to capture and analyze the issues raised by the case

study has pointed out a number of drawbacks in our initial proposal, which have demanded

for a revision and an extension of B-Tropos. In particular, bringing B-Tropos up to capturing

challenges of the case study has required to:

• revise the modeling constructs to increase the readability and manageability of the frame-

work by industry partners;

• provide industry partners with analysis tools.

This paper presents a comprehensive and consolidated description of B-Tropos that addresses

the challenges raised from its application to the case study together with theoretical results.

In particular, the paper presents:

• a consolidated version of the B-Tropos modeling framework;

• a complete mapping of B-Tropos constructs into SCIFF specifications;

• a proof of the soundness, completeness and termination of the SCIFF and g-SCIFF proof

procedures when reasoning on B-Tropos models;

• a method for conformance and property verification.

The overall framework sets up a link between specification, simulation/execution and

analysis. In particular, B-Tropos allows requirements engineers to implement and execute

logic-based agents [1], as well as to perform different verification tasks, such as verifica-

tion of declarative business process specifications [40] and conformance verification of Web

service choreographies [2], spanning from static verification of consistency and properties

to run-time conformance verification, monitoring and a-posteriori analysis of the execution

traces generated during the interaction. Simulation and analysis (property and conformance

verification) constitute an important part of the system development process and the main-

tenance of deployed systems. Simulation and property verification allow requirements engi-

neers and business analysts to test their models directly and get an immediate picture of the

model being developed. Conformance verification allows system administrators to monitor

the correct behavior of a running system using a SCIFF specification of the system being

automatically generated from the B-Tropos model, and then, based on such specification,

automatically check the compliance of the system using the SOCS-SI runtime and offline

checking facilities [4]. The possibility to unify all these aspects of modelling, formal speci-

fications, prototyping and verification in a single framework and with a single specification

language is what makes B-Tropos unique.

To make the discussion more concrete, the proposed approach is applied to an intra-

enterprise organizational model, focusing on the coordination of economic activities among

different units of an enterprise collaborating together in order to produce a specific prod-

uct. This is an excerpt of a real case study analyzed in the context of the TOCAI project.1

1 FIRB-TOCAIRBNE05BFRK—http://www.dis.uniroma1.it/tocai/.

123

http://www.dis.uniroma1.it/tocai/

196 Auton Agent Multi-Agent Syst (2011) 23:193–223

This project aims at analyzing novel enterprise organizational models of integration, coor-

dination, cooperation and interoperability, and their possible enhancement related to the

integration of IT technologies in organizational processes and, in particular, in production

processes.

The paper is organized as follows. Section 2 describes our process-oriented extensions of

Tropos, and introduces an intra-enterprise organizational model used as a running example to

explain the framework presented in this paper. Section 3 presents the SCIFF framework and

defines the mapping of B-Tropos concepts to SCIFF specifications, whereas Sect. 4 discusses

formal properties of the mapping. Section 5 discusses how the proposed formal framework

can be used to verify B-Tropos models. The paper ends with an overview of related work

and conclusive remarks in Sects. 6 and 7, respectively.

2 The B-Tropos modeling framework

This section presents the agent-oriented and goal-oriented approach adopted by Tropos and

discuss how such an approach can be augmented with a high-level reactive, process-oriented

dimension. We call Tropos extended with declarative Business process-oriented constructs

B-Tropos [11].

2.1 Tropos

Tropos [9] is an agent-oriented software engineering methodology developed to support the

analysis of both the system-to-be and its organizational environment along the whole system

development process. One of its main advantages is the importance given to early require-

ments analysis. This allows one to capture why system functionalities are required, behind

the what or the how.

The methodology is founded on models that use the concepts of actor (i.e., agent and role),

goal, task, resource, and social dependency. An actor is an active entity that has strategic

goals and performs actions to achieve them. A goal represents a strategic interest of an actor.

A task represents a particular course of actions that produces a desired effect. A resource is an

artifact that is consumed or produced by a task. A dependency between two actors indicates

that one actor (the depender) depends on another actor (the dependee) for achieving some

goal, executing some task, or furnishing some resource (the dependum). In the graphical

representation, actors are represented as circles; goals, tasks and resources are respectively

represented as ovals, hexagons and rectangles; and dependencies are represented by edges

marked by a solid triangle, connecting the depender ’s dependum with the dependee.2 Note

that Tropos elements can appear in several instances inside the model. For example, if R is

a resource of two actors, it will be represented by a rectangle inside each one of the circles

symbolizing such actors. These two rectangles represent in fact a single output.

Requirements analysis in Tropos is conduced at two levels: strategic level and opera-

tional level. At the strategic level, the actors within the system are identified along with

their goals and the inter-dependencies among them. Starting from this high-level view of a

system, the analysis proceeds with an incremental refinement process. This process starts

with a goal analysis where high-level goals are AND/OR refined into subgoals. In particular,

AND-decomposition is used to define at high level the process for achieving a goal, whereas

OR-decomposition defines the alternatives for achieving a goal.

2 For ease of reading, we display actor names in bold face.

123

Auton Agent Multi-Agent Syst (2011) 23:193–223 197

Fig. 1 Product development process in tropos

Requirements analysis at operational level focuses on what, where, and how system func-

tionalities will be organized, integrated, and employed to achieve strategic goals. At this level

requirements analysis establishes the tasks needed to accomplish the strategic objectives and

the resources involved in their execution. In particular, means-end analysis is adopted to iden-

tify tasks used to achieve a goal and the resources consumed and produced by tasks. Together

with means-end analysis, this phase uses AND/OR decomposition for refining requirements

models, but here the focus of such analysis is on tasks. The requirements analysis process

results in a graph, called goal/task model, whose nodes are goals and tasks, and whose edges

are AND/OR decomposition and means-end relations linking tasks and goals together.

A sample Tropos model. Figure 1 shows a fragment of the Tropos diagram representing a

product development process scenario, which has been modeled and analyzed in the course

of the TOCAI project. In this scenario, the Customer Care and Manufacturing divisions have

to cooperate in order to define the most suitable solution for a product and plan manufacturing

activities. The Purchases and Sales divisions are involved in identifying different purchasing

strategies and presenting the solution for a product, respectively. A key component of the

enterprise is the Research & Development (R&D) unit. The R&D department deals with

new technology development and existing products improvement. It is also in charge of

123

198 Auton Agent Multi-Agent Syst (2011) 23:193–223

responding and anticipating customer needs and maintaining the competitive advantage. We

refer to [32] for the entire model.

As shown in the model in Fig. 1, different divisions of a company have to cooperate in

order to produce a specific product. The Customer Care division (top-right circle) is respon-

sible for achieving goals make diagnosis and deploy product (represented by ovals inside

the rationale of the actors) to customers. Customer Care depends on the Sales division for

achieving make diagnosis (such a dependency is denoted by a connecting edge marked by

a solid triangle). In turn, Sales appoints both R&D and Manufacturing divisions to achieve

the assigned duty. These divisions decompose the goal into subgoals determine cost and

determine deadline (see the AND-decomposition notation, marked by an “AND” label).

Goal deploy product is refined by Customer Care into subgoals manufacture product, for

which it depends on the Manufacturing division, and present product, for which it depends

on the Sales division. In turn, Manufacturing decomposes the appointed goal into subgoals

define solution for product, for which it depends on R&D, and make product, which it

achieves through task execute production line (note the arrow from hexagon/task execute

production line to oval/goal make product, denoting a means-end relation). To achieve

goal define solution for product, R&D has to achieve goals provide solution (which it

achieves through task design solution), evaluate solution, and deploy solution (which it

achieves through task define production plan). This task produces a production plan (note

the means-end relation from task to resource), which is used by Manufacturing to execute

production line. The evaluation of the solution is performed in terms of costs and avail-

able resources. To evaluate costs, R&D executes task assess costs, which consists in

calculating bill of quantities and evaluating bill of quantities. The execution of calculat-

ing bill of quantities requires the blueprint produced by task design solution and the list

of resources costs, and produces the bill of quantities that is analyzed by task evaluat-

ing bill of quantities. Moreover, R&D depends on the Warehouse for evaluate available

resources. The Warehouse either queries the databases to find available resources or asks

the Purchases division to buy resources from External Supplier. Purchases searches in

the company’s databases for possible Suppliers and selects the one who provides the best

offer. Manufacturing is also responsible for achieving goal ensure safety of product, for

which it depends on Quality Assurance. Essentially, before presenting the product to the cus-

tomer, Quality Assurance achieves the appointed goal by means of task test product. Quality

Assurance executes this task by taking the product produced by task execute production

line and, in case of successful test results, produces a quality label. (Note that product,

being a resource, is represented as a rectangle; it is present inside both Quality Assurance

and Manufaturing, but it represents a single output).

Note that some parts of the diagram may be left unspecified. An extreme example is the

external supplier, simply denoted by its name inside a circle. In general, Tropos diagrams are

very high-level and considerably under-specified, to leave the focus on the global picture.

2.2 Constraint-based business process modeling

Tropos gives special attention to early system requirements, namely, to modeling and analy-

izing the organizational setting in which a system will operate, and thus, capturing the ratio-

nale behind the system functionalities. However, exactly because of Tropos’s focus being far

from operational modelling, moving from requirements to business process model in Tropos

is problematic. Though in Fig. 1 we notice a correspondence between the tasks identified

during the operational modeling phase and the activities characterizing business processes,

Tropos lacks constructs suitable to interrelate them. In particular, a business process must

123

Auton Agent Multi-Agent Syst (2011) 23:193–223 199

have clearly defined boundaries in terms of input and output and must consist of ordered

activities [29]. Looking at Fig. 1 we can see that Tropos can only partially cope with the first

issue and fails to accomplish the second one entirely.

A business process modeling approach, which shares the philosophy underlying Tropos,

is the one of ConDec/DecSerFlow [45,46], two graphical languages proposed by van der

Aalst and Pesic to represent service flows and flexible business processes in a declarative

and graphical way. As with Tropos, ConDec and DecSerFlow aim at modeling the domain

under study without over-specifying and over-constraining the model under development. To

this end, instead of imposing a complete and rigid control-flow specification, they adopt a

declarative style of modeling, helping the designer in the identification and modeling of the

(minimal set of) business constraints that must be respected in order to correctly carry out

the execution. Such an approach fits better than procedural ones with complex, unpredictable

processes, such as those found in real-world scenarios, where a good balance between sup-

port and flexibility is of key importance [40,45]. Furthermore, since the approach guarantees

what is called flexibility by design [44], it is able to support the modeler in the identification

of early business requirements, abstracting away from implementation details.

Even if ConDec targets the business domain while DecSerFlow is focused on service

interaction, the two languages follow the same principles and share the graphical notation.

A ConDec/DecSerFlow model is composed by a set of activities, interconnected by busi-

ness constraints. Unconstrained activities can be executed an arbitrary number of times, in

an arbitrary order: the languages follow an open approach. Constraints can be imposed to

regulate the execution of the involved activities; being the languages open, both positive

and negative relationships can be imposed. A ConDec/DecSerFlow model supports all the

execution traces which comply with all the constraints included in the model.

Positive relationships are used to state that a certain activity must be executed in a given

situation, while negative relationships forbid the execution of an activity when a given situa-

tion holds. Different types of positive and negative constraints can be imposed; the difference

between them relies in the degree of freedom they leave on the execution, for what regards

both the temporal dimension and the repetition of the involved activities. For example, the

responded presence constraint states that if the source activity is executed, then the target

activity must be executed as well, either before or afterwards. The response constraint refines

the responded presence one by imposing a temporal ordering between the two activities, i.e.,

by stating that the target activity must be executed after the source one.

The constraints semantics has been originally formalized in terms of Linear Temporal

Logic (LTL), and then also by means of SCIFF constraints, based on Abductive Logic Pro-

gramming [38,39,45,46]. This unlocks the possibility of using a number of existing reasoning

and verification techniques to verify, execute and monitor the developed models (see [19] for

a survey on LTL verification tools and Sect. 3.1 for a presentation of SCIFF-based verification

methods).

While the LTL formalization can only be used to specify basic control-flow constraints,

SCIFF can also be used to specify new constraint features, such as data conditions and quan-

titative time constraints [39]. In this paper we will therefore rely on the SCIFF formalization.

2.3 The B-Tropos notation

Defining a business process and establishing its compliance with the business requirements

that have motivated its definition is a challenging task. In this section we discuss how

we extended Tropos to obtain a tool for building high-level, declarative business process

models on top of requirements models. Typically, declarative business process specification

123

200 Auton Agent Multi-Agent Syst (2011) 23:193–223

languages focus on activities and their relationships. The proposed extensions intend to sup-

port designers in defining durations, and absolute time constraints on goals and tasks as well

as specifying temporal and data constraints among them.

The following definitions are needed to introduce the further description of B-Tropos’s

extensions to Tropos.

Definition 2.1 (Time interval) A time interval over a numerical domain D is a defninite

length of time marked off by two (non-negative) instants (Tmin and Tmax ∈ D), which could

be considered both in an exclusive or inclusive manner. As usually, we use parentheses (. . .)

to indicate exclusion and square brackets [. . .] to indicate inclusion:

• (Tmin, Tmax) ≡ {T ∈ D | T > Tmin ∧ T < Tmax }

• (Tmin, Tmax] ≡ {T ∈ D | T > Tmin ∧ T ≤ Tmax }

• [Tmin, Tmax) ≡ {T ∈ D | T ≥ Tmin ∧ T < Tmax }

• [Tmin, Tmax] ≡ {T ∈ D | T ≥ Tmin ∧ T ≤ Tmax }

Definition 2.2 (Time interval shift) Given a time interval TI = [Tmin, Tmax] and a time

variable T ,

• TI+T is the positive shift of TI by T , and it corresponds to the absolute time interval

marked off by Tmin + T and Tmax + T ;

• TI−T is the negative shift of TI by T , and it corresponds to the absolute time interval

marked off by Tmin − T and Tmax − T .

Being defnined in terms of another interval (TI in particular), TI−T and TI+T are said to be

relative time intervals.

For example, [10, 15)+T1 ≡ [T1 + 10, T1 + 15) and (0, 7]−T2 ≡ (−T2,−T2 + 7].

Definition 2.3 (Absolute time constraint) An absolute time constraint is a binary constraint

of the form T OP i , where T is a time variable, i is a time instant and OP ∈ {at, a f ter,

a f ter_or_at, be f ore, be f ore_or_at} (with their intuitive meaning).

Instead of using a numerical value for i , we will often use a “date” notation, assuming that

it is implicitly translated to its corresponding numerical representation (e.g., by applying a

transformation to milliseconds).

Definition 2.4 (Data-based decision constraint) A data-based decision constraint is a bool-

ean expression that formalizes a data-driven choice. It can be specified in terms of a CLP

(Constraint Logic Programming) [28] constraint (e.g., =,>,<, etc.) or a Prolog predicate.

Definition 2.5 (Condition) A condition is a conjunction of data-based decision constraints

and absolute time constraints.

For example, condition T before_or_at 11.06.2007 ∧ workingDay(T) states that T has

November 6, 2007 as a deadline, and that it must be a working day.

Tasks/Goals extension. In order to support the modeling and analysis of process-oriented

aspects of a system, we have annotated goals and tasks with temporal information such as

123

Auton Agent Multi-Agent Syst (2011) 23:193–223 201

Task
I={...}
O={...}

fulfillment

[Dmin, Dmax]

OP Date OP Date

start completion

min/max duration

fulfillment condition

absolute time constraint

Fig. 2 Extended notation for tasks. Note that the absolute time constraints attached to the start/comple-
tion of the task lacks the left operand, which is implicitly bound to the time at which the task is started/
completed

start and completion times. The notation for tasks is shown in Fig. 2 (the one for goals is

identical except for the hexagon, which is replaced by an oval). Each task/goal can also

be described in terms of its allowed duration ([Dmin, Dmax] in Fig. 2). This allows one

to constrain, for instance, the completion time to the start time, i.e., completion time ∈

[Dmin, Dmax]
+start time. Additionally, absolute temporal constraints can be used to defnine

start and completion times of goals and tasks.

In the original Tropos proposal, resources needed to execute a task and produced by the

execution of a task are linked to the task using means-end relations (see Sect. 2.1). Con-

versely, in B-Tropos resources are treated as parameters that drive the execution of a business

process. The advantage of this representation is that we can propagate resources bottom-up

and uderstand which resourses are needed to achieve a goal and which is the outcome of the

achievement of a goal. Along this direction, we represent resources as attributes of tasks and

goals. In particular, each task/goal is associated with attribute I which specifies the list of

resources consumed by the task, or needed to achieve the goal, and with attribute O, which

specifies the list of resources produced as an outcome of task execution, or goal achieve-

ment. To indicate that the output of a task is taken in input by another task and to represent

resource dependencies, we use process-oriented constraints as shown in the next section.

Finally, tasks can be annotated with a fulfillment condition, which defnines when they are

successfully executed.

Process-oriented constraints. To bring a high-level and declarative process-oriented view

into a requirements model, we introduce different connections between goals and tasks,

namely relation, weak relation, and negation connections (see Table 1). These connec-

tions allow requirements engineers and business analysts to specify partial ordering between

goals/tasks under both temporal and data constraints. To make the framework more flexi-

ble, connections are not directly linked to tasks but to their start and completion times. A

small circle is used to denote the connection source, which determines when the triggering

condition is satisfied.

Relation and negation connections are based on DecSerFlow [46] and ConDec [45] tem-

plate formulas, extended with conditions (i.e., conjunctions of temporal and data constraints)

[38]. Conditions can be specified on both start and completion time and are delimited by

curly braces ({c} and {r} in Table 1). For instance, a condition may be {C Bill = E Bill},

indicating that a match between variables C Bill and E Bill, such as unification or a form

of equivalence, must be established. The source condition is a triggering condition, whereas

the target condition is verified a posteriori.

123

202 Auton Agent Multi-Agent Syst (2011) 23:193–223

Table 1 Tropos extensions to capture process-oriented constraints

A responded presence relation specifies that if the source happens such that c is satis-

fied, then the target has to happen and satisfy r . In LTL, by identifying with s the source

activity and with t the target activity and by abstracting away from the conditions c and r ,

the constraint is formalized by the formula ♦s → ♦t .3 The other two relations extend the

responded presence relation by specifying a temporal ordering between source and target

events.

A response relation constrains the target to happen after the source. Therefore, it requires

that if the source happens, the target has to happen after it: �(s → ♦t) A precedence relation

constrains the source to happen before the target. In other words, it specifies that the target

may not happen until the source happens: ¬t Us. A relative time interval (denoted with Tb

in Table 1) can also be attached to these relations. This time interval binds the expected time

of the target to the time at which the source happened.4 For instance, when Tb is specified

in a response relation, the target should happen between the minimum and the maximum

time after the source, i.e., target time ∈ T +source time
b . In this way, the modeler can express

different temporal constraints such as delays and deadlines, in a point algebra setting [48].

For example, attaching the time interval [0, 7] to a response relation means that the target

must occur after at most 7 time units after the source (deadline); conversely, the time interval

[8,∞] can be applied to state that at least 8 time units must separate the execution of the

source and the target (delay).

As in DecSerFlow and ConDec, we adopt an open approach, that is, we explicitly

specify not only what is expected, but also what is forbidden. What is neither explicitly

expected nor forbidden is implicitly allowed. This level of expressivity, not achieved by pro-

cedural business process notations, such as BPMN,5 is one of the distinguishing features

of declarative business process languages. These “negative” dependencies are represented

by negation connections that are the counterpart of relation connections (last column of

Table 1).

Summarizing, relation and negation connections allow system designers to add a hor-

izontal declarative and high-level process-oriented dimension to the vertical goal-directed

dimension. Note that, in the presence of OR decompositions, adding connections may affect

the semantics of the requirements model. Figure 3 shows that C can be satisfied by satisfying

D or E . On the contrary, the response relation between B’s completion and D’s start makes D

3 We use literature notation for LTL operators. In particular, unary operators ♦ and � respectively mean at

some future moment and at every future moment, and binary operator U means until. Classical logic operators
¬ and → in LTL formulae respectively represent negation and implication. For a smooth introduction to
temporal logic concepts and tools see [19].
4 If Tb is not specified, the defnault interval is (0, ∞).
5 The Business Process Modeling Notation, see http://www.bpmn.org/.

123

http://www.bpmn.org/

Auton Agent Multi-Agent Syst (2011) 23:193–223 203

Response relation Weak response relation(a) (b)

Fig. 3 Integrating process-oriented and goal-directed dimensions in B-Tropos

mandatory (B has to be performed because of the AND-decomposition of A, hence D is also

expected after B). This situation should be avoided. To this end, we have introduced weak

relation connections that relax relation connections. Their intended meaning is: whenever

both the source and the target happen, the target must satisfy the connection semantics and

the corresponding restriction. The main difference between relations and weak relations is

that weak relations are always considered a posteriori, that is, after both source and target

have happened. Differently from Fig. 3, in Fig. 3 the response constraint between B and D

should be satisfied only if D is executed.

Finally, B-Tropos permits to constrain non-leaf tasks and goals, leading to the possibility

of expressing some process-oriented patterns [47]. For instance, a relation connection whose

source is the completion of a task, which is AND-decomposed, triggers when all subtasks

have been executed. Therefore, the connection resembles the concept of synchronizing merge

on leaf tasks.

To show how B-Tropos models are annotated with process-oriented constraints, we have

extended the requirements model presented in Fig. 1. An excerpt of the extended model is

shown in Fig. 4. Some constraints concern the ordering of activities. For instance, R&D first

provides a solution for the product, then evaluates such a solution, and finally deploys it. It

is evident now that these activities should be executed sequentially. Other constraints aim at

binding the input and output of different activities. For instance, bill of quantities produced

by task calculate bill of quantities is passed in input to task evaluate bill of quantities. The

ordering constraints can also be inter-actor ones. In particular, this happens when there is a

resource dependency between two actors. This is the case, for instance, of Quality Assurance,

which depends on Manufacturing for the product, and of Manufacturing, which depends on

R&D for the production plan. Other extensions have the purpose of better detailing tasks.

For instance, task buy resources from external supplier is associated with the maximum

allowed duration, that is, the time by which the task must be completed.

We remark that building a business process model on top of the requirements model is

a refinement process. Therefore, the designer may need to specify additional information

in order to better characterize the tasks. For instance, to decide if task find resources in

Warehouse has been successfully executed, the designer might introduce a datum (Found in

Fig. 4), which describes whether or not resources have been found in the Warehouse within a

certain time. Based on it, the designer can specify a condition stating when the task succeeds.

In our example, task find resources in Warehouse is successfully executed only if Found

evidence has been produced within a certain time.

3 B-Tropos semantics in SCIFF

In this section we present the SCIFF framework and a mapping of B-Tropos concepts into

SCIFF specifications.

123

204 Auton Agent Multi-Agent Syst (2011) 23:193–223

make
diagnosis by

Manufacturing

determine
cost

determine
deadline

manufacture
product

define

solution
for product

make
product

ensure safety
of product

I={EPPlan}
O={EProduct}

execute
product line

deploy
product

present
product

make
diagnosis

manufacture
product

make
diagnosis

make

by R&D

diagnosis

make
diagnosis by

Manufacturing

present
product

ensure safety
of product

I={TProduct}
O={TQLabel}

test product

provide
solution

evaluate
solution

deploy
solution

determine
deadline

define

for product
solution

make

by R&D

diagnosis

determine

cost

assess
cost

design
solution

O={DBPr}

I={CRList,CBPr}

O={CBill}

calculate bill
of quantities

I={EBill}

evaluate bill
of quantities

{CBill=EBill}

define
production

plan

O={DPPlan}

evaluate
cost

evaluate

available
resources

evaluate

available
resources

buy resources
from Supplier

find resources
in Warehouse

O={Found}

find available
resources

OR

fulfillment:{Found=yes}

[_,20]

AND

AND

{EProduct=TProduct}

[5,50]

[3,10]

AND

AND

AND

AND

AND

{DBPr=CBPr}

AND

{DPPlan=EPPlan}

R&D

Sales

Customer
Care

Assurance
Quality

Warehouse

Manufacturing

Fig. 4 Process-oriented extensions applied on a fragment of Fig. 1

3.1 The SCIFF language and proof-procedures

SCIFF [6] is a formal framework based on abductive logic programming [30], developed

in the context of the SOCS project6 for specifying and verifying interaction protocols in an

open multi-agent setting. SCIFF introduces the concept of event as an atomic observable

and relevant occurrence triggered at execution time. The designer can decide what has to

be considered as an event. For example, in an agent interaction setting, events may denote

exchanged messages (e.g., request (seller, buyer, give(10$))) or performed actions (e.g.,

do(seller, buyer, give(10$))) [4]. This generality allows the designer to decide how to model

the target domain at the desired abstraction level, and to exploit SCIFF for representing any

evolving process where activities are performed and information is exchanged. B-Tropos

events include atoms in the form event (ID, X, Y, P) and delegate(X, Y, A, T) (see below).

We distinguish between the description of an event, and the fact that an event has hap-

pened. Happened events are represented as atoms H(Ev, T), where Ev is a term and T is time

instant representing the discrete time point at which the event happened. The time domain is

6 SOcieties of heterogeneous ComputeeS, EU-IST-2001-32530—http://lia.deis.unibo.it/research/SOCS/.

123

http://lia.deis.unibo.it/research/SOCS/

Auton Agent Multi-Agent Syst (2011) 23:193–223 205

not fixed, but depends on the chosen underlying CLP solver (see below). Currently, SCIFF

provides supports for integers and reals, to model both discrete and continuous time.

The set of all the events happened during a protocol execution constitutes its log, or execu-

tion trace. Moreover, the SCIFF language supports the concept of expectation as first-class

object, thus helping the user think of an evolving process in terms of reactive rules of the

form “if A happened, then B is expected to happen”. Expectations about events are denoted

by E(Ev, T) where Ev and T are atoms and may contain variables.

Social Integrity Constraints. The binding between happened events and expectations is

given by means of Social Integrity Constraints (IC). These are forward rules, of the form

Body → Head . Constraint Logic Programming (CLP) constraints and Prolog predicates

can be used to impose relations or restrictions on any of the variables (e.g., on time, by

expressing orderings or deadlines). A sample IC is the following:

H(event (compl, r&d, calc_bill, [C Bill]), T f)

→ E(event (start, r&d, eval_bill, [E Bill]), Ti)

∧T f < Ti ∧ E Bill = C Bill.

which intuitively means that if an event occurs which completes a calculate bill of quanti-

ties task, then an event is expected to occur, which starts an evaluate bill of quantities task,

given some temporal (CLP) constraints, and such that the product (C Bill) of the former is

equal to the input of the latter (E Bill). The whole set of IC is denoted by IC.

In SCIFF, the quantification of variables is left implicit. We recall here the essential quan-

tification and scope rules. We forward the reader interested in their complete description to

[6].

• Variables contained in an IC body (i.e., in happened events or Prolog predicates intro-

duced in the body) are universally quantified with scope the entire rule. Indeed, the rule

fires each time a set of concrete happened events occur s.t. the body of the rule evaluates

to true.

• Variables contained in a positive expectation are existentially quantified with scope the

IC head conjunct. Indeed, a positive expectation states that at least one corresponding

matching event must occur during the execution.

• Variables contained (only) in a negative expectation are universally quantified with scope

the IC head conjunct. Indeed, a negative expectation states that there must not exist a

corresponding matching event during the execution.

In the example above, C Bill and T f are universally quantified with scope the entire rule,

while E Bill and Ti are existentially quantified with scope the head.

IC allows the designer to defnine how an interaction should evolve, given some previous

situation encoded by a set of happened events. The static knowledge of the target domain

is instead formalized inside the SCIFF Knowledge Base (KB), which consists of clauses or

backward rules. Here we find pieces of knowledge of the interaction model as well as the

global organizational goal and/or objectives of single participants.

A sample rule is

achieve(r&d, eval_costs, Ti , T f , I, O) ← execute(r&d, assess_costs, Ti , T f , I, O).

which defnines a goal achievement in terms of a task execution. This knowledge is ex-

pressed in the form of clauses (i.e., a Prolog logic program). Here, quantification follows the

standard Prolog conventions. As advocated in [21], this vision reconciles in a unique frame-

work forward reactive reasoning with backward, goal-oriented deliberative reasoning.

123

206 Auton Agent Multi-Agent Syst (2011) 23:193–223

SCIFF semantics. In SCIFF, an interaction model is interpreted in terms of an Abduc-

tive Logic Program (ALP) [30]. In general, an ALP is a triple 〈P, A, IC〉, where P is a

logic program, A is a set of predicates named abducibles, and IC is a set of ICs. In simple

terms, the role of P is to defnine predicates, the role of A is to fill in the parts of P that

are unknown, and the role of IC is to constrain the way elements of A are hypothesized,

or “abduced”. Reasoning in ALP is usually goal-directed, and it amounts to finding a set of

abduced hypotheses � built from predicates in A such that P ∪ � | G (where G is a

goal) and P ∪ � | IC.

SCIFF-based verification methods. SCIFF is both a formal specification language and

a proof-procedure. The main usage of the latter is for run-time conformance verification.

The idea is to adopt abduction to dynamically generate the expectations and to perform a

conformance checking between expectations and happened events, to ensure that they are

following the interaction model. The SCIFF proof-procedure makes hypotheses about how

participants should behave, thus expectations are defnined as abducibles. Conformance is

verified by trying to confirm the expectations. A concrete running interaction is evaluated as

conformant if it fulfills the specification. The SCIFF proof-procedure is defnined as a tran-

sition system, and it is sound and complete with respect to its declarative semantics [6]. It is

implemented and publicly available.7 It is embedded inside SOCS-SI [4], a JAVA-based tool

capable of parsing different event sources (or execution traces) and verifying, at run-time or

in batch mode, if such events conform with a given SCIFF specification.

The same SCIFF language can also be used as a basis for static verification. In particular,

domain-dependent properties can be verified in contexts such as agent interaction protocols

[5] and business process specifications [40], starting from SCIFF specifications and using g-

SCIFF, i.e., the generative extension of the SCIFF proof-procedure. In a nutshell, g-SCIFF

considers the desired property as the initial goal, and checks, for each expectations, if it

already has a matching happened event. If that is not the case, it “hypothesizes” such an

event. Hence, g-SCIFF operates by simulating a sequence of intensional happened events

which fulfill the expectations. It does so via a rule E(X, T) → H(X, T), which incurs the

automatic generation of a corresponding happened event for each positive expectation. Sim-

ulated events are intensional in the sense that they are partially specified (i.e., they could

contain variables). Thus the output of g-SCIFF is an execution schema. If the given property

can be actually satisfied, g-SCIFF also returns as a proof a partially specified execution trace

capable of fulfilling both IC and the property. As well as SCIFF, also g-SCIFF is imple-

mented and publicly distributed via the SCIFF Web site. Empirical evidence shows that in

the domain addressed by this work g-SCIFF greatly outperforms state-of-the-art verification

tools [40].

3.2 Mapping B-Tropos concepts into the SCIFF framework

The goal-oriented part of a B-Tropos model represents the static knowledge of the application

domain. As such, it is modeled in the SCIFF KB by Prolog clauses. Table 2 summarizes the

formalization of this part.

Goal achievement and task execution. The achievement of a goal and the execution of

a task are modeled in SCIFF using the 6-ary predicates achieve and execute. Intuitively,

achieve(X, G, Ti , T f , I, O) is true if actor X achieves goal G with input I inside the time

interval [Ti , T f], producing the output O . execute(X, A, Ti , T f , I, O) holds if actor X starts

7 See the SCIFF Web site: http://lia.deis.unibo.it/research/sciff/.

123

http://lia.deis.unibo.it/research/sciff/

Auton Agent Multi-Agent Syst (2011) 23:193–223 207

Table 2 Mapping of the goal-oriented proactive part of B-Tropos in SCIFF

to execute task A with input I at time Ti (start time), and completes the execution of A at

time T f (completion time), producing the output O .

Therefore, parameters I and O represent the resource, respectively, needed and produced

by a task execution or goal achievement. Start and completion times should satisfy both

duration and absolute time constraints possibly associated to the goal/task.8

Execution times and I/O resources depend on how the goal/task is specified in the

B-Tropos model. When the task is a leaf task with associated duration D, pre-condition ac1

and post-condition ac2 (second row of Table 2), then it represents a concrete course of actions

that must be executed by its responsible agent X . The concrete execution is in turn modeled in

8 Note that the satisfaction of the duration constraint implicitly imposes an ordering between the start and the
completion of the task

123

208 Auton Agent Multi-Agent Syst (2011) 23:193–223

terms of the execution of the tasks’s start and completion atomic events. These two events are

represented using literals of the form event (Ev, X, A, R) where Ev ∈ {start, compl}, A

is the task that has generated the event, X is the actor who has executed the task, and R is

a list of resources. The fact that actor X executes the leaf task is then modeled as a pair of

expectations concerning these two atomic events, bounding the input/output resource and the

start/completion time of the task to the resource and expected time of the start/completion

event.

Reasoning from partial specifications. The case of a leaf goal has a different meaning.

It reflects the case in which the model must be left partially unspecified, either because the

designer may prefer to keep the model at an abstract level, or because she has incomplete

knowledge about the domain. In this situation, goals can be neither refined nor associated to

tasks nor delegated. Abduction enables us to handle lack of information by reasoning on goal

achievement in a hypothetical way. To this end, we introduced a new abducible, achieved, to

indicate our hypothesis that the actor has reached the goal inside the expected time interval

and the expected I/O resources. An example of this is Table 2’s first row.

AND/OR decomposition. Composite tasks and goals are instead formalized by (recur-

sively) linking a super-goal/task with its underlying components, according to the semantics

of the employed decomposition (AND vs OR). “Linking” means that the start and completion

times as well as the resources of the composite task are defnined in terms of the execution

times and resources of the components.

In particular, the formalization of the B-Tropos AND-decomposition relation by SCIFF

rules is done according to the following schema:

• an AND-decomposed goal/task is achieved/executed if all its underlying components are

achieved/ executed;

• the resources involved in an AND-decomposed goal/task are determined by considering

all the resources consumed and produced by the sub-goals/tasks;

• the starting time of an AND-decomposed goal/task is determined by the time at which

the first sub-goal/task is achieved/starts to be executed;

• the completion time of an AND-decomposed goal/task is determined by the time at which

the last sub-goal/task is completed.

Notice that AND-decompositions do not impose any constraint on the order of the

achievement of subgoals (execution of subtasks). Essentially, by defnault AND-subgoals

(AND-subtasks) are executed in parallel. Temporal constraints on the achievement of AND-

subgoals (execution of AND-subtasks) are expressed using process-oriented constraints (see

below).

The formalization of the B-Tropos OR-decomposition relation by SCIFF rules instead

states that an OR-decomposed goal/task is achieved/executed if one of its underlying com-

ponents is achieved/executed; start/completion times and resources of the goal/task are bound

to the times and resources of such a sub-goal/task.

Means-end relation. The means-end relation sets the link between the concept of goal

achievement and task execution: the goal is achieved during a certain interval and with cer-

tain involved resources if its underlying task is executed within that interval and by exploiting

those resources.

Goal-task dependency. By goal and task dependencies (last two rows of Table 2), we intro-

duce an expectation: that the depender will communicate to the dependee that the goal must be

achieved before a certain deadline. To this end, we use a special event, delegate(X, Y, G, T),

to indicate the delegation of the achievement of goal G from actor X to actor Y . Moreover,

123

Auton Agent Multi-Agent Syst (2011) 23:193–223 209

the formalization considers the latest time T when the goal should be achieved. A delegation

is observable and so it has a corresponding event in the execution trace.

Composite events. The reactive part of B-Tropos completes the formalization by encom-

passing process-oriented constraints as it illustrated by Table 3. As we mentioned above,

the framework also permits to constrain non-leaf tasks and goals. However, only start and

completion events of leaf tasks are considered to be observable events. To address this issue,

we have introduced the intensional predicate hap to represent the happening of (possibly)

composite events.

More specifically, a leaf task starts/completes only if there is evidence of it, i.e., a corre-

sponding happened event is observable in the system. This is formalized by Table 3’s first

row: for leaf tasks, the hap predicate is defnined directly in terms of H. All other rows,

which do not refer to leaf tasks, denote happening of composite event, recursively referring

to the happening of the underlying events. In particular, the representation of composite

events through AND/OR decompositions strictly resembles the one of the achieve/execute

predicates used for representing goal achievement and task execution:

• for leaf goals which have a means-end task, their start/completion happens when such a

task is started/completed (first row);

• the start/completion of an AND-decomposed task happens when its first/last (sub)task is

started/ completed (second and fourth row);

• the start/completion of an OR-decomposed task happens when one of its (sub)tasks

start/completion happens (third and fifth row);

• the start/completion of a delegated goal/task happen when the delegation is performed

(sixth row).

The defninition of happened events through the hap predicate accommodates SCIFF rules in

which composite events are treated as if they were simple events (i.e., a composite event too

can “happen”). SCIFF will employ the specific defninition of the hap predicates contained

in the rule to unfold it, finally obtaining a set of rules which employ only H predicates related

to leaf tasks (see the example below).

Note that ordering between the start and completion of composite task is guaranteed by

the ordering imposed over the atomic events of start and completion of their underlying leaf

task. The ordering on leaf task events is explicitly imposed by the corresponding SCIFF

formalization (see Table 2).

Process-oriented constraints. Process-oriented constraints are inspired by DecSer-

Flow/ConDec template formulas, for which a complete mapping to SCIFF has been defnined

in [39]. They are reported here in the bottom half of Table 3. Connections belonging to the

same family (i.e., relations, weak relations, and negations) are translated to very similar sets

of ICs. They mainly differ in the way they constrain time. Take for example the first block

of three rows, representing the relation connections. They all relate the (possibly composite)

happening of the source with the execution/achievement of the target task/goal. However,

while responded presence does not state any temporal constraint on the involved execution

times, response/precedence impose that the target execution time should be greater/lower

than the source one.

Let us briefly review the formalization of reactive relationships in more detail. A relation

connection states that when the source event occurs s.t. the attached condition is satisfied,

then the target task is expected to occur, satisfying the corresponding condition. In the context

of B-Tropos the occurring of a (possibly composite) event is represented by its happening

(denoted by the hap predicate applied on the event), while the expectation of its occurrence

is modeled by way of task execution (denoted by the execute predicate). Time constraints

123

210 Auton Agent Multi-Agent Syst (2011) 23:193–223

Table 3 Mapping of the reactive process-oriented part of B-Tropos in SCIFF

123

Auton Agent Multi-Agent Syst (2011) 23:193–223 211

can be expressed by CLP constraints over the involved times, i.e., the execution time related

to the source event and the start or completion time related to the target task (depending on

the relation).

Differently from relation connections, weak relations do not impose any expectation

about the execution of a certain task, but they impose instead some data-related and/or tem-

poral conditions only when the involved events have already occurred. Therefore, they are

represented by a rule containing the occurrence of both the source and the target events in

the body (i.e., the rule fires only when the two events happen), and containing the involved

data-related and/or temporal conditions in the head (i.e., if the rule fires then such conditions

must be satisfied).

Finally, negation connections have the form body → ⊥, meaning that the execution is

considered incorrect if body becomes true. Body is used to express the situation that must be

avoided. For example, the negation response constraint shown in Table 3 states that when the

source event happens s.t. condition c holds, then the target event making r true is forbidden

afterwards. Such a constraint is reformulated in SCIFF by stating that an execution in which

the two events occur in “ascending” order, making conditions c and r true, must be avoided.

The Product Development Process B-Tropos model in SCIFF. Table 4 shows the SCIFF

formalization of the bottom-left fragment of the B-Tropos diagram presented in Fig. 4.

In particular, K Br&d maps R&D’s evaluate solution goal, K Bwh maps the entire Ware-

house’s content, plus a delegation from Warehouse to Purchase shown in Fig. 1, and finally

I Csr&d maps the responded presence relation between R&D’s calculate bill of quantities

and evaluate bill of quantities tasks.

To clarify on the example how the SCIFF formalization of reactive constraints works,

let us now briefly describe how the reactive rule contained in Table 4 is implicitly rewritten

(technically, unfolded [6]) by the SCIFF or g-SCIFF proof procedure during the verification.

As we have previously pointed out, variables contained in the body of a rule are universally

quantified with scope the entire rule, and the rule will trigger in any possible situation mak-

ing the rule true. The practical impact of this intuitive notion is that the body of the rule in

Table 4 is unfolded by the proof procedure considering all the possible defninitions of the

hap predicate contained in the body.9

In the example, the calc_bill completion is an event attached to a leaf task, and it is

therefore directly represented by means of a corresponding SCIFF happened event (H). The

unfolding of the reactive rule contained in Table 4 would therefore lead to obtain the following

rule:

H(event (compl, r&d, calc_bill, [C Bill]), T)

→ execute(r&d, eval_bill, Ti , T f , [E Bill], [])

∧Ti > T ∧ E Bill = C Bill.

Let us now suppose to modify the B-Tropos model under study as follows: the calculate bill

of quantities is now defnined by means of an OR-decomposition, which reduces it either

to the manual calculation or automatic calculation leaf tasks, associated to the same I/O

resources. In that case, the hap(event (compl, r&d, calc_bill, [C Bill]), T) would be defn-

ined in terms of the completion of the manual calculation task or the completion of the

automatic calculation task:

9 In particular, the unfolding step will lead to obtain a set of replicated rule, each one considering a possible
defninition of the predicate.

123

212 Auton Agent Multi-Agent Syst (2011) 23:193–223

Table 4 SCIFF specification of a fragment of the B-Tropos model shown in Fig. 4; for the sake of simplicity,
the defninition of the hap predicates is not presented

K Br&d :

achieve(r&d, eval_solution, Ti , T f , I, O) ← achieve(r&d, eval_costs, Ti1, T f 1, I1, O1),

achieve(r&d, eval_resources, Ti2, T f 2, I2, O2),

min(Ti , [Ti1, Ti2]), max(T f , [T f 1, T f 2]),

I = I1 ∪ I2, O = O1 ∪ O2.

achieve(r&d, eval_costs, Ti , T f , I, O) ← execute(r&d, assess_costs, Ti , T f , I, O).

execute(r&d, assess_costs, Ti , T f , I, O) ← execute(r&d, calc_bill, Ti1, T f 1, I1, O1),

execute(r&d, eval_bill, Ti2, T f 2, I2, O2),

min(Ti , [Ti1, Ti2]), max(T f , [T f 1, T f 2]),

I = I1 ∪ I2, O = O1 ∪ O2.

execute(r&d, calc_bill, Ti , T f ,

[C RList, C B Pr], [C Bill]) ← E(event (start, r&d, calc_bill, [C RList, C B Pr]), Ti),
E(event (compl, r&d, calc_bill, [C Bill]), T f), T f > Ti .

execute(r&d, eval_bill, Ti , T f , [E Bill], []) ← E(event (start, r&d, eval_bill, [E Bill]), Ti),

E(event (compl, r&d, eval_bill, []), T f), T f > Ti .

achieve(r&d, eval_resources, Ti , T f , I, O) ← E(delegate(r&d, wh, eval_resources, T f), Td),

achieve(wh, eval_resources, Td , T f , I, O),

Td > Ti , Ti < T f .

K Bwh :

achieve(wh, eval_resources, Ti , T f , I, O) ← execute(wh, f ind_resources, Ti , T f , I, O).

execute(wh, f ind_resources, Ti , T f , I, O) ← execute(wh, f ind_in_wh, Ti , T f , I, O).

execute(wh, f ind_resources, Ti , T f , I, O) ← execute(wh, buy, Ti , T f , I, O).

execute(wh, f ind_in_wh, Ti , T f , [], [Found]) ← E(event (start, wh, f ind_in_wh, []), Ti),

E(event (compl, wh, f ind_in_wh, [Found]), T f),

T f ≥ Ti , Found = yes.

execute(wh, buy, Ti , T f , [], []) ← E(event (start, wh, buy, []), Ti),

E(event (compl, wh, buy, []), T f), T f > Ti , T f ≤ Ti + 20.

execute(wh, buy, Ti , T f) ← E(delegate(wh, purchase, buy, T f), Td), Td > Ti .

I Csr&d :

hap(event (compl, r&d, calc_bill, [C Bill]), T) → execute(r&d, eval_bill, Ti , T f , [E Bill], [])

∧Ti > T ∧ E Bill = C Bill.

hap(event (compl, r&d, calc_bill, [C Bill]), T)

← hap(event (compl, r&d, manual_calc, [C Bill]), T).

hap(event (compl, r&d, calc_bill, [C Bill]), T)

← hap(event (compl, r&d, auto_calc, [C Bill]), T).

The reactive rule of Table 4 would then be unfolded in two different ways, leading to the

following rules:

H(event (compl, r&d, manual_calc, [C Bill]), T)

→ execute(r&d, eval_bill, Ti , T f , [E Bill], [])

∧Ti > T ∧ E Bill = C Bill.

H(event (compl, r&d, auto_calc, [C Bill]), T)

→ execute(r&d, eval_bill, Ti , T f , [E Bill], [])

∧Ti > T ∧ E Bill = C Bill.

123

Auton Agent Multi-Agent Syst (2011) 23:193–223 213

Similarly to what has been presented for the unfolding of the body, the execute predicate

will be unfolded when the body of the rule evaluates to true. The unfolding of predicates in

the head is however different: the presence of multiple defninitions of a predicate (modeling

design alternatives, such as OR-decompositions) leads to introducing a disjunction of heads

(each one considering a possible defninition of the predicate) in the same rule. This is to

express that there exist different ways to make the “original” head true.

4 Formal properties

Tables 2 and 3 defnine the semantics of B-Tropos constructs. Those tables represent a com-

plete mapping, in the sense that no additional specifications are needed, other than those

obtained automatically by following the table to fully specify a B-Tropos model. Besides,

they show that B-Tropos is a conservative extension of Tropos. In fact, all constraints would

be trivially verified if the B-Tropos model was projected into its corresponding Tropos model.

The translation of B-Tropos to a computational logic-based framework, equipped with a

clear declarative semantics, allows us to identify and address important formal properties,

namely soundness, completeness and termination.

We briefly recall the main theoretical results investigated in the general case, and then

show how they apply in the specific context of B-Tropos.

The properties of soundness, completeness and termination of the SCIFF proof procedure

were studied in [6], where they were proven for acyclic knowledge bases and bounded goals

and implications. In [3,38], these properties have been extended to g-SCIFF by imposing

the acyclicity conditions on the KB and the IC, by taking into account the rule E(X, T) →

H(X, T) as well.

The notion of acyclicity of an abductive logic program is an extension of the correspond-

ing notion given for SLD resolution. Intuitively, for SLD resolution a level mapping must be

defnined, such that the head of each clause has a higher level than the body (in this case, the

logic program under analysis is said to be acyclic). For the sake of clarity, we report here the

defninition of level mapping given in [50]:

Definition 4.1 (Level Mapping) Given a logic program P , a level mapping || is a function

that maps all ground atoms in the Herbrand base of P (BP) to N
+ (the set of positive natural

numbers), and f alse to 0. Also, || is extended to map a ground negative literal ¬A to |A|

where A ∈ BP .

For SCIFF and g-SCIFF, which contain forward rules (integrity constraints), the level map-

ping should also map atoms in the body of an IC to higher levels than the atoms in the

head [50]. In our specific case, we impose some reasonable restrictions on the structure of

a B-Tropos model by defnining the class of B-acyclic models. Then, we prove that such

restrictions are sufficient to guarantee termination of both SCIFF and g-SCIFF proof-proce-

dures when they are used to execute verification tasks on SCIFF specifications derived from

B-Tropos models.

Definition 4.2 (B-acyclic B-Tropos model) A B-Tropos model is B-acyclic iff it satisfies the

following conditions:

1. the goal/task models (see Sect. 2.1) are acyclic graphs;

2. there does not exist a cyclic chain of dependencies for the same goal/task;

3. there does not exist a cyclic chain of reactive constraints;

123

214 Auton Agent Multi-Agent Syst (2011) 23:193–223

4. fulfillment conditions and data constraints do not contain any goal achievement, task

execution, or H/E atoms.

These conditions do not significantly limit the expressiveness of the language. The first con-

dition, which also hold in the original Tropos, states that it is not possible to reduce a sub-goal

(sub-task) in terms of one of its super-goals (super-tasks); the presence of this kind of loop

would lead to an infinite decomposition. The violation of the second corresponds to an error

in the model, because it is not acceptable that an agent, even indirectly, receives a delega-

tion from itself: the delegation process would be indefninitely re-iterated and the delegated

goal/task would never be achieved/executed. A similar motivation lies behind the necessity

of avoiding cycles through reactive connections; the presence of a cycle would imply that

the task execution will never reach an end, which contrasts with the intuitive fact that agents

must be able to achieve their goals in finite time, i.e., by executing a finite process. Finally,

the last condition ensures that data constraints effectively work on data, and do not involve

the execution of further events. Notice that “cycles” including different types of relations are

allowed in the framework. For instance, a model in which an actor, A, depends on another

actor, B, for the achievement of a goal G, and B depends on A for the achievement of a

subgoal of G, is B-acyclic.

Theorem 4.3 (B-acyclicity of B-Tropos implies acyclicity of the underlying SCIFF speci-

fication) The SCIFF formalization of a B-acyclic B-Tropos model is acyclic (in spite of the

additional “generative” rule E(X, T) → H(X, T)).

Proof (Sketch) To guarantee termination of a SCIFF program corresponding to a B-Tropos

model, we have to find a level mapping for the specification, which satisfies all acyclicity

conditions for abductive logic programs. To this aim, we first map the atoms that express ful-

fillment conditions and data constraints as well as the achieved abducible and the happening

of a delegation to the level 0. The fourth hypotheses of B-acyclic models ensures that fulfill-

ment conditions and data constraints have no relationships with other parts of the program, and

therefore data constraints respect acyclicity. Moreover, achieved and H(delegate(. . .), _)

do not occur in the body of any IC, and therefore they could be directly associated to specific

values in the level mapping.

For other (ground) atoms, namely achievement/execution/composite happenings as well

as expectations and happenings of start/completion events, we build a “level mapping graph”

whose nodes are associated to such atoms and whose edges express the acyclicity conditions

associated to each of the rules shown in Tables 2 and 3. The intended meaning of an edge is

that the level mapping of the (ground atom attached to the) source should be greater than the

level mapping of the (one of the) target.

An intuitive description of how the edges are inferred from the rules in Tables 2 and 3 is

as follows:

• if a goal/task is a child of another goal/task w.r.t. AND/OR decomposition,

add an edge from the node which maps the achievement/execution (composite start/com-

pletion) of the latter to the one which maps the achievement/execution (composite

start/completion, respectively) of the former;10

• if a task is means-end of a goal, add an edge from the node which maps the achievement

(composite start/completion) of the latter to the one which maps the execution (composite

start/completion, respectively) of the former;

10 If we consider the example illustrated in Fig. 5, this step would amount to adding four edges: two from t1
start to t2 and t3 start, two from t1 completion to t2 and t3 completion. Such edges are visible in the central
area of the figure. Other steps below are also illustrated in Fig. 5 but we omit their description in the text for
the sake of brevity.

123

Auton Agent Multi-Agent Syst (2011) 23:193–223 215

• for each node mapping the execution of a leaf task, add an outgoing edge to connect it

with the expectations about its start/completion (see the leaf task rule);

• for each node mapping the composite happening of a leaf task, add an outgoing edge to

connect it with the happenings of its start/completion (see the leaf (observable) events

rules, Table 2);

• for each node mapping the execution/achievement of a delegated task/goal, add an outgo-

ing edge to connect it with the expectation about its delegation and another outgoing edge

to connect it with the node which maps the execution/achievement of the corresponding

delegatee’s task/goal;

• for each node mapping the composite start/completion of a delegated task/goal, add an

outgoing edge to connect it with the node which maps start/completion happening of the

corresponding delegatee’s task/goal;

• for each node mapping the happening of a delegation, add an outgoing edge to connect

it with the corresponding achievement (see the reaction to delegation rule);

• for each reactive connection, add an edge from the set of nodes representing the composite

start/ completion of the leaf tasks which descends from the connection source (following

the AND/OR decomposition) to the node which maps the execution of the connection

target. Note that this rule suffices to realize the acyclicity conditions in the case of ICs

[50], due to the already existing edges derived from the AND/OR decomposition of both

connection source and target.

Such rules are sufficient to express all the acyclicity conditions requested by SCIFF to

ensure termination. To guarantee the termination of g-SCIFF, we should also add the fol-

lowing rule:

• add an edge from the node which maps an expectation to the node which maps the

corresponding happened event.

The constructed graph resembles the structure of a B-Tropos model. This is not surprising,

since the SCIFF mapping expresses in a natural way the corresponding model. By exploiting

this similarity, it is easy to show that the B-acyclicity conditions imposed on the B-Tropos

model guarantee that the obtained graph is acyclic:

• Conditions 1 and 2 of Definition 4.2 avoids loops between nodes containing exe-

cute/achieve atoms;

• Condition 3 of Definition 4.2 avoids loops between nodes containing H/E atoms;

• Condition 4 of Definition 4.2 avoids loops between execute/achieve and H/E atoms.

Note, that to guarantee the termination of SCIFF, only conditions 1, 2 and 4 of Definition 4.2

are needed, whereas the termination of g-SCIFF also requires condition 3, because relating

event expectations with event occurrences leads to relating, for each element, its incoming

reactive connections with the outgoing ones.

Since the obtained graph is acyclic, a partial ordering among nodes can be found so that a

suitable level mapping can be defnined. More specifically, let us consider the following node

numbering function:

num(v) =

{

1 if v is a sink node

1 + max{num(v′) s.t. vv′ is an edge} otherwise

By defnining the level mapping of each atom contained in the level mapping graph to the

value of the num function applied on the corresponding node, all the acyclicity conditions

represented in the graph are satisfied by construction. Being 1 the minimum number assigned

123

216 Auton Agent Multi-Agent Syst (2011) 23:193–223

Fig. 5 A simple B-Tropos model together with its corresponding level mapping graph (annotated with a
suitable level mapping). Fat edges denote the extended conditions for g-SCIFF

by the num function, all the acyclicity conditions between atoms which are represented in

the graph and atoms mapped to the level 0 are preserved. Figure 5 shows an example of

B-Tropos model together with its corresponding level mapping graph. Its bubbles contain

elements of the SCIFF formalization given in Table 5. ⊓⊔

Theorem 4.4 (Soundness, completeness and termination) The SCIFF and g-SCIFF proof

procedures are sound and complete and always terminate their computations when reasoning

on specifications obtained by mapping B-acyclic B-Tropos models.

Proof (Sketch) Soundness and completeness results are inherited from the soundness and

completeness of SCIFF and g-SCIFF (see [3,6,38]). Note that it is possible to inherit these

results thanks to the declarative nature of the SCIFF framework. Termination for SCIFF is

guaranteed if specifications are acyclic. Termination for g-SCIFF is guaranteed if specifica-

tions, augmented with the generative rule (see Sect. 3.1), are acyclic. Thanks to Theorem 4.3,

both conditions are fulfilled by B-acyclic B-Tropos models. ⊓⊔

All these formal properties are guaranteed for B-acyclic B-Tropos models. Therefore, to

ensure that an arbitrary B-Tropos model is correctly handled by the proof procedures, a pre-

processing step is needed so as to identify whether the model is effectively B-acyclic or not;

in the positive case, the model can be translated to SCIFF and verified by exploiting the proof

procedures, otherwise the presence of an error can be directly reported to the user.

The characterization of such a pre-processing step is out of the scope of the paper. How-

ever, one possibility would be to translate the B-Tropos model to a graph, thus reducing a

B-acyclicity identification to a loop detection problem.

123

Auton Agent Multi-Agent Syst (2011) 23:193–223 217

Table 5 SCIFF formalization of the Tropos model shown in Fig. 5

achieve(b, g1, Ti , T f , I, O) ← execute(b, t1, Ti , T f , I, O).

achieve(a, g1, Ti , T f , I, O) ← E(delegate(a, b, g1, T f), Td), Td >

Ti , Td < T f , achieve(b, g1, Td , T f , I, O).

execute(b, t2, Ti , T f , I, O) ← E(event (start, b, t2, I), Ti), E(event (compl, b, t2, O), T f).

execute(b, t3, Ti , T f , I, O) ← E(event (start, b, t3, I), Ti), E(event (compl, b, t3, O), T f).

execute(b, t1, Ti , T f , I, O) ← execute(b, t2, Ti2, T f 2, I2, O2), execute(b, t3, Ti3, T f 3, I3, O3),

Ti = min{Ti2, Ti3}, T f = max{T f 2, T f 3}, I = I1 ∪ I2, O = O1 ∪ O3.

hap(event (Ev, b, t2, R), T) ← H(event (Ev, b, t2, R), T).

hap(event (Ev, b, t3, R), T) ← H(event (Ev, b, t3, R), T).

hap(event (start, b, t1, I), T) ← hap(event (start, b, t2, I2), T2), hap(event (start, b, t3, I3), T3),

T = min{T2, T3}, I = I2 ∪ I3.

hap(event (compl, b, t1, O), T) ← hap(event (compl, b, t2, O2), T2), hap(event (compl, b, t3, O3), T3),

T = max{T2, T3}, O = O2 ∪ O3.

hap(event (Ev, b, t2, R1), T) → execute(b, t3, Ti , T f , I, O) ∧ Ti > T .

5 Conformance and property verification

By Theorem 4.3, a query consisting of the conjunction of subsets of top-level goals of a

B-acyclic B-Tropos model always results in a terminating SCIFF and g-SCIFF derivation.

This result ensures that property and conformance verification can be performed in a finite

number of steps.

As we mentioned above, the SCIFF proof-procedure can be used to address conformance

verification [6]. This analysis is twofold. On one side, it can be used to verify that the actual

system implementation is compliant with the requirements model. On the other side, it is

related to the auditing measures adopted by an information system for monitoring the activ-

ities performed by actors within the system. Both kinds of analysis share the same idea, that

is, to analyze events produced by the system, which can either be generated by an automated

reasoning tool or a simulator starting from the specifications, or become available at runtime

or via system logs, and compare them with the design of the system. In the first case, we

verify if the system logs can be generated from the requirements model. In second case, the

objective is to verify if stakeholders have achieved their goals without violating process-ori-

ented constraints and to determine (by means of expectations about tasks) the next possible

actions. SCIFF realizes such analysis by checking whether the system execution trace actu-

ally matches the expectations generated by the proof-procedure without violating the ICs.

Expectations are generated starting from the given (conjunction of) goals by unfolding the

corresponding achieve predicates.

Unexpected situations, i.e., run-time behaviors which deviate from the model, lead to

violate a certain generated expectation, either because a positive expectation does not have

a corresponding happened event, or because an event forbidden by a negative expectation

occurs. These violations are detected by SCIFF as soon as they happen. Note that neither

B-Tropos nor the underlying SCIFF formalization contain primitives and mechanisms to

handle such unexpected situations. However, exception handling and compensation mecha-

nisms can be realized in SCIFF by exploiting the (reactive) Event Calculus axiomatization

discussed in [14,15].

The g-SCIFF proof-procedure can be exploited to check whether a given property holds

in the model by generating, in case of a positive answer, a simulated intensional execution

123

218 Auton Agent Multi-Agent Syst (2011) 23:193–223

compliant with the model which satisfies the property. Differently from the SCIFF proof-

procedure, g-SCIFF addresses static verification, to ensure that the model under study is

consistent and that it enjoys certain properties a-priori. Let us spend a few words to discuss

how g-SCIFF relates with other approaches developed by researchers in the formal meth-

ods community. In [40,41] g-SCIFF has been compared with other verification techniques,

namely explicit, symbolic and SAT-based model checkers, showing that it scales better as

the number of constraints grows. As pointed out in [40,41], this behaviour can be explained

by the well known “state-explosion” problem experienced by model checking techniques,

which is especially true if we consider declarative specifications such as the ones of ConDec,

in which the system is not represented as a Kripke structure, but it is itself specified as a set

of declarative logical formulae.

Static verification helps designers to evaluate different design alternatives in terms of sys-

tem performances, resources needed to achieve a goal, etc. A detailed discussion about the

properties that can be expressed in g-SCIFF can be found in [38,41]. Properties can express

many different requirements, such as for example an external regulation or a desirable situa-

tion. In the case of an external regulation, the intended meaning is that the property must be

respected in any possible execution of the system; conversely, the reachability of a certain

situation (which is expressed, in B-Tropos, as a conjunction of goal achievements) holds if

there exists at least a possible execution which leads to that situation.

In the general case, properties quantify over execution traces in two different ways: exis-

tential and universal. A property is existentially entailed by the model under study if at least

one execution trace compliant with the model satisfies the property as well; a property is

instead universally entailed if all the execution traces compliant with the model also entail

the property.

g-SCIFF provides support for verifying properties which quantify over execution traces

in an existential way: based on a query, it tries to generate an (intensional) execution trace

which is compliant with the model under study and, at the same time, lead to the achieve-

ment of the goals in the query, if any. Such an execution trace represents a proof attesting

that the property can be satisfied. Universal properties, i.e., properties that must be satisfied

by any possible execution of the modeled system, can be negated and reduced to existential

properties.11 If g-SCIFF founds an execution trace entailing the negated property, then such

an execution trace can be interpreted as a counter-example which disproves the entailment.

For example, a “never claim”, that is, a property stating that a certain situation will never

hold in any execution of the system, is expressed in the opposite way, by searching for an

execution in which such a situation holds; if g-SCIFF finds an execution trace which entails

such a negated property, then the trace can be considered as a counter-example attesting that

the never claim is not satisfied.

In the context of B-Tropos, if the property is given in terms of the root goals of the whole

B-Tropos model, then g-SCIFF verifies if there exists at least one execution trace that satisfies

the entire requirements model, together with process-oriented constraints. For example, by

considering the B-Tropos model in Fig. 4, a general and simple query is

← achieve(man, ensure_sa f ety_of _products, _, _, _, _),

achieve(cust_care, deploy_product, _, _, _, _).

It is possible to verify more sophisticated properties by constraining data and time vari-

ables in the query. For instance, one can verify if a stakeholder achieves its goals within a

11 In the general case, the reduction must be manually executed by the modeler. However, the reduction can
often be automatized for fragments of the language [38].

123

Auton Agent Multi-Agent Syst (2011) 23:193–223 219

Table 6 Execution trace generated by SCIFF

min(0, [Tscb, Tser]), T f < 50, max(T f , [Tceb, Tcer]),

H(event (start, r&d, calc_bill, [Blueprint, Res_cost]), Tscb),

H(event (compl, r&d, calc_bill, [Bill]), Tccb), Tccb > Tscb, Tccb < Tseb,

H(event (start, r&d, eval_bill, [Bill]), Tseb),

H(event (compl, r&d, eval_bill, []), Tceb), Tceb > Tseb,

H(delegate(r&d, wh, eval_resources, Tcer), Tser),

H(event (start, wh, f ind_resources, []), Ts f r), Ts f r > Tser ,

H(event (compl, wh, f ind_resources, [yes]), Tcer), Tcer > Ts f r .

certain maximum execution time. To concretely show the verification of this property, we

have analyzed the fragment of the B-Tropos model formalized in Table 4. Here, the problem

is to ensure that R&D can evaluate the solution for the product in at most 50 time units (in

fact, even less). Such a property is formalized as

← achieve(r&d, evaluate_solution, 0, T f), T f > 0, T f < 50.

Table 6 shows the intensional execution trace generated by g-SCIFF, which proves for-

mally that R&D can indeed achieve its goal within 50 time units. If we assume discrete,

integer time, a possible labeling of time variables is the following: Tscb = Tser = 0, Tccb =

Ts f r = 1, Tseb = Tcer = 0, Tceb = T f = 3. Indeed, if we further specify the model by

associating minimum duration constraints with leaf tasks, the result may change. If we con-

tinue the analysis by asking for another solution, g-SCIFF generates a second execution trace

where the upper-level task find available resources is performed by executing task buy

resources from an external supplier instead of task find resources in warehouse.

Other interesting properties could exploit the negative expectations of the SCIFF language.

For example, we could augment the property discussed so far by adding an EN conjunct stat-

ing that a certain task cannot be executed. The fact that g-SCIFF finds an execution trace

attests that the top-level goals of the agents can be achieved avoiding the execution of such

a task.

6 Related work

There exist many agent-oriented software engineering methodologies in the market. Their

comparison is out of the scope of this paper. The interested reader can refer to one of the many

surveys (e.g., [25,49]). In practice, the choice of one methodology over another depends on

the domain specifics, on the focus of design and engineering tasks, and not least on the expe-

rience and background of the designer. The Tropos methodology is particularly well-suited

for early requirements engineering. Augmenting Tropos with an operational framework and

with tools for handling process-level concepts is useful to get a better idea of a possible

future system at the early engineering phases, which is a missing element of other related

proposals. The translation of B-Tropos models to SCIFF specifications follows a fully-auto-

mated, push-button procedure, which implements the mapping shown in Sect. 3. This makes

B-Tropos and its verification features accessible to the non-IT-savvy, because most of the

engineering work is essentially done using a graphical tool.

123

220 Auton Agent Multi-Agent Syst (2011) 23:193–223

Requirements engineering for business processes is emerging in the last years, spurred by

the realization that the business process obtained from business requirements shall be consis-

tent with the requirements and the goals it aims to achieve [31]. Bleistein et al. [8] proposed

a requirements engineering framework based on problem frames [26], goal modeling [34],

and role activity diagrams [42] to incorporate a business strategy dimension in requirements

analysis. De la Vara Gonzáles et al. [18] proposed an approach to align business processes and

system requirements. Here, business strategies are used to drive both organizational design

choices and the design of the IT infrastructure that supports them. Business processes are

modeled using BPMN on the basis of the business infrastructure, and then used to derive

and analyze business goals, which are in turn used to elicit system requirements. Loucopo-

ulos [35] defnined the S3 framework, a requirements engineering modeling framework, in

which business processes are modeled along three orthogonal dimensions, namely strategy-

oriented process modeling, which addresses the “why”, service-oriented process modeling,

which addresses the “what”, and support-oriented process modeling, which addresses the

“how”. However, the S3 framework does not provide formal analysis support in order to

verify the consistency of the different business process representations. Yi and Johannesson

[51] propose a formal approach for representing and reasoning with business goals. In their

approach goals are specified in terms of business rules that defnine what the system should

do and how in different business situations. These rules are specified in a first order many

sorted temporal logic. Logic is very good to provide a precise model of the system behavior,

but very bad at communicating such a model [33] to requirements engineers and stakeholders

that may not have a background in formal methods.

The problem of filling the gap between the defninition of business processes and require-

ments engineering is not new also in the Tropos community. Kazhamiakin et al. [31] used

Tropos to capture the strategic goals of an enterprise. The business process is then defnined

in BPEL4WS on the basis of Tropos concepts extended with formal annotation expressed

in Formal Tropos [22]. Formal Tropos extends Tropos with temporal logic-based annota-

tions that characterize the evolution of a system, describing, for instance, how the network

of relationships evolves over time. The consistency of the requirements model, as well as

business processes, against business requirements and a strategic goal model is verified using

a model-checking technique such as the one implemented in NuSMV. Differently from our

approach, Formal Tropos does not permit to explicitly defnine temporal and data constraints

between tasks. On the contrary, it defnines the partial ordering between tasks through message

exchange using logic formulas. This makes Formal Tropos difficult to be used by non experts.

Frankova et al. [20] proposed a framework for deriving the skeleton of secure business pro-

cesses from early requirements analysis. This framework uses Secure BPEL, a specification

language for secure business process based on BPEL, and provides a mapping between SI*

[36], a requirements modeling framework that extends Tropos with concepts specific to secu-

rity, and Secure BPEL. However, it does not offer any facility for formal analysis. In [10] a

planning approach has been proposed to explore the space of alternatives and determine a

(sub-)optimal plan (a sequence of actions) to achieve the goals of stakeholders. This frame-

work mainly focuses on the analysis and evaluation of design alternatives, rather than the

defninition of business process. As a consequence, the determined plan contains actions,

such as goal decomposition, that are not proper to describe business processes.

The use of computational logic for the flexible specification and rigorous verification of

agent interaction is adopted by many proposals.

A critical review of other works related to SCIFF is given in [6]. For the purposes of

B-Tropos, some essential features of SCIFF which are not to be found in other frameworks

are: its ability to accommodate partially-specified models by way of abduction, and its explicit

123

Auton Agent Multi-Agent Syst (2011) 23:193–223 221

representation of time, which enables specification and reasoning upon expressive temporal

constraints, such as deadlines, not to mention its efficient implementation.

7 Conclusions

In this paper, we have presented an extension of Tropos agent-oriented software engineer-

ing methodology with declarative process-oriented constructs, defnined a complete mapping

into the SCIFF language and discussed its formal properties. Our work goes in the direction

of narrowing the gap between the defninition of business processes and the agent-oriented

analysis of organizational and business requirements. Most importantly, it puts a powerful

tool in the hands of requirements engineers who want to follow an intuitive and flexible

agent-oriented approach, and who are not necessarily familiar with logic formalisms, but

wish nevertheless to benefit from the rigour of state-of-the-art formal verification methods.

To the best of our knowledge, this is the first work that encompasses all these elements. We

provide specification and verification tasks based on a single formal language, SCIFF, and

on a graphical interface to the user, the B-Tropos notation.

This work is still in progress to better support requirements engineers in the modeling and

analysis of business requirements. A limitation of the proposed framework concerns scala-

bility issues. Large B-Tropos models can be complicated and hard to understand. To address

this issue, we are developing a CASE tool able to handle model complexity. The tool will

also provide a front-end with SCIFF for requirements analysis. Ideally, graphical models are

automatically translated into SCIFF specifications that are verified using the SCIFF engine.

The results of the reasoning tool are interpreted by the CASE tool that graphically shows

possible property violations. Future research will also focus on the generation of executable

business process specifications (such as BPEL and BPMN) from B-Tropos models.

Acknowledgements This work has been partially funded by EU SENSORIA and SERENITY projects, by
the MIUR-FIRB TOCAI project, by the MIUR PRIN 2005-011293 project, and by the PAT MOSTRO project.

References

1. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., & Mello, P. (2006). A verifiable logic-based
agent architecture. In Proceedings of the 16th international syposium on methodologies for intelligent

systems. Lecture Notes in Computer Science (Vol. 4203, pp.188–197). Springer.
2. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Montali, M., et al. (2006). Computational

logic for run-time verification of Web services choreographies: Exploiting the SOCS-SI tool. In:
M. Bravetti, M. Núñez, & G. Zavattaro, (Eds.), Proceedings of the 3rd international workshop on Web

services and formal methods, Lecture Notes in Computer Science (Vol. 4184, pp. 58–72). Springer.
3. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., & Torroni, P. (2005). On the automatic

verification of interaction protocols using g-SCIFF. Technical Report DEIS-LIA-04-004, University
of Bologna.

4. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., & Torroni, P. (2006). Compliance
verification of agent interaction: A logic-based software tool. Applied Artificial Intelligence, 20(2–
4), 133–157.

5. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., & Torroni, P. (2006). Security protocols
verification in Abductive Logic Programming: A case study. In: O. Dikenelli, M.-P. Gleizes, & A.
Ricci (Eds.), Proceedings of the 6th international workshop on engineering societies in the agents

world, Lecture Notes in Artificial Intelligence (Vol. 3963, pp. 106–124). Springer.
6. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., & Torroni, P. (2008). Verifiable

agent interaction in abductive logic programming: The SCIFF framework. ACM Transactions on

Computational Logic (TOCL), 9(4), 29.

123

222 Auton Agent Multi-Agent Syst (2011) 23:193–223

7. Antón, A. I., & Potts, C. (1998) The use of goals to surface requirements for evolving systems. In
Proceedings of 20th the international conference on software engineering (pp 157–166). IEEE Press.

8. Bleistein, J., Cox, K., Verner, J., & Phalp, T. (2005). Requirements engineering for e-business
advantage. Requirements Engineering, 11(1), 4–16.

9. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., & Perini, A. (2004). TROPOS: An
agent-oriented software development methodology. Journal of Autonomous Agents and Multi-Agent

Systems, 8(3), 203–236.
10. Bryl, V., Massacci, F., Mylopoulos, J., & Zannone, N. (2006). Designing security requirements models

through planning. In Proceedings of the 18th international conference on advanced information systems

engineering, Lecture Notes in Computer Science (Vol. 4001, pp. 33–47). Springer.
11. Bryl, V., Mello, P., Montali, M., Torroni, P., & Zannone, N. (2008) B-Tropos: Agent-oriented require-

ments engineering meets computational logic for declarative business process modeling and verification.
In: F. Sadri & K. Satoh (Eds.), Proceedings of the 8th international workshop on computational logic

in multi-agent systems, Lecture Notes in Artificial Intelligence (Vol. 5056, pp. 157–176). Springer.
12. Buhr, R. J. A. (1998). Use case maps as architectural entities for complex systems. TSE, 24(12), 1131–

1155.
13. Caire, G., Coulier, W., Garijo, F., Gomez-Sanz, J., Pavon, J., & Kearney, P., et al. (2004). The

message methodology. Methodologies and Software Engineering for Agent Systems, 11, 177–194.
14. Chesani, F., Mello, P., Montali, M., & Torroni, P. (2009). Commitment tracking via the reactive event

calculus. In: C. Boutilier (Ed.), IJCAI 2009, Proceedings of the 21st International joint conference

on artificial intelligence, Pasadena, CA, USA, July 11–17, 2009, pp. 91–96.
15. Chesani, F., Mello, P., Montali, M., & Torroni, P. (2009). Verification of choreographies during

execution using the reactive event calculus. In: R. Bruni & K. Wolf (Eds.), Web services and formal

methods, 5th international workshop, WS-FM 2008, Milan, Italy, September 4–5, 2008, Revised
Selected Papers, Lecture Notes in Computer Science (Vol. 5387, pp 55–72). Springer.

16. Chung, L. K., Nixon, B. A., Yu, E., & Mylopoulos, J. (2000). Non-functional requirements in software

engineering. Kluwer Publishing.
17. Dardenne, A., van Lamsweerde, A., & Fickas, S. (1993). Goal-directed requirements acquisition. Science

of Computer Programming, 20, 3–50.
18. De la Vara González, J. L., & Díaz, J. S. (2007) Business process-driven requirements engineering:

A goal-based approach. In Proceedings of the 8th workshop on business process modeling, development,

and support.
19. Fisher, M. (2005). Implementing temporal logics: Tools for execution and proof (tutorial paper). In:

F. Toni & P. Torroni (Eds.), CLIMA VI, Lecture Notes in Computer Science (Vol. 3900, pp. 129–142).
Springer.

20. Frankova, G., Massacci, F., & Seguran, M. (2007). From early requirements analysis towards secure
workflows. In Proceedings of the joint iTrust and PST conferences on privacy, trust management and

security.
21. Fung, T. H., & Kowalski, R. A. (1997). The IFF proof procedure for abductive logic program-

ming. Journal of Logic Programming, 33(2), 151–165.
22. Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., & Traverso, P. (2004). Specifying and

analyzing early requirements in tropos. Requirements Engineering, 9(2), 132–150.
23. Haglind, M., Johansson, L., & Rantzer, M. (1998) Experiences integrating requirements engineering

and business analysis an empirical study of operations & management system procurement projects.
In Proceedings of the 3rd international conference on requirements engineering (pages 108–117).
IEEE Computer Society.

24. Henderson-Sellers, B., & Giorgini, P. (Eds.). (2005). Agent-oriented methodologies. Idea Group
Publishing

25. Iglesias, C. A., Garijo, M., & Centeno-González, J. (1999). A Survey of agent-oriented methodologies.
In Proceedings of the 5th international workshop on intelligent agents V, agent theories, architectures,

and languages (pp. 317–330). London, UK. Springer.
26. Jackson, M. (2001). Problem frames: Analysing and structuring software development problems.

Addison Wesley.
27. Jacobson, I., Ericsson, M., & Jacobson, A. (1994) The object advantage: Business process reengineering

with object technology. ACM Press/Addison-Wesley Publishing Co.
28. Jaffar, J., & Maher, M. (1994). Constraint logic programming: A survey. Journal of Logic Program-

ming, 19(20), 503–582.
29. Johansson, H. J., McHugh, P., Pendlebury, A. J., & Wheeler, W. A. (1993). Business process

reengineering—Breakpoint strategies for market dominance. Wiley.

123

Auton Agent Multi-Agent Syst (2011) 23:193–223 223

30. Kakas, A. C., Kowalski, R. A., & Toni, F. (1993). Abductive logic programming. Journal of Logic

and Computation, 2(6), 719–770.
31. Kazhamiakin, R., Pistore, M., & Roveri, M. (2004). A framework for integrating business processes and

business requirements. In Proceedings of the 8th international enterprise distributed object computing

conference (pp. 9–20). IEEE Press.
32. Kiyavitskaya, N., Moretti, R., Sebastianis, M., & Zannone, N. (2007). Project Report on the Initial

Analysis of (Early) Requirements of Domain 1. TOCAI Deliverable D2.1, University of Rome “La
Sapienza,”. Online resource, http://www.dis.uniroma1.it/~tocai/

33. Lamport, L. (1994). How to write a long formula. Formal Aspects of Computing, 6(5), 580–584.
34. Liu, L., & Yu, E. (2001). From requirements to architectural design: Using goals and scenarios. In

Proceedings of the 1st international workshop on software requirements and architectures.

35. Loucopoulos, P. (2003). The S3 (Strategy-Service-Support) framework for business process modelling.
In Proceedings of the workshop on requirements engineering for business process support, CEUR
Workshop Proceedings (Vol. 75). CEUR-WS.org

36. Massacci, F., Mylopoulos, J., & Zannone, N. (2007). An ontology for secure socio-technical systems.
In Handbook of ontologies for business interaction. The IDEAGroup,

37. Mayr, H. C., Kop, C., & Esberger, D. (2007). Business process modeling and requirements modeling.
In Proceedings of the 1st international conference on the digital society (p. 8). IEEE Computer
Society.

38. Montali, M. (2009). Specification and verification of declarative open interaction models: A Logic-based

framework. PhD thesis, University of Bologna.
39. Montali, M., Pesic, M., van der Aalst, W. M. P., Chesani, F., Mello, P., & Storari S. (2009). Declarative

specification and verification of service choreographies. ACM Transactions on the Web, (accepted
with minor revision.)

40. Montali, M., Torroni, P., Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., et al. (2008). Verification
from declarative specifications using logic programming. In: M. G. de la Banda & E. Pontelli (Eds.),
Proceedings of the 24th international conference on logic programming, Lecture Notes in Computer
Science (Vol. 5366, pp. 440–454). Springer.

41. Montali, M., Torroni, P., Alberti, M., Chesani, F., Lamma, E., & Mello, P. (2010). Abductive logic
programming as an effective technology for the static verification of declarative business processes.
Special Issue of Journal of Algorithms in Cognition, Informatics and Logic (expected).

42. Ould, M. (1995). Business process: Modelling and analysis for re-engineering and improving. Wiley.
43. Rubens, J. (2007). Business analysis and requirements engineering: the same, only different?. Require-

ments Engineering, 12(2), 121–123.
44. Schonenberg, H., Mans, R., Russell, N., Mulyar, N., & van der Aalst, W. M. (2008). Towards

a taxonomy of process flexibility. In: Z. Bellahsene, C. Woo, E. Hunt, X. Franch, & R. Coletta
(Eds.), Proceedings of the forum at the CAiSE’08 conference. CEUR workshop proceedings (Vol. 344,
pp. 81–84).

45. van der Aalst, W. M. P., & Pesic, M. (2006) A declarative approach for flexible business processes
management. In Proceedings of the 4th international conference on business process management,
Lecture Notes in Computer Science (Vol. 4103, pp. 169–180). Springer.

46. van der Aalst, W. M. P., & Pesic, M. (2006) DecSerFlow: Towards a truly declarative service flow
language. In Proceedings of the 3rd international workshop on web services and formal models,
Lecture Notes in Computer Science (Vol. 4184).

47. van der Aalst, W. M. P., ter Hofstede, A. H. M., Kiepuszewski, B., & Barros, A. P. (2003). Workflow
patterns. Distributed and Parallel Databases, 14(1), 5–51.

48. Vilain, M., Kautz, H., & van Beek, P. (1990). Constraint propagation algorithms for temporal reasoning:
A revised report. In: Readings in qualitative reasoning about physical systems (pp. 373–381). San
Francisco, CA: Morgan Kaufmann Publishers Inc.

49. Wood, M. F., & DeLoach, S. A. (2001). An overview of the multiagent systems engineering
methodology. In Proceedings of first international workshop on agent-oriented software engineering

(pp. 207–221). Springer-Verlag New York, Inc.
50. Xanthakos, I. (2003). Semantic integration of information by abduction. PhD thesis, Imperial College

London. Available online, http://www.doc.ic.ac.uk/~ix98/PhD.zip
51. Yi, C.-H., & Johannesson, P. (1999). Beyond goal representation: Checking goal-satisfaction by tem-

poral reasoning with business processes. In Proceedings of CAiSE’99 LNCS (Vol. 1626, pp.462–466).
Springer.

52. Zambonelli, F., Jennings, N. R., & Wooldridge, M. (2003). Developing multiagent systems: The Gaia
methodology. ACM Transactions on Software Engineering and Methodology (TOSEM), 12(3), 317–370.

123

http://www.dis.uniroma1.it/~tocai/
http://www.doc.ic.ac.uk/~ix98/PhD.zip

	Engineering and verifying agent-oriented requirements augmented by business constraints with mathcal B-Tropos
	Abstract
	1 Introduction
	2 The mathcal B-Tropos modeling framework
	2.1 Tropos
	2.2 Constraint-based business process modeling
	2.3 The mathcal B-Tropos notation

	3 mathcal B-Tropos semantics in SCIFF
	3.1 The SCIFF language and proof-procedures
	3.2 Mapping mathcal B-Tropos concepts into the SCIFF framework

	4 Formal properties
	5 Conformance and property verification
	6 Related work
	7 Conclusions
	Acknowledgements
	References

