
 Open access Proceedings Article DOI:10.1145/2593882.2593889

Engineering big data solutions — Source link

Audris Mockus

Institutions: Avaya

Published on: 31 May 2014 - International Conference on Software Engineering

Topics: Software system, Big data, Unstructured data, Software design and Information engineering

Related papers:

A method to identify and correct problematic software activity data: exploiting capacity constraints and data
redundancies

 Mining email social networks

 Amassing and indexing a large sample of version control systems: Towards the census of public source code history

 Software support tools and experimental work

 Impact of Triage: A Study of Mozilla and Gnome

Share this paper:

View more about this paper here: https://typeset.io/papers/engineering-big-data-solutions-
54txha7zeo

https://typeset.io/
https://www.doi.org/10.1145/2593882.2593889
https://typeset.io/papers/engineering-big-data-solutions-54txha7zeo
https://typeset.io/authors/audris-mockus-23cpaa5l2v
https://typeset.io/institutions/avaya-2oz4zz6k
https://typeset.io/conferences/international-conference-on-software-engineering-25fxdcj8
https://typeset.io/topics/software-system-27udaxu5
https://typeset.io/topics/big-data-bi8jkkwe
https://typeset.io/topics/unstructured-data-2p1wucbv
https://typeset.io/topics/software-design-308mtip7
https://typeset.io/topics/information-engineering-1vsi82zt
https://typeset.io/papers/a-method-to-identify-and-correct-problematic-software-1x4ymfb9k5
https://typeset.io/papers/mining-email-social-networks-1vfneb0ex9
https://typeset.io/papers/amassing-and-indexing-a-large-sample-of-version-control-4jcv1dehuv
https://typeset.io/papers/software-support-tools-and-experimental-work-2kntwtnlgg
https://typeset.io/papers/impact-of-triage-a-study-of-mozilla-and-gnome-14e52w9x23
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/engineering-big-data-solutions-54txha7zeo
https://twitter.com/intent/tweet?text=Engineering%20big%20data%20solutions&url=https://typeset.io/papers/engineering-big-data-solutions-54txha7zeo
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/engineering-big-data-solutions-54txha7zeo
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/engineering-big-data-solutions-54txha7zeo
https://typeset.io/papers/engineering-big-data-solutions-54txha7zeo

Engineering Big Data Solutions

Audris Mockus
Avaya Labs Research

211 Mt Airy Rd, Basking Ridge, NJ, USA
audris@avaya.com

ABSTRACT
Structured and unstructured data in operational support
tools have long been prevalent in software engineering. Simi-
lar data is now becoming widely available in other domains.
Software systems that utilize such operational data (OD)
to help with software design and maintenance activities are
increasingly being built despite the difficulties of drawing
valid conclusions from disparate and low-quality data and
the continuing evolution of operational support tools. This
paper proposes systematizing approaches to the engineering
of OD-based systems. To prioritize and structure research
areas we consider historic developments, such as big data
hype; synthesize defining features of OD, such as confounded
measures and unobserved context; and discuss emerging new
applications, such as diverse and large OD collections and
extremely short development intervals. To sustain the cred-
ibility of OD-based systems more research will be needed to
investigate effective existing approaches and to synthesize
novel, OD-specific engineering principles.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Process Metrics, Software
science; D.2.4 [Software/Program Verification]: Statis-
tical methods; H.2.5,8 [Information Systems]: Hetero-
geneous Databases, Database ApplicationsData translation,
Data mining; I.7.1 [Document and Text Editing]: Ver-
sion control

General Terms

Measurement, Management, Experimentation, Economics,
Human Factors

Keywords

Analytics, Operational Data, Data Quality, Game Theory,
Statistics, Data Engineering, Data Science

1. INTRODUCTION
Many human activities are increasingly transacted par-

tially or entirely within the digital domain, generating vo-
luminous traces that wait to be explored, understood, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSE ’14, May 31 - June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2865-4/14/05 ...$15.00.

used. Software engineering has been an early beneficiary of
this phenomenon. Operational support tools, such as ver-
sion control and issue tracking, were built to support com-
mon tasks and over time have generated transactions and
logs that have been successfully used to understand and im-
prove software development. We discuss research directions
needed to sustain and expand this success.

This paper concerns Operational Data (OD): data left as
traces from multiple operational support tools and then in-
tegrated with more traditional data. Section 2 discusses OD
and other flavors of big data. Operational Data Solutions
(ODS) are (software) applications that utilize OD to provide
insights or tools. We discuss domains where ODS would be
particularly helpful and argue for the need to systematize
ways to engineer ODS to ensure the integrity of the results
produced by these systems.

Three basic trends affecting ODS are likely to continue:
evolution of Version Control Systems (VCSs) and Issue Track-
ing Systems (ITSs) and associated practices; increasing use
of other operational support tools and associated OD; and
expansion to application domains that are not (yet) consid-
ered to be software engineering.

It is reasonable to expect that generating and using digital
traces will be an integral part of software in many domains,
thus it is imperative that practices and tools for engineering
ODS be developed and used. How should the engineering
principles for ODS be developed? First, existing ODS in
software engineering and in other areas can be studied us-
ing empirical approaches. Second, engineering paradigms
and tools from domains such as databases, statistics, ma-
chine learning, social networks, and text analysis will need
to be evaluated and adopted for engineering ODS. Finally,
synthesizing new approaches from basic principles will also
be necessary in cases where the existing or borrowed ap-
proaches are inadequate. In particular, effective ways to un-
derstand how data are collected, how data should be filtered,
augmented, integrated, and modeled, and how to structure
ODS to be amenable to verification and maintenance, will
need to become an integral part of engineering principles for
ODS.

OD originates from traces collected and integrated from
a variety of operational support tools. Each event recovered
from such traces has a specific context of what may have
been on the actor’s conscious and subconscious mind, the
purpose of that action, the tools and practices used, and the
project or the ecosystem involved. Each event, therefore,
may have a unique meaning. Some actions, such as verbal
communication, may be missing if conducted without tool

support. Data filtering or tampering may be done by the
actors, operating tools, or data processing and integration
at the time of action or later. Determining how to properly
segment, filter, augment, and model such data to ensure that
they contain a representative sample of relevant activities,
is the fundamental challenge of engineering ODS and it will
be essential to develop methods to draw valid conclusions
from such disparate and low-veracity data.

To have broad effects on software development practices,
ODS will need to be not simply a tool for an analyst, but
become a part of existing or future operational support tools.
Such integrated systems would serve both as data sources for
ODS and use ODS results in their regular workflow.

To be used effectively, ODS will require a thought pro-
cess that can incorporate uncertainty and limitations of the
modeling assumptions and would demand a nontrivial un-
derstanding of the specific problems to be solved.

Section 2 considers the scope and history of big data in
software engineering. Section 3 discusses potential threats to
ODS viability and ways to prevent them. Section 4 outlines
the defining features of OD to guide the selection of engi-
neering principles. Section 5 considers some of the unique
aspects of engineering ODS and Sections 6 and 7 discuss
emerging trends that would create specific needs and oppor-
tunities for ODS. Finally, Section 8 summarizes the preced-
ing observations into a research roadmap.

2. BIG DATA IN SOFTWARE
It is instructive to consider some of the terms that have

been associated with data-driven operation and decision mak-
ing. Data-driven operation involves actions that may be un-
dertaken manually or automatically in response to a change
of certain values of data, e.g., sending notifications to sub-
scribers when the status of an issue is updated. Data-driven
decisions are performed by an actor in response to provided
information. Actions may be strategic, e.g., to deploy code
inspections in response to data indicating that inspections
provide substantial benefits. Most actions would be tactical,
e.g., to pick a link to follow from the data comprising a list
of search results or to select a priority for a new issue report.

Empirical software engineering [3, 2] is an attempt to es-
tablish empirical relationships among various software pro-
duction factors and to use these insights to improve software
engineering practice. Business intelligence [58] is a set of
theories, methodologies, architectures, and technologies that
transform raw data into meaningful and useful information
for business purposes. Predictive analytics [60] encompasses
a variety of techniques from statistics, modeling, machine
learning, and data mining that analyze current and histor-
ical facts to make predictions about future, or otherwise
unknown, events. The Mining Software Repositories (MSR)
field analyzes the rich data available in software reposito-
ries to uncover interesting and actionable information about
software systems and projects [41]. Big data [57] usually in-
cludes data sets with sizes beyond the ability of commonly
used software tools to capture, curate, manage, and process
the data within a reasonable time. Data science seeks to
use all available and relevant data to effectively tell a story
that can be easily understood by non-practitioners. It is not
unusual to see the term big data used interchangeably with
the terms data science, data analytics, business intelligence,
machine learning, and statistics.

To avoid the confusion over the exact definition of big
data, we use terms OD and ODS defined in the introduction.

OD may come in a variety of data formats and types and can
be derived from interactions between people and machines,
such as web applications, social networks, or issue trackers.
OD often lack structure, e.g., are documents, code, or bug
descriptions, contain a variety of interrelated entities, are of
low veracity (are incomplete or have been tampered with),
and are used for unintended purpose. ODS can be thought
of as decision support systems utilizing data produced in
the course of operations. We also consider ODS primarily
within the scope of supporting decision making in software
engineering.

The origins of data-driven decision support in software
engineering have a long and rich history. The models of
software growth [5], reliability [26], productivity [55], and
cost [7] appeared about four decades ago. Measures of code
complexity [30, 21] and tools to support development (ver-
sion control) also appeared around the same time [44, 54].
Empirical software engineering with methods of software
data collection [3] and applications in industry [18] appeared
a decade later. However, collecting data manually was ex-
pensive and limited the application of these empirical tech-
niques.

The use of version control [44] and issue tracking tools [32]
accumulated a substantial history of software changes. The
value of that OD was initially not clear, but a number of pub-
lications and applications in industry illustrated its potential
in predicting defects [64], visualizing code [14], changes and
developers [38], relationships among parts of code [15], or
quantifying development practices [33].

Research interests in the area are exemplified by The Met-
rics Symposium which later became The Empirical Software
Engineering and Measurement Conference. These confer-
ences have been running for over two decades. The num-
ber and diversity of publications took off with the launch
of The International Workshop on Mining Software Repos-
itories [23]. Most recently, a special issue of IEEE Soft-
ware [22] focuses on ODS in software engineering and IEEE
Computer [31] magazine considers some opportunities and
problems brought by OD.

The operational support tools will likely evolve in the fu-
ture to facilitate ODS intelligence capabilities, thus collect-
ing some data explicitly intended for a particular type of
analysis. Will there still be a need to analyze OD data for
unintended purposes? The following reasons suggest that
this need will likely become even greater. First, the opera-
tional support tools have to be focused on their primary task
of ensuring uninterrupted operation, but the need to collect
additional data would substantially decrease their perfor-
mance and maintainability, making it unlikely that all such
needs will be met. Vendors of operational support tools may
cater to a wide base of customers and be unwilling to sat-
isfy the needs of a specific project or a domain. Finally, the
data needs tend to change over time and expand in scope
as new use cases tend to be discovered much faster than the
infrastructure could evolve.

The use of OD has benefits and pitfalls. First, the data
collection is non-intrusive because operational support tools
are already deployed and used in operation. Unfortunately,
that does not reduce the need for in-depth understanding
of procedures and practices, in particular, of how the oper-
ational support tools were used. Effective ways to do such
tasks, especially on very large and diverse collections have
yet to be developed (see Section 5.1.)

The history of a long-running project or of past projects
captured in the tools enables historic comparisons, calibra-
tion, and immediate diagnosis in emergency situations (with-
out the need to collect additional data).

The information obtained from the operational support
tools is often fine grained, at the trouble ticket or customer
installation level. Unfortunately, reliable links between dif-
ferent tools are lacking, as for example, between issue reports
and code changes. Different tools often track the same enti-
ties at different aggregation levels, for example, sales oper-
ations are focused on customers but service operations con-
cern sites and service contracts. Methods to create links
between different aggregations and evaluating the impact of
dropping unlinked data will have to be developed to utilize
more and more diverse sources of data.

OD tends to be complete, because all actions involving
operational support tools are recorded. Some actions may,
however, be accomplished through other means or may be
removed from the system (see Section 4.1). Also, the infor-
mation about what the action pertains to may be nontrivial
to infer and some of the data entries, especially those not
essential for the domain of activity, tend to be inconsistently
or rarely supplied. To reduce the prevalence of creating mis-
leading inferences from such noisy data, we will need meth-
ods that efficiently identify and filter out, or are less affected
by, such noise.

The data tends to be uniform over time as the opera-
tional support tools, by virtue of being business-critical, are
rarely changed to avoid major disruptions. That does not,
however, imply that the practices of using these tools don’t
change over the entire period of interest. Furthermore, many
software projects have moved to a new generation of VCSs
and ITSs, partly because the newer tools can easily import
data from older tools and provide compelling operational
benefits. However, the schema and the usage practices often
change significantly. The impact of such hybrid data will
have to be assessed. For example, a Git [59] repository with
some history imported from Subversion [10], and with some
of that Subversion history imported from CVS [9].

Even one-person projects contain large volumes of data in
the operational support tools making it possible to detect
even small effects statistically. This, however, depends on
the extractability of the relevant quantities.

The operational support tools are used as a standard part
of the project, so the software project is unaffected by ex-
perimenter intrusion. However, if such data are used in or-
ganizational measurement, it may modify the behavior of
individuals or groups. As ODS gain popularity, such effects
can extend beyond the measures tracked within an organi-
zation. For example, it is likely that on-line behavior may
adapt to changes in recruitment practices that take into ac-
count on-line activities [51] on, for example, github.com or
stackoverflow.com.

3. WHY HYPE, DISILLUSIONMENT?
The interest in big data is now close to the pinnacle of the

technology hype curve [16]. Empirical observations indicate
that the peak of technology hype is followed by a trough of
disillusionment as promises don’t deliver.

There are well-founded reasons for the OD hype. First,
the economics of computing, communication, and storage
allows recording and storing massive amounts of not-well-
designed-or-optimized data. For example, median pay for
one hour of an engineer’s time stayed relatively constant

(after adjusting for inflation) since 1960 ($30/hour), but the
cost of one million floating point operations on a supercom-
puter went down 3.9 billion times from 1961 to 2013: the
cost for CDC 1604 in 1961 amortized over five years yields
2.7M operations per inflation-adjusted US$, while Tianhe-
2 initial cost plus power consumption over five years yields
10.7P operations per US$ in 2013. The reinterpretation of
Moore’s law for the cost of operation (the original law con-
cerns the number of transistors on integrated circuits) would

suggest 2
2013−1961

2 = 67M , or a 58 times smaller drop. The
drop in price allowed computing to encroach on many areas,
such as entertainment, that were not economically feasible
when an operation was more than nine orders of magnitude
more expensive.

The abundance of inexpensive computing leads to an in-
creasing reliance on software support in many human activ-
ities. This software often keeps track of the current state of
the system and has the ability to recover from or to report
on past states, resulting in massive amounts of digital traces
being generated and stored. The collection and analysis of
such traces become much simpler to conduct as the software
support tools move on-line (to the cloud) and the associ-
ated data are collected in a centralized location. It will take
some time fully to understand the opportunities afforded by
the existing OD, to build the relevant infrastructure and to
change the existing culture. New applications and new do-
mains for OD will, consequently, expand in the near future.

At the same time, the hype cycle will likely lead to the
trough of disillusionment [16] as experiments and implemen-
tations fail to deliver. First, the rapid depreciation of com-
puting may slow in the future as the cost of energy becomes
a limiting factor. As a consequence, designing techniques
for more efficient storing and processing of data will likely
regain importance.

An immediate cause for disillusionment will come from
the realization that more data often does not imply more
information: the reliance entirely on OD may not work. In-
stead, a more labor-intensive measurement targeted to col-
lect the most accurate information that is used by itself or
to calibrate or interpret the results obtained via OD may
be necessary. A better understanding of data quality (see
Section 5.4) would need to evolve to counter this threat.

The second immediate cause for disillusionment will be
driven by“Big Lies”perpetrated using OD. Most of these lies
will be caused by the inexperience of the analysts flocking to
this promising area. For example, many of the analytic tech-
niques were designed to work with Gaussian distributions,
but in software development such assumptions almost never
apply. While some of the basic adaptations, such as consid-
ering logarithmically transformed data and robust statistical
methods, may be easy to learn and to apply, other consid-
erations, such as the form of the basic relationships among
size, amount of change, and other parameters of interests,
may take longer to adapt to. To counter this threat, it will
be essential to improve education and increase experience of
OD engineers and to provide them with better theories (see
Section 4.2). Of course, with a plethora of machine learning
and statistical methods and with the large scale and, poten-
tially, confidential data sources, opportunities for malicious
Big Lies would multiply. To counter that threat it will be
necessary to develop frameworks to reproduce the results
on large datasets with potential privacy and confidentiality
restrictions.

The third immediate cause for disillusionment will likely
be caused by high-profile scandals related to privacy, confi-
dentiality, and identity fraud or related crimes. This would
put the limits on the types of data that can be collected and
shared. Developing ODS that respect privacy and other cul-
tural and legal norms [56] would help reduce this threat.

4. MEASURE, UNDERSTAND, DO
In this section we consider the defining characteristics of

OD and of applications using such data to sketch the engi-
neering principles needed for ODS. In particular, we artic-
ulate the need to categorize data quality issues, emphasize
the importance of discovering mechanisms that establish re-
lationships among the ODS derived measures and software
outcomes, and discuss approaches to integrate ODS with the
existing development-support tools.

4.1 Context, Filtering, and Tampering
At a micro level, each recorded event has a context, e.g.,

what may have been on the actor’s conscious and subcon-
scious mind at the time, what tools and practices were used,
and why the action was taken. At a more aggregate level,
knowledge about the team, project, and application domain
are also necessary to place events in context. At large scale,
ecosystems, large enterprises, or commercial and OSS hemi-
spheres are all aspects of the context for a particular event.
Each event, e.g., a creation of a line of code, a resolution
of an issue, a code change, or a business transaction, has a
meaning only within that context. For example, the mean-
ing of code churn (added and deleted lines) in a file depends
on the programming language used in that file and may not
be meaningful in, for example, binary files even if it is possi-
ble to calculate a churn number for a binary file. Important
context factors are often not recorded in OD.

Traces from operational support tools involve transactions
and logs with numbers, dates, developer identities, source
code, natural language text, or structured (e.g., xml or html)
output. It is not always clear how to convert such OD into
observations for a statistical model. Typically it is desirable
to start from the atomic observations: individual events or
transactions that can be recovered from the traces. For ex-
ample, in VCS such atomic events are code commits and in
ITS they are issue state changes, comments, attachments,
or other recoverable events.

Data filtering or tampering involves a variety of intended
and unintended manual or automatic actions. First, not all
data are recorded, some events may be removed or tampered
with later, or a subset selected or changed in other ways for
a number of purposes, for example to link multiple data
sources.

Using such data to reconstruct what actually happened
without a careful consideration of the context and filter-
ing often leads to incorrect conclusions. Any sample of OD
events, unfortunately, reflects a combination of multiple con-
texts (associated with each event) and filters. To address
that shortcoming it is necessary to augment data with ad-
ditional information, often derived from the same or addi-
tional OD sources. The most basic approach is to segment
the events by context either explicitly or implicitly. An ex-
ample of the explicit approach would be to impute salient
context attributes and use them to filter out undesired con-
text and/or to represent the context in a model. An example
of the implicit approach would be to include relevant con-

text factors as nuisance parameters in a model (likelihood).
To illustrate this, consider the context of a code change. It
involves purpose of the change: to add new functionality,
fix issues, or simply to merge different streams of develop-
ment. The fixes may be done to fix a problem discovered
in development, code inspection, testing, or in use. The
segmentation approach would augment data explicitly by
adding change purpose and problem source. The implicit
approach would include change purpose and problem source
as nuisance parameters with postulated relationships to the
observed values and the model fitting procedure would elim-
inate them by calculating the marginal distribution.

4.2 What Works in Software Engineering?
ODS can be thought of as precise and, when appropri-

ately calibrated, more accurate measurement instruments
that may address some of the longstanding questions of what
software engineering techniques are effective and under what
circumstances they should be used.

Because of the nature of OD, particular care [34] needs
to be taken to draw conclusions based on such data. Some
of the confusion with the existing empirical approaches us-
ing OD may be traced to the failures to account for factors
and relationships that are known to exist. For example,
many analyses look at treatment (e.g., use of technology,
tool, or practice) effects without adjusting for factors, such
as size, that impact virtually any outcome of interest. If
the adjustments for size are not made, the resulting differ-
ences between the control and treatment primarily reflect
the distribution of size and other salient (but not adjusted-
for) factors in the control and treatment samples. Such dif-
ferences between the control and treatment should not be
(but usually are) interpreted as being associated with the
treatment. To study the effect of a treatment it is crucial to
adjust for all factors that are known to affect the outcome.
For example, an investigation of the impact of organizational
change [37] or work dependencies [8] were considered only af-
ter adjustments for numerous other factors that were found
to be associated with defects in earlier studies.

Despite such efforts, some of the measures associated with
causes of defects are often difficult to obtain. The two par-
ticularly important measures are the number of users and
the amount of usage. In many domains much of software im-
provement happens in the hands of users who encounter and
report problems and suggest (and sometimes implement) im-
provements both in Open Source projects [33] and in com-
mercial projects [40]. The number of users and the amount
of usage are, therefore, important latent variables that need
to be adjusted for when studying defects or requirements.
This complex web of interdependencies will have to be un-
covered and used to ensure the accuracy of ODS as discussed
in Section 5.3.

4.3 How to Act?
To be successful ODS need to address their user needs.

ODS addressing strategic software development goals in an
enterprise are presented in, for example, [20]. A survey of
Microsoft managers and developers [4] provides a list of prac-
tical questions for ODS. There will be a need to conduct
rigorous requirements elicitation for ODS in other domains
and in other organizations.

For a technique or a tool to be used in practice it needs to
integrate with existing (or future) operations of a software

project or an organization. Most software organizations al-
ready have a fair number of mature practices and tools that
determine the operation of their software development. The
most obvious deployment approach for ODS would be to
integrate with the existing practices and tools both to tap
data sources and to become a part of the operation.

There are several “entry points” for ODS into day-to-day
operations. The current state of practice mandates the use
of a minimal set of tools for a normal operation of a software
project. VCS keeps track of an evolving code base and its
branches. Many projects in open source and industry are
increasingly embracing Git. ITS provides workflow for soft-
ware tasks, such as requirements, user stories, bugs, and,
increasingly, other types of tasks. Projects typically use an
instance of a continuous build system that allows rapid feed-
back with the results of compilation and unit tests. More
process-oriented organizations may also mandate the use of
code inspection, test management, test coverage, and static
analysis tools. Other operational support tools include re-
quirements elicitation, project documentation, and require-
ments tracking. As a result, multiple sources of data can
be linked together to be used in ODS and each operational
support system provides a potential door to introduce ODS
into software development operation.

Software development tools have become extensible plat-
forms simplifying ways to introduce ODS. GUI IDEs pro-
vide several paradigms for integration, e.g., Visual Studio
provides extension APIs and Eclipse offers APIs and plug-
ins. Issue tracking systems, such as JIRA, are also highly
extensible [27], with plugins providing integration with ver-
sion control, inspection, and static analysis tools. Unlike
IDEs or JIRA, the Git version control system has the sim-
plest and the most general unix-like extension API: any Git
command, e.g, “git xxx” is looked up as an executable git-
xxx. Unfortunately, such extension of individual tools is
quite cumbersome and linking data among them may not
be trivial. For example, FindBugs provides static analysis
errors based on the jar file produced by a build, but the code
changes and associated JIRAs are for the source code in a
specific branch.

To address some of these data integration problems, Ra-
tional Team Concert provides reporting capabilities in a sin-
gle customizable and extensible package. There are other
successful forms of integration as well. For example, Emacs,
as the oldest actively developed IDE, not only has an exten-
sion language and numerous packages extending its function-
ality, but, with org-mode and Babel [45], it also has a meta-
language that integrates and links together natural language
text with various typesetting, computational, and analytic
tools as an instance of literate programming [28] and as a
platform for reproducible research [46]. For example, Ba-
bel allows a user to include the text of a paper, typeset-
ting instructions, and all the needed computations in several
programming languages to produce the results presented in
the paper within a single text document. This approach of
embracing existing tools and languages may be particularly
suitable for ODS as it tries to integrate disparate domains
and analysis approaches. While being a great tool to publish
research results because it provides a complete audit trail for
every number presented in the paper, Emacs+Babel does
not (yet) have a strong operational support for workflow,
parallel work, and construction history.

5. ENGINEERING ODS
Developing ODS is somewhat different from software de-

velopment for less data-intensive or non-analytic systems.
One common use case concerns a workbench involving an
analyst creating a report to address a business need or a re-
searcher trying to discover novel phenomena. Another com-
mon use case is a back-end tool that processes, augments,
or synthesizes data for other tools, such as IDEs, ITSs, an
analyst workbench mentioned in the first use case, or some
other operational or reporting system. In both cases there
is a back-end system collecting and preparing the relevant
data from a variety of other tools and data warehouses [12].
The developer of ODS for both scenarios is acting as an
analyst and as a researcher. The research part involves un-
derstanding peculiarities of the data and basic relationships,
while the analyst part involves preparing fixed or customiz-
able reports for the workbench or to feed other tools. In
that role, an ODS developer has to have a background in
data analysis and also have a nontrivial understanding of
the problem domain. The particular type of user interac-
tion, the response time, and other considerations may place
additional constraints on the ODS engineer. Data size and
limited processing power will require expertise for these ar-
eas of software engineering as well. In this section we will
be mainly concerned with the engineering topics that are
unique to ODS, starting from the specific tools and methods
that will be needed to understand the application domain,
to establish sound approaches to measure using OD, and to
create the building block mechanisms describing how various
measures affect each other. Methods to assess and improve
data quality, to exploit implicit information, to borrow and
evaluate methods from related disciplines, and to validate
ODS are discussed next. The section concludes by argu-
ing that operational support tools and, in particular, ITSs,
VCSs, and IDEs, should be augmented with ODS capabili-
ties.

5.1 Understanding Application Domain(s)
A nontrivial understanding of the relevant application do-

main is important for developers of any software because the
requirements may not fully convey all details of use scenar-
ios or may be misunderstood without sufficient knowledge of
how the software will be used. For ODS it is also necessary
to understand how the data came to be. For example, if the
ODS will be used to produce reports about user-encountered
defects for a software module, then the ODS developer will
need to have a basic understanding of how users may be
able to report issues, how these reports are handled, and
how (and under what circumstances) these reports can be
associated with software modules. Examples of how the data
comes about include answering a variety of questions, such
as were data entered manually or automatically, were there
any default values, were data filtered or tampered with in
other ways, under what scenarios the data may be missing
or removed (cleaned up), and, perhaps, most importantly,
was that data important for effective use of the operational
support system by the person who was providing it to the
system? Data in operational support tools varies in accuracy
with some attributes being highly accurate and others be-
ing completely unreliable. The attributes that are essential
for operation tend to be scrutinized by users of these opera-
tional support tools, while the remaining attributes may not
be consistently entered.

While this topic may appear primarily as an issue with
education and practice, many of the techniques described
below can help ODS engineer to answer these questions di-
rectly from the available data. Furthermore, some of the
techniques from reverse engineering or program comprehen-
sion may be suitable for the task of reverse engineering the
practices of using operational support tools that serve as
sources for the ODS.

5.2 Measures
Perhaps the most important and vexing aspect of mea-

surement based on OD is the fact that virtually every mea-
sure may be a result of multiple phenomena, not just of the
phenomenon that is being investigated. Disentangling the
effects of the “non-primary” or nuisance phenomena is often
a formidable task. There are two primary reasons for this
difficulty as described in Section 4.1:

• no two events have identical context, so any statistics
based on a sample of events represents a mix of multi-
ple contexts (i.e., apples and oranges);

• the filtering mechanism often depends on the value of
the measure and the factors that can explain the filter-
ing mechanism are often hard to obtain or unavailable.

For example, modifications to source code reflect what
happens in software development because they record the
actual act of implementing a requirement or correcting a
defect and embody the interactions between the developer
and the code they produce. However, as noted in [34], not
all modifications to code reflect the act of implementation
of new features or corrections. For example, code branching
activity primarily concerns creation of development or main-
tenance streams and merging code from multiple streams.
The code changes done in these two contexts are quite dif-
ferent by nature. While it is typically easy to identify (and
discard or treat differently) code changes associated with
branching, it tends to be more difficult to identify merges.
In SCCS, CVS, or SVN, branching and merging are rather
tedious activities and tend to be used less often than with
the latest generation of VCSs, e.g., Git. Git makes branch-
ing and merging both easy and necessary and it is common
to see more than 100 branches for a single file [36, 39].

When the number of branches explodes, the usual assump-
tion that code changes are associated with source code cre-
ation may no longer hold, because most of the changes may
be related to branching and merging. In other words, the
same statistic counting the number of changes is more likely
in Git to measure primarily the branching activity and is
more likely in CVS to measure primarily coding and fixing
activity.

As version control tools evolve, the measurements based
on them will have to adapt and evolve as well. In addition
to branching, Git contains functionality to edit the recorded
history either implicitly (e.g., rebase) or explicitly (filter-
branch). This requires developing ways to detect and han-
dle such instances of data-tampering in order to retain the
integrity of VCS-based measurement systems. Investigation
of some of the challenges related to filtering and history tam-
pering in Git repositories is given in [6]. This foundational
change in the assumptions of what a code modification is
and the associated impact on the extant empirical findings
based on change measures obtained from earlier generations
of VCSs needs an in-depth investigation.

Another example is focused on code fixes as manifest in-
stances of software defects, a key assumption in much of
the research on defect prediction. However, defects discov-
ered in early stages of development (e.g., unit tests) by de-
velopers or in code inspection, do not necessarily represent
poor software quality. Instead, they may indicate a good
development process with issues found in the early stages
of development when fixing them is least costly. Predicting
such defects, therefore, is unlikely to provide tangible practi-
cal value. Customer-reported issues are typically associated
with user perception of software quality [40] and are of most
concern in commercial projects. Unfortunately, separating
customer reported issues in open source projects may not be
easy. First, it is not always clear if the issue was reported
for a stable release and by end users (not internal develop-
ers). Second, the links between code commits and reported
issues tend to be tenuous, see for example, [43]. Further-
more, even in commercial projects where customer reported
defects are carefully tracked with related code changes, they
tend to reflect the extent of usage more than the inherent
defectiveness of software as noted in Section 5.3. Finally,
the extent of software usage is a critical ingredient needed
to interpret measures based on customer-reported problems.
As software products are increasingly delivered over the web
or via mobile applications, the ability to count the number
of users and the amount of usage increases tremendously
and should play a big role in software engineering for such
domains as discussed in Section 6.2.

Many other units of activity are increasingly being appro-
priated for measurement by ODS, for example, actions in an
IDE, tasks in issue tracking tools, test execution, and various
code and information seeking strategies. Just as with soft-
ware code, changes, and bugs, it will be necessary to assess
what each measure means and what phenomena influence
it, and to what extent.

As the ODS expand into vast collections of open source
or commercial project data, combining or comparing mea-
surements from different projects is a serious challenge yet
to be addressed. The code change in projects using CVS is
not the same as in projects using Git for reasons outlined
above. The scarcity of bugs in one project could simply
mean that the software is not used, while in another project
it may mean that software has few defects. To compare or
summarize even such apparently simple measures as bugs
or changes from different projects, it will be necessary to
develop methods to address these differences of context.

A common research practice tends to derive the new mea-
sures based on convenience. If the measure is easily collected
and has a name that appears to match what is needed for
the study, it is rare to see a rigorous validation that involves
nontrivial understanding on how data came about and what
phenomena may have had impact on data being observed
or not observed [34, 35]. For ODS to be relevant in prac-
tice (and reflect what actually happens), much more work
must be devoted to understanding and addressing the con-
cerns listed above: how exactly the data got created, who
and when enters values, and under what circumstances, why,
and why the data may be missing. With sufficient amount
of understanding of what each measure reflects, it will be
possible to investigate how general it may be, how to rec-
ognize different manifestations of it (e.g, separate a bug fix
from new feature), and how to build meaningful models on
this more solid foundation.

5.3 Mechanisms
This section provides an illustration of what could be done

to establish relationships among various OD-derived mea-
sures, such as users, usage, and defects. These relation-
ships can serve as basic laws of software production and
are needed to disentangle particularly difficult cases when
two or more phenomena interact to produce an event, with
one phenomenon acting as a censoring mechanism. A com-
mon example of such combined phenomena has the first phe-
nomenon reflecting the presence of a defect in the code and
the censoring phenomenon reflecting the chances of that de-
fect being discovered, reported, and fixed. Specifically,
Definition Software defect is an error in coding or logic
that causes a program to malfunction or to produce incor-
rect/unexpected results.
Defects reported by software users are particularly impor-
tant to software projects as they directly affect users’ per-
ception of software. Therefore,

Definition Bugs are defects that have been discovered and
reported by users and implemented as changes to the source
code.

In practice only the combination of the two phenomena
(bugs) can be observed. More specifically, for a bug to exist
(i.e., for a defect to be observed), there must be a user who
has to use the software, encounter and recognize a malfunc-
tion or unexpected behavior, and then be willing and able
to report it in sufficient detail. Furthermore, the product
maintainer has to be interested and able to fix the defect
causing that malfunction or misbehavior. Not surprisingly,
only a very small and highly biased subset of defects end
up meeting the strict definition of bugs. This long chain of
events has strong negative feedback loops, because if users
experience a lot of problems they may stop using the soft-
ware altogether or stop reporting issues. As a result, better
software (where an individual user has lower chances of ex-
periencing a malfunction) often has more bugs than worse
software (where an individual user has higher chances of ex-
periencing a malfunction). This apparent paradox is simply
caused by the mismatch of definitions for a defect and a
bug (the way a defect is observed in practice). The latter
represents a complex equilibrium resulting from actions of
different groups of participants in software production: de-
velopers, users, support, and sales. For example, users im-
prove software quality by discovering and reporting defects
that may be too costly to be discovered otherwise. As new
functionality is delivered in major releases, quality conscious
users often stay on the sidelines until a second minor release
delivers properly working features, bug fixes, and stability
improvements. The major releases, being of lower quality,
have fewer users and, consequently, fewer bugs. From the
statistical perspective the negative interaction between the
chances that a defect will be eventually fixed and the num-
ber of latent defects means that data are Missing Not at
Random (MNAR), see, e.g., [29, 35]. There are no statis-
tical techniques to deal with such cases; the only way to
disentangle the two phenomena is to discover and validate
mechanisms that explain the relationship between them.

There are numerous related and unrelated paradoxes that
can (and will) be explained in a quantitative manner only by
discovery and verification of similar laws of software produc-
tion system. As ODS can not be based purely on definitions
but have to rely on collected data, it will be important to re-
alize how the measures commingle several concepts and what

could be done to represent various ideal concepts faithfully
in such measurement-first approaches.

In particular, the search for such fundamental relation-
ships could be based on a few basic principles. First, con-
sider short-term and recurring relationships because they
can be validated more reliably and would be less affected by
long term changes in, for example, economy or technology.
Second, employ relationships that have a clear mechanism
originating from the way software is created and used and
constrained by resource and physical limitations of a soft-
ware projects and individuals. Third, employ relevant ad-
ditional data sources that may not have been traditionally
considered as a part of software development and may be dif-
ficult to obtain. Fourth, focus on answering actual software
engineering questions because there may be numerous rela-
tionships with only a few of them that could help improve
software development.

Here we sketch a game-theoretic framework that uses em-
pirically observed relationships in conjunction with the ob-
jectives of software developers and consumers to explain the
paradox described above. In the simplest conceptual model
the two groups of players are developers and users. Devel-
opers produce the software and fix problems encountered by
users and users derive value from using the software and
incur loss when software is not operating properly. For
software developers the software provides value through in-
creased usage (directly from licensing revenue or indirectly
from the increase in market share). It is typically impossi-
ble or not cost effective to ensure that the software does not
have any defects for all possible use scenarios. This means
that users are an important part of quality improvement pro-
cess whereby they report bugs that are fixed by developers
so that the remaining users have lower chances of encoun-
tering a defect-related failure. For simplicity, let’s assume
that a user i incurs a fixed loss ci due to a bug they en-
counter. Let’s assume for the moment that the value vi the
software brings to user i is also fixed. We assume existence
of a population of users with some distribution on vi

ci
who

may decide to install at any point in time after the software
is made available by software developers. Let’s denote the
probability that a user encounters a bug as p(t) where t is
the time elapsed after the software release date. For each
user, the strategy to avoid a loss is simple: do not install
unless p(t) < vi

ci
. However, p(t) depends on the release itself

and on the actions of other users. To model the probability
p, let’s assume that the chances for a user to encounter a
bug decrease as more bugs are reported and fixed. In par-
ticular, let o(t) be the number of bugs observed (and fixed)
by time t and p(t) = f(o(t)), where f is the function that
maps observed bugs to the probability that a new user at
time t would encounter a bug. Assuming that bugs are only
observed at the install date and are fixed immediately, we
have

p(T) = f

(
∫

T

0

n(t)p(t)dt

)

, (1)

where n(t) is the rate of new users installing a release and
n(t)p(t) is the rate of bugs. Furthermore, developers have
limited resources and can work only on a limited number
of bugs at a time, so they prefer to have the bug inflow
rate n(t)p(t) to be a constant k = n(t)p(t). Indeed, the
inflow of user-reported issues appears to be relatively con-
stant in practice. This leads to p(t) = f(kt). Empirical

observations suggest that f is an exponential function, so
p(t) = e−αktp(0), where p(0) represents the chances that
the first user of the release will encounter a bug. The de-
velopment team can change p(0) by, for example, improving
the development process and by increased testing and al-
pha/beta trials. Developer value comes from more users
and the number of users at the time T after the release date
can be obtained via

∫

T

0

n(t)dt =

∫

T

0

k/p(0)eαktdt =
1

αp(0)
(eαkT

− 1), (2)

thus having a smaller p(0) (chances of failure at release date)
and higher k (rate at which bugs can be fixed) would lead to
more users and, consequently, provide more value to devel-
opers. This assumes, of course, that the population of users
who have p(t) < vi

ci
is not depleted.

Given that the chances of failure decrease over time, each
user would benefit by waiting longer to maximize vi−cip(t).
This implies that the optimal strategy for each user is to
wait as long as possible before installing a release — a lack
of Nash equilibrium. Equilibria are represented by points in
a player strategy space where a single player can not ben-
efit by changing their strategy given fixed strategies of the
remaining players.

However, the assumption that vi is fixed is unreasonable.
More likely, the incremental value brought by the software
depends on how long it has been used, so vi is also a function
of time: vi(t − tiinst) where tiinst is the time at which the
user i installs software. Assuming a linear relationship we
get vi(t− tiinst) = (t− tiinst)Vi. Now the condition p(t) < vi

ci

can be rewritten as p(tiinst) < (T − tiinst)
Vi

ci
. The left side

can be rewritten as p(0)e−αkt
i

inst . The install date tiinst

maximizing the expected value would be 1

αk
lnαkp(0) ci

Vi

if

αp(0)ci/Vi > 1 and zero otherwise. If the software quality
is high and it has value for users, the best strategy for a
user is to install right away (tiinst = 0). If the value Vi is
zero, the best strategy is not to install. High cost of failure
ci and high initial probability of failure p(0) increase the
installation delay for the optimal user strategy.

The total number of user-reported bugs under this simplis-
tic model depends only on the duration of time after the re-
lease date. Despite the model’s simplicity, it can provide an
explanation for why major releases tend to have fewer users
and why minor releases may have a similar number of bugs
reported per unit time as major releases, but the chances
for a user to encounter a bug are much lower than for major
releases. The model relies on three mechanisms: bugs being
discovered with more users, increase in software quality with
more bugs being encountered and fixed, and constraints on
the productivity of the development team with a preference
for a constant inflow of work.

Remarkably, the model provides the elusive relationship
between the quality of software at launch p(0) and the rev-
enue expressed as the number of users shown in Equation 2.

5.4 Assessing Data Quality
Software quality is an important aspect of software engi-

neering and data quality is an even more critical concern in
ODS. When producing ODS we want to know when data are
not good enough for a task at hand. For example, data may
not have any relevant information, it may not be possible
to disentangle the events of interest from other commingled

data, or the data may have been tampered with to the extent
of being no longer usable.

Traces from each tool may have specific issues for an ODS
developer to be aware of. As noted above, any VCS may
have branching or administrative changes, and Git may have
a modified history. In issue tracking tools many of the fields
are not used in practice, so it is not likely that data collected
from such fields will contain any relevant information. Elim-
inating such fields would help reduce the dimension of data
for later analysis. Even when an attribute is used in op-
eration it is important to understand how it is populated,
by whom, and how important is its accuracy for efficient
operation. For example, some attributes may have default
values, strongly affecting the frequency distribution. Some
attributes may be modified or seen only by a particular role-
task combination. For example, an external bug reporter
may only modify their own bugs, or a customer may only be
able to see their own issues. The same attribute may be used
differently in different projects or by different roles. Even
when the purpose of an attribute is similar, the exact defini-
tion and the practices of using it may vary among projects
and individuals. Some attributes, such as issue priority may
not affect operational decisions as much as, for example, a
problem description.

Pieces of data that are used to link different tools need
to be subject to a particular scrutiny. For example, the
link between issues in ITS and VCS can be established via
issue ID, but, especially in open source projects, the issue
ID may be missing. If the chances of a link being missing
depend on the response variable in the analysis (a likely
occurrence when counting fixes related to issues) we can
not expect the linked sub-population to be representative of
the entire population. We may, therefore, need to establish
missingness mechanisms discussed in Section 5.3.

Looking at long-term repositories poses challenges of their
own. People change names, old accounts are appropriated by
other individuals, and data gets imported from older tools,
for example, many commercial and open source projects
have imported their CVS or SCCS repositories to Subver-
sion and then to Git. The new tools may not accommodate
all the features of the old tools and are often used in a dif-
ferent manner. ITS tools get merged and cleaned over time,
in effect tampering with their history.

Identification of individuals is particularly important for
a substantial part of OD-based inference, yet it is difficult
to do, especially over an extended period of time or across
several operational support tools. Typical approaches, e.g.,
using an email or a login as identification are not reliable
and require extensive validation because the same email may
be used by multiple individuals and be one among multiple
emails used by a single individual. Even in human resource
tools, the individuals’ IDs often change as they move from
one country to another. A person may spell their name dif-
ferently and may change their legal name as well. Only by
combining multiple sources of information, such as email,
login, name, organization and address from multiple snap-
shots of the organizational data it is possible to have a reli-
able identifier for an individual. Identifiers for an individual
often vary among different tools, For example, IDs in Sales-
Force, VCS, and an issue tracker may be different for the
same individual. In open source, or in cases where data
from multiple organizations are combined, we may need to
rely on the activity patterns or on the writing and coding

style to establish the identity of the individual.
This laundry-list of potentially serious data quality issues

is often either ignored or treated on a case-by-case basis in
much of the extant work. More research is needed to find
effective ways to detect and mitigate these issues to ensure
the integrity of ODS and to make engineering ODS more
efficient.

5.5 Implicit information
A significant amount of information can be obtained not

from what is recorded in the operational support tools, but
from physical or resource constraints defined by the way
these tools are used. For example, each person has an up-
per limit of what they can accomplish in one day or in
one month, even though there may be substantial variations
among individuals. A massive commit activity recorded in
one day by a single individual must mean that either it re-
sults from the effort spent over preceding days or months or
it represents an an action that was not effort intensive, for
example to merge or to import code.

The limited resources of the support team require prod-
ucts to control the inflow of user issues in order to be able
to resolve them rapidly or risk alienating users. It is thus
reasonable to expect that the inflow would stay relatively
constant in an effective organization.

By assuming that an engineer spends approximately one-
person-month of effort per month (in reality, engineers may
take some of the days off or work overtime), it is possible
to determine relative effort spent on different types of tasks
even if the tasks overlap or do not align with month bound-
aries [19].

Identifying and exploiting such implicit information based
on physical or resource constraints may prove to be a rich
research area and play a more prominent role in the future.

5.6 Statistics, Machine Learning, Optimization
There is much to learn and borrow from statistics, ma-

chine learning, optimization, and game theory in software
and ODS engineering. However, these disciplines did not
evolve to serve software engineering applications. While
each discipline has a lot to offer to software engineering, al-
most all methods and tools need to be applied with caution,
as commonly held assumptions (determined by the target
areas of each discipline) tend not to hold in the software
engineering context. A typical example of such problem is
given in Section 5.3 — the chances of observing a defect are
strongly related to the number of bugs. Statistics does not
consider such problems, because there are no general meth-
ods to solve them, the only way to address them is to find
mechanisms within the software engineering domain. Other
disciplines require addressing such problems as a prerequi-
site for the analysis. Some of the mechanisms in software
engineering, such as the dependence on size, are essential
for almost all models, and excluding size predictors is rarely
advisable.

Other notable distinction of software engineering is that
distributions are virtually never normal, with most metrics
being highly correlated (in large part because each repre-
sents a slightly different combination of the same set of phe-
nomena). As observed in, e.g., COCOMO [7], the models are
typically multiplicative, not additive. A logarithmic trans-
formation is, therefore, needed before fitting a model. As an
added benefit, the logarithmic transformation may reduce

the high skew often observed in software engineering data.
For a statistical approach an important goal is to create

a plausible model (simplification) of the phenomenon and
to evaluate various hypotheses, or, in other words, to un-
derstand the phenomenon. Machine learning (ML) is more
geared toward making good operational decisions, such as
recommending information or actions, without necessarily
concerning itself with the understanding. These differences
are somewhat superficial, as statistical models can also be
used for prediction and some ML techniques are based or
derived from such models. Most ML approaches, however,
give no insight about why the suggested decision was cho-
sen. The lack of transparency on how the prediction is made
may present a serious roadblock for strategic decisions that
need clear reasoning and management support.

In software engineering publications it is not unusual to
see a prediction method that involves complicated proce-
dures that may require a PhD to apply it and that are eval-
uated entirely based on their accuracy. It may be unreason-
able to expect that such methods could ever be implemented
and maintained in an operational support tool or used by
an industry analyst. Furthermore, the accuracy evaluations
should take into account a realistic user scenario to make it
clear how the proposed methods would bring value in prac-
tice. For example, in many software development decisions
the utility/loss function is highly asymmetric requiring ei-
ther a high precision or a high recall, and that trade-off
varies among projects. In other scenarios, high accuracy
may not be critical, but the simplicity of deploying the tool
would be far more important. In the future, the analytic
techniques will probably have to rely on models that make
the results more transparent and more actionable. To ap-
ply such techniques appropriately, more research is needed
to understand trade-offs among precision, recall, and cost of
doing the prediction (the cost of operating and maintaining
ODS).

As economic incentives and social interactions in software
development are increasingly being modeled, we can expect
to see more game-theoretic models in the future. To build
custom models for ODS, for example, to solve disaggregation
problems, relevant techniques from the optimization domain
are likely to be brought in.

5.7 Validating ODS
The task of validating ODS appears to be virtually impos-

sible. ODS use complex, noisy, and changing data with no
“correct” result to use as a gold standard. The only way to
assure validity of the results is by ensuring that every step
in the processing chain is valid and appropriate for the type
of analysis performed and for the type of data being used.

It is a hierarchical task starting from a careful inspection
to understand the provenance and distribution of each piece
of data, of the problem domain, and of the practices used. In
cases when assumptions need to be made about augmenting
the data, a suitably selected stratified sample needs to be
verified with an independent data source, e.g., interviews.

Relationships among attributes need to be investigated to
decide how to select an uncorrelated subset of variables for
a subsequent analysis.

It is important to realize that values in the operational
support tools may be inaccurate. For example, the classifi-
cation of issues as defects or a priority assigned to an issue
are often inaccurate. A sensitivity analysis may need to be

performed to gauge the amount of uncertainty in the results
with respect to the inaccuracies in these values. Such evalu-
ations are rarely performed in software engineering [47] and
more research is needed to investigate the extent of inaccu-
racy in various operational support tools. Given the recent
attention to poor reproducibility [25] and analytic results
suggesting that traditional cross-validation and bootstrap
lead to serious over-fitting [63], it is likely that more work
will appear in the area of sensitivity to data errors.

While it is not a focus of this paper, it is important to
recognize that there are many validation techniques in, for
example, scientific computing, databases, and software en-
gineering itself that could be adopted to validate ODS.

5.8 How Might the Future ODS Appear?
Widely used packages, such as R, are targeted to a re-

searcher or an analyst. The main beneficiaries of ODS in
software development will not be analysts or researchers,
but developers, testers, product managers, and other project
participants. The learning curve and the deployment hur-
dles would be lowered if ODS were to make their existing
tools that are necessary for daily operation and reporting
smarter, e.g., with “OD inside”. In fact, such ODS are hid-
ing in plain view in the form of VCS, ITS, build, test, and
other software tools. It is hard to imagine present software
development without these tools, yet each presents an in-
structive, if somewhat rudimentary, ODS. The basic func-
tions of such tools involve the ability to support operations,
ensure audit trail, and to provide some reporting capabil-
ities. The operational support involves, e.g., workflow in
ITSs, code modification, branching, and merging in VCSs,
building executable code and running tests in build tools.
Audit trail is represented as an issue activity history in an
ITS or a version history in a VCS. Reporting capabilities in-
clude issue backlog charts in an ITS, a list of past changes in
a VCS, or a history of past builds and tests. The information
from these tools helps developers to make appropriate de-
cisions (e.g., fix a build problem) and reporting capabilities
allow analysis and prediction (e.g., the size of issue backlog
helps to determine project’s schedule). Some of the existing
tools, e.g., Sonar [52], are focused mainly on reporting capa-
bilities by showing various statistics about the code. Even
though they are instances of somewhat sophisticated ODS,
the lack of integration with the development workflow may
make them less effective in practice. A tighter integration
of such ODS with development workflow would make it eas-
ier to encourage and measure their use without the need to
introduce additional process requirements.

Presently, many of development-support tools (with some
of them being ODS) are integrated into an IDE, because
developers prefer to see the code they modify as a context
for any action they contemplate and because the modifica-
tions to code are how source code creation and maintenance
proceed. However, developers are typically focused on their
primary task of coding when using an IDE and may not en-
gage ODS. Even if the ODS is engaged from an IDE and
a worthy task is identified, developers may not have time
to implement it immediately. Having capabilities to cre-
ate and track a task associated with ODS recommendations
would simplify adoption of such recommenders. These rec-
ommended tasks could then be prioritized, resources allo-
cated, and implementation scheduled.

Task tracking is pervasive and presents an excellent source

of data and a target for improvement by ODS. For exam-
ple, companies often have tools that track all software life-
cycle stages and tasks, such as, requirements, user stories,
inspections, static analysis issues, tests and test execution,
customer deployments and experiences. This creates a pos-
sibility to link information from these disparate domains and
tools.

Many of the topics discussed above directly or indirectly
bear on the design decisions facing ODS and on the oper-
ational support software providing digital crumbs to feed
ODS. In particular, the need to support operations, ensure
audit trail, provide reporting, and easy (and early) detec-
tion and recovery from the inevitable bugs is as essential for
ODS as for any other operational support tool.

In summary, there are successful ODS that are already
used in software engineering, such as task tracking. They
provide operational and reporting (analytic) capabilities and
could be expanded by additional OD-based capabilities or
emulated in other ODS targeting IDEs, VCSs, or build and
test tools.

6. IMMEDIATE CHALLENGES
Below are a few examples of trends that appear to stretch

the capabilities of existing development tools and procedures
and are likely to benefit from novel types of ODS.

6.1 Drowning in Code
The amount of source code grows for a variety of reasons.

Active developers write code over time, thus even if the num-
ber of developers in the world stayed fixed, the amount of
code would continue to increase. There are more developers
over time as software engineering is transitioned to numer-
ous locations over the world in search of inexpensive talent.
A modern VCS, such as Git [59], not only provides powerful
branch and merge tools, but also makes creation of branches
and additional repositories a necessity, thus resulting in a
proliferation of branches and repositories. IDEs and code
generation tools replicate innumerable templates that are
then maintained by changing code generation parameters
or by manual editing. The need to support multiple plat-
forms, especially for mobile applications, also contributes to
the amount of branching. In the enterprise, the code pro-
liferates as the original development teams and culture of
maintaining lean code are replaced by contracted work with
less emphasis on ensuring that only the minimal amount of
code is used. The evolution of technology standards, for ex-
ample, the evolution of telephony protocols from analog, to
TDM, H323, SIP, and now to WebRTC, requires new code
to implement a similar functionality.

So far, the experimental evidence [49, 50] suggests that
the amount of code is the primary driver of maintenance ef-
fort. If the amount of code continues to grow, the projects
may become unmaintainable. In particular, just being able
to sift through this mass of code in various repositories and
branches to find what is needed or relevant will become dif-
ficult. The following areas are likely to benefit from novel
ODS designed to cope with the abundance of code.

First, navigating among hundreds of branches would re-
quire more sophisticated diff and merge tools. Tools to sum-
marize and suggest the most relevant branches and ways to
create diffs and merges with hundreds or thousands of ver-
sions to support certain development scenarios, for example,
a multi-platform development, are likely to emerge. We will
probably see some applications of text analysis techniques

such as statistical translation both being trained on such
diverged code bases, and also being used to merge them
permanently or on-demand. Other techniques, such as topic
analysis [24], may help with categorization and a search for
relevant functionality. We will see more procedures and tools
to support various branching strategies [48], both within an
enterprise, among companies, and in open source. In addi-
tion to lessons from the Linux kernel development [17], we
will see examples of more radical branching in the mobile
platforms. Presently the user interface is implemented and
tuned to each platform completely independently, often by a
different development team. Merging feature enhancements
and fixes among these independent implementations will be
a worthy challenge for ODS.

Various ways to identify and reduce code-bloat will be
needed. In addition to code analysis, change analysis strate-
gies will appear that identify under what circumstances (and
by whom) code-bloat is introduced and suggest ways to re-
duce it.

6.2 Just-in-Time Features
Web services and mobile applications offer perfect oppor-

tunities to apply OD-based approaches because the data
collection is centralized, the usage data are more readily
available, and many of the software engineering problems
are new, for example, end users participate more fully in
the quality and feature improvement activities. Software
engineering innovations offer clear competitive advantages
in both industries, so the state-of-the art requirements elic-
itation, testing, deployment, and measurement of customer
satisfaction are likely to be guarded as commercial secrets.
An industry based on a business model to provide analyt-
ics for software makers in web service and in mobile space
has grown. Not only the business aspects (such as in-app-
purchases) are addressed, but full mobile application per-
formance frameworks are also provided. They may contain
instrumentation for the mobile application and the analy-
sis of the performance data (e.g., crashes or memory usage)
from users who install such instrumented apps. For mobile
applications and web services, estimating usage is not as
complicated as for packaged or system software, and user ex-
perience (and resulting business benefits) could be assessed
through suitable techniques that involve both, instrument-
ing client and server software, and devising ways to clean
and model the resulting data.

The ability to see how the modifications to existing fea-
tures or new features convert into usage patterns and cash
(either through downloads, advertisements, or in-app pur-
chases), completes the business loop of mobile application
development. The full development cycle could be com-
pleted within hours, so it is not unreasonable to expect ODS
that experiment with adding or removing features of the
mobile application to maximize user experience, future cash
flows, or some other objective.

6.3 Project Universe and Parallel Evolution
Open source projects provide source code for anyone to

see and use. Often, not simply the code, but version con-
trol and issue tracking tools allow public access as well.
There are numerous software projects with a public access
to their VCSs. For example, several million projects are on
github.com and more than 300K on each sourceforge.net and
code.google.com. Many software organizations are central-

izing the development resources within a corporate cloud
as well. With network bandwidth becoming less costly, it
does not make economic sense for each project to support
their own version control, issue tracking, inspection, build,
and numerous other tools. The open source and corporate
clouds now host massive collections of software development
data in a variety of support tools. This provides both a data
source and an outlet for new ODS to emerge. Having vast
collections of projects poses both challenges and opportuni-
ties. The simplest opportunity is to conduct a basic census:
what is the distribution of code, people, and their activities
and how does it depend on context? Higher level questions
would include measurement and comparison of innovative
practices and artifacts. The answers to such questions may
provide a basis for engineering socio-technical systems with
desired features, for example, longevity or efficiency. How-
ever, the lack of methods to segment projects by salient con-
text factors and methods to integrate non-code data, such
as developer identity and issue history, are two formidable
obstacles that make progress difficult in this area.

Experiments involving construction of two or more soft-
ware systems with identical functionality could provide un-
equivocal answers about what software development meth-
ods are effective, but such experiments are quite expen-
sive even for small systems [1]. Fortunately, large software
project collections may be able to provide a less expensive
alternative. Many of the open source projects have been
forked or developed similar functionality independently. As
companies merge, they often acquire competitors with prod-
ucts that have almost identical functionality but have been
developed completely independently over many years, with
each using the development and support practices of the
originating company. Such natural experiments [13] may
show if the differences in software development practices are
associated with development effort or software quality.

6.4 Data Quality in Operational Support Tools
Data accuracy is not simply an issue for validating ODS

(see Section 5.7). Much of the operation of a software devel-
opment (or other knowledge intensive) organization is based
on the business process that is driven by data in the opera-
tional support tools. The effectiveness of every organization,
therefore, depends on the accuracy of data it uses to operate.
In any organization of nontrivial size, work consists of tasks
that flow among the participants according to a business
process or a common practice. The flow and the decisions
made by each participant critically depend on the informa-
tion in the supporting system. For example, an incorrect
severity for a task may waste resources on less urgent issues
while leaving more urgent tasks unattended. A customer
issue assigned to a wrong product team takes much longer
to resolve (negatively affecting user-perceived quality) and
wastes developer effort. Being able to estimate the accuracy
of data that is used to support operation (e.g., to route is-
sue workflow) can improve the effectiveness of the software
development by re-routing the work based on the amount
of uncertainty associated with fields that are important for
operational effectiveness. This can be done, for example, by
adjusting the workflow for tasks with likely-erroneous data
to improve the quality of data before taking the operational
action, e.g., sending the issue to a specific product develop-
ment team or marshaling resources for a particularly urgent
customer issue [62].

The intriguing aspect of employing ODS for data quality
improvement in operational support tools is the recursive
nature of the process — as data quality is improved with
ODS it becomes easier to implement other ODS based on
this, now less-problematic, data. As discussed in Section
5.8, the operational support tools will be increasingly incor-
porating elements of ODS, and designing such self-cleaning
operational support tools will likely attract its fare of re-
search attention. Some instances of self-cleaning operational
support tools already exist in the form of sophisticated mod-
eration and meta-moderation schemes used by online com-
munities, e.g., on slashdot.org [42]. Such schemes typically
rely entirely on the manual input from community partici-
pants, and it is likely to be an area where a suitably designed
ODS could help to reduce the amount of effort involved or
to increase the accuracy of reputation and other data.

7. A BACKWARD LOOK FORWARD
Feedback from users in various environments will be needed

to understand their OD needs [4]. However, such feedback
is limited by the existing constraints and tools available to
informers. It may, therefore, be instructive to contemplate
what software development may look like in the near fu-
ture to better understand and cater to potentially emerging
needs. The next scenario of software call center, where a
software task is specified, designed, implemented, verified,
and deployed, all within the span of a single call, is highly
speculative, but is well within the realm of what is possible.
In particular, the limiting factor and the goal of the follow-
ing scenario is the extremely compressed response time as
may be needed to implement new mobile features discussed
in Section 6.2.

The dream of low-cost just-in-time software development
has not been realized yet, and many alleged silver bullets,
e.g., focusing on software process, have not delivered as
much as was expected. There are many formidable obsta-
cles to more predictable software development. For example,
software design and maintenance are creative activities that
rely on tacit knowledge well concealed in developers’ minds,
and on the often peculiar organizational culture of teams
creating software. At the same time, as more aspects of hu-
man activity are supported by software, there is a practical
need to make software development more transparent, pre-
dictable, and controllable. Ignoring that need is not a wise
choice despite the perils and challenges that await someone
trying to address it. ODS are already offering a possibility
to address that need by making software development more
transparent [11].

An instructive example of knowledge work that was sim-
plified and templatized is that of a call center agent. Many
customer support functions, while inherently complex and
open-ended, have been implemented in a present-day call
center. In essence, such workers interface with multiple
business tools that can not (or are too expensive to) be inte-
grated or can not be exposed to the public to help customers
with the less common tasks that are not resolvable via an
interactive voice response (IVR) system or via the customer
support web site.

The agents need to take a fairly short (one to few days)
training course to be familiarized with the customer interac-
tion scenarios and with the screens of the various tools that
may be needed in common customer-support tasks, e.g., to
check if the payment was received but was not yet applied

to the account. An important part of the job is to recognize
the circumstances where expert help is needed and direct
the customer (or issue workflow) accordingly. We will ar-
gue that the work of a software engineer has a number of
similarities to the work of the call center agent. Both are
knowledge workers responding to customer issues, obtaining
and modifying data, contacting other agents or experts, and
opening issues to be tracked. In development as in a call cen-
ter, much of the time is spent in clarifying the requirements
or reproducing the problems as well as in finding relevant
expertise and waiting for the responses from experts.

A radical difference between developers and call agents
is the duration of their tasks. Software development tasks
are not resolved in real-time but are tracked as issues in
ITS or email exchanges and may take days or weeks to get
resolved in contrast to agent tasks that are resolved in min-
utes. The development task tracking tends to slow the work
substantially and call centers could provide an example of
a workflow that could speed up some aspects of software
development. Would it be possible for an a already skilled
developer with some project training to resolve a substan-
tial portion of tasks rapidly (within a few minutes)? Such
developers would work, as in the case of call center, under
supervision and escalate more complicated tasks to domain
experts. Below are possible scenarios on how such a feat
might be accomplished.

One of the most central parts of the call center is a re-
porting system. It is an instance of ODS that has been
in operation for decades. It provides both real-time and
historic reports. Real-time reports address urgent issues
emerging in operations of a call center: unusual inflow of
calls, need to assign more agents with relevant expertise,
and management of waiting time. Historic reports are used
to determine the quality of customer experience and per-
formance of agents and supervisors. They include reports
that determine agent compensation and reports that detect
cheating behaviors. This is exactly the domain of OD that
has not yet seen a wide adoption in software development.
Analogous measurement techniques would be useful in, for
example, outsourcing software development work.

Many of the call-center-like tools for routing work, track-
ing, and reporting are already deployed or exist as proto-
types in software development, but the integration necessary
to create such a software production analog of a call center
is still lacking. This conceptual operation would use tradi-
tional issue tracking tools to route work and evaluate work
progress, code-inspection-like tools should be built to super-
vise the quality of work, code and task expertise tools would
be used to measure expertise and route escalations and tasks
accordingly, and mentorship tools would assign supervisors
and mentors. ODS would play a role associating individ-
uals and code, determining the importance and relevance
of the tasks, and assuring (and improving) accuracy of the
information. Mentorship analysis would help to construct
expertise networks, risk detection techniques would identify
the riskiest areas of the code, most important tasks, and
customers with the most urgent needs.

While some aspects of software call center may require a
lot of work to have an industrial deployment, something not
entirely unlike it already exists in practice. In a multitude
of on-line marketplaces there are some mature companies
with a long history that are targeting software development.
Such companies, for example, [61] provide a marketplace for

independent contractors to find work and for companies to
outsource small projects. Projects can be very small, with
some projects having a minimum price of US$200 with a
US$10 hourly rate (guru.com on January, 2014) These mar-
ketplaces do not provide a real-time response and are lacking
a network of experts for these freelancers to rely on in case
they encounter an issue. The mentor network for such mar-
ketplaces could, however, be constructed based on the ap-
proach used in github.com, which, along with development-
tool-hosting service, provides a rich social networking func-
tionality such as feeds, collaborators, and watchers to make
developer work and interactions more transparent. Many
challenges of sharing compensation, routing escalations, and
ensuring trust would need to be addressed to make such
more effective marketplaces function.

Initially, therefore, software call centers would probably
focus on expanding basic customer support within an en-
terprise, and the Information Technology (IT) support is
probably the most likely initial deployment environment.
Perhaps a gradual move from mundane IT support tasks to
more innovation oriented professional services tasks could be
an early testbed of such just-in-time software development.
Over time, however, the biggest impact may be in outsourc-
ing and contract work, where the rapid training scripts and
objective measures of performance are still sorely lacking.

It is worth noting that the population of developers isn’t
large and many individuals may not have a desire or an ap-
titude to write code. It is important to recognize, though,
that writing code is but a relatively small and shrinking part
of software development, because a substantial and increas-
ing portion of work involves configuring software, compos-
ing software from preexisting blocks (mashups), or simply
reporting and triaging issues and requesting additional fea-
tures. ODS can certainly help with these tasks both by
providing actors with the information needed as described
in [53]. To make agents more efficient, call centers typically
collect all the relevant information about the customer and
the task (typically via an IVR system) and present it to
the agent at the time of the call. Similarly, even the most
expert developers would be more productive if all the infor-
mation salient to the decision at hand would be proactively
and unobtrusively available.

8. SUMMARY OF THE ROADMAP
To satisfy the growing need for ODS in software engineer-

ing and other fields and to avoid compromising the integrity
of the results produced by these systems, it will be necessary
to develop both basic principles and tools that allow effec-
tive engineering of ODS. This research may take the form of
systematizing existing best practices, of borrowing relevant
approaches from other domains, e.g., databases, and of dis-
covering the principles de novo for ODS-specific challenges.

We discuss defining features of ODS to guide the work of
building the engineering principles:

• no two events have exactly the same context;

• data are usually incomplete;

• data are usually incorrect, filtered, or tampered with.

Basic OD measurement principles are defined by the ne-
cessity to recognize typically unavailable context informa-
tion and take a variety of steps to segment the events.

Because OD do not capture all actions of interest and
the chances that an action would be captured in OD often
depend on an entity that is being estimated, it is necessary
to develop a library of basic mechanisms describing the rela-
tionships among entities for the software engineering domain
(or for the domain the ODS are targeted to). Such mecha-
nisms could then be incorporated into models and used to
segment by context, impute missing values, and identify and
correct wrong, filtered, or tampered with data.

More research is needed to understanding fundamental
constraints faced by individuals, groups, and organizations.
Such constraints can serve as implicit information used to
estimate quantities that are difficult to obtain, have unreli-
able data, or are simply not available.

Particular areas that need immediate research attention
are related to data quality issues, such as effective meth-
ods to identify data entry problems, clean data, augment
or segment events, and develop robust methods to establish
subject identities.

Statistics, machine learning, operations research, and game
theory have a significant role to play, but particular care
needs to be taken when applying these methods in ODS
because the assumptions taken for granted in many of the
borrowed techniques do not apply for OD in general and for
software engineering in particular. More research is needed
to understand what assumptions used in these disciplines do
apply in OD.

ODS are software systems that need maintenance and val-
idation. These concerns are important when engineering
ODS, but they have yet to be thoroughly investigated.

We discussed two high-level use cases: analyst’s work-
bench and an augmentation of an existing operational sup-
port system and argued for the need to consider the later
model to achieve a wider acceptance in software engineering
practice. In particular, issue trackers appear to be a good
target for the augmentation approach.

In addition to the urgent need to develop engineering prin-
ciples for ODS, we discuss several emerging applications do-
mains where approaches relying on OD may be particularly
suitable. Modern VCSs make it easy and necessary to cre-
ate branches and increasing amounts of code are created and
accessible publicly or within enterprise. This offers oppor-
tunities for, for example, reuse of code and of code fixes,
but it also makes it difficult to navigate among hundreds of
branches to find the relevant code or fix.

Large collections of public and enterprise project repos-
itories provide tantalizing opportunities to answer some of
the most vexing questions in software engineering. For ex-
ample, it is cost prohibitive to run experiments that im-
plement the same functionality in multiple large software
projects to evaluate effectiveness of various software devel-
opment methods. However, a large collection of projects is
likely to contain multiple projects that happen to implement
a similar functionality. For example, an enterprise may ac-
quire a competitor with a set of similar software products.
Such matched groups of products could then be studied us-
ing a framework of natural experiments [13] embraced by
archival studies in economics and epidemiology.

Mobile application software provides opportunities for un-
precedentedly rapid updates of software for end users, but
the highly fragmented client platforms make it difficult to
assure software quality. Fortunately, it is feasible to col-
lect application deployment, usage, and performance infor-

mation in these domains. ODS based on such data could
provide capabilities to fully utilize the rapid update cycle
without compromising user experience.

We also raise questions about the limits of software en-
gineering and the research needed to go beyond them by
describing a concept of a software call center — where the
software issue is reported, reproduced, fix designed, imple-
mented, and delivered, and all of this happens within the
duration of a single call.

The necessity to measure the context of software develop-
ment, the blurring of software development boundaries, and
the explosion of measurement in other areas of human en-
deavor represent three powerful and converging trends that
will redefine key notions of software engineering and prac-
tice. For example, the fact that users and usage are im-
portant contributors to software quality is already partially
utilized in crash reporters, user support groups, and in the
deployment strategies of web services. However, just-in-time
patches fixing defects in real time or just-in-time new func-
tionality defined and delivered on-demand, could become a
reality as the software development, usage, and measure-
ment become more tightly integrated.

9. ACKNOWLEGEMENTS
I’d like to thank Jon Bentely, John Palframan, Randy

Hackbarth, and Sriram Rajamani for their valuable com-
ments.

10. REFERENCES
[1] Bente C.D. Anda, Dag I.K. Sjøberg, and Audris

Mockus. Variability and reproducibility in software
engineering: A study of four companies that developed
the same system. IEEE Transactions on Software
Engineering, 35(3), May/June 2009.

[2] V.R. Basili, R.W. Selby, and D.H. Hutchens.
Experimentation in software engineering. IEEE
Transactions on Software Engineering, pages 758–773,
July 1986.

[3] V.R. Basili and D.M. Weiss. A methodology for
collecting valid software engineering data. IEEE
Transactions on Software Engineering, 10(6):728–737,
1984.

[4] Andrew Begel and Thomas Zimmermann. Analyze
this! 145 questions for data scientists in software
engineering. In ICSE, Hyderabad, India, June 2014.
IEEE CS.

[5] L. A. Belady and M. M. Lehman. Programming
system dynamics, or the meta-dynamics of systems in
maintenance and growth. Technical report, IBM
Thomas J. Watson Research Center, 1971.

[6] Christian Bird, Peter C. Rigby, Earl T. Barr, David J.
Hamilton, Daniel M. German, and Prem Devanbu.
The promises and perils of mining git. 2013 10th
Working Conference on Mining Software Repositories
(MSR), 0:1–10, 2009.

[7] B.W. Boehm. Software Engineering Economics.
Prentice-Hall, 1981.

[8] Marcelo Cataldo, Audris Mockus, Jeffrey A. Roberts,
and James D. Herbsleb. Software dependencies, the
structure of work dependencies and their impact on
failures. IEEE Transactions on Software Engineering,
2009.

[9] Per Cedeqvist and et al. CVS Manual. May be found
on: http://www.cvshome.org/CVS/.

[10] Ben Collins-Sussman, Brian W. Fitzpatrick, and
C. Michael Pilato. Subversion Manual. May be found
on: http://svnbook.red-bean.com/.

[11] Laura Dabbish, H. Colleen Stuart, Jason Tsay, and
James D. Herbsleb. Leveraging transparency. IEEE
Software, 30(1):37–43, 2013.

[12] Data warehouse.
http://en.wikipedia.org/wiki/Data_warehouse.

[13] T. Dunning. Natural Experiments in the Social
Sciences: A Design-Based Approach. Cambridge
University Press, 2012.

[14] S.G. Eick, J.L. Steffen, and Sumner E.E. Seesoft-a
tool for visualizing line oriented software statistics.
IEEE Transactions on Software Engineering,
18(11):957 – 968, November 1992.

[15] Harald Gall, Karin Hajek, and Mehdi Jazayeri.
Detection of logical coupling based on product release
history. In ICSM, pages 190–197, 1998.

[16] Hype cycles. http://www.gartner.com/technology/
research/methodologies/hype-cycle.jsp.

[17] Linux kernel. http://en.wikipedia.org/wiki/Linux_
kernel#Development_model.

[18] R Grady and E Caswell. Software metrics.
Prentice-Hall, Englewood Cliff, 1987.

[19] T. Graves and A. Mockus. Identifying productivity
drivers by modeling work units using partial data.
Technometrics, 43(2):168–179, May 2001.

[20] Randy Hackbarth, Audris Mockus, John Palframan,
and David Weiss. Assessing the state of software in a
large enterprise. Journal of Empirical Software
Engineering, 10(3):219–249, 2010.

[21] M. H. Halstead. Elements of Software Science.
Elsevier – North Holland, 1979.

[22] Ahmed E. Hassan, Abram Hindle, Per Runeson,
Martin Shepperd, Premkumar T. Devanbu, and
Sunghun Kim. Roundtable: What’s next in software
analytics. IEEE Software, 30(4):53–56, 2013.

[23] Ahmed E. Hassan, Richard C. Holt, and Audris
Mockus. Report on MSR 2004: International
workshop on mining software repositories. In ACM
SIGSOFT Software Engineering Notes, 2005.

[24] Abram Hindle, Neil A. Ernst, Michael W. Godfrey,
and John Mylopoulos. Automated topic naming to
support cross-project analysis of software maintenance
activities. In Proceedings of the 8th Working
Conference on Mining Software Repositories, MSR
’11, pages 163–172, New York, NY, USA, 2011. ACM.

[25] John P. A. Ioannidis. Why most published research
findings are false. PLoS Med, 2(8):e124, August 30
2005.

[26] J. Jelinski and P. B. Moranda. Software reliability
research. In W. Freiberger, editor, Probabilistic Models
for Software, pages 485–502. Academic Press, 1972.

[27] Jira plugins.
https://marketplace.atlassian.com/plugins.

[28] Donald E. Knuth. Literate Programming. Stanford
University Center for the Study of Language and
Information, Stanford, CA, USA, 1992.

[29] R. J. A. Little and D. B. Rubin. Statistical Analysis

with Missing Data. Willey Series in Probability and
Mathematical Statistics. John Willey & Sons, 1987.

[30] T. J. McCabe. A complexity measure. IEEE Trans. on
Software Engineering, 2(4):308–320, Dec. 1976.

[31] Katina Michael and Keith W. Miller. Big data: New
opportunities and new challenges [guest editors’
introduction]. Computer, 46(6):22–24, 2013.

[32] Anil K. Midha. Software configuration management
for the 21st century. Bell Labs Technical Journal, 2(1),
Winter 1997.

[33] A. Mockus, R. F. Fielding, and J. Herbsleb. A case
study of open source development: The Apache server.
In 22nd International Conference on Software
Engineering, pages 263–272, Limerick, Ireland, June
4-11 2000.

[34] Audris Mockus. Software support tools and
experimental work. In V Basili and et al, editors,
Empirical Software Engineering Issues: Critical
Assessments and Future Directions, volume LNCS
4336, pages 91–99. Springer, 2007.

[35] Audris Mockus. Missing data in software engineering.
In J. Singer et al., editor, Guide to Advanced
Empirical Software Engineering, pages 185–200.
Springer-Verlag, 2008.

[36] Audris Mockus. Amassing and indexing a large sample
of version control systems: towards the census of
public source code history. In 6th IEEE Working
Conference on Mining Software Repositories, May
16–17 2009.

[37] Audris Mockus. Organizational volatility and its
effects on software defects. In ACM SIGSOFT / FSE,
pages 117–126, Santa Fe, New Mexico, November 7–11
2010.

[38] Audris Mockus, Todd L. Graves, and Alan F. Karr.
Modelling software changes. In C.E. Minder and
H. Friedl, editors, Good Statistical Practice, pages
175–179. Austrian Statistical Society, Wien, Austria,
July 1997. Proceedings of the 12th International
Workshop on Statistical Modeling, Biel/Bienne.

[39] Audris Mockus, Randy Hackbarth, and John
Palframan. Risky files: An approach to focus quality
improvement effort. In 9th Joint Meeting of the
European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of
Software Engineering, 2013.

[40] Audris Mockus and David Weiss. Interval quality:
Relating customer-perceived quality to process quality.
In 2008 International Conference on Software
Engineering, pages 733–740, Leipzig, Germany, May
10–18 2008. ACM Press.

[41] 11th working conference on mining software
repositories. http://2014.msrconf.org/.

[42] Nathaniel Poor. Mechanisms of an online public
sphere: The website slashdot. Journal of
Computer-Mediated Communication, 10(2), 2005.

[43] Foyzur Rahman, Daryl Posnett, Israel Herraiz, and
Premkumar T. Devanbu. Sample size vs. bias in defect
prediction. In ESEC/SIGSOFT FSE, pages 147–157,
2013.

[44] M.J. Rochkind. The source code control system. IEEE
Trans. on Software Engineering, 1(4):364–370, 1975.

[45] Eric Schulte, Dan Davison, Thomas Dye, and Carsten
Dominik. A multi-language computing environment
for literate programming and reproducible research.
Journal of Statistical Software, 46(3):1–24, 1 2012.

[46] Matthias Schwab, Martin Karrenbach, and Jon
Claerbout. Making scientific computations
reproducible. In Computing in Science & Engineering,
pages 61–67, 1997.

[47] Martin J. Shepperd, Qinbao Song, Zhongbin Sun, and
Carolyn Mair. Data quality: Some comments on the
nasa software defect datasets. IEEE Trans. Software
Eng., 39(9):1208–1215, 2013.

[48] Emad Shihab, Christian Bird, and Thomas
Zimmermann. The effect of branching strategies on
software quality. In ESEM, pages 301–310, 2012.

[49] Dag I.K. Sjøberg, Bente Anda, and Audris Mockus.
Questioning software maintenance metrics: a
comparative case study. In Proceedings of the
ACM-IEEE international symposium on Empirical
software engineering and measurement, ESEM ’12,
pages 107–110, New York, NY, USA, 2012. ACM.

[50] Dag I.K. Sjoberg, Aiko Yamashita, Bente Anda,
Audris Mockus, and Tore Dyba. Quantifying the effect
of code smells on maintenance effort. IEEE
Transactions on Software Engineering, 2013.

[51] But he looked good on paper. http://www.slate.
com/articles/business/small_business/2010/08/

but_he_looked_good_on_paper.html.

[52] Sonar. http://en.wikipedia.org/wiki/SonarQube.

[53] Margaret-Anne Storey, Leif Singer, Fernando Figueira
Filho, Brendan Cleary, and Alexey Zagalsky. The
(R)evolutionary Role of Social Media in Software
Engineering. In ICSE, Hyderabad, India, June 2014.
IEEE CS.

[54] Walter F. Tichy. Design, implementation, and
evaluation of a revision control system. In ICSE, pages
58–67, 1982.

[55] Claude E. Walston and Charles P. Felix. A method of
programming measurement and estimation. IBM
Systems Journal, 16(1):54–73, 1977.

[56] M.R. Wigan and R. Clarke. Big data’s big unintended
consequences. Computer, 46(6):46–53, 2013.

[57] Big data. http://en.wikipedia.org/wiki/Big_Data.

[58] Business intelligence. http:
//en.wikipedia.org/wiki/Business_intelligence.

[59] Git. http:
//en.wikipedia.org/wiki/Git_%28software%29.

[60] Predictive analytics. http:
//en.wikipedia.org/wiki/Predictive_analytics.

[61] Vworker. http://en.wikipedia.org/wiki/VWorker.

[62] Jialiang Xie, Qimu Zhengand, Minghui Zhou, and
Audris Mockus. Product assignment recommender. In
ICSE’14 Demonstrations, 2014.

[63] Jianming Ye. On measuring and correcting the effects
of data mining and model selection. Journal of the
American Statistical Association, 93(441):120–131,
March 1998.

[64] Tze-Jie Yu, Vincent Yun Shen, and Hubert E.
Dunsmore. An analysis of several software defect
models. IEEE Trans. Software Eng., 14(9):1261–1270,
1988.

