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Abstract
Background: The underlying goal of synthetic biology is to make the process of engineering
biological systems easier. Recent work has focused on defining and developing standard biological
parts. The technical standard that has gained the most traction in the synthetic biology community
is the BioBrick standard for physical composition of genetic parts. Parts that conform to the
BioBrick assembly standard are BioBrick standard biological parts. To date, over 2,000 BioBrick
parts have been contributed to, and are available from, the Registry of Standard Biological Parts.

Results: Here we extended the same advantages of BioBrick standard biological parts to the
plasmid-based vectors that are used to provide and propagate BioBrick parts. We developed a
process for engineering BioBrick vectors from BioBrick parts. We designed a new set of BioBrick
parts that encode many useful vector functions. We combined the new parts to make a BioBrick
base vector that facilitates BioBrick vector construction. We demonstrated the utility of the
process by constructing seven new BioBrick vectors. We also successfully used the resulting
vectors to assemble and propagate other BioBrick standard biological parts.

Conclusion: We extended the principles of part reuse and standardization to BioBrick vectors.
As a result, myriad new BioBrick vectors can be readily produced from all existing and newly
designed BioBrick parts. We invite the synthetic biology community to (1) use the process to make
and share new BioBrick vectors; (2) expand the current collection of BioBrick vector parts; and (3)
characterize and improve the available collection of BioBrick vector parts.

Background
The fundamental goal of synthetic biology is to make the
process of engineering biology easier. Drawing upon les-
sons from the invention and development of other fields
of engineering, we have been working to produce meth-
ods and tools that support the design and construction of
genetic systems from standardized biological parts. As
developed, collections of standard biological parts will

allow biological engineers to assemble many engineered
organisms rapidly [1]. For example, individual parts or
combinations of parts that encode defined functions
(devices) can be independently tested and characterized
in order to improve the likelihood that higher-order sys-
tems constructed from such devices work as intended
(Canton, Labno, and Endy, submitted) [2,3]. As a second

Published: 14 April 2008

Journal of Biological Engineering 2008, 2:5 doi:10.1186/1754-1611-2-5

Received: 14 February 2008
Accepted: 14 April 2008

This article is available from: http://www.jbioleng.org/content/2/1/5

© 2008 Shetty et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 12
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18410688
http://www.jbioleng.org/content/2/1/5
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Journal of Biological Engineering 2008, 2:5 http://www.jbioleng.org/content/2/1/5
example, parts or devices that do not function as expected
can be identified, repaired, or replaced readily [4,5].

We define a biological part to be a natural nucleic acid
sequence that encodes a definable biological function,
and a standard biological part to be a biological part that
has been refined in order to conform to one or more
defined technical standards. Very little work has been
done to standardize the components or processes under-
lying genetic engineering [6]. For example, in 1996,
Rebatchouk et al. developed and implemented a general
cloning strategy for assembly of nucleic acid fragments
[7]. However, the Rebatchouk et al. standard for physical
composition of biological parts failed to gain widespread
acceptance by the biological research community. As a
second example, in 1999, Arkin and Endy proposed an
initial list of useful standard biological parts but such a
collection has not yet been fully realized [8]. In 2003,
Knight proposed the BioBrick standard for physical com-
position of biological parts [9]. Parts that conform to the
BioBrick assembly standard are BioBrick standard biolog-
ical parts. In contrast to the previous two examples, the
BioBrick physical composition standard has been used by
multiple groups (Canton, Labno, and Endy, submitted)
[10-12], and adoption of the standard is growing. For
example, each summer, hundreds of students develop and
use BioBrick standard biological parts to engineer biolog-
ical systems of their own design as a part of the Interna-
tional Genetically Engineered Machines competition [13].
Additional technical standards defining BioBrick parts are
set via an open standards setting process led by The Bio-
Bricks Foundation [14].

The key innovation of the BioBrick assembly standard is
that a biological engineer can assemble any two BioBrick
parts, and the resulting composite object is itself a Bio-
Brick part that can be combined with any other BioBrick
parts. The idempotent physical composition standard
underlying BioBrick parts has two fundamental advan-
tages. First, the BioBrick assembly standard enables the
distributed production of a collection of compatible bio-
logical parts [15]. Two engineers in different parts of the
world who have never interacted can each design a part
that conforms to the BioBrick assembly standard, and
those two parts will be physically composable via the
standard. Second, since engineers carry out the exact same
operation every time that they want to combine two Bio-
Brick parts, the assembly process is amenable to optimiza-
tion and automation, in contrast to more traditional ad
hoc molecular cloning approaches.

The Registry of Standard Biological Parts (Registry) exem-
plifies the advantage offered by a physical composition
standard such as the BioBrick assembly standard [15]. The
Registry currently maintains a collection of over 2,000

BioBrick standard biological parts. Every part in the Regis-
try has a BioBrick part number that serves as the unique
identifier of the part (for example, BBa_I51020). The Reg-
istry maintains information about each part including its
sequence, function, and, if available, user experiences.
DNA encoding each BioBrick standard biological part is
stored and propagated in Escherichia coli plasmid-based
vectors [16-19]. Biological engineers can obtain parts
from the Registry and assemble them using the BioBrick
assembly standard in order to construct many-component
synthetic biological systems.

All BioBrick parts are currently maintained on a set of
plasmids that includes pSB1A3-P1010, pSB3K3-P1010,
pSB4A3-P1010 (see Naming of BioBrick vectors in Meth-
ods). However, these BioBrick vectors are ad hoc designs
that were cobbled together from common cloning plas-
mids such as pUC19 [20-22]. As a result, whenever a new
vector is needed for use with BioBrick parts, a biological
engineer must design and assemble the new BioBrick vec-
tor from scratch.

Several plasmid-based cloning systems that support the
manipulation, propagation, and expression of DNA frag-
ments have been developed [20-29]. The Gateway® recom-
binational cloning system and associated vectors are
arguably the closest example of a vector standard in bio-
logical research [30,31]. For example, several genome-
wide collections of open reading frames (ORFeomes)
have been compiled using the Gateway® cloning system
[32-34]. The Gateway® system has even been extended to
allow assembly of multiple DNA fragments [35,36]. How-
ever, the Gateway® system generally requires customized
assembly strategies for each new system and therefore
does not provide the advantages afforded by the BioBrick
standard (above).

Thus, we sought to extend the advantages of BioBrick
standard biological parts to the vectors that propagate
BioBrick parts. To do this, we developed a new process for
engineering BioBrick vectors. The process leverages exist-
ing and newly designed BioBrick parts for the ready con-
struction of many BioBrick vectors. To demonstrate the
utility of the new process, we constructed seven new Bio-
Brick vectors from the base vector. We also successfully
used the new vectors to assemble BioBrick standard bio-
logical parts.

Results
The BioBrick base vector (BBa_I51020)
The process for engineering BioBrick vectors from Bio-
Brick parts is primarily based upon a newly designed Bio-
Brick part: BBa_I51020 [Genbank:EU496089]. The new
part is a BioBrick base vector that serves as a scaffold for
construction of new BioBrick vectors (Figure 1). Starting
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from the base vector, new vectors can be built using plas-
mid replication origins and antibiotic resistance markers
that conform to the BioBrick standard for physical com-
position. Thus, the base vector enables the ready reuse of
vector parts available from the Registry of Standard Bio-
logical Parts. Use of the base vector to construct BioBrick
vectors ensures standardization and uniformity in any
resulting BioBrick vectors. For convenience, the base vec-
tor includes both a high copy replication origin and amp-
icillin resistance marker, so the base vector itself is capable
of autonomous plasmid replication for easy DNA propa-
gation and purification [37].

All BioBrick vectors derived from the BioBrick base vector
have five key features. First, BioBrick vectors include a
complete BioBrick cloning site to support the propagation
and assembly of BioBrick standard biological parts [9].
Second, BioBrick vectors contain a positive selection
marker in the cloning site to ameliorate one of the most
common problems during assembly of BioBrick parts:
contamination of the ligation reaction with uncut plas-
mid DNA [38]. Any cells transformed with the BioBrick
vector produce the toxic protein CcdB and do not grow
[39-41]. Cloning a BioBrick part into the cloning site of
the vector removes the toxic ccdB gene. Third, BioBrick
vectors contain a high copy origin in the cloning site to
facilitate increased yields from plasmid DNA purification
[42,43]. Again, cloning a BioBrick part into the cloning
site removes the high copy origin in the cloning site
thereby restoring replication control to the vector origin.
Fourth, BioBrick vectors include transcriptional termina-
tors and translational stop codons flanking the cloning

site to insulate the proper maintenance and propagation
of the vector from any possibly disruptive function
encoded by inserted BioBrick parts [44-47]. Fifth, BioBrick
vectors include verification primer annealing sites suffi-
ciently distant from the cloning site to check the length
and sequence of the cloned BioBrick part. The primer
annealing sites are identical to those found in commonly
used BioBrick vectors, such as pSB1A3-P1010, to support
backwards compatibility.

Constructing new BioBrick vectors using the BioBrick base 
vector
Constructing new BioBrick vectors starting from the Bio-
Brick base vector requires just two assembly steps (Figure
2). The replication origin and antibiotic resistance marker
should each be BioBrick standard parts. To construct a
BioBrick vector, assemble the origin and antibiotic resist-
ance marker via BioBrick standard assembly (first assem-
bly step). Then, digest the resulting composite part with
restriction enzymes XbaI and SpeI, and digest the BioBrick
base vector with NheI to excise the ampicillin resistance
marker. Next, ligate the composite origin and resistance
marker to the linearized base vector (second assembly
step). XbaI, SpeI, and NheI all generate compatible DNA
ends that, when ligated with a DNA end from one of the
other enzymes, produce a non-palindromic sequence that
cannot be cut by any of the three enzymes. Thus, proper
assembly of the vector eliminates any BioBrick enzyme
sites and ensures that the resulting vector adheres to the
BioBrick physical composition standard. Finally, trans-
form the ligation product into a strain tolerant of ccdB
expression, such as E. coli strain DB3.1 [48,49].

To support the construction of new BioBrick vectors, we
built four new antibiotic resistance markers and two rep-
lication origins all as BioBrick standard biological parts.
The four antibiotic resistance markers express proteins
that confer resistance to ampicillin (BBa_P1002 [Gen-
bank:EU496092]), kanamycin (BBa_P1003 [Gen-
bank:EU496093]), chloramphenicol (BBa_P1004
[Genbank:EU496094]), and tetracycline (BBa_P1005
[Genbank:EU496095]), respectively [50-53]. The two rep-
lication origins were derived from the pSC101
(BBa_I50042 [Genbank:EU496096]) and p15A
(BBa_I50032 [Genbank:EU496097]) replicons, respec-
tively [54,55]. We used the described procedure, base vec-
tor, and new vector parts to construct seven new BioBrick
vectors: pSB4A5-I52002, pSB4K5-I52002, pSB4C5-
I52002, pSB4T5-I52001, pSB3K5-I52002, pSB3C5-
I52001, and pSB3T5-I52001 [Genbank:EU496098–
EU496104].

Assembling BioBrick parts using a new BioBrick vector
BioBrick vectors support assembly of new BioBrick stand-
ard parts. The new vectors are compatible with prefix or

The BioBrick base vector (BBa_I51020)Figure 1
The BioBrick base vector (BBa_I51020). Schematic dia-
gram of BBa_I51020: a BioBrick base vector designed to facil-
itate construction of new BioBrick vectors. Parts from the 
collection listed in Figure 5 were used to construct 
BBa_I51020.
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postfix insertions of BioBrick parts as originally described
[9]. Alternatively, the new vectors also support three anti-
biotic based assembly (3A assembly; Figure 3; Shetty, Ret-
tberg, and Knight, in preparation) [56]. 3A assembly is a
method for assembling one part (the prefix part)
upstream or 5' to a second part (the suffix part) in the Bio-
Brick cloning site of a BioBrick vector (the destination vec-
tor). 3A assembly favors correct assembly of the prefix and
suffix BioBrick parts in the destination vector through a
combination of positive and negative selection. Briefly,
3A assembly works as follows: Digest the prefix part with
EcoRI and SpeI, the suffix part with XbaI and PstI, and the
destination vector with EcoRI and PstI. Then, ligate the
two parts and destination vector and transform into com-
petent E. coli. Plate the tranformed cells on LB agar plates
supplemented with antibiotic corresponding to the desti-
nation vector resistance marker. Most of the resulting col-

onies should contain the composite BioBrick part cloned
into the destination vector.

To confirm that our new BioBrick vectors function as
expected, we assembled new BioBrick standard biological
parts using four of the vectors that we constructed. To
demonstrate that the composite BioBrick parts were cor-
rectly assembled using our new vectors, we performed a
colony PCR amplification of the assembled parts and
determined that the PCR product length was correct (Fig-
ure 4). Each part was also verified to be correct via
sequencing with primers that anneal to the verification
primer binding sites (BBa_G00100 and BBa_G00102).

Discussion
We developed a new process for engineering BioBrick vec-
tors from BioBrick parts. The process now makes possible
the ready construction of many, new BioBrick vectors

How to build new BioBrick vectorsFigure 2
How to build new BioBrick vectors. Assembly strategy for a new BioBrick vector using the BioBrick base vector 
BBa_I51020. (A) The replication origin and antibiotic resistance cassette should each be BioBrick standard biological parts. (B) 
Assemble the desired replication origin and antibiotic resistance cassette via BioBrick standard assembly to construct a com-
posite origin and antibiotic resistance cassette. (C) Digest the resulting BioBrick composite part with XbaI and SpeI. (D) To 
excise the ampicillin resistance marker, digest the base vector with NheI. XbaI, SpeI, and NheI all generate compatible cohesive 
DNA ends that, when ligated with a DNA end from a one of the other enzymes, produce a non-palindromic sequence that 
cannot be cut by any of the three enzymes. Finally, ligate the digested composite origin and resistance marker to the digested 
base vector. (E) The result is the new BioBrick vector pSB4K5-I52002.
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using the growing collection of BioBrick parts available
from the Registry of Standard Biological Parts. Moreover,
new BioBrick vectors can be constructed from the BioBrick
base vector in just two assembly steps. Finally, any Bio-
Brick vectors derived from the BioBrick base vector have
five key features designed to facilitate the cloning, assem-
bly, and propagation of BioBrick parts. We used the proc-
ess to construct seven new BioBrick vectors and used the
vectors to assemble new BioBrick parts.

Design of new BioBrick vectors parts
To adhere to the BioBrick standard for physical composi-
tion, BioBrick vector parts need only be free of the Bio-
Brick restriction enzyme sites. However, we chose to
design anew all BioBrick vector parts (Figure 5), so that we
could completely specify their DNA sequences. We com-
piled a list of potentially useful endonuclease sites for
removal from all new BioBrick vector parts (Table 1). We
targeted each group of endonuclease sites for removal for
a different reason. We targeted recognition sites of
enzymes that produce compatible cohesive ends to the
BioBrick enzymes because such enzymes often prove use-
ful in constructing new variants of BioBrick vectors. We

targeted offset cutter sites because they may be useful in
alternative restriction enzyme-based assembly methods
[57]. We targeted homing endonuclease sites because they
are commonly used in genome engineering [58]. We tar-
geted some nicking endonuclease sites because they can
be useful for specialized cloning applications [59].
Finally, we targeted several additional restriction endonu-
clease sites to keep them available for use by new stand-
ards for physical composition. Our list of endonuclease
sites constitutes a set of target sequences that should be
considered for removal from any newly synthesized Bio-
Brick part, if possible. The target sequence set will change
as the synthetic biology community develops new stand-
ards for physical composition of BioBrick parts. Some of
the targeted endonuclease sites were naturally absent from
the DNA sequences encoding our new vector parts. For
any remaining sites, we removed the recognition
sequences from the BioBrick vector parts by introducing
point mutations. However, the functions of the pSC101
and pUC19-derived plasmid replication origins were sen-
sitive to introduced mutations, so the replication origins
used in this work are not free of all targeted endonuclease
sites (see Methods). Similarly, issues during synthesis led

How to use a new BioBrick vector for standard assemblyFigure 3
How to use a new BioBrick vector for standard assembly. Assembly strategy for two BioBrick standard biological parts 
using a new BioBrick vector. (A) Digest the prefix part with enzymes EcoRI and SpeI. (B) Digest the suffix part with restriction 
enzymes XbaI and PstI. (C) Digest the destination vector (pSB4K5-I52002) into which the two parts will be assembled with 
restriction enzymes EcoRI and PstI. Without agarose gel purification of the linearized DNA, ligate the three fragments, trans-
form into E. coli and plate on LB agar plates supplemented with the antibiotic corresponding to the destination vector resist-
ance marker. (D) Most of the resulting colonies contain the composite BioBrick part cloned into the destination vector.
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to an unnecessary redesign of the ccdB positive selection
marker, so it too is not free of all targeted endonuclease
sites.

Construction of BioBrick base vector
To realize our designs for new BioBrick vectors, we con-
tracted for DNA synthesis of the four antibiotic resistance
markers, pSC101 replication origin and the entire Bio-
Brick base vector. However, synthesis of the BioBrick base
vector was problematic (see Methods). The issues that
arose during synthesis are briefly discussed here, because
they are relevant to anyone interested in synthesizing new
BioBrick parts. Difficulties during synthesis stemmed
from the inclusion of both a ccdB positive selection
marker that is toxic to most E. coli strains and a synthetic
replication origin that proved incapable of supporting
replication of the BioBrick base vector. Commercial DNA
synthesis processes currently rely on cloning, assembly,
and propagation of synthesized DNA in E. coli. In general,
for parts whose function are incompatible with growth
and replication of E. coli, the processes of DNA design and
DNA synthesis cannot be easily decoupled. Improve-

ments in commercial DNA synthesis are needed that free
the process from dependence on in vivo DNA propagation
and replication.

Conclusion
The goal of synthetic biology is to make the process of
design and construction of many-component, engineered
biological systems easier. In support of this goal, a techni-
cal standard for the physical composition of biological
parts was developed [9]. Here, we extended the same prin-
ciples of part reusability and standardization of physical
composition to the vectors that are used to assemble and
propagate BioBrick parts. Using the process described
here, new BioBrick vectors can be produced from existing
and newly designed BioBrick parts. As a result, myriad
new vectors with diverse functions can be built readily to
support the engineering of many-component systems. We
invite the community to build on this work in several
ways. First, we invite the community to use the process
described here to construct more BioBrick vectors and
share them via the Registry of Standard Biological Parts.
Second, we invite the community to expand the collection
of parts for making BioBrick vectors. For example, shuttle
vector parts, compatible replication origins, and addi-
tional antibiotic resistance markers would all be useful
contributions to the Registry. Third, we invite the commu-
nity to further characterize and improve the BioBrick parts
that make up BioBrick vectors. For example, important
parameters to measure include plasmid copy number, and
transcriptional and translational read-through into and
out of the BioBrick cloning site.

Methods
Design of BioBrick vector parts and the BioBrick base 
vector
We designed all BioBrick vector parts and the BioBrick
base vector using Vector NTI® Suite 7 for Mac OS X by Inv-
itrogen Life Science Software in Carlsbad, CA. We
removed endonuclease recognition sites from the
designed parts either manually or using GeneDesign
vβ;2.1 Rev 5/26/06 [60].

Construction of BioBrick vector parts
We contracted for DNA synthesis of the four antibiotic
resistance markers and the pSC101 replication origin to
the DNA synthesis company Codon Devices, Inc. in Cam-
bridge, MA. The four antibiotic resistance markers
(BBa_P1002-P1005) were easily synthesized as designed.
Testing confirmed that the four markers conferred resist-
ance to the corresponding antibiotics. Synthesis of the
pSC101 origin was also straightforward. However, testing
revealed that our design for the pSC101 origin
(BBa_I50040) was nonfunctional as a replication origin.
We successfully reconstructed a functional pSC101 repli-
cation origin (BBa_I50042) via PCR of an existing plas-

Using the new BioBrick vectorsFigure 4
Using the new BioBrick vectors. To verify the function 
of the new BioBrick vectors, we performed a colony PCR 
using primers that anneal to the verification primer binding 
sites. To check the length of the resulting PCR products, we 
electrophoresed the reactions through an 0.8% agarose gel. 
Lanes 1–8 are the PCR products resulting from the amplifica-
tion of the following BioBrick parts cloned into new BioBrick 
vectors. The desired PCR product lengths are in parenthe-
ses. Lane 1 is pSB4A5-I52001 (1370 bp), lane 2 is pSB4K5-
T9003 (1883 bp), lane 3 is pSB4C5-E0435 (814 bp), lane 4 is 
pSB4T5-P20061 (2988 bp), lane 5 is pSB3K5-I52002 (1370 
bp), lane 6 is pSB3C5-I52001 (1370 bp), lane 7 is pSB3T5-
I6413 (867 bp), and lane 8 is BBa_I51020 (1370 bp). Lane 9 is 
1 μg of 2-log DNA ladder (New England Biolabs, Inc.). The 
0.5 kb, 1 kb, and 3 kb DNA fragments in the DNA ladder are 
annotated.
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New BioBrick vector partsFigure 5
New BioBrick vector parts. The Registry part number, function, and graphical notation of each constructed BioBrick vector part are listed. The part 
collection includes (1) BBa_G00000: BioBrick cloning site prefix including the EcoRI (E) and XbaI (X) restriction enzyme sites, (2) BBa_G00001: BioBrick 
cloning site suffix including the SpeI (S) and PstI (P) restriction enzyme sites which, together with the BioBrick prefix, forms a BioBrick cloning site for 
compatibility with all BioBrick standard biological parts, (3) BBa_P1016: positive selection marker ccdB to improve yield of insert-containing clones during 
part assemblies, (4) BBa_I50022: pUC19-derived high copy replication origin within the BioBrick cloning site that allows for easy plasmid DNA purification 
of the base vector and any derived vectors, (5) BBa_B0042: a short DNA sequence that has translational stop codons in all six reading frames to prevent 
translation into or out of the BioBrick cloning site, (6) BBa_B0053-B0055 and BBa_B0062: forward and reverse transcriptional terminators flanking the 
BioBrick cloning site to prevent transcription into or out of the BioBrick cloning site, (7) BBa_G00100 and BBa_G00102: sequence verification primer 
annealing sites for primers VF2 and VR, (8) BBa_B0045: NheI (N) restriction site for insertion of desired replication origin and resistance marker to con-
struct vector of interest, (9) BBa_P1006: ampicillin resistance selection marker to facilitate propagation of the base vector, (10) BBa_P1002-P1005: four 
antibiotic resistance markers, and (11) BBa_I50042 and BBa_I50032: pSC101 and p15A replication origins. Each part is used either as a component of the 
BioBrick base vector BBa_I51020 (1–9) or to construct new BioBrick vectors (10–11).
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mid. Thus, we presume that one or more of the
introduced point mutations to eliminate endonuclease
sites were deleterious to the plasmid replication function
of the designed origin. We did not attempt to synthesize
the p15A replication origin (BBa_I50032). Instead, like
the pSC101 origin, we constructed p15A origin by PCR of
an existing plasmid.

We constructed the functional pSC101 replication origin
by PCR using pSB4A3-P1010 as a template and amplifica-
tion primers I50042-f (5'-GTT TCT TCG AAT TCG CGG
CCG CTT CTA GAG CTG TCA GAC CAA GTT TAC GAG-
3') and I50042-r (5'-GTT TCT TCC TGC AGC GGC CGC
TAC TAG TAG TTA CAT TGT CGA TCT GTT C-3'). We con-
structed the p15A replication origin by PCR using
pSB3K3-P1010 as a template and amplification primers
I50032-f (5'-GTT TCT TCG AAT TCG CGG CCG CTT CTA
GAG ATG GAA TAG ACT GGA TGG AG-3') and I50032-r
(5'-GTT TCT TCC TGC AGC GGC CGC TAC TAG TAA ACA
CCC CTT GTA TTA CTG-3'). Each reaction was a mix of 45
μL PCR SuperMix High Fidelity, 31.25 pmoles each of for-
ward and reverse primer, and 1 ng template DNA in a 50
μL total volume. The PCR conditions were an initial dena-
turation step of 95°C for 15 mins followed by 40 cycles of
94°C for 30 seconds, 56°C for 30 seconds, and 68°C for
2.5 minutes. Finally, the reactions were incubated at 68°C
for 20 minutes. We then added 20 units DpnI restriction
enzyme to each reaction to digest the template DNA. The
reactions were incubated for 2 hours at 37°C and then
heat-inactivated for 20 minutes at 80°C. We purified both
reactions using a MinElute PCR Purification kit according
to the manufacturer's directions (QIAGEN, Germany).
The pSC101 and p15A origin PCR products were used
directly for assembly of the BioBrick vectors.

Construction of BioBrick base vector
We also contracted for synthesis of the entire BioBrick
base vector. However, we encountered two issues during
synthesis of the base vector. First, troubleshooting efforts

during synthesis compromised the design of the base vec-
tor: failed attempts to clone the base vector into an E. coli
strain intolerant of expression of the toxic protein CcdB
led to an unnecessary redesign of the ccdB positive selec-
tion marker in the BioBrick base vector (from BBa_P1011
to BBa_P1016 [Genbank:EU496090]). Second, faulty part
design adversely impacted the synthesis process: our
pUC19-based replication origin design was similarly non-
functional, so the base vector could not be propagated as
specified. Yet, synthesized DNA for the BioBrick base vec-
tor was nevertheless provided. We eventually determined
that the provided DNA was actually a fusion of two
slightly different copies of the base vector: one with the
designed, nonfunctional version of the pUC19 origin
(BBa_I50020) and one with a functional version of the
pUC19 origin (BBa_I50022 [Genbank:EU496091]). To
obtain a single, corrected version of the BioBrick base vec-
tor, we performed a restriction digest of the provided base
vector DNA with EcoRI. We then re-ligated 1 μL of a ten-
fold dilution of the linearized base vector DNA. For
detailed reaction conditions, see Assembly of BioBrick
parts using the new BioBrick vectors. We transformed the
religated BioBrick base vector into E. coli strain DB3.1 via
electroporation and plated the transformed cells on LB
agar plates supplemented with 100 μg/mL ampicillin to
obtain the corrected BioBrick base vector BBa_I51020
[48,61,62]. Correct construction of the BioBrick base vec-
tor was verified by DNA sequencing by the MIT Biopoly-
mers Laboratory.

Assembly of BioBrick vectors
We assembled the new BioBrick vectors as described (Fig-
ure 2). For detailed reaction conditions, see Assembly of
BioBrick parts using the new BioBrick vectors. However,
we used the synthesized BioBrick base vector BBa_I51019
instead of the corrected BioBrick base vector BBa_I51020,
since, at the time, we had not yet identified the issue with
the provided synthesized DNA. As a result, we obtained a
mixture of new vectors. Four of the constructed vectors

Table 1: Endonuclease sites targeted for removal from BioBrick vector parts.

Endonuclease Description

EcoRI, XbaI, SpeI, PstI BioBrick restriction site
ApoI, MfeI Produces compatible ends to EcoRI
AvrII, NheI Produces compatible ends to XbaI and SpeI
NsiI SbfI Produces compatible ends to PstI
AarI, AcuI, BbsI, BciVI, BfuAI, BmrI, BsaI, BsgI, BsmBI, BsmI, BspMI, BsrDI, BtgZI, EarI, EcoP15I, FokI, 
SapI, TspRI

Offset cutter

I-CeuI, I-SceI, PI-PspI, PI-SceI, I-PpoI Homing endonuclease
Nt.BbvCI, Nt.BstNBI, Nt.AlwI Nicking endonuclease
AgeI, AscI, BamHI, BbvCI, FseI, HindIII, KasI, NcoI, NdeI, NgoMIV, PacI, PmeI (MssI), RsrII, SacI, SalI, 
SfiI, SgfI, SgrAI, SrfI, SwaI (SmiI), XcmI, XhoI, XmaI, XmnI, ZraI

Restriction endonuclease

A list of endonuclease sites targeted for removal from BioBrick vectors parts. The endonuclease sites were targeted for removal to enable various 
end-user DNA cloning and manipulation applications.
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have a functional version of the pUC19 origin
(BBa_I50022) in the BioBrick cloning site and propagate
at high copy (vectors with BBa_I52002: pSB4A5, pSB4K5,
pSB4C5, and pSB3K5). The other three vectors have a
nonfunctional version of the pUC19 origin (BBa_I50020)
in the BioBrick cloning site and propagate at low copy
(vectors with BBa_I52001: pSB4T5, pSB3C5, and
pSB3T5). We chose to describe all seven vectors here for
two reasons. First, all seven new BioBrick vectors can be
used for the propagation and assembly of BioBrick parts;
the vectors pSB4T5, pSB3C5, and pSB3T5 are just slightly
less convenient for plasmid DNA purification. Second, the
difficulties that we encountered during construction of
the BioBrick base vector are illustrative of the current
interdependence of DNA design and DNA synthesis (see
Discussion).

Assembly of BioBrick parts using the new BioBrick vectors
We assembled BioBrick composite parts as described (Fig-
ure 3). We performed all restriction digests by mixing 0.5–
1 μg DNA, 1X NEBuffer 2, 100 μg/ml Bovine Serum Albu-
min, and 1 μL each needed restriction enzyme in a 50 μL
total volume. Restriction digest reactions were incubated
for at least 2 hours at 37°C and then heat-inactivated for
20 minutes at 80°C. We then dephosphorylated the des-
tination vector into which the parts were assembled.
(When assembling BioBrick vectors, we dephosphor-
ylated the composite origin and resistance marker to pre-
vent circularization of this DNA fragment.) We performed
dephosphorylation reactions by adding 5 units Antarctic
Phosphatase and 1X Antarctic Phosphatase Reaction
Buffer in a total volume of 60 μL to the heat-inactivated
restriction digest reaction. We incubated dephosphoryla-
tion reactions for 1 hour at 37°C and inactivated the
phosphatase by heating to 65°C for 5 minutes. We puri-
fied all reactions using a MinElute PCR Purification kit
according to the manufacturer's directions (QIAGEN). We
performed all ligation steps by mixing 2–4 μL of each
purified, linearized DNA, 1X T4 DNA Ligase Reaction
Buffer, and 200 units T4 DNA Ligase in a 10 μL total vol-
ume. We incubated the ligation reactions for 20 minutes
at room temperature. We transformed all assembled Bio-

Brick parts into E. coli strain TOP10 via chemical transfor-
mation [63-65]. (We transformed the assembled BioBrick
vectors into E. coli strain DB3.1 via electroporation
[48,61,62].) Transformed cells were plated on LB agar
plates supplemented with 100 μg/mL ampicillin, 50 μg/
mL kanamycin, 35 μg/mL chloramphenicol, or 15 μg/mL
tetracycline as appropriate. We identified clones with cor-
rect construction of BioBrick parts by growth on the plates
supplemented with the correct antibiotic, lack of growth
on plates supplemented with other antibiotics, length ver-
ification by colony PCR (see next section), and DNA
sequencing by the MIT Biopolymers Laboratory.

Verification of correct BioBrick part assembly via colony 
PCR
To demonstrate the correct assembly of BioBrick parts
using the new BioBrick vectors, we performed a colony
PCR using primers that anneal to the verification primer
binding sites. We picked one colony and diluted it into
100 μL water. Then we mixed 9 μL PCR SuperMix High
Fidelity, 6.25 pmoles VF2 primer (5'-TGC CAC CTG ACG
TCT AAG AA-3'), 6.25 pmoles VR primer (5'-ATT ACC
GCC TTT GAG TGA GC-3'), and 1 μL colony suspension.
The PCR conditions were as described previously but
using an annealing temperature of 62°C and an elonga-
tion time of 3.5 minutes. We diluted the reactions four-
fold with water and then performed an agarose gel electro-
phoresis of 20 μL of each diluted reaction using a 0.8% E-
Gel®. We also electrophoresed 1 μg of 2-log DNA ladder
(New England Biolabs, Inc., Ipswich, MA) to verify the
length of each PCR product. The gel was imaged with 302
nm transilluminating ultraviolet light using an ethidium
bromide emission filter and an exposure time of 614 mil-
liseconds.

Materials for all PCR and agarose gel electrophoresis steps
in this work were purchased from the Invitrogen Corpora-
tion in Carlsbad, CA unless otherwise specified. Reagents
for all restriction digest, dephophorylation, and ligation
reactions were purchased from New England Biolabs, Inc.,
Ipswich, MA. All PCR and temperature-controlled incuba-
tion steps were done in a DNA Engine Peltier Thermal

Table 2: Numeric abbreviations for plasmid replication origins in BioBrick vector nomenclature.

Number Replication origin Copy number Purpose

1 modified pMB1 derived from pUC19 500–700 Easy plasmid DNA purification
2 F and P1 lytic derived from pSCANS-1-BNL [67] 1–2 inducible to high copy Inducible copy number
3 p15A derived from pMR101 10–12 Multi-plasmid engineered systems
4 rep101, repA derived from pSC101 5 Small cell to cell copy number variation
5 derived from F plasmid 1–2 Improved plasmid stability
6 pMB1 derived from pBR322 15–20 Multi-plasmid engineered systems

BioBrick vector names take the form pSB#X#. The first number indicates the identity of the origin of replication. The number, corresponding 
replication origin, expected plasmid copy number and typical purpose of that origin are listed [38]. To expand the list to include additional 
replication origins, document additions at the Registry of Standard Biological Parts [66].
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Cycler (PTC-200) or DNA Engine OPTICON™from MJ
Research, Inc. (now Bio-Rad Laboratories, Inc., Hercules,
CA).

Naming of BioBrick vectors
BioBrick vector names take the form pSB#X#. The letters
pSB are an acronym for plasmid Synthetic Biology. The
first number denotes the origin of replication (Table 2).
The letter X identifies the antibiotic resistance marker(s)
present in the vector (Table 3). Vectors with multiple

resistance markers have multiple, successive letters.
Finally, the last number in the vector name is a version
number to differentiate between the various implementa-
tions of the pSB series of vectors (Table 4). When referring
to both a BioBrick standard biological part and the vector
in which it is cloned, the convention is to use the form
[vector name]- [part number] such as pSB4K5-T9003. To
refer to BioBrick vectors to be used for construction of Bio-
Brick parts, use the full vector name and default cloned
part. For example, pSB4A3-P1010, pSB1A10-P1010,
pSB4K5-I52002, and pSB3T5-I52001 are all available vec-
tors from the Registry of Standard Biological Parts. How-
ever, for convenience, vector names are often abbreviated
to pSB4A3, pSB1A10, pSB4K5, and pSB3T5, respectively.
New plasmid-based vectors constructed from the BioBrick
base vector BBa_I51020 should be named pSB#X5-
I52002 where the # is determined by the identity of the
replication origin and the letter X is determined by the
antibiotic resistance marker(s) present. To expand the
BioBrick vector nomenclature, submit new vectors or vec-
tor parts to the Registry of Standard Biological Parts and
document any new annotation needed [66]. The Bio-
Bricks Foundation is leading an open standards setting
process should any revisions to the BioBrick vector
nomenclature beyond addition of new replication origins,
antibiotic resistance markers and version numbers be
needed.

Abbreviations
PCR – polymerase chain reaction. bp – base pairs. kb –
kilobase (1000 base pairs).

Table 4: Numeric abbreviations for vector version number in BioBrick vector nomenclature.

Number Key features Purpose Example Designer

0 absent or incomplete BioBrick cloning site pSB2K0 Brookhaven National Lab
1 complete BioBrick cloning site (BCS) assembly of BioBrick parts pSB4A1 Reshma Shetty
2 5' terminator and BCS transcriptional insulation of vector upstream of 

cloned BioBrick part
pSB1A2 Tom Knight

3 5' terminator and BCS and 3' terminator transcriptional insulation of vector downstream 
of cloned BioBrick part

pSB1AC3 Reshma Shetty & Tom Knight

4 pSB2K3-derived vector free of many 
restriction sites

Genome refactoring [68] pSB2K4 Leon Chan

5 constructed from BioBrick base vector standardized BioBrick vector design pSB4K5 Reshma Shetty
6 Reserved - - -
7 BCS flanked by terminator BBa_B0015 transcriptional insulation of cloned BioBrick 

part
pSB1A7 Karmella Haynes

8 Unassigned - - -
9 Unassigned - - -
10 Screening plasmid v1.0 [69] characterization of single input, single output 

transcriptional devices
pSB1A10 Josh Michener & Jason Kelly

BioBrick vector names take the form pSB#X#. The second number indicates the BioBrick vector version number. The version number, key 
features, purpose for which that version was designed, example vector, and vector designer(s) are listed. To expand the list to include new vector 
version numbers, document additions at the Registry of Standard Biological Parts [66].

Table 3: Letter abbreviations for antibiotic resistance markers in 
BioBrick vector nomenclature.

Code Antibiotic

A ampicillin
C chloramphenicol
E erythromycin
G gentamycin
K kanamycin
N neomycin
Na nalidixic acid
R rifampicin
S spectinomycin
St streptomycin
T tetracycline

Tm trimethoprim
Z zeocin

BioBrick vector names take the form pSB#X#. The letter X indicates 
the antibiotic to which the vector confers resistance. The letter code 
and corresponding antibiotic resistance marker are listed. The 
absence of a letter indicates that no antibiotic is present. Multiple 
resistance markers in a vector are indicated by successive codes in 
alphabetical order e.g., AK, StT, AC and AKT. To expand the list to 
include additional antibiotic resistance markers, document additions 
at the Registry of Standard Biological Parts [66].
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