

Mishra, B., Varjani, S., Agrawal, D. C., Mandal, S. K., Ngo, H. H., Taherzadeh, M. J., Chang, J.-S., You, S. and Gao, W. (2020) Engineering biocatalytic material for the remediation of pollutants: a comprehensive review. *Environmental Technology and Innovation*, 20, 101063. (doi: <u>10.1016/j.eti.2020.101063</u>)

The material cannot be used for any other purpose without further permission of the publisher and is for private use only.

There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

http://eprints.gla.ac.uk/221053/

Deposited on 21 July 2020

Enlighten – Research publications by members of the University of Glasgow <u>http://eprints.gla.ac.uk</u>

1	Engineering biocatalytic material for the remediation of pollutants: A
2	comprehensive review
3	Bishwambhar Mishra ¹ , Sunita Varjani ^{2,*} , Dinesh Chand Agrawal ³ , Sanjeeb Kumar Mandal ⁴ , Huu
4	Hao Ngo ⁵ , Mohammad J. Taherzadeh ⁶ , Jo-Shu Chang ^{7,8,9} , Siming You ¹⁰
5	Wenshan Guo ⁵
6	¹ Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India
7	² Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
8	³ School of Biotechnology, Banaras Hindu University (BHU), Varanasi 221005, India
9	⁴ Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil
10	Nadu 641062, India
11	⁵ Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering,
12	University of Technology Sydney, Sydney, NSW - 2007, Australia
13	⁶ Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
14	⁷ Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
15	⁸ Department of Chemical Engineering and Materials Science, College of Engineering, Tunghai
16	University, Taichung, Taiwan
17	⁹ Centre for Nano-technology, Tunghai University, Taichung, Taiwan
18	¹⁰ James Watt School of Engineering, University of Glasgow, Glasgow, UK, G12 8QQ
19	
20	*Corresponding author: drsvs18@gmail.com; ORCID ID: 0000-0001-6966-7768

Short title: Biocatalysts for remediation of pollutants

22 ABSTRACT

23 Bioremediation through biotechnological interventions has attracted more attention among researchers in field of environmental pollution control and abatement. Various cutting-edge 24 studies in area of protein engineering and synthetic biology offer a new platform for creation 25 of innovative, advanced biological materials for its beneficial role in environmental pollution 26 mitigation. Biocatalysis especially receives considerable attention as sustainable approach to 27 resource recovery from waste along with elimination of pollutants. This paper focuses on 28 updated developments in engineering of biocatalytic substances which can degrade pollutants 29 of emerging concern. It also explains various classes of biocatalysts, their mechanisms of 30 31 immobilization, and applications in terms of environmental pollutant remediation. Opportunities and challenges for future research have also been discussed. 32

33 **Keywords:** Biocatalyst; Protein engineering; Pollutants; Immobilization; Bioremediation

34 **1. Introduction**

Various forms of emissions profoundly affect the environment. Manufacturing, human activities, and agricultural disposals processing make a major part in polluting air, water, and soil. A subclass of organic compounds alarmingly found in the environment enormously has labeled as emerging pollutants (EPs). These are otherwise known micropollutants (MPs) or emerging concern contaminants (Teodosiu et al., 2018; Varjani and Sudha, 2018). Such micropollutants are identified as processed synthetic chemicals without being tracked or controlled in most situations. These negatively impact people's health and many other life

forms (Sauvé and Desrosiers, 2014; Mohan et al., 2018; Bilal et al., 2019). These are 42 otherwise called as Persistent organic pollutants (POPs). These POPs include perfluoroalkyl 43 and polyfluoroalkyl, polycyclic aromatic hydrocarbons (PAHs), pesticides (halogenated 44 organic compounds), and so on (Daniel et al., 1998; Mandal et al., 2015; Mandal et al., 2018; 45 Varjani et al., 2019; Kumar et al., 2020). POPs are recognized to always have devastating 46 47 health consequences concerning abnormal brain malfunction, growth, metabolic disorders, hormonal imbalance, etc. (Noakes et al., 2006; Mishra et al., 2019; Femina et al., 2020) 48 whereas long term exposure may also lead to immunological impacts (Varjani et al., 2020b). 49

A huge number of environmental pollutants like dyes, nitrogen-containing chemicals, 50 polychlorinated biphenyl compounds (PCBs), plastics, petroleum products, heavy metals, 51 pesticides, hydrocarbons persist in the ecosystem. They are released from different industrial 52 sectors and various agricultural resources (Benyahia et al., 2016; Varjani et al., 2017; Kumar 53 et al., 2018; Rajmohan et al., 2019; Lakshmi et al., 2020). These pollutants are carcinogenic 54 and highly toxic. In some cases, accumulations of these pollutants become hazardous to the 55 also flora and fauna living in the environment (Varjani, 2017). Recently pollutant reduction 56 and depletion are a big concern for environmental science (Do et al., 2020). Originally, waste 57 produced from different industries was treated by incineration based on high temperature or 58 59 by dumping off in a hole as biopile. Due to reduced efficiency, increased cost, and the formation of other recalcitrant derivatives such approaches were not proven quite successful. 60 Further, bioremediation came to a picture, which provides a mechanism degradation of these 61 pollutants by microorganisms (Vidali, 2001; Dzionek et al., 2016; Varjani et al., 2020a). 62

Through the use of microbes as well as their enzymes for pollutant removal is a safe, 63 efficient, and cheaper process (Bhatnagar et al., 2017; Varjani and Upasani, 2017; Rathna et 64 al., 2018). Progress in molecular microbiology and recombinant DNA technology can be 65 made to improve the bioremediation process by plant and microbe genetic modification 66 (Ramos et al., 2011; Mishra et al., 2020). Many forms of biocatalysts are deeply engaged in 67 68 biological treatment, such as hydrolases, oxidoreductases, laccases, and peroxidases (Kadri et al., 2017). Various microbial sources like fungi (Example: Pleurotus ervngii, Tramates 69 versicolor), algae (Example: Chlamydomonas reinhardtii, Monoraphidium braunii), and 70 71 bacteria (Example: Rhodococcus erythropolis, Pseudomonas aeruginosa) were concluded having a catabolic process for pollutant clean up at pollution sites. Microbial lipolytic 72 enzymes have gained attention for their ability to catalyse biotransformation reactions of 73 ester-bond containing compounds eg. conversion of waste into high-energy products like 74 biofuel and other value-added products via energy-efficient pathways (Kumar et al. 2020). 75 As reported by Joutey et al. (2013), some microorganisms are capable of degrading 76 contaminants under laboratory conditions only. This is due to environmental factors 77 (nutrients, temperature, substrates, and electron acceptors) as they possess major role in 78 79 bioremediation and influences biodegradation reactions (Varjani et al., 2019). Xu et al. (2017), have reported two bacterial strains named P. aeruginosa JLC1 and Acinetobacter sp. 80 81 JLS1 for biodegradation of C16 alkane. They concluded about the temperature-sensitivity of 82 these strains during the biodegradation process. Moreover, soil texture, occurrence of pollutants in soil matrix, indirectly affect biodegradation efficiency (Abed et al., 2015). 83

84 In the present review, groups of biocatalysts used for degradation of an array of pollutants
85 and how they help in speedy degradation of various toxic pollutants have been summarized.
I P a g e

87

Eco-toxicological assessment for biocatalytic degradation process followed by immobilized biocatalysts and their effectiveness in removal of pollutants have also been discussed.

88

2. Biocatalysis as a sustainable approach

89 Various enzyme mechanisms have been used to effectively degrade complex organic compounds and have demonstrated that the compounds are oxidized and transformed into 90 simpler intermediates (Chen et al., 2016; Jishao et al., 2019; Chen et al., 2020; Rajmohan et 91 al., 2020). A relatively recent and convincing area of research is the biological approach, 92 which uses peroxidases (oxidoreductase group) for the depletion of pollutants. The use of 93 94 enzyme-based therapies provides numerous benefits, such as decreased sludge production, functioning at high and low pollutant concentrations, low energy inputs, and many others, 95 catalytic research on a wide variety of contaminants (Bilal and Iqbal, 2019). Various studies 96 97 have been reported on the biocatalytic removal of major pollutants and have been confirmed as effective ways in degradation of these compounds in a sustainable manner (Lin et al., 2017; 98 Gonzalez-Coronel et al., 2017; Rani et al., 2017). 99

While enzyme-mediated cleanup has many benefits, it is important to note that there are some difficulties, such as the risk of producing hazardous dissolved by-products and the inability to handle with environmental influences (Zdarta et al., 2018a). Any of such problems can be overcome by immobilizing that enzyme on various inert surfaces. The examples for various categories of inert surfaces are silica, metal oxides (e.g. alumina, titania and magnetic iron oxides II and III), natural polymers (agar, gelatin, alginate, carrageenan, collagen, agarose), synthetic polymers (polyacrylonitrile, polystyrene, ion exchange resins) etc. (Daronch et al.

Page

107

2020).

Furthermore, there are several examples of such enzymes effectively insolubilized to 108 overcome the above-mentioned drawbacks of enzyme reusability and recycling (Alneyadi et 109 al., 2018; Shao et al., 2019). Peroxidase and Laccase are enzymes commonly used to 110 bioremediate polluted wastewater. Laccase is suitable for treating wastewater, as it maintains 111 its operation across a wide range of temperature and pH. Peroxidases have a heme cofactor at 112 113 their active sites and possess traces of redox-sensitive cysteine / selenocysteine. Due to the easy access to their active sites, peroxidase can help to facilitate the removal of many 114 contaminants from wastewaters (Arca-Ramos et al. 2017).Such enzymes catalyze the 115 oxidation-reduction of different types of harmful toxins including phenols, cresols, herbicides, 116 synthetic clothing dyes, pesticides, chlorinated phenols, dioxins, and pharmaceuticals through 117 assisted biodegradation process (Zdarta et al., 2018b; Muhammad et al., 2019). Although, 118 biocatalysis is a sustainable approach in pollutant removal, process to produce biocatalyst 119 requires high cost and some of them are not economical and sustainable. In addition to that 120 they are unstable and most of them can't withstand several harsh experimental/environmental 121 conditions (strong acid, high salinity, high temperature, extreme pH). The best way to find 122 stable biocatalysts is to prospect microorganisms from extreme ecosystem capable of 123 124 synthesizing stable catalysts.

125

3. Various groups of biocatalysts for contaminants degradation

Degradation of pollutants with the assistance of microorganisms is a sluggish method, which in actual reality reduces the viability of bioremediation (Ghosh et al., 2017; Varjani and Upasani, 2019). Microbial enzymes isolated from the cells were used for bioremediation during the last few decades along with use of microbes to address the above shortcomings (Camenzuli et al., 2013; Nigam, 2013; Sonune and Garode, 2018). Biocatalysts are complex
groups of macromolecules that induce a variety of biochemical reactions affecting the
pathways to degrade the pollutants (Kalogerakis et al., 2017). The various groups of
biocatalysts based on their activities concerning pollutant degradation have been illustrated
by fig.1.

135

"[Insert Figure 1]"

Bioremediation based on complete and partially pure enzymes may not rely on the 136 proliferation of a single micro-organism in a contaminated ecosystem but the catalytic action 137 of the microbial produced naturally enzyme. Bioremediation can be accomplished in 138 nutrient-poor soil by using a refined enzyme. The use of biocatalytic biotransformation that is 139 harmless to the atmosphere does not contain harmful side products formed by microbial 140 biotransformation (Gianfreda and Bollag, 2002; Ruggaber and Talley, 2006). As industrial 141 scale biocatalysts production is carried out specifically by submerged fermentation, most 142 studies have concentrated on construction/application of this type of bioreactors. However, 143 production of biocatalysts through solid state fermentation process possesses higher yields 144 and less expensive (Dhakar et al. 2014). Different agro-industrial waste products have been 145 utilized for production of biocatalysts for bioremediation (Fatma et al. 2010; Debnath et al. 146 2020). In many cases, production of these biocatalysts can be enhanced by immobilizing the 147 source organisms (Lin et al. 2008; Dong-chul et al. 2019; Bera et al. 2020). It is necessary to 148 invent biocatalysts that are resistant to adverse conditions like alkaline or acidic pH, high 149 temperature, high salt concentration owing to its applications in various industries. The 150 biocatalysts used in hydrocarbon degradation have been reported to be produced by 151

extremophilic microorganisms (Patricia et al. 2020). Wentzel et al. (2018), have investigated 152 production of ligninolytic enzymes, lipases, and protease from filamentous fungi and yeasts. 153 Microorganisms such as fungi, microalgae and bacteria produce multicopper oxidase enzyme 154 (laccase) which has versatile applications in various industries. Recombinant protein 155 expressions have been used to increase productivity in shorter durations. Horseradish 156 peroxidase (HRP C1A) was isolated from Horseradish plant and transferred to E. coli BL21 157 through rDNA technology which could produce more quantity of HRP C1A and could 158 degrade phenolic compounds. Similarly, carboxylesterase was isolated from human liver and 159 was inserted to *E.coli* could degrade pesticides, chlorine, carbamates compounds etc (Gupta 160 et al. 2017; Gundinger, et al. 2017) 161

162 3.1. Oxidoreductases

Different groups of microorganisms and higher plants generate and secrete oxidoreductases 163 to remove substances through oxidative coupling including the oxidation of compounds 164 through moving electrons from reductants to oxidants resulting in the release of CO₂ and 165 chloride ions. As a result of pollutant depletion Oxidoreductases energy or heat is produced, 166 and for biochemical activities, microorganisms used it (Medina et al., 2017). Several 167 pollutants such as 2,4,6-trinitrotoluene (TNT), chlorophenol, phenol, polychlorinated 168 biphenyls (PCBs), nitroaromatic compounds, dyes (bromophenol blue, malachite green) were 169 170 degraded using oxidoreductases. For example, Gram-positive bacteria Bacillus safensis CFA-06 produces oxidoreductase and it degrades the petroleum substances. 171

Different kinds of phenolic compounds are created by lignin degradation in nature bindingwith other compounds polymerization and co-polymerization has been transformed into

another form by oxidoreductases (Husain, 2006). The textile industry releases the color
compounds into the environment which is degraded by different enzymes such as laccases
and peroxidases (Jang et al., 2009). Annibale et al. (2004), have reported that *Panus tigrinus*,
white-rot fungi secreted an extracellular oxidoreductase (lignin peroxidase, Mn-dependent
peroxidase, and laccase) that have removed the color, phenols, and organic discharged from
olive-mill wastewater.

A lot of microbial species synthesizes oxidoreductase enzymes leading to redox reactions for the removal of radioactive metals. The plant that belongs to the *Gramineae*, *Fabaceae*, and *Solanaceae* families and secretes enzymes extracellularly for soil pollutant degradation such as hydrocarbon-containing petroleum hydrocarbon and chlorinated compounds (Park et al. 2006; Edwin-Wosu et al. 2016).

185 3.1.1 Oxygenases

Oxygenases are the key catalyst for the degradation of aromatic compounds, catalyzing the 186 ring's cleavage in aromatic compounds. Based on the number of oxygen molecules involved 187 in the cleavage, oxygenases enzyme have divided into two subclasses: monooxygenase and 188 dioxygenase. Monooxygenase has been catalyzing the addition of one oxygen atom 189 molecule. Dioxygenase has catalyzed the addition of two oxygen atom molecules. 190 Microorganisms like *Pseudomonas* sp. able to degrade the pesticides excreting Glyphosate 191 oxidase (GOX). It can also catalyze chlorinated compounds of a wide variety, herbicides, and 192 193 various groups of pesticides (Tangahu et al., 2011).

194 3.1.1.1. Monooxygenases and Dioxygenases

Through introducing one molecule of oxygen, monooxygenases catalyze the breakdown 195 of aromatic substances and enhance their reaction and solubility. Monooxygenases have been 196 reported to be active in desulphurization, denitrification, and dehalogenation (Arora et al., 197 2010). Based on their cofactor used, monooxygenases are categorized into two categories: 198 P450 mono-oxygenases group and flavin-dependent mono-oxygenases (Gaur et al., 2018). 199 200 P450 monooxygenase is a heme-containing enzyme, found both in prokaryotes and eukaryotes Bacillus megaterium BM3 can degrade fatty acid and aromatic compounds 201 excreting a P450 mono-oxygenase enzyme (Gustafsson et al. 2004). Methane 202 monooxygenase metabolizes halides including aliphatic substances, heavy metals, and 203 aromatic hydrocarbons. As reported by Singh and Singh (2017) about the enzyme methane 204 monooxygenase that comes in different forms. It may either occur in the cytoplasmic 205 membrane or the cytoplasm. Monooxygenase like tetracenomycin F1 and quinol mono-206 oxygenase function without any cofactors isolated from Streptomyces glauscens bacterium 207 and E. Coli., respectively (Arora et al., 2010). Whole White-Rot Fungus Genome Sampling, 208 P. Chrysosporium identified 150 genes in 16 gene clusters clustered within existing 12 209 cytochrome P450 (CYP) families and 11 fungal CYP clans and one single P450 reductase 210 211 portion in the fungus (Tuomela and Hatakka, 2011).

Dioxygenases catalyze the oxidation of the aromatic compounds by inserting two molecules of oxygen. Aromatic dioxygeneses can be categorized according to their mechanism of action into (1) aromatic ring cleavage dioxygenases and (2) aromatic ring hydroxylation dioxygenases able to degrade the different chemicals by adding two molecules of oxygen into the ring and split the compound aromatic rings respectively (Ozer et al., <u>2019). Pseudomonas putida F1 produces Toluene dioxygenase which catalyzes toluene</u> 10

218	degradation. It acts for several contaminants such as aromatic and aliphatic substances as
219	dioxygenase (Muthukamalam et al., 2017). In the soil bacteria, catechol dioxygenases
220	catalyze the conversion of aromatic precursors into aliphatic substances (Ali et al., 2017). A
221	significant number of aromatic compounds from different chemical, medicinal, and dye
222	factories are released into the environment. Dioxygenase breaks down the 1, 2-position of the
223	aromatic ring to integrate two oxygen molecules into the substrate (Guzik et al., 2014).
224	Figure 2 illustrate probable pathway of oxidoreductase (monoxygenase & dioxygenase) for
225	the transformation of pollutants.
226	"[Insert Figure 2]"
227	3.1.2. Laccases
228	Oxidases and Laccases that produce copper, catalyzing the oxidation of a broad variety of
229	aromatic substances and phenol groups found in the environment (Mai et al., 2000). By
230	oxidizing the bonds, Laccase even decolorized azo dyes and transformed them into less toxic
231	compounds found in the ecosystem (Legerska et al., 2016). Laccase produced by Trametes
232	hispida fungus could decolorize various pollutants. Trametes versicolor is also a good source
233	of laccase and it was immobilized on porous glass beads. This immobilized enzyme could
234	degrade a wide variety of toxins, such as heterocyclic aromatic compounds, phenolic

- compounds, and aromatic compounds containing amines. Laccase produced by *R. Practicola*is capable of degrading and bio transforming phenolic compounds (Dodor et al., 2004;
 Strong & Claus, 2011). Illustration of Laccase Mediator System (LMS) and its role to
- 238 detoxify organic pollutants has been shown in figure 3.

240 3.1.3. Peroxidases

Peroxidases, produced by bacteria, fungi, plants, and animals are widespread. Phenolic 241 radicals that are formed by oxidizing phenolic compounds, which quickly become less 242 soluble (Bansal and Kanwar, 2013). Peroxidases are further split into three classes: 243 Class-1 intracellular enzyme including yeast-generated cytochrome-c peroxidase, ascorbate 244 peroxidase (APX) formed by certain plant organisms, and bacterial catalase peroxidase. 245 Class-2 includes lignin peroxidase (LiP) and manganese peroxidase (MnP) secreted fungal 246 247 enzyme. Though Class-3 produces secreted peroxides from horseradish products, such as horseradish peroxidases (HRP) (Koua et al., 2009). 248

249 3.1.3.1. Lignin peroxidases (LiPs) and Manganese peroxidases (MnPs)

Lignin peroxidases belong to monomeric proteins that are secreted by fungi like *Trametes versicolor* and *Phanerochaete chrysosporium*. It catalyzes toxic pollutant oxidation in the presence of hydrogen peroxide and alcohol-veratryl as co-substrate and mediator respectively (Xu et al., 2014; Abdel et al., 2013). Lignin peroxidases demonstrate excellent use in wastewater treatment and bioremediation. Degradation of lignin by bacterial peroxidases is much more selective in terms of specificity and thermostability associated with fungal peroxidases (Tuomela and Hatakka, 2011; Behbahani et al., 2016).

257 Manganese peroxidases are known as indirectly acting to degrade lignin and xenobiotic 258 substances are extracellular enzymes produced by fungi. This enzyme catalyzes the 259 degradation of some phenolic groups, aromatic compounds, and coloring agents (Balaji et al., 260 2019). This enzyme has a great potential to remove excess different forms of colorants such 261 as anthraquinone, triphenylmethane, and azo dye. Zhanga et al. (2016), had identified and 262 purified manganense peroxide from *Tremetes* sp. 48424. In *Peniophora incarnata* KUC8836 263 a gene (pimp1) responsible for the synthesis of manganese-dependent peroxidase was 264 identified. Further, this gene has been expressed in the *Saccharomyces cerevisiae* fungi to 265 estimate its potential to remove anthracene (Lee et al., 2016).

266 3.2. Hydrolases

Hydrolases are widely used for the bioremediation of the insecticides. These enzymes specifically break large peptide bonds, carbon-halide bonds, esters, etc. It can degrade carbazyme into 2-aminobenzimidazole. Microbe-secreted extracellular hydrolases facilitate the degradation of organic polymers which can move through cell pores (Babita et al., 2018). It is very efficient to bioremediate organophosphate and oil spills by using a hydrolytic enzyme.

273 3.2.1. Lipases

Lipases are used to perform inter-esterification, esterification, hydrolysis, and alcoholics reactions (Prasad and Manjunath, 2011). They are widespread in existence, catalyzing the degradation of triacylglycerols into glycerol and free fatty acids (Shukla and Gupta, 2007). Due to lipase activity the amount of hydrocarbon in the polluted soil has been reduced (Ghafil et al., 2016). Verma et al. (2012), had optimized the process for the bioremediation of crude oils with lipases extracted from *Pseudomonas aeruginosa* SL-72

280 3.2.2. Cellulases

Cellulase formed by microorganisms can be associated with cell envelope. These are 281 mainly degrading the cellulose. In the textile and detergent industries, cellulose microfibrils 282 produced during processes and pollute the environment. Bacillus species contain other 283 alkaline cellulases, and Trichoderma and Humicola fungi contain neutral and acidic 284 cellulases (Behera et al., 2017). These cellulases were used in the paper and pulp industries 285 286 for the removal of ink during paper recycling (Karigar and Rao, 2011). Recently, Imran et al. (2016) had characterized cellulase from Humicola species which can tolerate and work in 287 adverse conditions like extreme pH and temperature. It can be used for hydrogen bond 288 breakdown in detergents and washing powders industries. Aslam et al. (2019) had isolated 289 Bacillus Amyloliquefacience-ASK11 that was a good source of cellulase isolated from 290 industrial leather-tanning waste. 291

292 3.2.3. Carboxylesterases

Enzyme carboxylesterases have catalyzed the degradation of ester bonds of carbamates, 293 organophosphates, and other chlorinated organic compounds (Cummins et al., 2007). Yin et 294 al. (2016) isolated a strain of Pseudomonas aeruginosa PA1 can able to synthesize 295 carboxylesterases. This could absorb and degrade the mercury at the infected site. 296 Carboxylesterases have hydrolyzed their ester bond using the prevalent path for the depletion 297 of all types of pyrethroid insecticides. In a study, the active site of the carboxylesterases 298 299 isolated has been modified for pyrethroid hydrolysis by *in vitro* mutagenesis (Heidari et al., 2004). 300

301 3.2.4. Phosphotriesterases

Initially isolated from soil bacteria *Pseudomonas diminuta*, hydrolyze a broad range of organophosphate (Romeh and Hendawi, 2014). Some marine bacterial species, such as *Thalassospira* tepidiphila, *Phaeobacter* sp., *Ruegeria mobilis* can degrade the coastal oceanic phosphate trimester. A bacteria *Geobacillus stearothermophilus* having the potential to hydrolyze compounds containing both lactone and organophosphate. Thermostable phosphotriesterase extracted from *Geobacillus stearothermophilus* bacteria is highly which can tolerate 100°C (Moshe et al., 2018).

309 3.2.5. Haloalkane dehalogenases

Haloalkane dehalogenases are bacterial enzymes that use a hydrolytic mechanism to cleave the carbon – halogen bond of halogenated aliphatic compounds. Halogenated substances are formed anywhere in the soil as a consequence of both natural and man-made actions and can be poisonous, mutagenic (Kotik and Famerova, 2012; Koudelakova et al., 2013). Nagata et al. (2015), had identified haloalkane dehalogenase in bacterium *Xanthobacter autotrophicus* GJ10 having the ability to degrade 1, 2- dichloroethane.

316 3.2.6. Proteases

Proteases are found in all living forms as bacteria and fungi, plants, and animals (Kuddus and Ramteke 2012). Most of the marine microorganisms capable of producing protease (Sivaperumal et al. 2017). Kumar et al. (2014) had reported about the degradation of the diesel oil *in vitro* up to 54% by the proteases obtained from *Pseudomonas fluorescens*. Similarly, proteases from *Geotrichum candidum* and *Cladosporium cladosporioides* could decompose 55% of the nonionic ethoxylated surfactants (Jakovljević and Vrvić 2018).

4. Identification of transformation pollutants and their eco-toxicological assessment

Enzymes require multiple pathways to remove various ecological toxins, leading to the 324 production of various metabolic compounds and the final product during the biocatalytic 325 cycle. Researchers and scientists focus mainly on the absence of parent molecules in most 326 degradation experiments, rather than evaluating intermediate metabolites, transformation 327 pathways, and determining the toxicity of transforming products (Jian et al., 2020). Phenolic 328 329 substrates are converted catalytically to phenoxy radicals by using peroxidases catalysts in the presence of hydrogen peroxide. The phenoxy radicals produced in the catalytic process 330 can be coupled with each other or with other reactive substances (Torres-Duarte et al. 2010). 331 Peroxidases group of biocatalysts could transform pentachlorophenol in a multistep pathway 332 with an oxidative dehalogenation process to produce tetrachloro-1,4-benzoquinone. Further, 333 tetrachloro-1,4-benzoquinone is degraded through reductive dehalogenations process. 334 Similarly, Chloroanilines (an intermediate used in the synthesis of dyestuffs, agricultural 335 chemicals, and pharmaceuticals) can be transformed to chlorophenol by peroxidase 336 transformation (Torres-Duarte et al. 2010). There are many studies with respect to PAH 337 transformation process with the application of different biocatalysts like lignin peroxidase 338 and manganese peroxidase, PAH are generally oxidized to quinones and hydroxylated 339 340 derivatives. These oxidized products are found to be more biodegradable. The pesticides belong to organophosphorus group could be transformed in to oxon (P=O) derivative by 341 chloroperoxidase. This enzyme has a capability to replace the sulfur atom by an oxygen 342 atom, transforming the phosphorothioate group to an oxon derivative (Torres-Duarte et al. 343 2010). 344

Various molecular methods have been used to detect the degradation of products through 345 the catalytic reaction. These include mass spectrometry, liquid chromatography with tandem 346 spectrometry gas chromatography-phase electrospray phase ionization mass 347 mass spectrometry, and liquid chromatography-electrospray time-off light mass spectrometry 348 (Alnevadi and Ashraf, 2016). Lonappan and groups (2016) had developed laser diode 349 350 thermal desorption-mass spectroscopy detects the transition components. Biotoxicity assays were used to evaluate the degree of contamination in waters. A very well-known acute 351 toxicity experiments were carried out using green algae species to categorical data on water 352 quality levels (Cristovao et al., 2011). Cibacron Blue 3GA's toxicity and its by-products have 353 been investigated using *Daphnia magna* as research organism. The inhibition of microalgal 354 growth was investigated using Chlorella vulgaris. MALDI-ToF-MS has been used to 355 confirm by-products of pollutant degradation (Bayramoglu et al. 2019). 356

357

A growth inhibition bioassay of Scenedesmus obliquus was tested with soybean 358 peroxidase-treated triclosan solution and compared with the untreated triclosan to analyze the 359 toxicity (Li et al., 2016). The application of triclosan to the formulations at a level of 10-µM 360 was found to fully suppress the S. obliquus growth, while soybean peroxidase treatment of 361 triclosan solution is gradually growing its growth. In another analysis complete elimination 362 363 of triclosan solution toxicity was achieved within 2 h of the reaction time (Muhammad et al., 2019). Microorganisms like B. subtilis, E. coli, and B. megaterium were used to analyze the 364 toxicity profile of untreated and treated substances through growth inhibition assay. For this 365 reason, after the exposure of bacterial species to the solution for a given time, the amount of 366

total viable cells is counted (Muhammad et al., 2019). The toxicity reduction potential of the 367 MnP-Tween 80 was tested using bacterial growth inhibition experiments for B. Subtilis. 368 Reports revealed that a 24-hour MnP-Tween 80 treatment resulted in a total loss of B. 369 Subtilis growth inhibition by Miconazole. The same treatment could decrease by 78% growth 370 inhibition of *Pseudokirchneriella subcapitata* by sertraline (Inoue et al . 2015). To determine 371 372 their toxicity with Raphanus sativus plants, initial as well as lacquer-treated Bisphenol-A solutions were subjected to phytotoxicity analysis. The root length and germination of the 373 seeds were recorded after 5 days of dark incubation (Lassouane et al., 2019). 374

The pollutants like Diclofenac, trimethoprim, carbamazepine, and sulfamethoxazole were 375 treated with laccase, subjected to its toxicity analysis by using bacterial luminescence method 376 for *Photobacterium leiognathi*, and were found to be nontoxic in nature (Alharbi et al. 2019). 377 Phytotoxicity assay was also executed by using *Lactuca sativa* seeds for sulfamethoxazole 378 after treatment with laccase. Untreated sulfamethoxazole solution decreased the root length, 379 the result was opposite in treated case (Al-Magdi et al. 2018). Copete-Pertuz et al. (2018), 380 have investigated toxicity for laccase treated oxacillin solution by MTT assay using human 381 liver cells-hepatoma (HepG2). Other methods to analyze the toxicity of treated pollutants 382 with biocatalysts include Yeast Estrogenic Screen (YES) assay, Vibrio fischeri luminescence 383 reduction test, Microtox assay, Algal viability test using the fluorometric indicator etc. (Ji et 384 al. 2017; Becker et al. 2016; Yousefi-Ahmadipour et al. 2016; Naghdi et al. 2018). 385

386

5. Immobilized biocatalyst for contaminants remediation

Immobilization of biocatalyst for remediation of pollutants has been reported for their speedy 388 biodegradation. Applications of immobilized biocatalysts have been summarized in Table 1 389 "[Insert Table 1.]" 390 5.1 Immobilization with inorganic materials 391 Immobilized enzymes used through adsorption with a wide variety of different inorganic 392 materials for the simultaneous removal of hazardous pollutants. Organic oxides, for example, 393 alumina titanium, silica, and iron oxides have been applied to immobilize oxidoreductases 394 along with selective sorption of contaminants, phenolic compounds, synthetic dyes, and 395 antibiotics (Yu et al., 2015; Bilal et al. 2019^b). Minerals and carbon-based materials possess 396 good sorption properties and high stability. These were successfully applied by enzymatic 397 oxidation and subsequent adsorption to remove pollutants in a study conducted by Ding et al. 398 (2016). 399 Spherical alumina pellets and Al₂O₃ pellets were used for the adsorption covalent binding 400 of laccase enzyme respectively. It was found that the immobilized laccase could decolorize 401 industrial effluents rich in Reactive Black 5. The interesting part of this study was that dye 402

401 of laccase enzyme respectively. It was found that the immobilized laccase could decolorize 402 industrial effluents rich in Reactive Black 5. The interesting part of this study was that dye 403 was adsorbed in the support materials and it could be degraded through laccase. In this 404 process, 80 percent of the Reactive Black 5 was adsorbed and only 4 percent was degraded by 405 laccase (Jakub et al., 2019).In contrast, through covalent bonding, only 10 percent were 406 adsorbed to the pellets of alumina, and 90 percent of the Reactive Black 5 were biodegraded 407 by laccase. The major problem was the saturation of active sites in case of a covalent 408 immobilization process. This happens due to the multipoint attachment of the biocatalysts with immobilized surfaces. The efficiency of the enzyme for the removal of dye was lost inthis case (Osma et al., 2010).

The benefits of using inorganic materials for immobilization of the enzymes are having 411 exceptional mechanical and increased stability. In some cases, a functional group like 412 hydroxyl facilitates immobilization and adsorption of toxic contaminants using inorganic 413 materials simultaneously. In these cases, enzyme elution from the support can be restricted 414 owing to its multipoint attachments. However, covalent bonds formation cannot even be 415 omitted due to the existence of several functional moieties, which further decreases enzyme 416 leakage. Even successful sorption of both contaminants from the atmosphere and their 417 bioconversion products is facilitated by the existence of many functional groups. Applications 418 of inorganic oxides drawn the attention of the researchers for industrial applications. This is 419 due to its porous structure, more surface area, exceptional stability, and established 420 morphology. Additionally, applications of inorganic oxides for along with immobilization of 421 the enzyme and adsorption of contaminants results in high efficiencies in elimination. 422

423

5.2 Immobilization with organic materials

Biopolymers and synthetic polymers, apart from many inorganic materials, are also applied for immobilizing the enzyme and sorption of a hazardous compound simultaneously. The existence of various chemical moieties (C=O, $-NH_2$, -OH, and COOH) facilitate the efficient immobilization of enzymes and the sorption of contaminants. The presence of functional moieties and their natural origin exhibit very high peptide affinity concerning bind the enzyme (Bilal and Iqbal, 2019). Polymers like starch, agar, carrageenan being used for adsorption and biodegradation of toxic compounds simultaneously (Loffredo et al., 2014).

Apart from these, the chitosan is also most widely used as an organic polymer for 431 immobilizing the enzyme. In a study, laccase was immobilized with chitosan and it was 432 applied to decolorize the effluents having Sulfur Brown GD and Sulfur Blue 15. Here 70% of 433 Sulfur Brown GD and 80% of Sulfur Blue 15 could be removed from the dye solution of 200 434 mg / L at pH 6.5. The interesting part of this study, it was not effective if a mixture of these 435 436 two dyes was treated with the same conditions (Nguyen et al., 2016). Chitosan film has been also used to immobilize mushroom tyrosinase to degrade phenol derivatives in wastewater 437 and to absorb quinone derivatives produced after the oxidation (Yamada et al., 2005). The 438 synthetic polymers like polyvinyl alcohol and polystyrene are also used for the simultaneous 439 biodegradation and adsorption of harmful compounds apart from the natural organics. There 440 were so many studies that were carried out with these synthetic polymers for the binding of 441 laccases or tyrosinases enzymes to degrade phenolic derivatives (Zhang et al., 2014). 442

In research, horseradish peroxidase was immobilized with polyacrylonitrile membranes and studied its potential for phenol degradation (Wang et al., 2016) Further, the crosslinking of horseradish peroxidase was done with glutaraldehyde to stop the elution of biomolecules from the matrix. The major problem with cross-linking was the decreasing number of chemical moieties capable of adsorbing phenol. Besides, covalent binding, adsorption, and even encapsulation using polymer supports will immobilize a wide variety of enzymes.

5.3 Immobilization with hybrid and composite materials

450 Hybrids materials can be synthesized by linking both organic materials and inorganic and 451 organic precursors. These materials are having more affinity to the peptides present in the 452 enzymes due to their biocompatibility. The two biopolymers namely chitosan and alginate 453 were combined followed by the crosslinking of chitosan with glutaraldehyde having an

alginate-filled pore space, where Agaricus bisporus tyrosinase made immobilized (Ensuncho 454 et al., 2005). The alginate beads produced possessed excellent mechanical properties. This 455 was subjected to the enzymatic conversion to study the phenol removal from the wastewater 456 and further sorption of quinone. About 90% of the phenol was extracted under ideal 457 conditions after 4h of the operation. The synthetic polymers and biopolymers are very 458 459 effective for pollutant adsorption and enzymatic biodegradation. As part of hybrid material, chitosan was linked to the Diaion WK10 and WK20 through the weakly acidic cation 460 exchange resins. Tyrosinase was then covalently immobilized with this to remove 461 alkylphenols from aqueous solutions (Jakub et al., 2019). 462

Zhang et al. (2020), have developed a smart microfluidic device to prepare horseradish
peroxidase (HRP) and zwitterionic polymers [poly(carboxybetaine methacrylate)] in order to
find a solution to enhance degradation process for bisphenol A. It was found that, this
immobilized HRP could degrade 99.42% of bisphenol A in 20 minutes.

Polyacrylonitrile was combined montmorillonite to create nanofibers. This was enriched 467 with graphene oxide to facilitate the electron transfer. The hybrid nanofibers could 468 immobilize the Trametes versicolor that synthesize laccase and could extract catechol (Li et 469 470 al. 2011; Wang et al., 2014). Graphene oxide was added to it to enhance the enzyme's catalytic properties. The less concentration of the immobilized enzyme and weak sorption 471 472 capacity of hybrid material is the main drawback of the proposed hybrid system. Poly (D, L-473 lactide-co-glycolide) and multi-walled carbon nanotubes were used to fabricate hybrid fibers, that were used for the encapsulation of laccase. This system was executed to remove 474 475 bisphenol A through biodegradation (Dai et al., 2016). The synthetic groups of polymers like 476 poly(acrylic acid), poly(vinyl alcohol), and polyamine combine with inorganic precursors

(clays, iron, and silica) to produce a hybrid system and stable material for entrapment of the 477 enzymes. This hybrid material-enzymes-system was capable of biodegradation and 478 simultaneous adsorption of phenols (Xu et al., 2015). Similar way, a hybrid membrane system 479 was synthesized out of chitosan and iron ions in order to degrade the color by immobilized 480 laccase enzyme (Wen et al., 2015). Covalently immobilized enzyme (Laccase) with 481 482 nanozeolite - carbon nanotube composites were synthesized and used by researchers for degradation of Direct Red 23. The activity of free laccase was found to be 60%, while the 483 nanocomposite retained about 80% of its maximal activity after 8 days of incubation 484 (Mahmoodi et al., 2020). Removal of the dyes (Brilliant Blue G, Procion Green H4G, and 485 Crystal Violet) by using immobilized laccase within polypropylene chloride (PP) film and 486 poly(glycidylmethacrylate) system was also reported (Yakup et al. 2017). Representation for 487 immobilizing biocatalysts with polymeric materials has been illustrated by figure 4. 488

489

490

"[Insert Figure 4]"

6. Research needs and future directions

The lustiness of biological materials such as enzyme and microbes in the form of 491 biosorption or biocatalytic material; under unique environmental conditions is highly 492 desirable. Lustiness is commonly referred to as the durability and consistency of the 493 substance against a variety of critical criteria applicable to diverse drainage and contaminated 494 495 habitats. It is also essential to design well-controlled reactor units and treatment methods to mitigate the discharge of designed biological material into the surroundings. To this end, 496 work should offer a technical foundation for risk reduction, although modern technological 497 advancements are being processed in the production of the materials to deal with critical 498

environmental concerns. Finally, a key element to remember is cost, for the functional
application of engineered catalysts and biosorption components. Immobilization of the
desired protein onto a suitable matrix requires a pure protein that can be purified by
extraction, identification, and purification steps which enhance the cost and time of a
biological process.

Another essential step towards implementation is the analysis of mixture and matrix 504 effects on biocatalytic processes, as wastewater represents a complex mixture of inorganic 505 and organic substances. Because municipal wastewater is a dynamic mixture of various 506 compounds, the use of enzyme combinations that function synergistically with specific 507 selectivity should be a crucial issue in improving bio-catalytic treatment processes. The 508 essential factor is the use of biocatalysts with optimal pH and temperature within the 509 wastewater spectrum to maintain elevated stabilities and activities. In most experiments, a 510 redox mediator was required to dramatically boost the efficiency of the transition (Ashe et al. 511 2016), that create additional pollution. Thus, research to improve the efficiency and stability 512 of biocatalysts in wastewater is essential to make it available that do not require a mediator. 513 In already developed industrial wastewater treatment applications, the enzymes are isolated 514 mainly through membranes. Biofilm formation is one of the drawbacks of membrane system. 515 Another drawback is the secreted extracellular enzymes can potentially interact with the 516 immobilized enzymes on the membrane, leading to a loss of enzyme activity. 517

518 **7.** Conclusions

New developments in genetic and macromolecule engineering are unveiling enormous
potential to increase the implementation of biochemical functions at the molecular level and

establish novel approaches and emerging environmental management challenges. Recent developments allowed creation of materials with new capabilities, offering a safe and costefficient method for handling emerging problem of remediation of recalcitrant pollutants and extracting useful goods from the product. While modern work activities have made substantial and promising strides toward this goal, important areas remain to be studied in depth until advanced biological materials can be used in action to address environmental concerns.

528 **References**

- 529 1. Abdel, A.M., Solbiati, J.O., Cann, I.K., 2013. Insights into lignin degradation and its
 530 potential industrial applications. Adv. Appl. Microbio. 82, 1-28.
- Abed, R.M.M., Al-Kharusi, S., Al-Hinai, M., 2015. Effect of biostimulation, temperature
 and salinity on respiration activities and bacterial community composition in an oil
 polluted desert soil. Int. Biodeterior. Biodegrad. 98, 43–52.
- Al-Maqdi, K.A., Hisaindee, S., Rauf, M.A., Ashraf, S.S., 2018. Detoxification and
 degradation of sulfamethoxazole by soybean peroxidase and UV+H₂O₂ remediation
 approaches. Chem. Eng. J. 352, 450–458.
- 4. Alneyadi, A.H., Ashraf, S.S., 2016. Differential enzymatic degradation of thiazole
 pollutants by two different peroxidases-a comparative study. Chem. Eng. J. 303, 529–
 538

540	5.	Alneyadi, A.H., Rauf, M.A., Ashraf, S.S., 2018. Oxidoreductases for the remediation of
541		organic pollutants in water: a critical review. Critical Rev. Biotechnol. 38, 971-988.
542	6.	Annibale, AD., Ricci, M., Quaratino, D., Federici, F., Fenice, M., 2004. Panus tigrinus
543		efficiently removes phenols, color and organic load from olive-mill wastewater. Res.
544		Microbiol. 155, 596-603.
545	7.	Arca-Ramos A., Kumar V.V., Eibes G., Moreira M.T. & Cabana H. 2016. Recyclable
546		cross-linked laccase aggregates coupled to magnetic silica microbeads for elimination of
547		pharmaceuticals from municipal wastewater. Environ Sci Pollut Res Int. 23, 8929-8939.
548	8.	Arora, P., Srivastava, A., Singh, V., 2010. Application of Monooxygenases in
549		Dehalogenation, Desulphurization, Denitrification and Hydroxylation of Aromatic
550		Compounds. J. Bioremed. Biodegrad. 1, 112.
551	9.	Aslam, S., Hussain, A., Qazi, J.I., 2019. Production of cellulase by Bacillus
552		amyloliquefaciens-ASK11 under high chromium stress. Waste. Biomass. Valorization.
553		10, 53-61.
554	10	. Babita, S., Arun, K.D, Pratyoosh, S. 2018. Contemporary enzyme based technologies for
555		bioremediation: A review. J. Environ. Manage. 210, 10-22
556	11	Balaji, V. 2019. Enzymatic demethylation of lignin for potential biobased polymer
557		applications. Fungal. Biol. Rev.33,190-224
558	12	. Bayramoglu, G., Salih, B., Akbulut, A., Arica, M.Y., 2019. Biodegradation of Cibacron
559		Blue 3GA by insolubilized laccase and identification of enzymatic byproduct using

- 560 MALDI-ToF-MS: Toxicity assessment studies by *Daphnia magna* and *Chlorella* 561 *vulgaris*. Ecotoxicol. Environ. Saf. 170, 453–460.
- 562 13. Behbahani, M., Mohabatkar, H., Nosrati, M., 2016. Analysis and comparison of lignin
 563 peroxidases between fungi and bacteria using three different modes of Chou's general
 564 pseudo amino acid composition. J. Theor. Biol. 411, 1-5.
- 14. Behera. B.C., Sethi, B.K., Mishra, R., Dutta, S. K., Thatoi, H.N. 2017. Microbial
 cellulases Diversity & biotechnology with reference to mangrove environment: A
 review. J. Genet. Eng. Biotechnol. 15,197-210
- 568 15. Benyahia, F., Embaby, A.S. 2016. Bioremediation of crude oil contaminated desert soil:
 569 effect of biostimulation, bioaugmentation and bioavailability in biopile treatment systems
 570 Int. J. Environ. Res. Public Health. 13, 219
- 16. Bera S., Mohanty K. 2020. Areca nut (*Areca catechu*) husks and Luffa (*Luffa cylindrica*)
 sponge as microbial immobilization matrices for efficient phenol degradation, Journal of
 Water Process Engineering, 33,2020,100999,
 https://doi.org/10.1016/j.jwpe.2019.100999.
- 575 17. Bhatnagar, S., Kumari, R., 2017. Bioremediation: a sustainable tool for environmental
 576 management a review. Annu. Rev. Res. Biol. 3, 974-993.
- 577 18. Bilal, M., Adeel, M., Rasheed, T., Zhao, Y., Iqbal, H.M., 2019^a. Emerging contaminants
 578 of high concern and their enzyme-assisted biodegradation: a review. Environ. Int. 124,
 579 336-353.

580	19. Bilal, M., Ashraf, S.S., Barceló, D., Iqbal, H.M., 2019 ^b . Biocatalytic
581	degradation/redefining "removal" fate of pharmaceutically active compounds and
582	antibiotics in the aquatic environment. Sci. Total Environ. 691, 1190-1211.
583	20. Bilal, M., Iqbal, H.M., 2019. Chemical, physical, and biological coordination: an
584	interplay between materials and enzymes as potential platforms for immobilization.
585	Coord. Chem. Rev. 388, 1–23.
586	21. Bilal, M., Iqbal, H.M., Hu, H., Wang, W., Zhang, X., 2017. Development of horseradish
587	peroxidase-based cross-linked enzyme aggregates and their environmental exploitation
588	for bioremediation purposes. J. Environ. Manage. 188, 137-143.
589	22. Bilal, M., Rasheed, T., Zhao, Y., Iqbal, H.M.N., 2019 ^c . Agarose-chitosan hydrogel-
590	immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation
591	properties. Int. J. Biol. Macromol. 124, 742–749.
592	23. Camenzuli, D., Gore, D.B. 2013. Immobilization and encapsulation of contaminants
593	using silica treatments: A review. Remediat. J. 34, 49-67.
594	24. Chang, Q., Huang, J., Ding, Y., Tang, H., 2016. Catalytic oxidation of phenol and 2, 4-
595	dichlorophenol by using horseradish peroxidase immobilized on graphene oxide/Fe ₃ O ₄ .
596	Molecules. 21, 1044.
597	25. Chen, M., Qin, X., Zeng, G., 2016. Single-walled carbon nanotube release affects the
598	microbial enzyme-catalyzed oxidation processes of organic pollutants and lignin model
599	compounds in nature. Chemosphere, 163, 217-226.

600	26. Chen, X., He, B., Feng, M., Zhao, D., Sun, J., 2020. Immobilized laccase on magnetic
601	nanoparticles for enhanced lignin model compounds degradation. Chinese J. Chem. Eng.
602	(In Press). <u>https://doi.org/10.1016/j.cjche.2020.02.028</u>
603	27. Cummins, I., Landrum, M., Steel, P.G., Edwards, R., 2007. Structure activity studies with
604	xenobiotic substrates using carboxylesterases isolated from Arabidopsis thaliana.
605	Phytochemistry. 68, 811-818.
606	28. Dai, Y., Yao, J., Song, Y., Liu, X., Wang, S., Yuan, Y., 2016. Enhanced performance of
607	immobilized laccase in electrospun fibrous membranes by carbon nanotubes modification
608	and its application for bisphenol a removal from water. J. Hazard. Mater. 317, 485–493.
609	29. Daniel, T., Sharpley, A., Lemunyon, J., 1998. Agricultural phosphorus and
610	eutrophication: A symposium overview. J. Environ. Qual. 27, 251-257.
611	30. Daronch, N.A., Kelbert, M., Pereira, C.S., de Araújo, P.H.H., de Oliveira, D. 2020.
612	Elucidating the choice for a precise matrix for laccase immobilization: a review. Chem.
613	Eng. J. 397, 125506. https://doi.org/10.1016/j.cej.2020.125506.
614	31. Das, A., Jaswal, V., Yogalakshmi, K.N., 2020. Degradation of chlorpyrifos in soil using
615	laccase immobilized iron oxide nanoparticles and their competent role in deterring the
616	mobility of chlorpyrifos. Chemosphere. 246,125676
617	32. Debnath R., Saha T. 2020. An insight into the production strategies and applications of
618	the ligninolytic enzyme laccase from bacteria and fungi. Biocatalysis and Agricultural
619	Biotechnology. 26,101645, https://doi.org/10.1016/j.bcab.2020.101645.

620	33. Dhakar, K., Jain, R., Tamta, S., Pandey, A. 2014. Prolonged laccase production by a cold
621	and pH tolerant strain of 921 Penicillium pinophilum (MCC 1049) isolated from a low
622	temperature environment. Enzyme research, 2014, 120708 (Doi:
623	https://doi.org/10.1155/2014/120708).
624	34. Ding, H., Wu, Y., Zou, B., Lou, Q., Zhang, Q., Zhong, J., Lu, L., Dai, G., 2016.
625	Simultaneous removal and degradation characteristics of sulfonamide, tetracycline, and
626	quinolone antibiotics by laccase-mediated oxidation coupled with soil adsorption. J.
627	Hazard. Mater. 307, 350–358.
628	35. Do, M.H., Ngo, H.H., Guo, W., Chang, S.W., Nguyen, D.D., Varjani, S., Kumar, M.,
629	2020. Microbial fuel cell-based biosensor for online monitoring wastewater quality: A
630	critical review, Sci. Total Environ. (Doi:
631	https://doi.org/10.1016/j.scitotenv.2019.135612).
632	36. Dodor, D.E., Hwang, H.M., Ekunwe, S.I., 2004. Oxidation of anthracene and benzo [a]
633	pyrene by immobilized laccase from Trametes versicolor. Enzyme Microb. Technol 35,
634	210-217.
635	37. Dong-chul S., Ji-suk K., Chul-hwi P. 2019. Study on physical and chemical
636	characteristics of microorganism immobilized media for advanced wastewater treatment,
637	Journal of Water Process Engineering, 29, 100784,
638	https://doi.org/10.1016/j.jwpe.2019.100784.

639	38. Dvorak, P., Bidmanova, S., Damborsky, J., Prokop, Z., 2014. Immobilized synthetic
640	pathway for biodegradation of toxic recalcitrant pollutant 1, 2, 3-trichloropropane.
641	Environ. Sci. Technol. 48, 6859-6866.
642	39. Dzionek, A., Wojcieszyńska, D., Guzik, U., 2016. Natural carriers in bioremediation: A
643	review. Electron. J. Biotechn. 19, 28-36
644	40. Fatma G., Satinder K.B., Tyagi R.D., Verma M., Surampalli R.Y. 2010. Screening of
645	agro-industrial wastes to produce ligninolytic enzymes by Phanerochaete chrysosporium,
646	Biochemical Engineering Journal, 49, 388-394.
647	41. Femina, C.C., Kumar, P.S., Joshiba, J.G., Racchana, R., Varjani, S.J., 2020.
648	Bioremediation of 2, 4-Diaminotoluene in aqueous solution enhanced by lipopeptide
649	biosurfactant production from bacterial strains. J. Environ. Eng. 146 (7), 04020069 (Doi:
650	https://doi.org/10.1061/(ASCE)EE.1943-7870.0001740).
651	42. Gao, Y., Truong, Y.B., Cacioli, P., Butler, P., Kyratzis, I.L., 2014. Bioremediation of
652	pesticide contaminated water using an organophosphate degrading enzyme immobilized
653	on nonwoven polyester textiles. Enzyme Microb. Technol. 54, 38-44.
654	43. Gaur, N., Narasimhulu, K. 2018. Recent advances in the bio-remediation of persistent
655	organic pollutants and its effect on environment.
656	J. Clean. Prod. 198, 1602–1631.
657	44. Ghafil, J.A., Hassan, S.S., Zgair, A.K., 2016. Use of immobilized lipase in cleaning up
658	soil contaminated with oil. World. J. Exp. Biosci. 4, 53-57.

659	45. Ghosh, A., Dastidar, M.G., Sreekrishnan, T., 2017. Bioremediation of chromium
660	complex dyes and treatment of sludge generated during the process. Int. Biodeter.
661	Biodegrad. 119, 448-460.
662	46. Gianfreda, L., Bollag, J.M., 2002. Isolated Enzymes for the Transformation and
663	Detoxification of Organic Pollutants. In: Burns, R.G., Dick R. (Eds.), Enzymes in the
664	Environment: Activity, Ecology and Applications. Marcel Dekker, New York, pp. 495-
665	538.
666	47. Gonzalez-Coronel, L.A., Cobas, M., Rostro-Alanis, M.J., Parra-Saldivar, R., Hernandez-
667	Luna, C., Pazos, M., Sanroman, M.Á., 2017. Immobilization of laccase of Pycnoporus
668	sanguineus CS43. N. Biotechnol. 39, 141–149.
669	48. Gundinger, T., Spadiut, O. 2017. A comparative approach to recombinantly produce the
670	plant enzyme horseradish peroxidase in Escherichia coli. J. Biotechnol. 248, 15-24.
671	49. Gupta, S., Singh, D., 2017. Role of genetically modified Boonyuen, U., Promnares, K.,
672	Junkree, S., Day, N.P., Imwong, M., 2015. Efficient in vitro refolding and functional
673	characterization of recombinant human liver carboxylesterase (CES1) expressed in E.
674	coli. Protein Expr. Purif. 107, 68-75.
675	50. Gustafsson, M.C., Roitel, O., Marshall, K.R., Noble, M.A., Chapman, S.K., Pessegueiro,
676	A., Fulco, A.J., Cheesman, M.R., von Wachenfeldt, C., Munro, A.W., 2004. Expression,
677	purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and
678	CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium.
679	Biochemistry. 43,5474-87.

Page

680	51. Guzik, U., Hupert-Kocurek, K., Marchlew	vicz, A.,	Wojcieszyńska,	D.,	2014.
681	Enhancement of biodegradation potential of	catechol	1,2-dioxygenase	throug	h its
682	2 immobilization in calcium alginate gel, Electron.	J. Biotec	hn.17, 83-88.		

- 52. He, H., Han, H., Shi, H., Tian, Y., Sun, F., Song, Y., Li, Q., Zhu, G., 2016. Construction
 of thermophilic lipase-embedded metal–organic frameworks via biomimetic
 mineralization: a biocatalyst for ester hydrolysis and kinetic resolution. ACS. Appl.
 Mater. Interfaces. 8, 24517-24524.
- 53. Heidari, R., Devonshire, A., Campbell, B., Bell, K., Dorrian, S., Oakeshott, J., Russell,
 R., 2004. Hydrolysis of organophosphorus insecticides by in vitro modified
 carboxylesterase E3 from *Lucilia cuprina*. Insect. Biochem. Mol. Biol. 34, 353-363.
- 54. Husain, Q., 2006. Potential applications of the oxidoreductive enzymes in the
 decolorization and detoxification of textile and other synthetic dyes from polluted water:
 a review. Crit. Rev. Biotechnol. 26, 201-221.
- 55. Imran, M., Anwar, Z., Irshad, M., Asad, M.J., Ashfaq, H., 2016. Cellulase production
 from species of fungi and bacteria from agricultural wastes and its utilization in industry:
 a review. Adv. Enzyme. Res. 4, 44-55.
- 56. Inoue, S., Igarashi, Y., Yoneda, Y., Kawai, S., Okamura, H., Nishida, T., 2015.
 Elimination and detoxification of fungicide miconazole and antidepressant sertraline by
 manganese peroxidase-dependent lipid peroxidation system.
 Int. Biodeterior. Biodegradation. 100, 79-84.

- 57. Jakovljević, V.D., Vrvić, M.M., 2018. Potential of pure and mixed cultures of
 Cladosporium cladosporioides and *Geotrichum candidum* for application in
 bioremediation and detergent industry. Saudi J. Biol. Sci. 25, 529-536.
- 58. Jakub, Z., Anne, S.M., Teofil, J., Manuel, P., 2019. Multi-faceted strategy based on
 enzyme immobilization with reactant adsorption and membrane technology for
 biocatalytic removal of pollutants: A critical review. Biotechnol. Adv. 37,
 DOI: 10.1016/j.biotechadv.2019.05.007
- 59. Jang, K.Y., Cho, S.M., Seok, S.J., Kong, W.S., Kim, G.H., Sung J.M. 2009. Screening of
 biodegradable function of indigenous lingo-degrading mushroom using dyes.
 Mycobiology. 4, 53-61.
- 60. Ji, C., Hou, J., Wang, K., Zhang, Y., Chen, V., 2016. Biocatalytic degradation of
 carbamazepine with immobilized laccase-mediator membrane hybrid reactor. J. Memb.
 Sci. 502, 11-20.
- 61. Ji, C., Nguyen, L.N., Hou, J., Hai, F.I., Chen, V., 2017. Direct immobilization of laccase
 on titania nanoparticles from crude enzyme extracts of *P. ostreatus* culture for micropollutant degradation. Sep. Purification Technol. 178, 215-223.
- 62. Jian, G., Pei, X. 2020. Research progress in sources, analytical methods, ecoenvironmental effects, and control measures of microplastics. Chemosphere. 254,
 http://dx.doi.org/10.1016/j.chemosphere.2020.126790

63. Jiang, J., Wang, Y., Liu, J., Yang, X., Ren, Y., Miao, H., Pan, Y., Lv, J., Yan, G., Ding,
L., Li, Y., 2019. Exploring the mechanisms of organic matter degradation and methane
emission during sewage sludge composting with added vesuvianite: Insights into the
prediction of microbial metabolic function and enzymatic activity. Bioresour. Technol.
286, 121397. https://doi.org/10.1016/j.biortech. 2019.121397

- 64. Joutey, N.T., Bahafid, W., Sayel, H., Ghachtouli, N., 2013. Biodegradation: involved
 microorganisms and genetically engineered microorganisms. In book: Agricultural and
 Biological Sciences : Biodegradation Life of Science, Editors: Rolando Chamy and
 Francisca Rosenkranz, pp. 289-320.<u>http://dx.doi.org/10.5772/56194</u>
- 65. Kadam, A.A., Jang, J., Lee, D.S., 2017. Supermagnetically tuned halloysite nanotubes
 functionalized with aminosilane for covalent laccase immobilization. ACS Appl.
 Mater. Interfaces. 9, 15492-15501.
- 66. Kadri, T., Rouissi, T., Brar, S. K., Cledon, M., Sarma, S., Verma, M., 2017.
 Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A
 Review. J. Environ. Sci. 51, 52-74.
- 67. Kalogerakis, N., Fava, F., Corvini, F.X., 2017. Bioremediation advances. New
 Biotechnol. 38, 41-42.
- 68. Karigar, C., Rao, S., 2011. Role of microbial enzymes in the bioremediation of
 pollutants: A review. Enzyme. Res. 2011, 1-11.

738	69. Kim, S., Lee, J., Jang, S., Lee, H., Sung, D., Chang, J., 2016. High efficient chromogenic
739	catalysis of tetramethylbenzidine with horseradish peroxidase immobilized magnetic
740	nanoparticles. Biochem. Eng. J. 105, 406-411.
741	70. Kotik, M., Faměrová, V., 2012. Sequence diversity in haloalkane dehalogenases, as
742	revealed by PCR using family-specific primers. J. Microbiol. Methods. 88, 212-217.
743	71. Koua, D., Cerutti, L., Falquet, L., Sigrist, C.J., Theiler, G., Hulo, N., Dunand, C., 2009.
744	PeroxiBase: a database with new tools for peroxidase family classification. Nucleic.
745	Acids. Res., 37, 261-266.
746	72. Koudelakova, T., Bidmanova, S., Dvorak, P., Pavelka, A., Chaloupkova, R., Prokop, Z.,
747	Damborsky, J., 2013. Haloalkane dehalogenases: biotechnological applications.
748	Biotechnol. J. 8, 32-45
749	73. Kuddus, M., Ramteke, P.W., 2012. Recent developments in production and
750	biotechnological applications of cold-active microbial proteases. Crit. Rev. Microbiol. 38,
751	330–338.
752	74. Kumar, A., Gudiukaite, R., Gricajeva, A., Sadauskas, M., Malunavicius, V., Kamyab, H.,
753	Sharma, S., Sharma, T., Pant, D., 2020. Microbial lipolytic enzymes - promising energy-
754	efficient biocatalysts in bioremediation. Energy, 192, 116674. https://doi.org/10.1016/j.
755	<u>energy.2019.116674</u>
756	75. Kumar, N.M., Sudha, M.C., Damodharam, T., Varjani, S., 2020. Micro-pollutants in
757	surface water: Impacts on aquatic environment and treatment technologies. In: Varjani, S.,

758	Pandey, A., Tyagi, R.D., Ngo, H.H., Larroche, C. (Eds.), Emerging Organic Micro-
759	pollutants, Elsevier, Amsterdam, Netherlands, pp. 41-61.
760	76. Kumar, P.S., Varjani, S.J., Suganya, S., 2018. Treatment of dye wastewater using an
761	ultrasonic aided nanoparticle stacked activated carbon: Kinetic and isotherm modelling.
762	Bioresour. Technol. 250, 716-722.
763	77. Kumar, V., Singh, S., Manhas, A., Negi, P., Singla, S., Kaur, P., Bhadrecha, P., Datta, S.,
764	Kalia, A., Joshi, R., Singh, J., Sharma, S., Upadhyay, N., 2014. Bioremediation of
765	petroleum hydrocarbon by using Pseudomonas species isolated from petroleum-
766	contaminated soil. Orient. J. Chem. 30, 1771–1776.
767	78. Kumar, V.V., Cabana, H., 2016. Towards high potential magnetic biocatalysts for on-
768	demand elimination of pharmaceuticals. Bioresour. Technol. 200, 81-89.
769	79. Lakshmi, S., Suvedha, K., Sruthi, R., Lavanya, J., Varjani, S., Nakkeeran, E., 2020.
770	Hexavalent chromium sequestration from electronic waste by biomass of Aspergillus
771	carbonarius. Bioengineered 11(1), 708-717 (Doi:
772	https://doi.org/10.1080/21655979.2020.1780828).
773	80. Lassouane, F., Aït-Amar, H., Amrani, S., Rodriguez-Couto, S., 2019. A promising
774	laccase immobilization approach for Bisphenol A removal from aqueous solutions.
775	Bioresour. Technol. 271, 360-367.
776	81. Lee, A.H., Kang, C.M., Lee, Y.M., Lee, H., Yun, C.W., Kim, G.H., Kim, J.J., 2016.
777	Heterologous expression of a new manganese-dependent peroxidase gene from

- *Peniophora incarnata* KUC8836 and its ability to remove anthracene in *Saccharomyces cerevisiae*. J. Biosci. Bioeng. 122, 716-721.
- 82. Li, J., Peng, J., Zhang, Y., Ji, Y., Shi, H., Mao, L., Gao, S., 2016. Removal of triclosan
 via peroxidases-mediated reactions in water: Reaction kinetics, products and
 detoxification. J. Hazard. Mater. 310, 152-160.
- 83. Li, S.F., Fan, Y.H., Hu, J.F., Huang, Y.S., Wu, W.T., 2011. Immobilization of
 Pseudomonas cepacia lipase onto the electrospun PAN nanofibrous membranes for trans
 esterification reaction. J. Mol. Catal. B Enzym. 73, 98–103.
- 84. Lin W., Li-Jing H., Luo-Jia Y., Fei T., Jing-Hui Z., Yan-Qun L., Xin Z., Qi-Fang L.2008.
 Removal of Nitrogen, Phosphorus, and Organic Pollutants From Water Using Seeding
 Type Immobilized Microorganisms. Biomedical and Environmental Sciences, 21, 150156.
- 85. Lin, J., Lai, Q., Liu, Y., Chen, S., Le, X., Zhou, X., 2017. Laccase methacrylyol
 functionalized magnetic particles: highly immobilized, reusable, and efficacious for
 methyl red decolourization. Int. J. Biol. Macromol. 102, 144–152.
- 86. Liu, N., Liang, G., Dong, X., Qi, X., Kim, J., Piao, Y., 2016. Stabilized magnetic enzyme
 aggregates on graphene oxide for high performance phenol and bisphenol A removal.
 Chem. Eng. J. 306, 1026-1034.

796	87. Loffredo, E., Castellana, G., Senesi, N., 2014. Decontamination of a municipal landfill
797	leachate from endocrine disruptors using a combined sorption/bioremoval approach.
798	Environ. Sci. Pollut. Res. 21, 2654–2662.
799	88. Lonappan, L., Brar, S.K., Das, R.K., Verma, M., Surampalli, R.Y., 2016. Diclofenac and
800	its transformation products: environmental occurrence and toxicity-A review. Environ.
801	Int. 96, 127-138.
802	89. Mahmoodi, N.M., Saffar-Dastgerdi, M.H., Hayati, B., 2020. Environmentally friendly
803	novel covalently immobilized enzyme bionanocomposite: From synthesis to the
804	destruction of pollutant. Compos. Part B Eng. 184, 107666. https://doi.org/10.1016/j.
805	<u>compositesb.2019.107666</u>
806	90. Mai, C., Schormann, W., Milstein, O., Hüttermann, A., 2000. Enhanced stability of
807	laccase in the presence of phenolic compounds. Appl. Microbiol. Biotechnol. 54, 510-
808	514.
809	91. Mandal, S.K., Das, D., Das, N., 2020. Microbial and plant assisted remediation of
810	benzo[a]pyrene from soil and aqueous environment: A research update. Res. J. Chem.
811	Environ. 24(2), 148-159.
812	92. Mandal, S.K., Das, N., 2015. Microbial remediation of high molecular weight PAHs from
813	environment: an overview. Int. J. ChemTech Res. 8, 36–43.

814	93. Mandal, S.K., Das, N., 2018. Enhanced biodegradation of high molecular weight PAHs
815	using yeast consortia immobilized on modified biowaste material. J. Microbiol.
816	Biotechnol. Food Sci. 7(6), 594–601.
817	94. Mechrez, G., Krepker, M.A., Harel, Y., Lellouche, J.P., Segal, E., 2014. Biocatalytic
818	carbon nanotube paper: a 'one-pot'route for fabrication of enzyme-immobilized
819	membranes for organophosphate bioremediation. J. Mater. Chem. B. 2, 915-922.
820	95. Medina, J.D.C., Woiciechowski, A.I., Guimaraes, L.R.C., Karp, S.G., Soscol, C.R., 2017.
821	Peroxidases in:Ashok, P., Sangeeta, N., Carlos, R.S., (Eds.), Current developments in
822	biotechnology and bioengineering production, isolation and purification of industrial
823	products. Elsevier, pp. 217-232.
824	96. Mishra, B., Varjani, S., Iragavarapu, G.P., Ngo, H.H., Guo, W., Vishal, B., 2019.
825	Microbial Fingerprinting of Potential Biodegrading Organisms. Curr. Pollut. Rep. 5, 181-
826	197.
827	97. Mishra, B., Varjani, S., Kumar, G., Awasthi, M.K., Awasthi, S.K., Sindhu, R., Binod, P.,
828	Rene, E.R., Zhang, Z., 2020. Microbial approaches for remediation of pollutants:
829	Innovations, future outlook, and challenges. Energy Environ. 1-30 (Doi:
830	10.1177/0958305X19896781).
831	98. Mohan, S.V., Sravan, J.S., Butti, S.K., Krishna, K.V., Modestra, J.A., Velvizhi, G.,
832	Kumar, A.N., Varjani, S., Pandey, A., 2018. Microbial Electrochemical Technology:
833	Emerging and Sustainable Platform. In: SV Mohan, S.V., Varjani, S.J., Pandey A. (Eds.),

834	Micro	obial Electrochemical Technology: Sustainable Platform for Fuels, Chemicals and
835	Reme	diation, Elsevier, Amsterdam, Netherlands, pp 3-17.
836	99. Mosh	e, G., Yacov, A. 2018. Catalytic bioscavengers as countermeasures against
837	organ	ophosphate nerve agents. Chem. Biol. Interact.292, 50-64.
838	100.	Muhammad, B., Syed, S.A., Damiá, B., Hafiz, M.N. Iqbal. 2019. Biocatalytic
839	degra	dation/redefining "removal" fate of pharmaceutically active compounds and
840	antibi	otics in the aquatic environment. Sci. Total Environ. 691,1190–1211
841	101.	Muthukamalam, S., Sivagangavathi, S., Dhrishya, D., Rani, S.S., 2017.
842	Chara	cterization of dioxygenases and biosurfactants produced by crude oil degrading soil
843	bacter	ria. Brazili J. Microbio. 48, 637-647.
844	102.	Nagata, Y., Ohtsubo, Y., Tsuda, M., 2015. Properties and biotechnological
845	applic	cations of natural and engineered haloalkane dehalogenases. Appl. Microbiol.
846	Biote	chnol. 99, 9865-9881.
847	103.	Nguyen, T.A., Fu, C.C., Juang, R.S., 2016. Effective removal of sulfur dyes from
848	water	by biosorption and subsequent immobilized laccase degradation on crosslinked
849	chitos	san beads. Chem. Eng. J. 304, 313–324.
850	104.	Noakes, M., Foster, P.R., Keogh, J.B., James, A.P., Mamo, J.C., Clifton, P.M.,
851	2006.	Comparison of isocaloric very low carbohydrate/high saturated fat and high
852	carbo	hydrate/low saturated fat diets on body composition and cardiovascular risk. Nutr.

853 Metab . 3, 7.

854	105.	Osma, J.F., Toca-Herrera, J.L., Rodriguez-Couto, S., 2010. Biodegradation of a
855	simu	lated textile effluent by immobilised-coated laccase in laboratory-scale reactors.
856	App	l. Catal. A 373, 147–153.

857 106. Ozer, A., Sal, F.A., Ali Belduz, O., Kirci, H., Canakci, S. 2019. Use of feruloyl
858 esterase as laccase-mediator system in paper bleaching Appl. Biochem. Biotechnol.190,
859 721-731.

Patricia, G., Gabriela, A.L.V., Igor, V. R.O, Elisa, P.P., Bruno, de J.F, Lara, D.S.
2020. Metal and organic pollutants bioremediation by extremophile microorganisms,
Journal of Hazardous Materials. 382, 121024,
https://doi.org/10.1016/j.jhazmat.2019.121024.

- Prasad, M., Manjunath, K., 2011. Comparative study on biodegradation of lipidrich wastewater using lipase producing bacterial species. Indian J. Biotechnol. 10, 121124.
- Rajmohan, K.S., Ramya, C., Varjani, S., 2019. Plastic pollutants: Waste
 management for pollution control and abatement. Curr. Opinion Environ. Sci. Health. 12,
 72-84 (Doi: https://doi.org/10.1016/j.coesh.2019.08.006).

Rajmohan, K.S., Ramya, C., Varjani, S., 2020. A Review on occurrence of
pesticides in environment and current technologies for their remediation and
management. Indian J Microbiol. 1-14 (Doi: 10.1007/s12088-019-00841-x).

873	111.	Ramos, JL., Marqués, S., van Dillewijn, P., Espinosa-Urgel, M., Segura, A.,
874	Duque	, E., Krell, T., Ramos-González, MI., Bursakov, S., Roca, A., Solano, J.,
875	Fernád	ez, M., Niqui, J.L., Pizarro-Tobias, P., Wittich, RM., 2011. Laboratory research
876	aimed	at closing the gaps in microbial bioremediation. Trends Biotechnol. 29, 641–647.
877	112.	Rani, M., Shanker, U., Chaurasia, A.K., 2017. Catalytic potential of laccase
878	immob	ilized on transition metal oxides nanomaterials: Degradation of alizarin red S dye.
879	J. Envi	ron. Chem. Eng. 5, 2730–2739.
880	113.	Rathna, R., Varjani, S., Nakkeeran, E., Recent developments and prospects of
881	dioxins	s and furans remediation, 2018. J. Environ. Manage. 223, 797-806.
882	114.	Rocha-Martin, J., Velasco-Lozano, S., Guisán, J.M., López-Gallego, F., 2014.
883	Oxidat	ion of phenolic compounds catalyzed by immobilized multi-enzyme systems with
884	integra	ted hydrogen peroxide production. Green Chemistry. 16, 303-311.
885	115.	Romeh, A., Hendawi, M., 2014. Bioremediation of certain organophosphorus
886	pesticio	des by two biofertilizers, Paenibacillus (Bacillus) polymyxa (Prazmowski) and
887	Azospi	rillum lipoferum (Beijerinck). J. Agr. Sci. Tech. 16, 265-276.
888	116.	Ruggaber, T.P., Talley, J.W., 2006. Enhancing bioremediation with enzymatic
889	process	ses: a review. Pract.Period. Hazard. Toxic Radioactive Waste Manage. 10, 73-85.
890	117.	Sarro, M., Gule, N.P., Laurenti, E., Gamberini, R., Paganini, M.C., Mallon, P.E.,
891	Calza,	P., 2018. ZnO-based materials and enzymes hybrid systems as highly efficient
892	catalys	ts for recalcitrant pollutants abatement. Chem. Eng. J. 334, 2530-2538.

893 118. Sauvé, S., Desrosiers, M., 2014. A review of what is an emerging contaminant.
894 Chemistry Central J. 8, 1-7.

895 119. Shao, B., Liu, Z., Zeng, G., Liu, Y., Yang, X., Zhou, C., Yan, M., 2019.
896 Immobilization of laccase on hollow mesoporous carbon nanospheres: noteworthy
897 immobilization, excellent stability and efficacious for antibiotic contaminants removal. J.
898 Hazard. Mater. 362, 318-326.

899 120. Shukla, P., Gupta, K., 2007. Ecological screening for lipolytic molds and process
900 optimization for lipase production from *Rhizopus oryzae* KG-5. J. Applied Sci. Environ.
901 Sanitation. 2, 35-42.

902 121. Silva, M.C., Torres, J.A., Nogueira, F.G., Tavares, T.S., Corrêa, A.D., Oliveira,
903 L.C., Ramalho, T.C., 2016. Immobilization of soybean peroxidase on silica-coated
904 magnetic particles: a magnetically recoverable biocatalyst for pollutant removal. RSC
905 Adv. 6, 83856-83863.

906 122. Singh, J.S., Singh, D., 2017. Methanotrophs: An Emerging Bioremediation Tool
907 with Unique Broad Spectrum Methane Monooxygenase (MMO) Enzyme. In: Singh, J.,
908 Seneviratne, G. (Eds.), Agro-Environmental Sustainability, Springer, Cham, pp.1-18.

909 123. Sivaperumal, P., Kamala, K., Rajaram, R., 2017. Bioremediation of industrial
910 waste through enzyme producing marine microorganisms. Adv. Food Nutr. Res. 80, 165–
911 179.

- 912 124. Strong, P., Claus, H., 2011. Laccase: a review of its past and its future in
 913 bioremediation. Crit. Rev. Environ. Sci. Technol. 41(4), 373-434.
- 914 125. Tamura, A., Satoh, E., Kashiwada, A., Matsuda, K., Yamada, K., 2010. Removal
 915 of alkylphenols by the combined use of tyrosinase immobilized on ion-exchange resins
 916 and chitosan beads. J. Appl. Polym. Sci. 115(1), 137–145.
- 917 126. Tangahu, B.V., Abdullah, S.R.S., Basri, H., Idris, M., Anuar, N., Mukhlisin, M.,
 918 2011. A Review on Heavy Metals (As, Pb, and Hg) uptake by plants through
 919 phytoremediation. Int. J. Chem. Eng. 2011, 939161.
 920 <u>https://doi.org/10.1155/2011/939161</u>
- 921 127. Teodosiu, C., Gilca, A.F., Barjoveanu, G., Fiore, S., 2018. Emerging pollutants
 922 removal through advanced drinking water treatment: a review on processes and
 923 environmental performances assessment. J. Clean. Prod. 197(1), 1210-1221.
- 924 128. Torres-Duarte C., Vazquez-Duhalt R. (2010) Applications and Prospective of
 925 Peroxidase Biocatalysis in the Environmental Field. In: Torres E., Ayala M. (eds)
 926 Biocatalysis Based on Heme Peroxidases. Springer, Berlin, Heidelberg
- 129. Tuomela, M., Hatakka, A., 2011. Oxidative fungal enzymes for bioremediation.
 In: Moo-Young, M., Agathos, S.N., Volume editor (eds), *Comprehensive Biotechnology: Environmental Biotechnology and Safety*, second ed., Vol. 6, Elsevier Scientific Publ. Co,
 London, Amsterdam, New York, pp. 183-196. <u>https://doi.org/10.1016/b978-0-08-</u>
 088504-9.00370-6.

- 932 130. Varjani, S., Joshi, R., Srivastava, V.K., Ngo, H.H., Guo, W., 2019. Treatment of
 933 wastewater from petroleum industry: current practices and perspectives. *Env. Sci. Pollut.*934 *Res.* 1-9 (Doi: 10.1007/s11356-019-04725-x).
- 935 131. Varjani, S., Kumar, G., Rene, E.R., 2019. Developments in biochar application for
 936 pesticide remediation: Current knowledge and future research directions, J. Environ.
 937 Manag. 232, 505 513 (Doi: https://doi.org/10.1016/j.jenvman.2018.11.043).
- 938 132. Varjani, S., Rakholiya, P., Ng, H.Y., You, S., Teixeira, J.A., 2020b. Microbial
 939 Degradation of Dyes: An overview. Bioresour. Technol. (2020) 123728 (Doi: 940 https://doi.org/10.1016/j.biortech.2020.123728).
- 941 133. Varjani, S., Upasani, V.N., 2019. Evaluation of rhamnolipid production by a
 942 halotolerant novel strain of *Pseudomonas aeruginosa*. Bioresour. Technol. 288, 121577
 943 (Doi: 10.1016/j.biortech.2019.121577).
- 134. Varjani, S., Upasani, V.N., Pandey, A., 2020a. Bioremediation of oily sludge 944 polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of 945 petroleum hydrocarbons for seed germination. Sci. Total Environ. 737, 946 139766 (Doi:10.1016/j.scitotenv.2020.139766). 947
- 948 135. Varjani, S.J., 2017. Microbial degradation of petroleum hydrocarbons. Bioresour.
 949 Technol. 223, 277-286.
- 950 136. Varjani, S.J., Gnansounou, E., Pandey, A., 2017. Comprehensive review on
 951 toxicity of persistent organic pollutants from petroleum refinery waste and their
 952 degradation by microorganisms, Chemosphere. 188, 280-291.
 - Page

953	137.	Varjani, S.J., Sudha, M.C., 2018. Treatment technologies for emerging organic
954	conta	minants removal from wastewater. In: Bhattacharya, S., Gupta, A.B., Gupta, A.,
955	Pand	ey, A. (Eds.), Water remediation, Springer Nature, Singapore, pp 91-115.

- 956 138. Varjani, S.J., Upasani, V.N., 2017b. Critical review on biosurfactant analysis,
 957 purification and characterization using rhamnolipid as a model biosurfactant. Bioresour.
 958 Technol. 232, 389-397.
- 959 139. Verma, S., Saxena, J., Prasanna, R., Sharma, V., Nain, L., 2012. Medium
 960 optimization for a novel crude-oil degrading lipase from *Pseudomonas aeruginosa* SL-72
 961 using statistical approaches for bioremediation of crude-oil. Biocatal. Agric. Biotechnol.
 962 1, 321-329.
- 963 140. Vidali, M., 2001. Bioremediation. an overview. Pure Appl. Chem. 73(7), 1163964 1172.
- 965 141. Vishnu, D., Neeraj, G., Swaroopini, R., Shobana, R., Kumar, V.V., Cabana, H.,
 966 2017. Synergetic integration of laccase and versatile peroxidase with magnetic silica
 967 microspheres towards remediation of biorefinery wastewater. Environ. Sci. Pollut. Res.
 968 24(22), 17993-18009.
- 969 142. Wang, H., Li, S., Li, J., Zhong, L., Cheng, H., & Ma, Q. 2020. Immobilized
 970 polyphenol oxidase: Preparation, optimization and oxidation of phenolic *compounds*. Int
 971 J Biol Macromol. 160, 233-244

972	143.	Wang, O	Q., C	Cui, J., Li, G., 1	Zhang, J.,	Li, I	D., Huang, F	., Wei, Q.,	2014.	Laccase
973	imm	obilized o	n a	PAN/adsorber	nts compo	osite	nanofibrous	membran	e for	catechol
974	treat	nent by a l	oioca	talysis/adsorpti	on proces	s. Mc	olecules. 19(3), 3376–33	88.	

- 975 144. Wang, S., Liu, W., Zheng, J., Xu, X., 2016. Immobilization of horseradish
 976 peroxidase on modified PAN-based membranes for the removal of phenol from buffer
 977 solutions. Can. J. Chem. Eng. 94(5), 865–871.
- 978 145. Wentzel, L.C.P., Inforsato, F.J., Montoya, Q.V., Rossin, B.G., Nascimento, N.R., 979 Rodrigues, A., Sette, L.D., 2018. Fungi from Admiralty Bay (King George Island, Antarctica) soils and marine sediments. Microb. Ecol. 1 - 13.980 https://doi.org/10.1007/s00248-018-1217-x. 981
- 146. Xu, P., Liu, L., Zeng, G., Huang, D., Lai, C., Zhao, M., Huang, C., Li, N., Wei,
 Z., Wu, H., , Zhang, C., Lai, M., He, Y., 2014. Heavy metal-induced glutathione
 accumulation and its role in heavy metal detoxification in *Phanerochaete chrysosporium*.
 Appl. Microbiol. Biotechnol. 98, 6409-6418.
- 147. Xu, R., Si, Y., Li, F., Zhang, B., 2015. Enzymatic removal of paracetamol from
 aqueous phase: horseradish peroxidase immobilized on nanofibrous membranes. Environ.
 Sci. Pollut. Res. 22(5), 3838–3846.
- 148. Xu, R., Si, Y., Wu, X., Li, F., Zhang, B., 2014. Triclosan removal by laccase
 immobilized on mesoporous nanofibers: strong adsorption and efficient degradation.
 Chem. Eng. J. 255, 63-70.

992	149.	Xu, X., I	Liu, W., Tian,	S., V	Vang, W., Qi,	Q., Jiang, P., Gao	9, X., Li, F., Li, I	H., Yu,
993	Н. 2	018. Petrole	eum hydrocart	oon-c	legrading bact	teria for the reme	diation of oil po	ollution
994	unde	er aerobic	conditions:	А	perspective	analysis. Front.	Microbiol. 9,	2885.
995	https	s://doi.org/10	0.3389/fmicb.2	2018	.02885			

- 150. Yamada, K., Akiba, Y., Shibuya, T., Kashiwada, A., Matsuda, K., Hirata, M.,
 2005. Water purification through bioconversion of phenol compounds by tyrosinase and
 chemical adsorption by chitosan beads. Biotechnol. Prog. 21(3), 823–829.
- 999 151. Yang, J., Wang, Z., Lin, Y., Ng, T.B., Ye, X., Lin, J., 2017. Immobilized *Cerrena*sp. laccase: preparation, thermal inactivation, and operational stability in malachite green
 decolorization. Scientific Reports. 7, 16429. <u>http://doi.org/10.1038/s41598-017-16771-x</u>
- 1002 152. Yin, K., Lv, M., Wang, Q., Wu, Y., Liao, C., Zhang, W., Chen, L., 2016.
 1003 Simultaneous bioremediation and biodetection of mercury ion through surface display of
 1004 carboxylesterase E2 from *Pseudomonas aeruginosa* PA1. Water Res. 103, 383-390.
- 1005 153. Yu, L., Zhang, X.Y., Tang, Q.W., Li, J., Xie, T., Liu, C., Cao, M.Y., Zhang, R.C.,
 1006 Wang, S., Hu, J.M., Qiao, W.C., Li, W.W., Ruan, H.H., 2015. Decolorization
 1007 characteristics of a newly isolated salt-tolerant *Bacillus* sp. strain and its application for
 1008 azo dye-containing wastewater in immobilized form. Appl. Microbiol. Biotechnol.
 1009 99(21), 9277-9287
- 1010 154. Zdarta, J., Antecka, K., Frankowski, R., Zgoła-Grześkowiak, A., Ehrlich, H.,
 1011 Jesionowski, T., 2018a. The effect of operational parameters on the biodegradation of

- bisphenols by *Trametes versicolor* laccase immobilized on *Hippospongia communis*spongin scaffolds. Sci. Total Environ. 615, 784–795.
- 1014 155. Zdarta, J., Meyer, A.S., Jesionowski, T., Pinelo, M., 2018b. Developments in
 1015 support materials for immobilization of oxidoreductases: a comprehensive review. Adv.
 1016 Colloid Interf. Sci. 258, 1–20.
- 1017 156. Zhang, L., Mi, J., Hu, G., Zhang, C., Qi, H., 2020. Facile fabrication of a high1018 efficient and biocompatibility biocatalyst for bisphenol A removal, Int. J. Biol.
 1019 Macromol. 150, Pages 948-954.
- 1020 157. Zhang, X., Pan, B., Wu, B., Zhang, W., Lv, L., 2014. A new polymer-based
 1021 laccase for decolorization of AO7: long-term storage and mediator reuse. Bioresour.
 1022 Technol. 164, 248–253.
- 1023 158. Zhanga, H., Zhanga, S., Hea, F., Qina, X., Zhanga, X., Yang, Y., 2016.
 1024 Characterization of a manganese peroxidase from white-rot fungus *Trametes* sp. 48424
 1025 with strong ability of degrading different types of dyes and polycyclic aromatic
 1026 hydrocarbons. J. Hazard. Mater. 320, 265-277.
- 1027 159. Zofair, S.F.F., Arsalan, A., Khan, M.A., Alhumaydhi, F.A., Younus, H. 2020.
 1028 Immobilization of laccase on Sepharose-linked antibody support for decolourization of
 1029 phenol red, Int J Biol Macromol. 161,78-87.
- 1030
- 1031

Page

1035	
1036	Figure Captions:
1037	
1038	Figure 1: Classification of biocatalyst on the basis of their activity
1039	Figure 2: Pathway to illustrate activity of oxidoreductase (monoxygenase and dioxygenase) in
1040	degradation of phenol and other aromatic pollutants
1041	Figure 3: Illustration of Laccase Mediator System (LMS) and its possible role for
1042	bioremediation and detoxification of organic pollutants along with the active site of laccase to
1043	facilitate the catalytic cycle through electron flux
1044	Figure 4: Schematic representation for immobilizing biocatalysts with polymeric materials and
1045	degradation of pollutants
1046	
1047	
1048	
1049	
1050	
1051	
1052	

bioremediation and detoxification of organic pollutants along with the active site of laccase

1076 to facilitate the catalytic cycle through electron flux

1084 TABLE LEGENDS

1085

Table 1: Summary of immobilized biocatalysts for pollutants remediation

Biocatalyst	Immobilization	Target pollutant	Efficiency	Kinetics Parameters	Proposed methods of	Reference
	method				transformation	
Laccase	Crosslinking with	Triclosan	65% of Triclosan	K for immobilized laccase	Succesive Oxidation,	Xu et al. 2014
	Composite		was removed in 2h	$= 1.17 \text{ h}^{-1}$	dechlorination, and	
	nanofibers			t $\frac{1}{2}$ for immobilized laccase =	oligomerization of	
				0.60 S	Triclosan mediated	
				First order reaction	through Cu-cluster in	
					laccase	
Laccase	Crosslinking with	Mefenamic acid,	N/A	$Km = \!\!64.3 \pm 6.7 \; \mu M$	Resulting radicals	Arca-Ramos et
	Magnetic	Indomethacin in		Kcat =134.6 \pm 6.7 s ⁻¹	from oxidation	al. 2016
	mesoporous silica	Municipality		Kcat/Km=2.10 $\pm 0.11 \ s^{-1} \mu M^{-1}$	interact with	
	microbeads	Wastewater		2nd order kinetics	nonphenolic	
					pharmaceuticals	
Laccase	Covalent binding	Sulfamethoxazole	60% of	Km for free laccase = $80 \ \mu M$	Oxidation with a	Kadam et al.
	with Halloysite		Sulfamethoxazole	Km for immobilized laccase =	redox mediator of	2017
	nanotubes (Fe ₃ O ₄		removed up to 7 th	90 µM	laccase	
	Biocatalyst Laccase Laccase	BiocatalystImmobilization methodLaccaseCrosslinking with Composite nanofibersLaccaseCrosslinking with Magnetic mesoporous silica microbeadsLaccaseCovalent binding with Halloysite nanotubes (Fe ₃ O ₄	BiocatalystImmobilizationTarget pollutantmethodTriclosanLaccaseCrosslinking withTriclosanCompositenanofibersImmobilizationnanofibersKagneticIndomethacin inmesoporous silicaMunicipalitymicrobeadsWastewaterLaccaseCovalent bindingMagneticSulfamethoxazolewith HalloysiteSulfamethoxazole	BiocatalystImmobilizationTarget pollutantEfficiencymethodmethod65% of TriclosanLaccaseCrosslinking withTriclosanCompositewas removed in 2hnanofibersnanofibersLaccaseCrosslinking withMefenamic acid,MagneticIndomethacin inmesoporous silicaMunicipalitymicrobeadsWastewaterLaccaseCovalent bindingSulfamethoxazole60% ofwithHalloysitenanotubes (Fe ₃ O4removed up to 7 th	BiocatalystImmobilizationTarget pollutantEfficiencyKinetics Parametersnethodnethod55% of TriclosanK for immobilized laccaseLaccaseCorosslinking withTriclosan65% of TriclosanK for immobilized laccaseCompositewas removed in 2h= 1.17 h ⁻¹ nanofibersImmobilized laccase0.60 SLaccaseCrosslinking withMefenamic acid,N/AKm =64.3 ± 6.7 μ MLaccaseCrosslinking withMefenamic acid,N/AKm =2.10 ± 0.11 s ⁻¹ μ M ⁻¹ mesoporous silicaMunicipalityKcat/Km=2.10 ± 0.11 s ⁻¹ μ M ⁻¹ microbeadsWastewater2nd order kineticsLaccaseCovalent bindingSulfamethoxazole60% ofKm for free laccase = 80 μ Mwith HalloysiteSulfamethoxazoleKm for immobilized laccase =	BiocatalysImmobilizationTarget pollutantEfficiencyKinetics ParametersProposed methods of transformationIaccaseCorsslinking withTiclosan65% of TiclosanK for immobilized laccaseSuccesive Oxidation, adechlorination, andIaccaseCompositeVas removed in 2h=1.17 h ⁻¹ dechlorination, and of 5% of Soigomerization of 0.60 SIaccaseVas removed in 2hFirst order reactionnitrologan mediated through Cu-cluster in laccaseIaccaseCrosslinking withMefenamic acid, MagneticN/AKm =64.3 ± 6.7 µMResulting radicals form oxidationMagneticIndomethacininN/AKm =64.3 ± 6.7 µMResulting radicals form oxidationIaccaseCrosslinking withMunicipalityKat =134.6 ± 6.7 s ⁻¹ form oxidationmicrobeadsMunicipalityKat2nd order kineticsnonphenolic pharmaceuticalsLaccaseCovalent bindingSulfamethoxaze60% ofKm for free laccase = 80 µMOxidation with a redox mediator of pharmaceuticalsLaccaseCovalent bindingSulfamethoxazeSulfamethoxazeKm for immobilized laccaseredox mediator of redox mediator of

Table 1. Summary of miniophized blocatarysts for ponutants remediatio	Table 1: Summary	<pre>/ of immobilized</pre>	biocatalysts for	pollutants remediatio
---	------------------	-----------------------------	------------------	-----------------------

	and		cycle	Vmax for free laccase = $45 \mu M$		
	functionalized			min ⁻¹		
	with g-			Vmax for immobilized laccase		
	aminopropyltrieth			$= 41 \ \mu M \ min^{-1}$		
	oxysilane)			Lineweaver-Burk double		
				reciprocal models		
Laccase	Crosslinking with	Acetaminophen,	Complete removal	Km for immobilized laccase=	Direct oxidation of	Kumar et al.
	magnetic	Diclofenac,	of acetaminophen,	0.39 mM	target pollutants by	2016
	nanoparticles	Mefenamic acid,	diclofenac,	Km for free laccase = 0.37 Mm	laccase	
		Atenolol, Epoxy	mefenamic acid,			
		carbamazepine,	atenolol and epoxy			
		Fenofibrate,	carbamazepine and			
		Diazepam,	partial removal of			
		Trimethoprim,	fenofibrate,			
		and Ketoprofen	diazepam,			
			trimethoprim, and			
			ketoprofen was			
			achieved within			
			12 h			

5	Laccase	Covalent binding	Bisphenol A,	90	%	of	the	For crude enzyme	Reaction of radicals	Ji et al. 2017
		with TiO ₂	Carbamazepine	Bisp	henol	-A	was	$Km=37.3\pm2.5\mu M$	with carbamazepine	
		nanoparticles		remo	oved	withir	n 6 h	Kcat = $101.3 \pm 11.8 \ \mu mol \ min^{-1}$	and Direct oxidation	
				and				¹ mg ⁻¹	of bisphenol A	
				40%)		of	For Immobilized crude enzyme		
				carb	amaze	epine		$Km=42.9\pm3.3~\mu M$		
				remo	oved	withi	n 24	$Kcat = 75.5 \pm 9.4 \ \mu mol \ min^{-1}$		
				h t				mg ⁻¹		
(T	E. to an a state	M -11.4	000/	- f	N. T. 1.	-1.4.			Van and al
0	Laccase	Entrapment,	Malachite green	90%) OI			N/A	Direct oxidation of	Y ang et al.
		covalent binding,		gree	n deco	oloriz	ed in		tetracycline and	2017
		crosslinking with		3 h					pharmaceuticals by	
		Alginate, chitosan							laccase	
7	Horseradish	Crosslinking with	Methyl orange	94.2	6% 0	of m	ethyl	N/A	N/A	Bilal et al.
	peroxidase	crosslinked	dye, Basic red 9,	oran	ige, 9	1.73%	6 of			2017
		enzyme	Indigo,	Basi	c red	9,				
		aggregates	Rhodamine B,	84.3	5% c	of in	digo,			
			and Rhodamine	81.4	7%		of			
			6G	Rho	damin	e B,	and			
				73.6	%		of			

8	Horseradish	Crosslinking with	Tetramethyl	Rhodami removed Crosslink	ne ted-	6G was	Vmax of immobilized	Direct oxidation by	Kim et al.
Ū	peroxidase	chitosan-	benzidine	Horserad	ish		enzyme=260 mol min ⁻¹ mg	horseradish	2016
	Peromanoe	halloysite hybrid nanotubes		peroxida 88 tim catalytic with Tetramet benziding	se es hyl	showed faster activity for han that	protein ⁻¹ (88-folds higher than the free enzyme)	peroxidase in presence of H ₂ O ₂	2010
				of Horserad peroxida	ish se	natural			
9	Horseradish peroxidase	Immobilized through adsorption with Magnetic nanoparticles (silica-coated), graphene oxide	Phenol	95% of removed aqueous	ohe	enol was from ution.	N/A	Direct oxidation by horseradish peroxidase in presence of H ₂ O ₂ . This phenomenon is probably due to different phenoxy	Chang et al. 2016

		(nanosheets),				radicals produced by	
		graphene				the enzyme	
		oxide/Fe ₃ O ₄ ,					
		NH ₂ -modified					
		magnetic					
		Fe ₃ O ₄ /SiO ₂					
10	Soybean	Crosslinking with	Ferulic acid	$99.67 \pm 0.10\%$ of	Free enzyme	Oxidation of phenolic	Silva et al.
	peroxidase	Silica-coated		ferulic was removed	Km=607.03 mM	compounds in	2016
		magnetic			Vmax= 6.21 mM min ⁻¹	presence of H ₂ O ₂	
		nanoparticles			Immobilized enzyme		
					Km=21.55 mM		
					Vmax= 0.654 mM min ⁻¹		
11	Soybean	Adsorption with	Diclofenac,	Complete removal	Free enzyme	Photocatalytic and	Sarro et al.
	peroxidase	Poly (styrene-co-	Naproxen,	of diclofenac and	Km (iopamidol) = 2.17×10^{-4}	enzymatic oxidation	2018
		maleic anhydride)	Iopamidol,	2,4-dichloropheno,	min ⁻¹		
		(SMA) nanofiber	2, 4-	90% removal of	Km (imidacloprid) = 2×10^{-4}		
			dichlorophenol,	naproxen, 85%	min ⁻¹		
			Imidacloprid,	removal of	Km (bisphenol A) = 2×10^{-4}		
			Bisphenol A	imidacloprid and	\min^{-1}		
				70% removal of	Immobilized enzyme		

				iopamidol and	Km (iopamidol) = 12×10^{-4}		
				bisphenol A was	\min^{-1}		
				attained in 24h	Km (imidacloprid) = $9.33 \times$		
					$10-4 \text{ min}^{-1}$		
					Km (bisphenol A) = $7.17 \times$		
					$10-4 \text{ min}^{-1}$		
12	Tyrosinase	Crosslinking with	Phenol, Bisphenol	84.5% of phenol	Free Tyrosinase	Hydroxylation of	Liu et al. 2016
		graphene oxide	А	was removed after 2	Km=0.70 mM	monophenols to	
				h and	Vmax= 4.43 x 10 ⁻³ mM/s	quinines	
				74.5 % of Bisphenol	Immobilized Turosinase		
				A was after 2 h	Km=2.08 mM		
					KIII-3.30 IIIW		
					$Vmax = 0.9 \text{ x } 10^{-3} \text{ mM/s}$		
					Lineweaver-Burk double		
					reciprocal models		
13	Organopho	Crosslinking with	Methyl parathion	Complete removal	Free enzyme	P-nitrophenol is	Gao et al.
	sphorus	nonwoven fabrics		of Methyl parathion	$Km=331\pm2~\mu M$	produced with	2014
	hydrolase			was attained	Immobilized enzyme	cleavage of P-O bond	
					$Km{=}622\pm182~\mu M$	of methyl parathion	

14	Organopho sphorus hydrolase	Covalent binding with carbon nanotube paper	Methyl paraoxon	22% o paraoxon removed	f Meth	vl N/A s	P-nitrophenol is produced with cleavage of P-O bond of methyl parathion	Mechrez et al. 2014
15	Lipase	Entrapment with Zeolite imidazolate framework-8	p-Nitrophenyl caprylate	N/A		N/A	Hydrolysis to produce p-nitrophenyl	He et al., 2014
16	Haloalkane dehalogena se and epoxide hydrolase	Encapsulation with PVA particles, lentikats	1,2,3- Trichloropropane	97% Trichlord was converted product with 78%	of 1,2, opropane remove d to fin glycer ó yield	 The specific activities of immobilized Haloalkane dehalogenase and epoxide hydrolase were noted 29.5 and 6.5 μmol·min⁻¹ ·mg⁻¹ respectively 	Dehalogenation and hydrolysis process give glycerol	Dvorak et al. 2014
17	Laccase	Adsorption with magnetic silica microspheres	Phenolic contaminants	80% of contamin removed	F Phenol ants we in 5 days	c For free enzyme e Km= $1.0 \pm 0.12 \mu M$ Kcat = $7.69 \pm 0.12 s^{-1}$ Kcat/Km = $7.69 \pm 0.19 s^{-1}$ μM^{-1}	Free radical chain reactions break phenolic ring	Vishnu et al. 2017

For immobilized enzyme $Km=2.0\pm0.19\ \mu M$ $Kcat\ 4.40\pm0.23\ s^{-1}$ $Kcat/Km=2.20\pm0.16\ s^{-1}$ μM^{-1}

18	Formate	Adsorption with	Phenol,	95% of Phenol, N/A	Formate	Rocha-Martin
	dehydrogen	agarose beads	Para-	50% of Para-	dehydrogenase forms	et al. 2014
	ase,		aminophenol,	aminophenol, 70%	H ₂ O ₂ through	
	peroxidase,		2,4-	of 2,4-	oxidation and NADH	
	and NADH		dichlorophenol	Dichlorophenol, and	oxidase oxidize	
	oxidase			91% of Naphthol	phenolic	
				were removed	compounds	
19	Laccase	Covalently attached	Synthetic Dyes	91% decolorization N/A	Phenoxy radical	Mahmoodi et al.
		in Zeolite based	(Direct Red 23)	was found	formed with the	2020
		nanoparticle and			oxidation of phenolic	
		graphene oxide			ring and followed by	
		composites			formation of azo	
					linkage	

20	Laccase	Cross linked with	Phenol red	Decolourization of	Free enzyme	Phenolic ring	Zofair et al.
		Sepharose-linked		phenol red dye	Km= 43.9 μM	structures has been	2020
		antibody support		obtained by	Vmax= 4938 µM.min ⁻¹	breakdown	
				immobilized and	Immobilized enzyme	with free radical	
				free	Km= 55.0 μM	reactions	
				laccase was 80%	Vmax= 408 µM.min ⁻¹		
				and 56%,			
				respectively after 6			
				h of			
				incubation			
21	Polyphenol	Crosslinked with	Phenol,	Phenol, 4-	For phenol	Catalyzes the	Wang et al.
	oxidase	Chitosan/montmo	4-chlorophenol,	chlorophenol (4-CP)	Km=376.8(mg/L)	oxidation of phenolic	2020
		rillonite and	2,4-dichlorophenol	and 2, 4-	Vmax= 215.5 (mg/L/h)	compounds into	
		chitosan-gold		dichlorophenol (2, 4-	For 4-CP	highly reactive	
		nanoparticles		DCP)	Km=365.7(mg/L)	quinones	
		/montmorillonite		89.2%, 95.2% and	Vmax = 221.7(mg/L/h)	-	
		composites		93.8% at 480 min	For 2,4-DCP		
				respectively	Km=370.2 (mg/L)		
					Vmax = 217.9 (mg/L/h)		