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Abstract
We propose a new formalism for the Engineering Change (EC) problem in

a finite state machine (FSM) setting. Given an implementation that violates
the specification, the problem is to alter the behavior of the implementation
so that it meets the specification. The implementation can be a pseudo-
nondeterministic FSM while the specification may be a nondeterministic FSM.
The EC problem is cast as the existence of an “appropriate” simulation rela-
tion from the implementation into the specification. We derive the necessary
and sufficient conditions for the existence of a solution to the problem. We
synthesize all possible solutions, if the EC is feasible. Our algorithm works in
space which is linear, and time which is quadratic, in the product of the sizes
of implementation and specification. Previous formulations of the problem
which admit nondeterministic specifications, although more general, lead to
an algorithm which is exponential. We have implemented our procedureusing
Reduced Ordered Binary Decision Diagrams.

1 Introduction
The Engineering Change (henceforth EC) problem occurs frequently in

integrated circuit design. One often encounters situations where the circuit
implemented on silicon does not perform according to the specification. The
designer would like to alter the functionality of a single die,on an experimental
basis, and see if the altered circuit performs within the specification. If it
does, the change is incorporated in the next mask revision. This capability
significantly reduces the cost and time-to-market. An entire mask revision is
not required to test the change.

There are regions of the layout that contain a variety of different uncom-
mitted gates and latches. This uncommitted logic can be used to change the
functionality of a circuit on an experimental basis by using a Focussed Ion
Beam (FIB) apparatus. The FIB machine allows one to cut a wire on silicon,
and also to deposit new wires over the passivation oxide. Designs can also be
altered using programmable logic which is often available on-chip.

In the past EC has been used to alter the functionality of the combinational
part of circuits [7, 9, 10]. Often it is not possible to rectify a design by changing
only the combinational part of the circuit. In such cases the sequential behavior
of the machine may be altered by adding/deleting latches, in addition to
making changes in the combinational part. Sequential circuits are usually
modeled as Finite State Machines (FSMs). In this context the EC problem
can be stated as follows: Given an implementation FSM that does not conform
to the specification FSM, the goal is to synthesize a controller FSM, which
when composed with the implementation, generates output sequences (for
any given input sequence) that are allowed by the specification.

This work has applications in various other practical scenarios also. In the
contextof a system of interacting machines, a certain componentof the system
may have to be replaced with another that has better characteristics such as
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area, delay, testability, etc. Our techniques can be employed to determine all
possible replacements for the component. There are applications in the control
systems area as well, where a controller for a plant has to be synthesized.

In this paper, we allow the specification to be nondeterministic and the
plant to be pseudo-nondeterministic. Nondeterminism is very convenient
for specifying properties (specification) and in modeling the environment for
a design [13]. In theory, it is always possible to represent the behavior of a
nondeterministic FSM by a deterministic FSM, but in practice, the best known
construction for converting a nondeterministic machine into an equivalent
deterministic machine is exponential in the worst case. Therefore the use of
nondeterminism in specification allows convenient and compact modeling.

The central question in the EC problem is that of determining what ma-
chines, when composed with a component, can satisfy or “match” the specifi-
cation. In this work, we provide a simple and clear formulation, and solution
to this problem, using the formalism of simulation relations from concurrency
theory[11]. We cast the EC problem as that of finding an implementable FSM
that when composed with the implementation has a simulation relation into
the nondeterministic specification. We derive the necessary and sufficient
conditions for the existence of a feasible controller. In case the engineering
change is feasible, we construct a nondeterministic FSM which contains all
possible controllers and from which a feasible deterministic controller is eas-
ily synthesized. The entire procedure works in space linear and time quadratic
in the product of the sizes of the implementation and the specification. In con-
trast, the previous works that admitted nondeterministic specifications [15, 2]
essentially required a determinization, paying an exponential price in the
worst case, thus losing the benefits of the compactness of nondeterminism
and limiting the practical utility of their procedure. Our approach provides
a comprehensive and simultaneous treatment of the practical issues relating
to implementability, while other approaches dealt with it in an ex post facto
manner.

Once the engineering change has been determined to be feasible and all
possible solutions characterized, the next step is to synthesize the rectifying
controller subject to the constraints of the available uncommitted logic. We
plan to address this “constrained synthesis” problem in the future.

The rest of the paper is organized as follows. In Section 2, we define
the terminology used in the sequel. We state the EC problem in Section 3,
and present our approach in Section 4. We review related previous work and
contrast it with our approach in Section 5. In Section 6 we present some
preliminary experimental results, and conclude in Section 7.

2 Preliminaries and Definitions
We represent sets by upper case alphabets, and elements of sets by lower

case letters. A lower case letter represents an element from the set denoted
by the corresponding upper case letter. For example, v represents an element
of the set V . Similarly, 8v and 9v are assumed to quantify over the set V .
jV j is the cardinality of set V .

Definition 1 A Finite State Machine (FSM) M is a 5-tuple (I, O, S, R, r)
where I is the input alphabet, O the output alphabet (both assumed to be
finite), S a finite set of states,R � S � I � S �O the output and transition
relation, and r the initial state. R(s; i; s

0

; o) means that for input i, there is

a transition from state s to state s
0

producing output o. This is also denoted

by s
i=o
�!M s

0

.

If the output and the next state are uniquely defined for a given input
and present state, the FSM is said to be a deterministic FSM (DFSM); a



FSM is said to be pseudo-nondeterministic (PNDFSM) if the next state is
uniquely defined for a given present state, input, and output. A FSM is said
to be nondeterministic (NDFSM) if there is some state, input, and output for
which there is more than one next state. Examples are shown in Figures 1, 2,
3. If at least one next state and output is defined for each input and present
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Figure 1: Deterministic FSM
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Figure 2: Pseudo Non-deterministic FSM
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Figure 3: Non-deterministic FSM

state, we say that the FSM is completely specified. Otherwise, it is said to be
incompletely specified.

A FSM can be interpreted as an automaton over the alphabet I �O. The
set of all pairs (Ik;Ok) such that sequence Ok is produced as output on
applying sequence Ik as the input, gives the language of the automaton. Both
deterministic and pseudo-nondeterministic FSMs are deterministic in the au-
tomaton sense (i.e., the underlying automaton for a pseudo-nondeterministic
machine makes a unique transition for a given input-ouput pair), while a
nondeterministic FSM is nondeterministic in the automaton sense.

The notion of a simulation relation between two machines was introduced
by Park in [11].

Definition 2 We say  � S1 � S2 is a Simulation Relation (abbreviated
SR) from a FSM M1 to a FSM M2 if

1. (r1; r2) 2  , and

2. (s1; s2) 2  ) f 8i8o8s
0

1[(s1
i=o
�!M1 s

0

1))

9s
0

2[(s2
i=o
�!M2 s

0

2)^ (s
0

1; s
0

2) 2  ] ] g

In this case we say that M2 simulates M1 and denote it by M1 � M2.
Alternatively, we say thatM1 has a simulation into M2.

Condition 2, says that s2 in M2 simulates s1 in M1, if each transition from
s1 is simulated by s2, and the next states in M1 in turn are simulated by the
next states in M2, and so on.

Definition 3 Given FSMs M1(U;Y; S1; R1; r1) and
M2((V � Y ); U;S2; R2; r2), the composition M̂(V, Y, Ŝ, R̂, r̂) = M1 �M2
satisfies the following properties:

1. Ŝ = S1 � S2

2. r̂ = (r1; r2)

3. R̂( (s1; s2); v; (s
0

1; s
0

2); y ) iff

9u[R1(s1; u; s
0

1; y) ^R2(s2; (v; y); s
0

2; u)]

The composed machine makes a transition ((s1; s2)
v=y
�!M̂ (s

0

1; s
0

2)) iff

there exists a u s.t. (s1
u=y
�!M1 s

0

1), and (s2
(v;y)=u
�! M2 s

0

2).
The composition is said to be well defined provided a transition is allowed
for every possible input v (i.e., the machine M̂ is complete). Further, we say
that this composition is implementable in the hardware sense provided no
combinational loops occur in the composed machine. This can be ensured if
eitherM1 is Moore (i.e., the output of M1 is independent of the inputs), or
M2 is Moore with respect to Y (i.e., the output ofM2 is independent of Y ).

3 Problem Statement
The EC problem is formally stated as follows:

Problem Statement 3.1 Given FSMs M1(U;Y; S1; R1; r1) and
M(V;Y; S;R; r), the EC problem is to find a FSM M2((V �

Y );U; S2;R2; r2) such that the following conditions hold:

1. M1 �M2 is well-defined.

2. M1 �M2 is implementable.

3. For every reachable state (s1; s2) in M1 � M2, 8v8y

if (s1; s2)
v=y
�!M1�M2 (s

0

1; s
0

2), then for each u s.t.

(s2
(v;y)=u
�! M2 s

0

2), we have that [8y
0

8s
00

1 (s1
u=y

0

�!M1 s
00

1 ) )

9s
00

2 ((s1; s2)
v=y

0

�!M1�M2 (s
00

1 ; s
00

2 ))].

4. M1 �M2 �M .

Condition 3, needed when M1 is pseudo-nondeterministic or nondetermin-
istic, says that any u M2 supplies M1 does not “block” M1, i.e. M1 is
free to produce any legal output for that u and transition to any legal next
state. It is stating thatM2 is controlling the behavior ofM1 just by providing
appropriate u’s. Once the controller has chosen a u for a v, M1 is free to
produce any output y

0

and go to any next state s
00

1 . Condition 3 is not needed

for a deterministic M1, because for a given u the output y and next state s
0

1
of M1 are unique. Our approach can admit a pseudo-nondeterministicM1,
and a nondeterministicM . The configuration ofM1 andM2 is as in [6], and
is shown in figure 4. Here M2 can observe all the inputs to the system and
change the inputs seen by M1 (i.e. all the inputs to M1 are controllable),
but it can only observe the outputs ofM1. This configuration can very easily
be generalized to the case when outputs are also controllable. The topology
of Figure 4 is very natural and modular in the EC context, as the controller
treats M1 as a black box and looks only at the input-output behavior of the
implementation.

Using the terminology of [6] we callM1 the plant,M2 the controller, and
M the model.

4 Our Approach
The EC problem can be divided into three parts: 1) A solvability problem,

where we have to check if a solution exists, 2) A synthesis problem, in
which we have to synthesize a controller which when composed with the
implementation results in a system that meets the specification, and 3) An
optimal synthesis problem, in which a controller has to be chosen according
to some optimality criterion (which could be area, delay, power, testability,
etc.). We address the first two problems and provide efficient algorithms to
solve them. We give necessary and sufficient conditions for the existence of
a solution. If a solution exists, we find the “maximal controller”,Mc, which
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Figure 4: EC - Configuration of FSMs

contains all the solutions to the problem, and from which a feasible controller
can be easily derived. The optimal synthesis problem of deriving a minimum
state controller fromMc can be solved by using techniques of [8].

The relation Hmax � S1 � S given below, relates state s1 in M1 with
state s in M if s “simulates” s1.

Definition 4

(s1; s) 2 Hmax , f8v9u8y8s
0

1[ (s1
u=y
�!M1 s

0

1))

9s
0

[(s
v=y
�!M s

0

)^ (s
0

1; s
0

) 2 Hmax]]g (1)

Intuitively,M1 can be controlled if and only if for all v that the environment
can produce, the controller can give the plant an input u such that both M1

and M produce the same output and go to next states s
0

1 and s
0

respectively,

and the same is true at (s
0

1; s
0

). The following lemma states that any pair of
states (s1; s) such that s “simulates” s1 and this continues successively, will
be in Hmax.

Lemma 4.1 Let � � S1 � S2 be a relation s.t. (s1; s) 2 � )

f8v9u8y8s
0

1[(s1
u=y
�!M1 s

0

1)) 9s
0

[(s
v=y
�!M s

0

), and (s
0

1; s
0

) 2 �] ] g.
Then, (s1; s) 2 �) (s1; s) 2 Hmax.

Sketch of Proof: Hmax can be computed as a greatest fixed point starting
from S1 � S. Every (s1; s) 2 � “survives” every stage of the fixed point
computation.

In the following sections we derive the necessary and sufficient conditions
for the existence of a solution. We compute the maximal controllerMc and
describe how we extract a feasible solution from it. We also discuss the
complexity of our procedure.

4.1 Existence of a Solution
Theorem 4.2 The EC problem has a solution as in Problem Statement 3.1 iff
(r1; r) 2 Hmax.

Sketch of Proof: Only if part: Assume that there exists a FSMM2 satisfying
Conditions 1-4 of Problem Statement 3.1. We need to show that (r1; r) 2
Hmax. Since M1 �M2 � M (Condition 4), there exists a SR  � ((S1 �

S2)� S), s.t. ((r1; r2); r) 2  and,

((s1; s2); s) 2  ) f 8v8y[((s1; s2)
v=y
�!M1�M2 (s

0

1; s
0

2)))

9s
0

[(s
v=y
�!M s

0

)^ ((s
0

1; s
0

2); s
0

) 2  ] ] g (2)

Define a new relation � � S1 � S, where � = f(s1; s) j 9s2 s.t.
[(s1; s2); s) 2  ]g.

Lemma 4.3

(s1; s) 2 �) f 8v9u8y8s
0

1[ (s1
u=y
�!M1 s

0

1))

9s
0

[(s
v=y
�!M s

0

)^ (s
0

1; s
0

) 2 �) ] ] g (3)

Sketch of Proof: Since (s1; s) 2 �, by the definition of �, 9s2
s.t. ((s1; s2); s) 2  . Since M1 � M2 is well-defined (Condi-
tion 1 of Problem Statement 3.1) for every v there exists a transition

(s1; s2)
v=y
�!M1�M2 (s

00

1 ; s
00

2 ). By definition of composition it follows

that there is a u s.t. (s1
u=y
�!M1 s

00

1 ). For this u, by Condition 3

of Problem Statement 3.1, 8y
0

8s
0

1 (s1
u=y

0

�!M1 s
0

1), there exists s
0

2 s.t.

(s1; s2)
v=y

0

�!M1�M2 (s
0

1; s
0

2). From Condition 4 (SR ), we know that there

exists s
0

s.t. (s
v=y

0

�!M s
0

) and ((s
0

1; s
0

2); s
0

) 2  . From the definition of

�, we have (s
0

1; s
0

) 2 �, and thus (3) is established.

Since ((r1; r2); r) 2  , by the definition of�, (r1; r) 2 �. From Lemma 4.3
and Lemma 4.1, it follows that (r1; r) 2 Hmax .

If part: Given that (r1; r) 2 Hmax , we have to show that there ex-
ists a controllerM2 which satisfies conditions 1-4 in Problem Statement 3.1.
We define a controller M2((V � Y ); U;S2; R2; r2), where S2 � S1 � S,
and S2 = f(s1; s) j (s1; s) 2 Hmaxg, r2 is (r1; r), and the transition
relation R2 is defined as follows: for any state (s1; s) 2 S2, we know that
(s1; s) 2 Hmax ; therefore for any v there exists at least one u satisfying

Equation 1; we pick one suchu; now8y8s
0

1 s.t. (s1
u=y
�!M1 s

0

1), from Equa-

tion 1, there exists at least ones
0

s.t. [(s
v=y
�!M s

0

)^(s
0

1; s
0

) 2 Hmax]; we

choose one such s
0

resulting in transition (s1; s)
(v;y)=u
�! M2 (s

0

1; s
0

) in M2.
It is easy to see that M2 satisfies Conditions 1-4 of Problem Statement 3.1.
M1 �M2 is well-defined because we have picked a transition inM2 for all v.
M1 �M2 is implementable because the choice of u is independent of y, i.e.
M2 is Moore in Y . Conditions 3 is satisfied because we insert the transition

(s1; s)
(v;y)=u
�! M2 (s

0

1; s
0

) for every y and every s
0

s.t. (s1
u=y
�!M1 s

0

1).
Condition 4 is satisfied because the state (s1; (s1; s)) inM1 �M2 is simulated
by state s in M .

Note that (r1; r) 2 Hmax is a necessary condition for a solution to exist
even if M1 is nondeterministic (rather than pseudo-nondeterministic), but it
can be shown that this is not sufficient.

4.2 Maximal Controller
In this section we address the synthesis problem; we construct a NDFSM

Mc, called the maximal controller, such that any controller which is a solution
to the problem will have a simulation into Mc, and any FSM which satisfies
Conditions 1-3 in Problem Statement 3.1, and has a simulation intoMc will
be a solution of the problem. If (r1; r) 2 Hmax, then:

Definition 5 Mc((V � Y );U;Sc;Rc; rc) is defined as follows:

� Sc � S1 � S, and Sc = f(s1; s) j (s1; s) 2 Hmaxg

� rc = (r1; r)

� ((s1; s)
(v;y)=u
�! Mc

(s
0

1; s
0

)), [((s1
u=y
�!M1 s

0

1)^ (s
v=y
�!M s

0

)),

and (s
0

1; s
0

) 2 Hmax]

There is a transition in the controller from (s1; s) to (s
0

1; s
0

) on (v; y) with

an output u, if and only if there is a transition from s1 to s
0

1 on u in M1, and

a transition from s to s
0

on v in M , both producing the same output y, and
(s

0

1; s
0

) 2 Hmax .
In the following theorems, we first show thatMc composed with M1 has

a simulation into M . Then, we claim the maximality ofMc by showing that
any solution of the problem has a simulation into Mc; and any FSM that
satisfies Conditions 1-3 of Problem Statement 3.1 and has a simulation into
Mc, is a solution.

Theorem 4.4 Let M1 �Mc = M̂(V;Y; Ŝ; R̂; r̂). Then M̂ �M .



Sketch of Proof: We define a relation � � (S1 � (S1 � S)) � S, where
� = f((s1; (s1; s)); s) j (s1; s) 2 Scg between the states of M1 �Mc

and M . It is easy to show that � is a SR: since rc = (r1; r), it follows
that ((r1; (r1; r)); r) 2 �. Now assume that (s1; (s1; s)); s) 2 �. If there

is a transition (s1; (s1; s))
v=y
�!M1�Mc

(s
0

1; (s
0

1; s
0

)), then 9u such that

[s1
u=y
�!M1 s

0

1] and [(s1; s)
(v;y)=u
�! Mc

(s
0

1; s
0

)]. From the definition of

Mc it follows that (s1
u=y
�!M1 s

0

1) and (s
v=y
�!M s

0

), and (s
0

1; s
0

) 2 Sc .

Therefore, ((s
0

1; (s
0

1; s
0

)); s
0

) 2 �.

Theorem 4.5 Let FSM M2 satisfy conditions 1-3 of Problem Statement 3.
Then M2 �Mc ,M1 �M2 �M .

Proof: ()): Since M2 � Mc, and M1 �Mc � M (by Theorem 4.4), it
follows thatM1 �M2 �M .
((): Given that M1 �M2 � M , there exists a SR  � (S1 � S2) � S,
relating the states of M1 � M2 and M . We define a new relation � �

S2� (S1 �S) relating the states ofM2 withMc, such that (s2; (s1; s)) 2 �
iff ((s1; s2); s) 2  . It is easy to show that � is a SR fromM2 to Mc.

4.3 Deriving an Implementation
The proof of the if part of the Theorem 4.2 basically is a recipe to pull

out an arbitraryM2 satisfying Conditions 1-4 of Problem Statement 3.1 from
Mc.

We note thatMc derived in Section 4.2 is a nondeterministic automaton. In
general, deciding if a feasible controller exists in a nondeterministic automaton
proceeds by first determinizing the automaton (paying an exponential price).
It is interesting to note that in our case, we can synthesize a feasible controller
from Mc easily.

4.4 Computational Complexity of the procedure
In the construction of Hmax we assume that initially all the states in the

two machines are related. For a given pair (s1; s), we leave it inHmax iff for
every v, there exists a u, such that for every y, M1 and M make transitions
to s

0

1 and s
0

respectively, such that (s
0

1; s
0

) is also inHmax . If this condition

is not met we drop (s
0

1; s
0

) fromHmax . This process is iterated until a fixed
point is obtained. In each iteration we check at most O(jSj � jS1j) states,
and at most O(jSj � jS1j) iterations are needed (since at least one state is
being dropped in each iteration). In each iteration, we do O(jM1 �M j)
amount of work. Therefore the time complexity of the entire procedure is
O(jSj � jS1j � jM1 �M j), while the space complexity is O(jSj � jS1j).

We should note however that our algorithms are implemented using Re-
duced Ordered Binary Decision Diagrams (ROBDDs) [4] and the complexity
analysis given above is not valid for ROBDDs.

5 Comparison with the Previous Work
The EC problem was studied in the context of synthesizing interacting

finite state machines by Watanabe and Brayton[15] and Aziz et. al.[2]. They
address the problem of finding the “maximum set of permissible behaviors”
for a component FSM in a system of interacting FSMs. [15, 2] consider the
topology shown in Figure 5.

The topology shown in Figure 5 is more general than ours, as it allows
inputs and outputs in M1 which are not visible to M2. This is of significance
in a system of interacting FSMs because when synthesizing M2, we do not
want to disturb the interface which M1 has with the environment. But in the
EC scenario, we know that M1 is not working correctly and M2 is trying to
alter the behavior ofM1. It is thus natural that the controllerM2 can observe
all the outputs of M1 and control all the inputs ofM1.

In [15], a pseudo-nondeterministic FSM, called the E-Machine, is derived
which “captures” the maximal set of permissible behaviors. Each state of the
E-Machine represents a subset ofS1�2S , whereS1 and S are the sets of states
in M1 and M respectively. Thus, the E-Machine in the worst case can have

V Z

U Y

M
1

M
2

M
V Z

Implementation( ) (Specification)

Figure 5: The E-Machine topology

2jS1j�2
jSj

states. When the specification is deterministic, each state of the
E-Machine corresponds to a subset of S1 � S and the worst case complexity
is only singly exponential. The construction in [15] is very complicated.

Recently, Aziz et al. [2] have proposed the use of S1S to study the
properties of sequential systems. S1S is the monadic second-order theory
of one successor and is interpreted over the natural numbers with the less
than (<) predicate and the successor (+1) function. Buchi, in his seminal
work in the 1960s [5], showed that anything definable in S1S is regular, i.e.
is representable by an automaton (known today as Buchi automata). He in
fact calls S1S the Sequential Calculus due to its suitableness for describing
the properties of sequential systems. In this framework, the language of
a machine can be represented by a formula �. If �M1(V;U;Y; Z) and
�M(V;Z) represent the languagesofM1 andM , then the E-Machine is given
by:((9V9Z�M1^:�M) [2]. IfM is nondeterministic complementingit is
exponential[2]. Similarly, after quantifyingV andZ, the resulting automaton
can again be nondeterministic. Therefore, complementing it again, results in
a total complexity of two exponentials. This complexity is inherent in the
problem.

We are able to avoid the two exponentials by:

� observing that in the EC scenario all the inputs and outputs of M1 are
“available” to the controller.

� using the notion of simulation relations instead of complementing the
nondeterministic specification in the first stage.

Intuitively, since the controller can see all the inputs and outputs, there is
no need for quantification of these variables. Thus the resulting machine
(�M1 ^ :�M ) in the second step is deterministic and can be easily comple-
mented. Similarly, by using simulation relations, we avoid complementing
the nondeterministic specification in the first step, and avoid an exponential
construction. However, this gain does not come without a cost. Although
we find all the controllersM2 such that M1 �M2 � M , there can be other
“reasonable” controllersM

0

2 , such that the language ofM1 �M
0

2 is contained

in the language of M , but M1 �M
0

2 6� M . This is because for general
nondeterministic specifications, a simulation pre-order is a more restrictive
notion than language containment. However, for deterministic or pseudo non-
deterministic specifications and implementations, language containment and
simulation pre-orders are equivalent notions, and in these cases our scheme
is complete. Therefore, given a nondeterministic specification, we can at-
tempt to determinize it by the subset construction. This construction, though
exponential in general, may be possible in many cases. If this step can be
performed without an exponential blowup, our approach will give the same
solution as the E-Machine. However, if this construction blows up, we can
still attempt to find a controller under our notion of simulation pre-order while
it will not be possible in the E-Machine approach.

Recently the same problem has been studied in the Control Systems do-
main as the problem of supervisory control of Discrete Event Dynamical
Systems [1, 6]. The complexity of the procedures [1, 6] to determine the ex-
istence of a feasible solution is linear, the same as ours, but in their approach
both the implementation and the specification are assumed to be deterministic.
[1] cannot handle pseudo-nondeterministic plants. Our scheme is complete
(in the language sense) for pseudo-nondeterministic specifications and plants.
In addition, our scheme can handle nondeterministic specifications while
maintaining its computational advantages.

In the previous approaches a distinction was made between a solution and



an implementable solution. A special construction was needed to derive im-
plementable solutions from the set of all “solutions”. Our approach provides
a simultaneous treatment of implementability.

6 Implementation and Results
The approach presented in Section 4 has been implemented in the SIS

[12] environment. The implementation assumes a NDFSM description for
the specification and an incompletely specified DFSM description for the
implementation.

Starting with an FSM description in the kiss format, the program builds
the transition relation [14], performs the fixed point computation for Hmax

and checks that (r1; r) 2 Hmax, i.e. the problem is solvable. If so, then the
transition relation forMc is built. All computations are performed implicitly
using ROBDDs [4, 3].

We present the results of our experiments in Table 1. Here, ‘Controllable’
represents that the implementation can be controlled to match the specifi-
cation’s behavior for all inputs and ‘Not Controllable’ represents that the
implementation cannot match the specification’s behavior. Experiments were
performed on DECstation 5000/260 with 128MB of memory. We use the
same examples as in [15] after modifying them for our topology. Figure 6
shows two example machines from Table 1.
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Figure 6: Examples oex4 and oex5 from table of results

7 Conclusions
We have addressed the problem of altering a pseudo-nondeterministic

FSM implementation to conform to a possibly nondeterministic FSM speci-
fication. We cast the EC problem as that of finding an implementable FSM
that when composed with the implementation has a simulation relation into
the specification. We admit nondeterministic specifications without requir-
ing determinization; other procedures, if they did admit nondeterminism at
all, essentially determinize, often losing the benefits of the compactness of
nondeterminism. In case the engineering change is feasible, we construct a
nondeterministic FSM which contains all possible controllers. It is interesting
to note that although the maximal controller is a nondeterministic automa-
ton, we can easily decide if it contains a feasible controller and synthesize
any possible controller from it. Our approach provides a comprehensive and
simultaneous treatment of the practical issues relating to implementability,
while other approaches dealt with it ex post facto.

In the future, we would like to extend our simulation relation approach to
systems with fairness, and also timed and hybrid systems.
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Result Implementation Specification Mc Time
Inputs Outputs States Inputs Outputs States States (sec)

oex1 Controllable 1 1 2 1 1 2 2 0.004
oex2 Controllable 1 1 2 1 1 2 2 0.008
oex3 Not Controllable 1 1 3 1 1 3 - 0.011
oex4 Controllable 1 1 5 1 1 5 11 0.024
oex5 Not Controllable 1 1 3 1 1 2 - 0.004
oex6 Controllable 1 1 5 1 1 5 11 0.023
oex7 Controllable 1 1 3 1 1 3 7 0.008
oex9 Controllable 5 1 8 1 1 10 9 0.097
oex8 Controllable 5 1 20 2 1 21 14 1.988
ex7 Not Controllable 3 3 4 1 3 10 - 0.039
ex6 Not Controllable 6 2 13 3 2 16 - 0.235
ex5 Not Controllable 5 3 8 2 3 13 - 0.137
ex4 Not Controllable 5 3 20 2 3 12 - 0.266

ex14 Controllable 3 1 20 1 1 11 15 0.312
ex13 Controllable 3 1 22 1 1 7 12 0.140
ex12 Not Controllable 3 1 19 2 1 7 - 0.340
ex1 Not Controllable 2 2 20 1 2 8 - 0.113
ax9 Controllable 5 1 8 1 1 9 9 0.078
ax6 Not Controllable 6 2 13 3 2 7 - 0.070
ax4 Not Controllable 5 3 30 2 3 3 - 0.079
ex10 Not Controllable 3 3 19 1 3 3 - 0.055

Table 1: Implementation Results


