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Abstract

We report on remarkably high in-field performance at 4.2 K achieved in >4 μm thick rare earth

barium copper oxide (REBCO) samples with Zr addition. Two different samples have been

measured independently at Lawrence Berkeley National Laboratory and the National High

Magnetic Field Laboratory, achieving critical current densities (Jc) of 12.21MA cm−2 and

12.32MA cm−2 at 4.2 K, 14 T ( B c), respectively, which corresponds to equivalent critical

current (Ic) values of 2247 and 2119 A/4 mm. These Ic values are about two times higher than

the best reported performance of REBCO tapes to date and more than five times higher than the

commercial HTS tapes reported in a recent study. The measured Jc values, with a pinning force

of ∼1.7 T Nm−3 are almost identical to the highest value reported for thin (∼1 μm thick)

REBCO at the field and temperature, but extended to very thick (>4 μm) films. This results in an

engineering current density (Je) above 5 kAmm−2 at 4.2 K, 14 T, which is more than five times

higher than Nb3Sn and nearly four times higher than the highest reported value of all

superconductors other than REBCO at this field and temperature. The reported results have been

achieved by utilizing an advanced metal organic chemical vapor deposition system. This study

demonstrates the remarkable level of in-field performance achievable with REBCO conductors at

4.2 K and strong potential for high-field magnet applications.

Keywords: HTS, YBCO, coated conductor

(Some figures may appear in colour only in the online journal)

Introduction

Rare earth barium copper oxide (REBCO) coated conductors

(CC) have a tremendous potential for numerous applications

such as fusion reactor magnets, high energy particle accelerators,

generators, motors, superconducting magnetic energy storage,

and magnetic resonance imaging over a broad temperature range

of 4–77 K in high magnetic fields of 2–30 T, due to their high

critical temperature, high irreversibility field and high critical

current density [1–10]. Several research and development pro-

jects are ongoing to develop high-field magnets with insert coils

of REBCO, due to its high current carrying capability in high

background fields [11–14]. Recently, a 42.5 T magnet has been

demonstrated, with 11.3 T contributed by REBCO insert coils

[14]. Also very recently, high performance REBCO-round wires

with ultra-small diameters of 1.8mm and other round REBCO

wires have been developed for low temperature high-field

magnet applications in accelerators [15–18].
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Significant progress in in-field performance has been

achieved by introducing nanoscale defects like BaZrO3

(BZO) [19–22], BaSnO3 [23], BaHfO3 [24], and Gd3TaO7

[25]. Pinning centers such as RE2O3 and BMO nanocolumns

(M is metal) have been shown to enhance Jc over a wide

range of temperatures (e.g., [26–30]). The BMO nanocolumns

provide effective vortex pinning along c-axis and at low

temperatures, the strain induced by lattice mismatch between

BZO and REBCO matrix results in a high density of weak

point pins raising Jc at all magnetic field directions [31–35].

A remarkably high pinning force density (Fp) of 1.7 T

Nm−3 has been attained at 4.2 K, 20 T in 0.9 μm thick 15

mol% Zr added REBCO film processed using metal organic

chemical vapor deposition (MOCVD) by our group [31].

Recently, BaHfO3 (BHO)-doped 0.26 μm SmBa2Cu3Oy and

0.94 μm EuBa2Cu3Oy films have been shown to exhibit a

comparable Fp of 1.6–1.7 T Nm−3 at 4.2 K, 15 T. [32, 33].

Significant increase in Ic performance can potentially be

achieved if the strong deterioration of Jc with thickness is

addressed, which is common to most REBCO growth tech-

niques (e.g., [36–38]). Recently, a 3.2 μm thick, 20 mol% Zr

REBCO film has been demonstrated by our group using

conventional MOCVD in three passes, with a champion Je of

1 kAmm−2 at 4.2 K at 31 T [35], demonstrating that this level

of Je is attainable in films thicker than the typical 1 μm. The

multi-pass approach was used in order to curb severe degra-

dation in Jc with thickness (>1 μm). However, the multi-pass

technique significantly complicates the process [35, 39–42],

which poses significant problems for scale-up to long length

production.

An advanced MOCVD (A-MOCVD) system was devel-

oped under the ARPA-E grid-scale rampable intermittent dis-

patchable storage program, aimed at overcoming the main issues

identified in conventional MOCVD reactors, including the Jc
degradation with thickness [40]. The reactor utilizes direct

ohmic heating of a suspended substrate tape, highly laminar

flow and rapid tape temperature control using non-contact light

pipe temperature monitoring, which when combined, enabled us

to grow high performance thick REBCO films with and without

dopants [40–42]. Previously, over 1500A/12mm critical cur-

rent was achieved in 4.4 μm thick undoped REBCO on an ion

beam assisted deposition MgO/LMO substrate in a single pass

deposition using an A-MOCVD system [35].

Recently, we have explored the feasibility of utilizing

A-MOCVD for growing thick Zr doped REBCO films opti-

mized for in-field performance at intermediate temperatures

(30–50 K) and fields, which is the operating regime of interest

for applications such as motors and generators [42]. The

results of this study have demonstrated that growth of very

thick films without deterioration of Jc or texture is possible

even in the presence of high volume density of BaZrO3

nanorod precipitates. Remarkably, a high critical current

density (Jc) of 15.11 MA cm−2 was achieved in a 4.8 μm

thick 15 mol% Zr doped REBCO film, at 30 K, 3 T ( B c),

deposited in a single pass [42].

In this study, we used the A-MOCVD reactor to explore

the possibility of growing very thick films optimized for 4.2 K

in-field performance, The main purpose of this study was to

investigate whether the A-MOCVD approach of growing very

thick films with high Jc is also suitable for low temperature,

high-field operation as well as to investigate the limits of thick

REBCO films.

Experimental

In this study, REBCO films containing 15 mol% Zr were grown

to a thickness over 4 μm. The composition is defined as 0.15

BaZrO3+1.0 (Y, Gd)1Ba2Cu3O7−x+0.3 ((Y,Gd)2O3), with

equal amounts of Y and Gd. The thick REBCO film samples

were deposited in single pass in the A-MOCVD reactor on

12mm wide Hastelloy/Al2O3/MgO/LaMnO3 substrates, over a

deposition zone length of 30 cm at deposition rate of

0.192 nmmin−1. Critical current measurements were performed

in a field parallel to c-axis orientation, utilizing the standard

1 μV cm−1 criterion. The samples for Ic measurements were cut

Figure 1. Critical current versus magnetic field applied along the
c-axis at 4.2 K.

Figure 2. Critical current density (solid lines) and pinning force
(dotted line) versus magnetic field applied along the c-axis at 4.2 K.

2

Supercond. Sci. Technol. 31 (2018) 10LT01



4mm wide and critical current was measured over ∼1mm

bridge in order to bring the total current to manageable levels for

these measurements.

TEM characterization was performed using JEOL

2000FX microscope. Two-dimensional (2D) x-ray diffraction

analysis was conducted using a Bruker GADDS system

equipped with Vantec 500 detector.

Results and discussion

Two different samples were measured independently at

Lawrence Berkeley National Laboratory (LBNL) and the

National High Magnetic Field Laboratory (NHMFL) at 4.2 K,

in magnetic fields up to 15 T applied along the c-axis. Both

samples were of the same nominal composition and 15% Zr

addition and were deposited separately in A-MOCVD as two

independent samples, resulting thicknesses of 4.6 and 4.3 μm,

respectively.

The results are summarized in figure 1 as a function of

applied magnetic field parallel to c-axis ( B c). Remarkably

high critical current values of 2247 and 2119 A/4 mm width

have been measured at 4.2 K, 14 T for the two samples. These

values are higher by a factor of >2 than the best reported

value in 3.2 μm thick, 20 mol% Zr added GdYBCO film

processed in three passes using conventional MOCVD and

more than five times higher than the commercial HTS tapes

reported in a recent study [35, 43].

The corresponding Jc values are 12.21 MA cm−2 and

12.32 MA cm−2 respectively, as shown in figure 2 with solid

lines. The pinning force (Fp) at 4.2 K, 14 T is 1.7 T Nm−3, as

shown in figure 2 with dashed lines. This value is the same as

the highest value reported in a 0.9 μm thick, 15 mol% Zr

added GdYBCO film processed in single pass using con-

ventional MOCVD [31]. This is significant in the sense that

the same pinning force is achieved in samples with more than

a four-fold increase in thickness. The pinning force has a peak

at ∼6 T and becomes near-constant at fields above 9 T. The

peak in pinning force correlates well with the estimated

matching field of 6.1 T obtained from the area and the

nanorod count from plane-view TEM micrographs over >300

nanorods. The alpha value of the Ic∼B
−α dependence is

α=1.03 (1.02) at fields above 9 T for the two samples

measured at LBNL and NHMFL, respectively.

The very high Jc values achieved directly impact the

engineering current density (Je)—one of the major metrics for

most 4.2 K applications. The measured samples were depos-

ited on substrates with Hastelloy and buffer stack thicknesses

of 50 μm and 0.2 μm, respectively, ∼3 μm cap silver layer

and ∼40 μm of surround copper stabilizer. Utilizing these

values, the corresponding engineering current density values

for the two samples at 4.2 K, 14 T ( B c) are 5.48 kAmm−2

and 5.13 kAmm−2, respectively, which again constitutes

more than a two-fold increase compared to the best value of

2.5 kAmm−2 reported in the 3.2 μm thick, 20 mol% Zr added

GdYBCO film [35]. To put these values on a map, the Je
versus field values of these two samples are plotted against

other commercial superconductor technologies available for

4.2 K operation, i.e., on a plot of Je versus B of various 4.2 K

superconductors, as made and maintained by Lee [44]. The

Figure 3. Engineering current density of UH REBCO samples versus magnetic fields along the c-axis at 4.2 K, compared to other
superconductor technologies. Reproduced with permission from [44].
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results are shown in figure 3. At 15 T, the Je of the thick film

REBCO is over five times higher than the best reported Je
value of Nb3Sn which is the primary superconductor used

now in high-field applications. These results clearly demon-

strate the potential of REBCO coated conductors for use in

4.2 K in-field applications.

Figure 4 shows a transmission electron microscopy

(TEM) cross-section, as well as plane-view micrographs of

the 4.3 μm thick sample, revealing both continuous BZO

nanorods and small RE2O3 precipitates attached to the

nanorods. The average BZO nanorod diameter determined

from both cross-section and plane-view micrographs is

3.7 nm. A high density of vertically-aligned BZO nanorods

along the c-axis and the presence of RE2O3 precipitates along

the ab plane have been observed as homogeneously dis-

tributed over the whole film cross-section, with the selected

micrographs being representative of the entire areas examined

by TEM. We attribute such a uniform and continuous growth

of BZO nanorods along the c-axis, without any interruption

from RE2O3 precipitates over the entire 4.3 μm of thickness,

to the high level of temperature and flow control in

A-MOCVD [40–42]. This finding is different from that of the

3.2 μm thick 20 mol% Zr added GdYBCO film made in three

passes by conventional MOCVD by our group, in which the

length of the BZO nanorod was found to be reduced with

increasing REBCO layer thickness and a low density of thick

and short BZO nanorods was observed at the 100–200 nm

interface between two passes [35].

Figure 5 shows a 2D x-ray diffraction (XRD) pattern of

the 4.3 μm thick REBCO film. The sample is tilted by ∼23°

in order to capture the REBCO 103 and BZO 101 peaks, and

the spacing between peaks is near-linear in terms of reciprocal

space vectors qa and qc. The sample reveals very sharp c-axis

oriented REBCO peaks (00L and 10L series) indicating a

very good out-of-plane texture. The pattern also reveals BZO

101 and RE2O3 004 and 222 peaks, indicating the presence of

BZO nanorods and RE2O3 precipitates respectively in the

REBCO matrix. The streaking of the BZO 101 peak is not in

a constant 2θ direction but rather has a component perpend-

icular to the 00L direction, indicating small diameter nanor-

ods [41]. Film thickness can also be estimated from the

intensity of Hastelloy substrate rings, as was discussed in

[35, 41, 42], which is almost negligible here, indicating a very

thick REBCO film.

Summary

An A-MOCVD reactor has been used to deposit over 4 μm

thick, 15 mol% Zr doped (Gd,Y)BaCuO tapes in a single

pass, with fine, continuous BaZrO3 nanocolumns and sharp

texture. Critical currents of these samples have been mea-

sured at low temperature and high fields at LBNL and

NHMFL. Remarkably high critical currents of 2247 A/4 mm

and 2119 A/12 mm have been obtained at 4.2 K, in a

magnetic field of 14 T ( B c), which are approximately a

factor of two higher than the best value reported in the lit-

erature. High critical current density of over 12 MA cm−2

and pinning force of 1.7 T N m−3 have been achieved. The

engineering current density (Je) value (considering a typical

40 μm thick copper stabilizer) of over 5 kA mm−2 has been

achieved at 4.2 K, 14 T ( B c) which is more than five

times higher than Nb3Sn and nearly four times higher

than the highest reported value of all superconductors other

than REBCO at this field and temperature. Such a

remarkable performance reveals potential for the HTS

technology to be utilized in future magnets for various

applications requiring 4.2 K operating temperature and very

high fields.

Figure 4. Cross-section (top) and plane-view (bottom) TEM
microstructure of the 4.3 μm thick REBCO tape, showing aligned
BaZrO3 nanocolumns growing along the c-axis and interspersed
with small RE2O3 precipitates. The average BaZrO3 diameter of both
micrographs is 3.7 nm.
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