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Abstract 
This paper presents a few comprehensive experimental studies for automated Structural Damage Detection (SDD) in extreme events 

using deep learning methods for processing 2D images. In the first study, a 152-layer Residual network (ResNet) is utilized to classify 

multiple classes in eight SDD tasks, which include identification of scene levels, damage levels, material types, etc. The proposed 

ResNet achieved high accuracy for each task while the positions of the damage are not identifiable. In the second study, the existing 

ResNet and a segmentation network (U-Net) are combined into a new pipeline, cascaded networks, for categorizing and locating 

structural damage. The results show that the accuracy of damage detection is significantly improved compared to only using a 

segmentation network. In the third and fourth studies, end-to-end networks are developed and tested as a new solution to directly 

detect cracks and spalling in the image collections of recent large earthquakes. One of the proposed networks can achieve an accuracy 

above 67.6% for all tested images at various scales and resolutions, and shows its robustness for these human-free detection tasks. 

As a preliminary field study, we applied the proposed method to detect damage in a concrete structure that was tested to study its 

progressive collapse performance. The experiments indicate that these solutions for automatic detection of structural damage using 

deep learning methods are feasible and promising. The training datasets and codes will be made available for the public upon the 

publication of this paper. 
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Introduction 

Artificial Intelligence (AI) began as an academic research 

subject in 1950s, and currently the commercialization and 

potential applications of AI are being pushed for almost all 

industries. Machine learning, a sub-subject of AI technology, 

is a vital discipline developing various algorithms for learning 

from data, identifying patterns and making decisions without 

human intervention. As a subcategory of machine learning, 

deep learning provides state of the art results to problems 

that are initially considered to be intuitively solved by humans. 

Deep learning models learn from experiences and evolve 

through training and testing, and they are particularly 

effective at learning complicated concepts by themselves1. 

Thus, deep learning can capture and represent knowledge 

basis and reason like a real person2. 

Computer vision is a science to process the information and 

gain high-level understanding from digital images and videos. 

Once developed and perfected, it can serve as a human vision 

system for AI agents. The recent breakthrough achieved for 

the large-scale image classification on ImageNet3 using 

Convolutional Neural Network (CNN) significantly accelerated 

the development of vision-based technologies, and deep 

learning became an essential tool for computer vision. Two 

common techniques, classification and segmentation, are 

used in practice for interpreting the scenes represented in the 

images or videos acquired from cameras. Categories of 

objects are predicted through image classification but, in 

image segmentation, the pixels are labeled by classes of the 

objects (i.e., semantic segmentation) or the objects are 

marked by masks (i.e., instance segmentation)4. 

Since structural damage captured by the cameras can be good, 

well-focused or not, the quality of the damage viewed from 

field investigations in extreme events varies and would not be 

at the same level. In addition to the variation of structural 

damage on different materials, decoration layers or covers on 

the structural components can also affect the appearance of 

the damage. Deep learning methods can effectively handle 

these types of uncertainties through data collection and 

training, and can make it viable for AI applications on SDD and 

Structural Health monitoring (SHM) with vision-based 

technologies5. For example, wall-climbing robots and 

Unmanned Aerial Vehicles (UAVs) had been used in real 

projects with deep learning networks for collecting and 

detecting the cracks on a tunnel6. Deep learning is the 

technique with great potential for measuring and assessing 

the damage observed in laboratory experiments, field 

investigations, and annual inspections of existing 

infrastructures7. 
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Figure 1. Three scene levels (scales) in our models 

The observability and detectability of structural damage are 

affected to great extent by their scales in images. For 

structural damage captured at a varying scale, e.g., when 

cameras are closer to or farther away from them, the detected 

shapes and number of the damaged regions may look quite 

different. The appearance of background structural elements 

will also change in images8. Figure 1 shows the examples of 

cracking and spalling damage at three scales or three scene 

levels: pixel, object and structural levels. At the pixel level, 

cracks and spalling are clearly captured but structural 

components including columns, beams, walls and slabs are 

partially captured and cannot be identified accurately. These 

components can be recognized in object-level images. At the 

structural level, the entire structures, e.g., buildings or bridges, 

can be observed along with the damage. The cracks and 

spalling, having various shapes and depths depending on the 

surroundings, are less visible or even invisible at larger scale. 

Therefore, it is necessary to include representative images at 

different scales before annotations. This is the best way to 

counteract the imbalance of training samples in practice9. 

Aiming at practical solutions for AI robots in extreme events 

(e.g., earthquakes) when human experts may not be readily 

available in the affected regions or it may be too dangerous 

for engineers to closely inspect the damaged infrastructures, 

this research attempts to reduce the reliance on human 

experts by developing and improving the deep learning 

procedures to automatically detect and classify the 

infrastructure damage. 

Four consecutive SDD studies are conducted with deep 

learning methods in our research. These studies include: 1) 

classification of eight classes of damage by a ResNet, 2) a 

pipeline with two-step networks called cascaded networks to 

classify and locate the damage such as cracks and spalling, and 

3) a solution for detecting the damage (e.g., cracks or spalling 

and cracks together) directly with the state-of-the-art deep 

learning methods. The flow diagrams that show how these 

networks work for predicting structural damage are 

illustrated in Figures 3, 4 and 9. Based on our knowledge, very 

limited research have been conducted to address the 

difference between classification and detection of structural 

damage with deep neural networks9, and no solution is 

provided to unify them. Also, few image datasets collected 

from large earthquake events have been tested to 

automatically detect the damage and address the feasibility of 

applications with the deep learning methods in these events. 

In addition, we applied the proposed end-to-end deep 

learning method to automatically detect damage that 

occurred in the field during the gradual collapse of a building. 

Our objective is to find a generalized solution for SDD on 

classifying multiple types and levels of damage on reinforced 

concrete and masonry structures and localizing the damage at 

various scales using the images collected from field 

investigations or laboratory experiments. Our studies also aim 

to perform real-time SDD after finalizing all the parameters 

and achieving stable performance with AI agents. Thus, a 

structural engineer can utilize UAVs or ground vehicles to 

quickly and safely access the structures following an extreme 

event or during a periodic inspection. This will reduce the 

workload of structural engineers and improve the efficiency 

of the damage assessment during field inspections. The data 

obtained and used in our research and the codes will be made 

available to public for reproducibility, general uses, and 

continued work. 

Related work 

Our studies benefit from many prior works which can be 

categorized into classification and segmentation techniques 

with various deep learning methods. We also discuss the 

datasets that were used for training and testing because they 

are critical for successful application of these methods. 

Datasets and damage classification with deep 

learning in SDD and SHM 

There are several important classification datasets for SDD 

and SHM in the research community. Yeum et al.10 collected a 

large image dataset for post-event building reconnaissance 

and used AlexNet to classify and identify the post-event 

structural damages in buildings using large scale images, such 

as collapse classification and identification of building 

components. A Regional Convolutional Neural Networks (R-

CNN) was employed to localize the spalling damage in some 

images. Furthermore, they also provided datasets about 

Global Positioning System (GPS) devices, structural drawings, 

timestamp, and measurements to automatically classify the 

context information when these images were documented 

during post-event field investigations11. Meanwhile, Gao and 

Mosalam8 set up PEER Hub ImageNet (Phi or φ-Net) Challenge 

to encourage researchers to test their methods on a collection 

of building structural failures. There are 36,413 pairs of 

images and labels at various scales in this benchmark dataset. 

φ-Net dataset contains eight classification tasks: 1) pixel, 

object, and structural scene levels; 2) damaged or undamaged 

state of the structures; 3) spalling or non-spalling; 4) material 

types such as steel, concrete and others; 5) various types of 

collapse of the structures; 6) component types like beams, 

columns, walls and others; 7) damage levels or severity; and 

8) damage types for cracking, including bending-related 

damage, shear-related damage and combined damage, or no 

damage (non-cracking). To overcome the insufficiency of 

training data, Visual Geometry Group (VGG) network and 
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transfer learning were employed to perform classification in 

their study12. In our studies, these images for Task 1, 3 and 8 

(see Table 1) are used for training and testing the proposed 

methods. 

Damage detection with deep learning in SDD and 

SHM 

Classification networks don’t provide the information about 

where the damage is in an image. Therefore, structural 

engineering experts need to locate the positions and identify 

the type of damage by themselves while it is impossible for 

non-professionals to do that. For example, the bottom right 

image in Figure 1 shows there are spalling and cracking 

damage on the columns in the first and second stories of the 

building. The classification models would associate this image 

to the corresponding classes of the damage but cannot give 

the locations of the damage. Therefore, a segmentation 

network, which gives the class of each object and locates it 

with bounding box or mark it with masks, is needed for 

localizing such damage in SDD missions. 

Some research focused on large scale images or multiclass 

damage detection. Hoskere et al. conducted an experiment 

with 23-layer ResNet and nine-layer VGG networks to classify 

and segment seven classes of structural damage, including 

cracks, spalling, exposed reinforcement, corrosion, fatigue 

cracks, asphalt cracks, and no damage13. Ali et al. applied 

Faster R-CNN on defects detection in historical masonry 

buildings with high-resolution images14. Kong and Li described 

an application that detects and tracks the propagation of 

cracks in a steel girder with a video stream15. Atha et al. 

explained the different effects when they utilized two 

algorithms of CNNs on detecting metallic corrosion16. Mondal 

et al. used Faster R-CNN to automatically detect four common 

types of structural damage, including surface cracks, facade 

and concrete spalling, and severe damage with exposed 

rebars and buckled rebars. They used bounding boxes to 

identify the positions and boundaries of these damage17. 

Pixel-level damage detection is a popular task among 

researchers. Zhang et al. proposed an improved CNN for 

autonomous detection of pavement cracks at the pixel level18. 

Liu et al. demonstrated the application with U-Net to segment 

the crack on concrete structures19, and their experiment 

shows that the proposed network outperforms the CNN which 

was used by Cha et al.20. Dung and Anh also used Fully 

Convolutional Network for localizing the cracks on the 

concrete surface21, Liu et al. implemented DeepCrack, which 

is made of an extended Fully Convolutional Networks (FCN) 

and a Deeply-Supervised Nets (DSN), to pin out pixel-wise 

cracks22. 

Recent research became more applicable. With Holistically-

Nested Edge Detection (HED) network and U-Net, Yang et al. 

detected cracks and spalling on concrete structures and then 

reconstructed 3D models through Simultaneous Localization 

and Mapping (SLAM) using drone images6. Cha et al. utilized 

Fast R-CNN for locating five types of structural damages, 

including concrete cracking, steel corrosion with two levels 

(medium and high), bolt corrosion, and steel delamination. 

There are a total of 2,366 labeled images with the size of 

500×375 for training23. Kim and Cho automatically localized 

the cracks on a concrete wall with Mask R-CNN and employed 

an additional image processing procedure on each bounding 

box to quantitatively measure the width of these cracks. The 

training data included 376 images24. Based on 1,250 images 

with sizes varying from 344 × 296 to 1,024 × 796, Kalfarisi et 

al. employed structured random forest edge detection in the 

region of bounding boxes of a Faster R-CNN to localize the 

cracks and compare it with Mask R-CNN. Photogrammetry 

software was used to reconstruct 3D model, thus, the cracks 

can be visualized and quantified further25. 

The aforementioned research help us to collect data and 

create training datasets when we began to our studies, to 

understand how to use deep learning methods correctly and 

effectively, and to find right solutions for the problems we are 

facing on in practice. 

Data preparation and methodologies 

Data should be prepared for training and testing when the 

applications on SDD with deep learning methods have 

different objectives and expectations. Each method has its 

own requirement on the size and composition of the visual 

data. In general, there are more available datasets for a 

classification network than for a segmentation network on 

detecting structural damage, since the latter needs more 

efforts for labeling the image data26. 

Tools for data preparation 

Since the SDD models are trained in a supervised way (i.e., 

damage is clearly defined in training datasets), data collection 

and preparation are vital to train and validate the deep 

learning models. In current research, these data must be 

labelled manually by structural engineers or by people with 

civil engineering background. Many researchers10,23,12,9 have 

shown how to perform data preparation, such as associating 

the classes of damage in the images, annotating the location 

of the damage with a bounding box, or defining the 

boundaries and shape of the damage for structural damage 

classification or detection. 

In our studies, COCO (Common Objects in Context) 

Annotator27 is chosen as a tool to label the damage (i.e., cracks 

and spalling) on infrastructure, such as buildings, bridges and 

other structures except for steel structures, and even on some 

non-structural components for training and validation. The 

boundaries of damage on an image are defined with polygons 

to form a closed region to represent them, so that the error of 

the damage shapes will be no greater than one pixel when 

labeled. Then, these regions are converted to the labels with 

binary images and saved as a JSON (JavaScript Object Notation) 

file for training. Figure 2 shows some examples of original 

images and labels of cracks and spalling in our training 

datasets. Noted that each type of damage belongs to a class 

and is independent of each other during labeling, although 

they look overlaid in some annotated images when they 

appear at the same location. 
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Structural damage classification with a ResNet 

ResNet provides higher accuracy than networks like VGG and 

GoogleNet because of its unique framework. The residuals in 

each layer of this neural network can be set to zero and the 

whole hierarchical feature combinations can be optimized 

 

      original             label original label 

Figure 2. Some examples of training data (Cracks and spalling are in 

yellow and green while background is in purple for each labeled image). 

with skipping connections. Therefore, the network can be 

designed to have large number of layers for extracting high-

level features28. A 152-layer ResNet with transfer learning and 

fine-tuning technique were used in our damage classification 

network for PEER Hub ImageNet (PHI) Challenge12 where our 

approach secured the third place during the competition29 

(see results at https://apps.peer.berkeley.edu/phicha-

llenge/winner/). The flowchart of our ResNet is shown in 

Figure 3. 

Cascaded networks for structural damage 

classification and localization 

After using the ResNet to categorize various structural 

damage, material types and even the severity of damage in 

these images, we still need to delineate the damage location 

during SDD. Without delineation the structural engineers 

would still have to mark the damage locations manually. 

Instead of that structural engineering experts must be 

involved and manually identify the damage, a new pipeline 

similar to a process of diagnosing an illness using a 

combination of doctors’ personal experiences, medical 

equipment, and available patient data is provided9. In this 

study, the classification network as a classifier can tell 

whether there are structural defects in the selected images, 

and another segmentation network (e.g., U-Net) serves as a 

detector to locate them. These two-step networks are named 

as cascaded networks. Its flowchart for detection is shown in 

Figure 4. 

In cascaded networks, the existing classification networks 

used by researchers on SDD can be kept without any change, 

but a segmentation network is added after structural damage 

being categorized. From among other architectures, U-Net30,31 

is chosen as the detector to locate the damage in our study. 

The U-Net has a symmetrical structure in down-sampling and 

up-sampling process, and each layer of down-sampling is 

connected to the corresponding layer of up-sampling. Thus, 

low-level features in the down-sampling can be directly 

absorbed to high-level features during the up-sampling. In our 

practice, the cascaded networks are utilized as a method to 

find the positions of cracks and spalling in images. 

Structural damage detection of cracks and spalling 

with Mask R-CNNs as an end-to-end method 

The latest Mask R-CNNs are tested and updated for detecting 

the damage directly because cascaded networks are not an 

end-to-end method but a two-step network, which may be 

time-consuming and complicated for a structural engineer. In 

addition, high-resolution images have to be resized to low 

definition in the cascaded pipeline (more details are discussed 

in the implementation section), which affects the visibility of 

structural damage in images. Mask R-CNN is a benchmark of 

regional convolutional neural networks for instance 

segmentation. It is based on Faster R-CNN32, which uses 

Regional Proposal Network (RPN) to automatically produce 

the proposals for Region of Interest (ROI) on feature maps 

convoluted from the original image and achieves higher speed 

and accuracy at low computational cost. This is also the first 

stage for the Mask R-CNN. In the second stage, Mask R-CNN 

continues to predict the damage like spalling on an image by 

classifying it and regressing it with a bounding box. Then a 

mask of the damage is created within its boundaries and 

shapes in the third stage for each ROI when ROI Align is 

utilized (see Figure 5). Furthermore, ResNet and a Feature 

Pyramid Network (FPN) are incorporated to obtain high 

quality feature maps33. 

Three variants of Mask R-CNNs are explored and developed 

in our studies. Meanwhile, with the awareness of the scale 

problem on SDD, new datasets, which include all three 

defined scales, are prepared and newly-developed skills in 

deep learning methods are also employed for improving its 

performance. 

1) Mask R-CNN with Path Aggregation Network (PANet) and 

spatial attention mechanism: PANet is different from the 

original Mask R-CNN in its first and second stages34. New 

connections between low feature maps and high feature 

maps in a FPN has been introduced (see Figure 6a), which 

increase the efficiency of feature extraction. In addition, a 

technique called adaptive feature pooling is used to fuse all 

levels of features in a proposed ROI at stage 2 in Figure 6c. The 

other procedures and stages are the same as a traditional 

Mask R-CNN. To improve the level of feature extraction, 

spatial attention mechanism35 is also introduced into this 

framework. We will refer this modified version as APANet 

Mask R-CNN in this paper. 

2) Mask R-CNN with High-resolution Network (HRNet): 

HRNet is a state-of-the-art backbone developed for feature 

extraction and applies multi-scale fusion across the 

convolutional blocks36. With a traditional FPN, the features of 

an instance are embedded from the image via down-sampling 

to obtain different levels of features, or in other words, 

rescale the image from original size to a smaller size using 
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convolutional operations at each level to obtain higher-level 

features (see Figure 6a). But HRNet has a parallel structure as 

shown in Figure 7. After each convolutional operation block, 

down-sampling process is utilized for high-level features as a 

FPN does. However, a new branch is also created to keep the 

size of feature maps at this level. By introducing low-level 

features with a strided convolutional operation and 

combining high-level features with up-sampling operations, 

these new branches continue to convolve until last step of 

final stage. Since these inter-connections between branches 

are used, more useful features can be extracted through this  

  

  

 

 
 
Figure 4. Flowchart for cascaded networks for testing. 

 

Figure 5. Framework for Mask R-CNN in a SDD task (a mask is in purple 

for the spalling damage on the column, and a bounding box is 

represented with dash green line). 

new network for high-resolution images. After substituting 

the ResNet of the original Mask R-CNN with the HRNet, it 

forms a new network structure which we refer to as HRNet 

Mask R-CNN. 

3) Cascade Mask R-CNN: Mask R-CNN has two prediction 

branches after the first stage (i.e., it is represented by 

convolution blocks in Figure 8a), in which the feature maps are 

extracted from the input image and potential ROIs are 

proposed by a FPN. These two branches can generate the class 

C, bounding box B, and mask S for each instance on the image. 

They are also called detection and segmentation branches. 

Cascade Mask R-CNN introduces another two prediction 

branches with different strategies to detect and segment 

instances (see Figure 8b to 8d). Since more pooling operations 

on ROI proposals on the feature maps, it can overcome the 

overfitting problem existing in original Mask R-CNN37. 

These Mask R-CNNs are used to predict the class of the 

damage, limit the damage range with bounding boxes, and 

mark the shapes and boundaries of the damage with masks 

on a new image as the results of an output. Figure 9 shows the  

 

Figure 6. Framework for PANet in SDD for detecting cracks and spalling: 

(a) FPN backbone; (b) Bottom-up path augmentation; (c) Adaptive 

feature pooling; (d) Box branch; (e) Fully-connected fusion. Pi and Ni in 

the figures denote the ith of the original pyramid layers and new 

feature layers. 

flowchart for this end-to-end methodology for testing on new 

images. All the training parameters and techniques of these 

deep learning methods are illustrated in the Implementation 

section. 

Implementation details and results 

In this section, the implementation details of the 

aforementioned techniques for automatic classification and 

detection of structural damage are presented. 

Automated classification for eight tasks of damage 

detection with the ResNet 

ResNet outperformed other networks in many classification 

tasks, so we chose a 152-layer ResNet to identify material or 

damage types, structural components, spalling or non-spalling, 

and even the severity of structural collapse and damage in the  

 

Figure 3. Flowchart of our 152-layer ResNet for structural damage classification. 
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competition12. Image size of the φ-Net dataset is uniform as 

224×224 but at various scales. For training, hyper-parameters 

are set as follows: learning rate is 0.001 and momentum is 0.9; 

the loss function is cross-entropy; 40 min-batches and 100 

epochs are defined to maximize GPU usage. A NVIDIA GeForce  

GTX 2080 Super GPU is used for training and testing. 

Furthermore, the classification result of each task is evaluated 

by using the confusion matrix, where the diagonal elements 

denote true predictions. So the metric called accuracy 

represents the percentage of the correct performance on 

each task and is defined as: 

(Number of True Predictions) 

 Accuracy =  (1) 

N 

 

Figure 9. Flowchart of Mask R-CNNs used for structural damage 

detection in the testing stage. 

where N = total number of samples. 

Testing results are shown in Table 1. The ResNet model can 

identify scene levels (scales) and material types with a very 

high accuracy while the accuracy of the severity of collapse 

and damage and the types of damage is not very high but 

acceptable considering difficulties associated with such 

classification tasks. 

Automated damage detection with cascaded 

networks 

Cascaded networks were used to identify and localize cracks 

in the first session, and then to detect the spalling damage in 

the second session as new datasets were introduced in this 

study. In the pipeline, the ResNet has the same parameters 

and setup as our prior study29, while learning rate and loss 

function in the U-Net are set as 0.0001 and binary cross-

entropy. We used the same GPU as before. In detection test 

with the U-Net, the accuracy is defined as the model can at 

least mark one piece of crack or spalling. Each pair of original 

image and the prediction is checked and thrown into 

corresponding folders of correct and incorrect predictions. 

thus, the ratio of the correct predictions over the total 

number of testing images is the accuracy of the U-Net. 

    1) Cascaded networks for crack detection9: On one hand, 

1,000 images at pixel level and 853 images at object and 

structural levels are labeled and used for training the U-Net 

with COCO Annotator. All these images were resized to 

256×256 in order to be compatible to the size of images in φ-

Net dataset12. The ResNet was trained with Task 8 of φ-Net 

dataset (see Table 1). On the other hand, some images and 

another publicly available dataset called Concrete Surface 

Crack (CSC)38 were tested. The latter has an image size of 

227×227. Noted that all the images have no need to be 

resized when the U-Net was used but they were resized to 

224×224 only for the ResNet in this study. 

There are a total of 40,000 images in the CSC dataset, half 

of which are cracking and non-cracking at pixel level. We 

tested the proposed cascaded networks with this dataset. All 

the images are identified as pixel-level ones by the ResNet,  

 

Figure 7. Framework for HRNet in SDD. 

Figure 8. Framework for the original Mask R-CNN (a) and three Cascade Mask R-CNNs (b)-(d). ”Image” is the input, “Convolution” is the 

backbone for convolutional operation on the input image, “Pool” is region-wise feature extraction, “H” is the RPN head, “B” is bounding box, 

“C” is classification, and “S” denotes a segmentation branch. 
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and the average accuracy for cracking and non-cracking is 

91.2%. For these images categorized as cracking ones, the U-

Net precisely marks the cracks and does not have any failure  

cases in the remained 19,000 images after 1,000 images 

being labeled and trained. 

The implementation of cascaded networks on φ-Net 

dataset is a dilation study. It includes these procedures in the 

test: First, a new testing data were selected from training and 

validation images in Task 1 of φ-Net dataset (see Table 1). 

Second, the U-Net was used to mark the cracks directly and its 

accuracy was calculated. Third, the cascaded networks were 

applied on these testing data when the ResNet and U-Net was 

applied to classify and locate cracks in these images. Finally, 

the accuracy of the cascaded networks is computed. The 

result of this experiment is shown in Table 2. It shows that the 

accuracy of the cascade networks is improved dramatically 

because the ResNet as the first gate to filter out some images 

without cracks on structural elements and the U-Net can focus 

on less-noised images to mark the cracks. 

    2) Cascaded networks for spalling detection: For this test, 

the RestNet was trained in Task 3 of φ-Net dataset (see Table 

1), and 1,178 images were prepared for training the U-Net to 

mark the spalling. Training data for the latter are from the 

collection of Yang et al.6 and our own work39. There are two 

datasets for testing. The first one is a spalling dataset by Yeum 

et al.10, in which there are 1,000 images with a uniform size of 

640×480. All these images have the spalling damage shown 

on the structural components. When the U-Net was used, it 

acquired an accuracy of 99.0% on detecting the spalling. But 

the accuracy of the ResNet is 85.6% for classifying these 

images after they were resized to 224×224. On the other hand, 

a total of 1,692 images labeled as the spalling ones in Task 3 

of φ-Net dataset were directly tested by the U-Net and its 

accuracy reached to 97.6%. The ResNet for φ-Net spalling 

dataset has an accuracy of 79.6% as shown in Table 1. We 

didn’t use the U-Net to locate the spalling damage right after 

the ResNet because the former has such a high accuracy on 

these two datasets. The accuracy of cascaded networks for 

this test is determined rather by the ResNet than by the U-Net. 

Some examples for good predictions from the cascaded 

networks are shown in Figure 10. It can be seen that the 

proposed networks typically provide precise locations of 

these cracks and spalling, so there is less reliance on human 

experts to manually find them. It should be pointed out that it 

takes more time for cascaded networks to classify and locate 

the damage than the ResNet or the U-net is used alone. 

An end-to-end method to automatically detect cracks 

and spalling by using Mask R-CNNs 

Since two networks are involved in the cascaded networks 

and the training image data, especially those for the ResNet, 

have a low resolution, we realized that there is a great need 

to simplify the framework and make it applicable to images at 

different definitions. On one hand, as the high-resolution 

images are resized to smaller ones, the visibility of tiny 

damage like cracks may be reduced or even be invisible. The 

useful information about the damage can be saved if the size 

of these images has not been changed, thus, the networks can 

extract more precise features from original images. On the 

other hand, the U-Net is not suitable for segmenting multiple 

types of damage simultaneously. Therefore, our next goal is 

to find and assess end-to-end neural networks to localize the 

damage like cracks and spalling when they are captured at 

different scales and varied resolutions. 

The accuracy of these predictions is redefined as these 

models correctly detected one or two kinds of structural 

damage in Eq. (1). To be more specific, it is a correct prediction 

when at least one piece of cracks or spalling has been marked 

by a bounding box or a mask when the damage is visibly 

captured on each testing image. Otherwise, it is also correct 

when no prediction is given for those images without any 

cracks or spalling on the structure. Each prediction from the 

models and the original images are compared before being 

moved into the corresponding folders of correct or incorrect 

detection. In addition, parameters are set for the training of 

Mask R-CNNs as follows: learning rate, momentum and decay 

rate of weights are defined as 0.002, 0.9 and 0.0001, 

respectively; the loss function for the mask is cross-entropy 

and for bounding boxes is smooth L1; the number of epochs 

is 100 with the same GPU used in our previous studies. Our 

source codes are originated from MMDetection40 while some 

modifications and updates were made for different purposes 

during the training and testing. 

    1) Crack detection with APANet Mask R-CNN and HRNet 

Mask R-CNN26: This pipeline is an end-to-end solution for 

damage detection, in which a total of 2,021 images with the 

size from 168×300 to 4,600×3,070 and with three scales were 

labeled. The annotated data format is similar to the examples 

shown in Figure 2 while the original images came from our 

own collection and internet search. The performance of 

APANet Mask R-CNN on φ-Net dataset is shown in Table 2. 

Compared to the cascaded networks, this Mask R-CNN has a 

dramatic improvement for these images at larger scale other 

Table 1. Classification results on testing data of φ-Net dataset with the 152-layer ResNet. 

 Detection tasks Number of Image statistics Testing accuracy of 

 classes Training Validation Testing the ResNet 

1 Scene classification 3 13,939 3,485 4,356 93.8% 

2 Damage check 2 4,730 1,183 1,479 81.9% 
3 Spalling condition 2 2,635 659 824 79.6% 
4 Material type 2 3,470 867 1,085 99.5% 
5 Collapse check 3 2,105 527 658 63.1% 
6 Component type 4 2,104 526 658 71.7% 
7 Damage level 4 2,105 527 658 67.8% 
8 Damage type 4 2,105 527 658 67.5% 
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than those at pixel level. In addition, APANet and HRNet Mask 

R-CNNs were directly applied onto 2017 Pohang earthquake 

images dataset (PEI2017)41 and 2017 Mexico City earthquake 

images dataset (MCEI2017)42, which include 4,109 and 4,136 

high-resolution images collected by structural experts after 

these two Richter magnitude 5.2 and 7.1 earthquakes 

happened. Table 3 shows the accuracy of two models, but 

both Mask R-CNNs have a close accuracy on two testing 

datasets. This test indicates that it is possible for end-to-end 

deep learning methods like the latest Mask R-CNNs to 

precisely detect cracks at various scale in large earthquake 

events. 

    2) Spalling and crack detection with new variants of Mask 

R-CNN as an end-to-end method39: Since APNet and HRNet 

Mask R-CNNs worked quite well for crack detection, we added 

the spalling damage into the detection task to check whether 

this solution is more robust and applicable in field 

investigation. Image collection from Yang’s spalling dataset6 

and our in-house generated dataset were relabeled, resulting 

in a total of 2,229 curated images for training and validation. 

Table 3. Accuracy of APANet and HRNet Mask R-CNN for crack 

detection on two public datasets. 

Methods PEI2017 MCEI2017 

APANet Mask R-CNN 74.1% 70.6% 

HRNet Mask R-CNN 74.0% 73.0% 

Table 4. Accuracy of three Mask R-CNN for cracks and spalling detection 

on three public datasets. 

Methods φ-Net CrSp PEI2017 MCEI2017 

Cascade Mask R-CNN 78.9% 66.0% 69.4% 

APANet Mask R-CNN 81.1% 67.6% 74.7% 

HRNet Mask R-CNN 58.6% 68.1% 69.1% 

Also, size of these images varies from 147×288 to 4600×3070. 

The examples are shown in Figure 2. In addition, a new variant 

of Mask R-CNN was introduced for comparison resulting in 

three different trained Mask R-CNNs that are tested. Data 

augmentation43 was utilized for improving performance. 

More diverse testing data are included for the purpose of 

detecting two major types of damage in extreme events. On 

one hand, all of the spalling, non-spalling, cracking, and 

noncracking images of training and validation data in Task 3 

and 8 of φ-Net dataset were collected and combined into a 

new testing dataset, which is called φ-Net CrSp dataset in 

Table 4. It consists of 5,853 images in total and is a low-

resolution but comprehensive dataset. On the other hand, 

high-resolution images from PEI2017 dataset and MCEI2017 

datasets were still used for testing these three networks. The 

performance of these three networks on these datasets is 

shown in Table 4. APANet Mask R-CNN has a better 

performance than the other two on detecting cracks and 

spalling no matter what the images are at low or high 

resolution. Overall, these Mask R-CNNs can achieve an 

accuracy above 66.0% for detecting two major structural 

damage with high-definition images, although the 

performance of APANet and HRNet Mask CNNs declines a 

little for spalling and crack detection compared to its 

performance on crack detection for two same datasets. 

Figure 11 illustrates the predictions made from these Mask 

R-CNNs on the testing datasets. Cracks and spalling at various 

scales and different resolutions can be identified and located 

automatically that will reduce the need for human interaction 

on locating damage following an extreme event. It should be 

noted that the limitation of insufficient training data at hand 

is the major reason for incorrect predictions in our studies. In 

addition, the imbalance among the datasets training for 

damage localization is still hard to overcome. So, the deep 

learning models are easily distracted by these objects which 

appear like cracks and spalling in images such as: 1) wires or 

cables; 2) trees; 3) fences; 4) shadow; 5) edges of windows, 

Table 5. Accuracy of APANet Mask R-CNN for damage detection from 

images collected during progressive collapse testing of a building in the 

field. 

Image Total True Accuracy Average 

source number predictions  accuracy 

Cell phone 220 172 78.8%  

Drones 303 172 56.8% 65.8% 

buildings or other artifact objects39. Through refining a few 

parameters in the testing step, we also observed that the 

exact shapes and numbers of the damage can be precisely 

marked in some images. For some SDD tasks, new damage-

related images need to be introduced into the training 

datasets of this end-to-end method for better performance. 

An application of damage detection in a building 

during a collapse experiment in the field 

Recently we conducted a field experiment to study 

progressive collapse performance of a six-story parking garage 

structure on the main campus of The Ohio State University in 

Columbus, Ohio. The APANet Mask RCNN was used to detect  

Table 2. The accuracy of the U-Net, cascaded networks and APANet Mask R-CNN (APAN Mask) on detecting cracks in φ-Net dataset (TP 

means true predictions). 

Scene levels Number of 

images 
 U-Net Cascaded networks APAN Mask 

TP Accuracy ResNet U-Net Accuracy TP Accuracy 

Pixel level 4,661 2,819 60.5% 2,988 2,810 94.0% 3,948 84.7% 

Object level 5,713 1,490 26.2% 1,479 1,129 59.6% 4,407 77.1% 

Structural level 5,832 500 8.6% 717 356 49.7% 4,774 81.9% 
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1) CSC dataset 

 

2) Pixel-level φ-Net dataset 

 

3) Object-level φ-Net dataset 

 

4) Structural-level φ-Net dataset 

 

    original   predicted overlaid original predicted overlaid 

Figure 10. Some examples of correct prediction for cracks and spalling by cascaded networks (cracks and spalling are in red and white for 

the overlaid and predicted images, respectively, and background of the predicted images is in black). 

 



Bai et al. 10 

Prepared using sagej.cls 

the damage from visual data collected from our cell phones 

(iPhone 12 Pro) and drones (Wingtra and DJI). In this field 

experiment, the building was instrumented and portions of 

concrete slabs and facades at each floor level and reinforced 

concrete columns in the top two stories were removed from 

the building. Our stationary cameras inside and outside the 

building, cell phone cameras and drone cameras well 

documented the entire process of slab, facade and column 

removals and associated damage. Damage progression was 

captured from different angles at different scales during the 

removal of the reinforced concrete building. 

  

1) φ-Net dataset 

 

2) MCEI2017 dataset 

 

3) PEI2017 dataset 

(a)             (b)                  (c)                (d)                     (e)             (f)             (g)              (h) 

Figure 11. Some examples of predictions from three Mask R-CNNs for three public datasets. (a) and (e), (b) and (f), (c) and (g), and (d) and 

(h) denote original image, overlaid image of Cascade, APANet and HRNet Mask R-CNN, respectively. Bounding boxes,  cracks and spalling are in 

green, yellow and purple, respectively. 
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    For damage detection from images collected during this 

field experiment, we used a total of 523 images from cell 

phones and drones as the dataset for testing and evaluating 

the performance of APANet Mask R-CNN, since these images 

capture different damage levels (cracking, spalling, and mostly 

complete  loss  of  concrete  pieces) at  various scales and 

different definitions. These images include three resolutions 

such as 1920×1080, 4030×3020 and 5470× 3640. Table 5 

shows that the APANet Mask R-CNN works well to locate the 

damage from cell phone images, but a weak detection rate is 

observed for drone images. This is mainly because there are 

less images from drones in the training data. Some examples 

of good predictions from these images are shown in Figure 12, 

in which images from the cell phones and drones are in the 

first and second rows, respectively. In this preliminary analysis, 

the APANet Mask R-CNN shows its robustness in locating the 

overall damage in the building. 

 

Conclusions and future work 

Several deep learning pipelines have been proposed as 

solutions for the classification and detection of different 

structural damage at various scales and resolutions in images 

collected after extreme events, such as large earthquakes. 

This research aims to improve the understanding of deep 

learning techniques and to make them practical and suitable 

for applications of automated structural damage detection. 

Our conclusions are as follows: 

1)  Our research shows that a 152-layer ResNet classifier can 

perform well for multi-class damage classification when 

transfer learning and parameter fine-tuning are utilized.  

 2) In addition to classifying damage, cascaded networks are 

used to localize the damage. In our pipeline, we added a U-

Net segmentation network after the existing classification 

networks to achieve this. Our tests show that the cascaded 

networks outperform the U-Net as the only network for 

detecting cracks and spalling.  

3) An approach for damage detection with end-to-end 

networks is developed with the state-of-the-art Mask R-CNNs. 

This approach is tested on public post-event image datasets 

after two new training datasets were prepared for two 

separate studies. With a new feature pyramid network34 and 

spatial attention mechanism35, APANet Mask R-CNN is shown 

to outperform the cascaded networks and the U-Net for crack 

detection in φ-Net dataset12. In the test of spalling and crack 

detection, it also achieves an accuracy above 67.6% for all 

images collected in extreme events at various scales and 

different definitions, and reaches an accuracy of approxi-

mately 81% for an image dataset at low resolution but with 

damage at various scales, which is more challenging for 

structural damage detection. 

4) We applied the APANet Mask R-CNN for damage 

detection from images collected during a field experiment 

investigating progressive collapse of a building to study the 

effectiveness of this method. 

These solutions with deep learning methods can not only 

solve problems of classification and localization of different 

structural damage in extreme events, but also can be used in 

structural health monitoring for in-service structures and 

automatic quantification of the damage in laboratory 

experiments as Woods et al.7 did.  

In the future, more images will be collected and labeled to 

counteract the distractions by other objects in images and to 

overcome the imbalance problem observed in some training 

data. We plan to test more image datasets collected from 

extreme events and quantify the damage with our methods 

and photogrammetry skills and conduct experiments for real-

time SDD during field inspections. 
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