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AbstrAct

There is much support in the research literature and in the standards for the  
integration of engineering into science education, particularly the problem  
solving approach of engineering design. Engineering design is most often  
represented through design-based learning. However, teachers often do not have 
a clear definition of engineering design, appropriate models for teaching students, 
or the knowledge and experience to develop integrative learning activities. The  
purpose of this article is to examine definitions of engineering design and how it 
can be utilized to create a transdisciplinary approach to education to advance all 
students’ general STEM literacy skills and 21st century cognitive competencies. 
Suggestions for educators who incorporate engineering design into their instruction 
will also be presented.
Keywords: Engineering design; STEM; Integration; Teaching and learning

Background

Perusing the Framework for K–12 Science Education (National Research Council [NRC], 
2012) and the Next Generation Science Standards (NGSS; NGSS Lead States, 2013), one quickly 
recognizes the degree of support and rationale for integrating engineering into science education. 
According to Hosni (2013),

The meaningful integration of engineering practices in the NGSS will promote  
critical thinking, provide new levels of relevancy to motivate students to learn  
science content, make engineering and engineering careers more accessible 
to all students, and prepare the next generation to solve global problems facing  
humanity.” (p. 1)

However, engineering alone does not produce such outcomes. Specifically, engineering design, a 
form of problem solving (Visser, 2009), affords students the opportunity to develop 21st century 
cognitive competencies, engage in authentic engineering practices, and integrate science and 
mathematics concepts.

Engineering design is most often represented through design-based learning (DBL), a 
pedagogical approach that Grubbs (2013) states has already been adopted across multiple science, 
technology, engineering, and mathematics (STEM) disciplines (e.g., Crismond & Adams, 2012; 
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Doppelt, Mehalik, Schunn, Silk, & Krysinksi, 2008; Fortus, Dershimer, Krajcik, Marx, &  
Mamlok-Naaman, 2004; Jacobson & Lehrer, 2000; Kolodner et al., 2003). However, as deviations 
of DBL have emerged with varying utilitarian perspectives, teachers often do not have a clear 
definition of engineering design, appropriate models for teaching students, or the knowledge and 
experience to develop integrative learning activities. The purpose of this article is to examine 
definitions of engineering design and how it can be utilized to create a transdisciplinary approach 
to education to advance all students’ general STEM literacy skills and 21st century cognitive 
competencies. Suggestions for educators who incorporate engineering design into their instruction 
will also be presented.

Engineering and Engineering Design

The notion of integrating engineering into science education is not a novel idea. Originating 
in Science for All Americans (American Association for the Advancement of Science [AAAS], 
1990) and Benchmarks for Science Literacy (AAAS, 1993), assimilating both disciplines was 
attributed to the belief that they were inseparable beyond formal education (NRC, 2009). Scientific 
knowledge informs the engineering process, whereas new scientific discoveries are fueled by 
technology created through engineering design. As the Framework for K–12 Science Education 
(NRC, 2012) indicates, engineering has not received the same level of attention in science curricula 
as traditional science disciplines. Therefore, the NGSS (NGSS Lead States, 2013) were developed 
with a commitment to further integrate engineering into science education by treating engineering 
design as tantamount to scientific inquiry. Blending scientific and engineering practices into the 
structure of science education and including engineering design as one of the disciplinary core 
ideas are fundamental themes of the NGSS. However, the infusion of these practices also presents 
pedagogical implications for nonengineering educators. In his critique of the 2013 NGSS draft, 
Buchanan (2013) argued that “the draft presents engineering and science as synonymous terms, 
rather than the interrelated yet distinctly different fields that they are” (p. 1). Although science and 
engineering are “interrelated,” it is important for students to understand that they are “distinctly 
different fields.”

Engineering

Operationally defining engineering and the role it plays in education provides a framework 
for nonengineering educators to move forward. The National Research Council (2009) defines 
engineering as the process of designing the human-made world, which is composed of technological 
developments such as buildings, roadways, airplanes, and televisions. Engineers use the process 
of designing to modify the natural world to meet human needs and desires by creating solutions 
to life’s problems using the scientific knowledge obtained through scientific inquiry (NRC, 
2009). In addition to this definition, two important distinctions also need to be considered: the 
purpose of including engineering in K–12 education and what design actually entails. From a 
progressivist standpoint, the purpose of engineering in K–12 education is to immerse students 
in a setting in which they can all benefit from thinking like engineers. This view is modeled by 
technology and engineering education, a school subject that identifies engineering as a profession 
closely related to its instructional practices and strives to prepare all students to solve modern 
societal problems through engineering design (Asunda & Hill, 2007; ITEEA, 2002; NRC, 2009). 
“Exposure to technological concepts and hands-on, design-related activities in the elementary and 
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secondary grades are the most likely ways to help children acquire kinds of knowledge, ways of 
thinking and acting, and capabilities consistent with technological literacy” (National Research 
Council, 2002, p. 57). This view is explicitly distinguished by the International Technology and 
Engineering Education Association (ITEEA) who distinguishes teaching “little ‘e’” over “Big 
‘E’” engineering. Whereas “Big ‘E’” engineering focuses on the noun, or career oriented purpose, 
“little ‘e’” engineering focuses on the verb, preparing all students to think like engineers and  
developing students to fully participate in a 21st century society. Although the authors of this 
paper also differentiate between the two different outcomes, they also give moderate attention to 
both goals becuase this argument is not a concern of the chemistry, biology, or physics classrooms. 
The authors believe that engineering should be taught in its true sense and not reduced to terms 
that are not true of the engineering profession. Teaching in this manner can benefit all students, 
regardless of their career path, but will still provide them the skills and knowledge to pursue an 
engineering degree. This is similar to the different science disciplines; for example, students in a 
biology classroom are not all going to become biologists.

Although design is considered to be the distinguishing activity of engineers (Dym, Agogino, 
Eris, Frey, & Leifer, 2005) and is the focus of various engineering curricula (Jain & Sobek, 
2003), the term is used loosely. Various terms and definitions have been presented, encompassing 
multiple fields from the fine arts to engineering and from technological design to engineering 
design. Choices about which term to use, such as informed design (Burghardt & Hacker, 2004), or 
what characterizes engineering design (Merrill, Custer, Daugherty, Westrick, & Zeng, 2008) can 
drastically affect subsequent instructional approaches, cognitive demands placed upon students, 
and expected learning outcomes.

Characterizing Engineering Design

The capacity design has to increase student learning and foster 21st century cognitive 
competencies begins with understanding its purpose. Asunda and Hill (2007) define design very 
simply: “Design refers to the process of devising something. It is a creative, iterative and often 
open-ended process of conceiving and developing components, systems, and processes” (p. 
26). The Standards for Technological Literacy (2007), which was originally published in 2000, 
identifies design as a basic element in learning about technology, which requires both conceptual 
and procedural knowledge, and describes it as a core problem-solving process of technological 
development. The Standards for Technological Literacy (2007) makes the claim that learning to 
design provides students with a set of abilities that will serve them throughout their lives. As 
Friesen, Taylor, and Britton (2005) explain, design is a creative, iterative, and open-ended process 
for devising a solution to a problem. Defined in this way, design follows a trial-and-error approach, 
which is often identified as technological design. Although, this approach is suitable at many levels, 
engineering design follows a more explicit and intentional path.

Contrasting technological design, engineering design, is “‘design under constraint’” (Wulf, 
1998, para. 4). Constraints such as time, capital, safety, materials, tools, energy, environmental 
regulations, ergonomics, and manufacturability direct individuals in effectively and efficiently 
solving problems in a practical manner leading to the production of the most viable solution. 
Employing engineering design can broadly be described as the ability to take a problem, specify 
its constraints, establish the corresponding criteria, and adhere to the criteria and constraints to 
enact a design process for creating a practical solution to the problem. The authors of this article 
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view engineering design as a directed form of cognition and more than just mere problem solving, 
which can be unintentional. Engineering design includes the practice of optimizing solutions 
using a variety of tools for modeling and analysis. Because of the inclusion of the elements of 
optimization, modeling, and analysis in the design process, engineering design has now replaced 
the older concept of technological problem solving (NGSS Lead States, 2013). As the NGSS 
(NGSS Lead States, 2013) assert, providing students a foundation in engineering design allows 
them to better engage in and aspire to solve the major societal and environmental challenges that 
they will face in the decades ahead.

Achieving Integration Through Engineering Design

The traditional or “siloed” approach to teaching STEM subjects has been a major contributor to 
the lack of student interest in STEM activities and careers as well as a reason behind the mediocre 
performance of U.S. students on international assessments (NRC, 2009). Recently, engineering 
design has been associated with various efforts to teach STEM subjects in an integrated manner 
(National Academy of Engineering [NAE] & National Research Council [NRC], 2014). Therefore, 
it may be viewed as a critical component or link for developing integrative STEM curricula. 
Integrative STEM education (I-STEM ED) can be defined as the “‘application of technological/
engineering design based pedagogical approaches to intentionally teach content and practices 
of science and mathematics education concurrently with content and practices of technology/
engineering education . . . .’ (Wells & Ernst, 2012). (as adapted from Sanders & Wells program 
documents 2006-10).” (Virginia Polytechnic Institute and State University, 2015, para. 2). 
Engineering design problems not only provide a clear link between science and engineering but 
also allow connections to other school subjects.

The integrative capability of engineering design is evident in the engineering design process, 
which is a problem-solving method that engineers use—along with knowledge from science and 
mathematics—to solve technological challenges (NRC, 2009). The National Research Council 
(2009) believes increasing the visibility of engineering and technology in STEM education is vital 
for the interconnections of teaching and learning. This is supported by research indicating integration 
can improve student scholarship and engagement (Baker, Krause, Yasar, Roberts, & Kurpius, 2005; 
Silk, Schunn, & Cary, 2009). The outcome of integrative teaching by using engineering design is 
transdisciplinary learning through an authentic context that promoting student STEM literacy and 
readiness for STEM-related employment, which contributes to their own economic success as well 
as the nation’s (NAE & NRC, 2014; NRC, 2009).

Promoters of integrative pedagogical approaches emphasize how professions related to the 
different academic subjects have transformed into transdisciplinary ventures. This transformation 
has created a need for integrative STEM practices that focus on real-world contexts and student 
questions related to local or global issues (NAE & NRC, 2014). Transdisciplinary learning has 
been defined as the organization of curriculum and instruction around student questions that are 
related to societal problems; concepts and skills are developed through authentic contexts, and 
students are exposed to STEM-related careers (Drake & Burns, 2004; Maryland Department of 
Education, 2013). This transdisciplinary learning can be accomplished by using engineering design 
problem-based tasks that involve authentic situations. For example, Strimel (2014a) used the issue 
of hydraulic fracturing in the shale gas extraction process as the central context for creating lessons 
across various subjects. In these lessons, he allows students to question the issue of handling the 

https://ir.library.illinoisstate.edu/jste/vol50/iss1/8
DOI: doi.org/10.30707/JSTE50.1Grubbs



Journal of STEM Teacher Education Vol. 50 No. 1, Fall 2015

81

expended and contaminated hydraulic fracturing water used during the shale gas extraction process 
and engages them in identifying or defining a problem to solve related to this issue. This type of 
practice requires knowledge and skills from various disciplines in order to enact the engineering 
design process, devising solutions to a real issue and developing new knowledge through scientific 
inquiry while also being exposed to potential STEM-related careers.

Engineering-Design-Based Learning

Both engineering-design-based learning and problem-based learning  attempt to engage 
students in addressing complex issues in authentic contexts. A problem-based learning environment 
centered on engineering design problems can provide students with the opportunity to learn and 
apply a variety of STEM concepts while also constructing new knowledge. Engineering-design-
based learning should be an experiential strategy in a science educator’s toolbox for encouraging 
active learning through engaging students in solving authentic, ill-structured problems that require 
the integration of theory and practice. This is not to be confused with project-based learning, a 
teacher-structured approach designed for students to learn specific concepts or to demonstrate 
current competencies. Conversely, problem-based learning is a teacher-facilitated strategy 
constructed around authentic, ill-structured problems that allows for a student’s voice in learning 
and generating new knowledge in order to demonstrate their capabilities without the explicit need 
to construct a product or intentionality of integration.

The authors believe that there can be two approaches for engineering design activities. The first 
is to simply engage students in learning through simple, unrealistic, hands-on activities that provide 
a context for new learning opportunities. This type of activity engages students in the lesson by 
completing an “engineering” challenge, yet provides few learning opportunities because it is not 
authentic in nature. Examples of these activities are often found in K–12 engineering curricula 
(i.e., build the tallest tower using marshmallows and spaghetti). These types of engineering 
challenge activities lack authenticity and do not actually provide the skills needed to design and 
create viable solutions to a problem. However, with teacher instruction, these simple activities can 
be used as a context for teaching essential topics. A second approach is to provide students with 
opportunities to use industry quality materials, tools, and resources to solve an authentic problem 
requiring the application of knowledge, leading to the development of new knowledge. The second 
approach can be more conducive to I-STEM ED but is sometimes viewed as challenging to teach 
(Ribeiro, 2011), whereas the first approach is easier to achieve because it can be done with little 
preparation and only uses inexpensive, unrealistic materials. But, with the first approach, how 
much learning occurs? Can a student learn the concepts involved in designing a new structure 
using marshmallows and spaghetti to build the tallest tower? Can teachers really say they are 
teaching engineering if students are not optimizing designs using realistic materials for modeling 
and analysis? It is important that educators provide students with an authentic experience and 
move past activities that solely require materials such as popsicle sticks, index cards, hot glue, and 
tape (Grubbs, 2014). However, using the proper materials, tools, and resources can be challenging 
and expensive. These challenges are why the authors recommend working collaboratively with a 
school district’s engineering and technology teacher to establish a true authentic and integrative 
learning experience for students.
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Replicating Engineering Design Problems

The Framework for K–12 Science Education (NRC, 2012) states all K–12 students should be 
provided with opportunities to solve engineering design problems carry out scientific investigations. 
Signifying the importance of understanding the specifics of an engineering design problem, 
Jonassen (2011) believes that problems vary in three aspects: context, complexity, and structure. 
Engineering design problems are considered to naturally be the most complex and least structured 
problems. The key element here can be the degree of structure within a problem statement, varying 
from well-structured to ill-structured. An example of a well-structured problem may be found in 
a physics textbook in the form of a word problem. Such a problem requires students to enact a set 
of steps or to use a formula to arrive at the correct solution. Conversely, ill-structured problems 
have no standard process for arriving at a solution and have few implications for a correct final 
solution. A study conducted in the engineering workplace by Jonassen, Strobel, and Lee (2006) 
identified engineering problems as “ill-structured and complex because they possess conflicting 
goals, multiple solution methods, non-engineering success standards, non-engineering constraints, 
unanticipated problems, distributed knowledge, collaborative activity systems, the importance of 
experience, and multiple forms of problem representation” (p. 139) and often consist of “aggregates 
of well-structured problems” (p. 142). Problems of this nature can be found in engineering-
design-based classroom activities. A classroom enabling students to attempt to solve ill-structured 
engineering design problems can provide learners with an authentic learning experience while 
promoting development of essential 21st century skills.

Engineering design problems themselves can also vary in the extent to which they are 
structured based on how they are constrained or unconstrained (Hutchison & McKenna, 2008). 
Fully constrained engineering design problems, such as the problem presented in Figure 1, are 
well-structured problems; they provide a defined problem statement and a complete list of solution 
criteria and constraints.

Your environmental engineering team must design and build an inexpensive, easy to use, easy to  
assemble, durable, and low maintenance device to improve the quality of water using low cost, 
readily available materials to quickly remove containments from water.

Figure 1. Well-structured engineering design problem. This problem statement includes a defined problem 
and portrays what successful solutions will consist of.

Conversely, unconstrained, ill-structured engineering design problems provide a situation 
involving a global or local issue requiring students to define their own problem and establish their 
own criteria and constraints based on research, thus, giving them a voice in what they are learning 
and doing. Strimel (2014b) provides an example of an ill-structured engineering-design-based 
lesson centered on the global concern of mitigating the devastating effects of a major earthquake 
on a developing nation. This lesson does not provide students with a defined problem but with 
a situation involving key concepts related to the course subject in which students can identify 
their own problem to solve. Dependent upon the experience and capability of students to solve 
engineering design problems, teachers may initially immerse students in well-structured problems 
until engineering design strategies can be developed. Teachers may then transition students towards 
more ill-structured design problems once the students are more capable of solving them.

https://ir.library.illinoisstate.edu/jste/vol50/iss1/8
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Developing Integrative Lessons Using Engineering Design

Developing a truly I-STEM ED transdisciplinary lesson requires an intentional and strategic 
effort when using engineering-design-based learning to meet necessary education outcomes. The 
lesson should first be based upon desired course content standards and objectives. The required 
content standards and objectives can then be used to guide the identification of a relevant local issue 
(such as hydraulic fracturing near Pittsburgh, Pennsylvania or water contamination in Charleston, 
West Virginia) or a global issue (such as genetically engineered foods, natural disasters, climate 
change, or sustainable development) to explore. These issues can then provide situations for students 
to identify, define, and validate an engineering design problem to solve. Investigating these types 
of issues also require scientific inquiry both to develop knowledge needed for a solution and to 
evaluate the success of the solution itself. Once again, it is important to remember that these issues 
should be anchored in content standards.

Figure 2. I-STEM ED transdisciplinary lesson planning process.
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Lesson Title

Time:

Lesson Overview/ Purpose: Provides a paragraph stating the overall big idea of the lesson and its 
intended outcome. 
Core Content Standards: Lists the specific core standards required for the course.
Global or Local Issue: Describes an overarching issue or challenge related to the core content stan-
dards.
STEM Standards: Lists and describes the connections between the overarching issue or challenge 

with other standards and objective from various school subjects.

Student Outcomes: Provides the measurable student outcomes for the lesson’s standards and 
objectives.

Enduring Understandings: Lists the key takeaway items from the lessons that transcend the lesson 
itself and are applicable to various situations.

Driving Question: Provides a question for driving student investigations about the overarching issue 
or challenge that will guide inquiry and problem identification and definition.

Career Connections: Lists and describes specific career relationships that are to be incorporated 
throughout the lesson.

Engineering Design & Scientific Inquiry Based Lesson

Engage: Sets the context for what the 
students will be learning in the lesson, as well as 
gaining their interest in the topic.

Should involve some type of hands-on problem-
solving activity that engages students in the lesson 
and provides a context for the lessons overarching 
challenge or issue. 

Explore: Enables students to build their own 
knowledge on the topic while making connection 
to their prior conceptual and procedural knowl-
edge.

Should involve some type of investigation activ-
ity that will enable students to identify and define 
a specific problem to solve from the overarching 
challenge or issue. 

Explain: Summarizes new and prior knowledge 
while addressing any misconceptions the students 
may hold.

Should involve a student-centered discussion of 
the overarching issue or challenge, as well as the 
student-defined problems with a purpose of iden-
tifying the key concepts needed to be learned to 
begin developing solutions. 

Engineer: Requires students to apply their 
knowledge and skills using the engineering de-
sign process to identify a problem and to develop 
a solution. 

Should require students to enact the engineering 
design process to create a model or prototype to 
solve an authentic problem using realistic tools 
and materials.

Evaluate: Allows a student to evaluate hers or 
his own learning and skill development in a man-
ner that enables them to take the necessary steps 
to master the lesson content and concepts. 

Should require students to reflect on the effective-
ness of their developed solution and their level of 
achieving the intended lesson outcomes. 

Figure 3. Engineering design problem-based lesson format
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Next, a teacher can select standards and skills from other school subjects considered necessary 
for investigating the identified issue and developing potential solutions to a student defined 
engineering design problem. When students are solving these problems they should be required 
to use and apply the proper and industry-quality materials, resources, and technological tools. 
Strimel (2014b) explains that this is where a team of teachers is beneficial because if one teacher 
is uncomfortable with the integration of a certain standards, concepts, or technological tools, the 
other teachers, especially an engineering or technology teacher, can assist. Then, the teacher can 
develop the specific student outcomes of the lesson that describe the transferable knowledge and 
skills that they should acquire throughout the lesson. The outcomes may be written as a short 
statement, beginning with a verb, that provides actionable student items. These outcomes should 
be used to identify what can be assessed at the conclusion of the lesson and then be used to guide 
the planning of the lesson events. From the standards and student outcomes a teacher can create 
the enduring understanding of the lesson, which focuses on the larger concept of the experience 
that can be applicable to situations beyond the lesson. The driving question is created to provide 
students with an open-ended question that promotes inquiry about the concepts involved in the 
local or global issue. Subsequently, the teacher can highlight specific STEM-related careers that are 
relevant to the situation and ensure that students achieve an understanding of what professionals in 
these careers do. Lastly, the teachers can utilize an updated version of the 5E model for planning 
learning activities developed by Bybee (1997) and modified by Burke (2014). This model breaks 
the lesson into five different nonlinear phases that promote student-centered learning necessary 
to design, make, and evaluate a possible solution to the complex issue at the center of the lesson. 
Figure 2 illustrates this integrative lesson planning process.

As Burke (2014) explains, a modified version of the 5E model that includes engineering  
can be used to develop a student-centered learning environment that blends the benefit of both 
design- and inquiry-based learning. In Figure 3,this model is explained in a lesson plan format 
(Strimel, 2014b).

Teaching the Engineering Design Process

The engineering design process is more than just applied science; it involves an iterative 
process of transforming problems to solutions (NGSS Lead States, 2013). The engineering design 
process is a problem solving method used by engineers that applies knowledge from multiple 
domains including mathematics and science to solve technological problems (NAE & NRC, 2014) 
through a nonlinear process described as defining a problem; identifying constraints; establishing 
criteria; generating possible solutions through research; and developing, modeling or prototyping, 
evaluating, and optimizing a design. The authors have included the problem solving activity in 
Figure 4 to introduce students to the engineering design process. This activity is only designed 
to engage students and provide a context for learning about the engineering design process. This 
activity is not meant to engage students in an authentic problem solving experience. In the activity, 
students are first given the problem to solve and then, through instructor questioning, are guided 
in the development of their own version of a simplified engineering design process based on the 
steps they used to solve the given problem. The student-generated steps must then be elaborated 
on to include optimization, modeling, and analysis. Once again, this activity is only to be used 
to introduce students to the engineering design process; it does not intentionally teach specific 
engineering concepts or skills because it does not involve an authentic problem pr the use of 
industry-quality tools and materials.
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Figure 4. Engagement activity to introduce engineering design.
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Conclusion

The absence of engineering education in many K–12 classrooms represents both opportunity 
and uncertainty. Foremost, it provides a context for educators, specifically science educators, 
to strengthen their relationship with technology and engineering teachers to lead their schools 
in providing students with valuable learning experiences and fuel student interests in STEM.  
“Every young student deserves the opportunity to experience such awe-inspiring moments as 
watching a rocket race toward the sky and feel empowered to develop solutions to our world’s 
most daunting problems” (Milano, 2013, p. 16). Engineering design, which encompasses aspects of 
problem- and project-based learning (Gómez Puente, van Eijck, & Jochems, 2011), is an essential 
component for integrating science with engineering, technology, and mathematics as well as other 
school subjects. As a distinctive form of problem-based learning, engineering design provides a 
basis for creating connections to concepts and practices from mathematics or science and enabling 
an I-STEM ED learning environment (Sanders, 2009). Moreover, authentic engineering design 
experiences and ill-structured challenges are a necessary tool for science education programs 
to provide students with the STEM knowledge and abilities that are considered necessary for 
fostering innovation and economic success. However, one cannot assume that a problem-based 
approach automatically means STEM disciplinary integration. Therefore, in Figure 5, the authors 
provide the recommendations for using engineering design to provide students with an integrative 
and authentic learning experience. Because little is known about student cognition during such 
experiences, future research can provide additional implications and instructional resources to 
guide implementation.

1 Utilize engineering design problems as a way to make ongoing, intentional, and natural connections 
to other subjects.

2 Employ engineering design problems that vary in structure to ensure that students are required to 
apply prior knowledge and to generate new knowledge. 

3 Collaborate with technology and engineering teachers to go beyond having students solve problems 
using unrealistic technological tools and materials. 

4 Require students to truly engage in engineering design by optimizing solutions through modeling 
and analysis.

5 Utilize authentic engineering design problems as the context for relevant transdisciplinary learning.
6 Design lessons using the student-centered format provided in this article.

Figure 5. Six recommendations for successful engineering design.
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