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Preface 

MATLAB is a software package used primarily in the field of engineering for signal 
processing, numerical data analysis, modeling, programming, simulation, and 
computer graphic visualization. In the last few years, it has become widely accepted as 
an efficient tool, and, therefore, its use has significantly increased in scientific 
communities and academic institutions. MATLAB has proven itself to be very useful 
and important for education and research, hence the title of this book. It has become 
very popular for various reason - these include being programmable, well developed, 
well tested, compact, extensible, and compatible with many operating systems.   

This book consists of 20 chapters presenting research works using MATLAB tools. The 
chapters were written by researchers recognized as experts and users of MATLAB. 
Chapters include techniques for programming and developing Graphical User 
Interfaces (GUIs), dynamic systems, electric machines, signal and image processing, 
power electronics, mixed signal circuits, genetic programming, digital watermarking, 
control systems, time-series regression modeling, and artificial neural networks. 

The task of completing this book and its chapters was accomplished thanks to the 
support and contribution of the authors, who spent a lot of effort and time on this 
project. Thanks go equally to the editorial board and the team of InTech for the 
excellent work in making the revisions of chapters smooth and accurate.  

Ali Hussein Assi 
United Arab Emirates University 

United Arab Emirates 
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Modeling and Simulation of Multiphase 
Machines in the Matlab/Simulink Environment 

Alberto Tessarolo 
University of Trieste 

Italy 

1. Introduction  
Multiphase machines are AC machines characterized by a stator winding composed of a
generic number n of phases. In today’s electric drive and power generation technology,
multiphase machines play an important role for the benefits they bring compared to 
traditional three-phase ones (Levi, 2008; Levi et al., 2007). Such benefits have been widely
highlighted by existing literature (Levi et al., 2007) and are mainly related to: an increased
fault tolerance; higher power ratings achieved through power segmentation; enhanced
performance in terms of efficiency and torque ripple. 
The use of multiphase machines is spreading both in small-power safety-critical applications
as well as in very high-power industrial drives (Tessarolo et al., 2010), in electric-propulsion
drives (Castellan et al., 2007) and power generation systems (Sulligoi et al., 2010). 
Regardless of whether they are used as motors or generators, multiphase electrical machines
are almost always connected to power electronics systems (inverters for motors, rectifiers for 
generators), which interface them to the electric grid (Sulligoi et al., 2010; Castellan et al.
2008). Therefore, if the dynamic behaviour of a multiphase machine is to be predicted
through simulations in the design and development stage, it is essential to do this by means
of system-level simulations, where not only the electric machine is included, but also the
power electronics and control systems that interact with it. Such a system-level simulation 
approach makes it difficult to use Finite-Element (FE) methods due to the complexity of the
domain to be modelled and to the well-known computational heaviness of time-stepping FE
simulations. Conversely, lumped-parameter models, to be implemented in the 
Matlab/Simulink environment, may provide designers with a powerful mean of analysis
and investigation, provided that all the system components to be studied are modelled with 
an adequate level of accuracy and completeness. 
As concerns power electronics systems usually interfaced to multiphase machines, whether 
operating as motors or generators, the Matlab/Simulink environment offers wide and 
complete libraries where the designer can find reliable pre-defined blocks (for electronic 
switches, snubbers, diodes, etc.) to be used in building the application-related apparatus 
models. The same pertains to control and regulation blocks, which can be built up directly 
based on their transfer functions and logics. 
A possible criticality can be encountered when it comes to build the multiphase machine
model. In fact, no predefined blocks are presently available in the Matlab/Simulink
environment for this purpose. On the other side, building a dedicated user-defined machine
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model for any specific multiphase arrangement may require a non-trivial work due to the 
wide variety of multiphase schemes (in terms of phase number and distribution) and due to 
the several different modelling approaches which can be derived from the current literature 
on the subject (Levi et al., 2007). 
Based on the above premises, this Chapter aims at providing Matlab/Simulink users, 
interested in simulating electromechanical systems where multiphase machines are 
involved, with some general modelling and implementation strategies which enable them to 
treat all the multiphase machine schemes of practical interest in a unified manner. 
The Chapter is organized so as to sequentially cover the topics listed below: 
• Qualitative description of the various stator multiphase arrangements for multiphase 

machines. 
• Introduction of Vector-Space Decomposition as a method for a unified treatment of the 

mentioned multiphase schemes. 
• Implementation of the VSD-based model in the Matlab-Simulink environment. 
• Application examples. 

2. Variety, modelling and representation of multiphase winding schemes 
There is a large variety of multiphase machines depending on: 
1. The number of phases n constituting the stator winding; 
2. The way in which the n phases are physically arranged; 
3. The kind of rotor (which may be of squired-cage, permanent-magnet, reluctance, 

assisted-reluctance type as well as in ordinary three-phase machines). 
As concerns phase arrangement, for instance, the n phases may be distributed symmetrically 
around the stator circumference with a phase shift of 360/n electrical degrees, as it happens 
in five-phase (Pereira et al., 2006) and seven-phase (Figueroa et al., 2006) symmetrical 
machines (Fig. 1a). 
Otherwise, the n phases (with n necessarily being an integer multiple of 3) may be grouped 
into N three-phase sets, displaced by 60/N electrical degrees apart: this is the case of the so 
called split-phase winding configurations (Levi et al., 2007; Tessarolo et al., 2010) (Fig. 1b). 
Finally, more complicated solutions can be also implemented, such as in the propulsion 
motor described by Terrein et al., 2004, where n=15 stator phases are grouped into three 
five-phase sets. 
 

 
Fig. 1. Examples of multiphase winding schemes: (a) symmetrical 5-phase; (b) split-phase 
double-star 
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2.1 Graphical representation convention 
The graphical representation of the winding scheme used in Fig. 1 is quite conventional and 
widespread. However, for the sake of clarity it can be better understood referring to Fig. 2 
and Fig. 3, where such graphical representation is shown aside the physical phase 
arrangement in the case of a concentrated winding machine (the same pertains to 
distributed windings, of course). It can be seen that each coil group of the phase is 
represented by an arrow pointing in the direction of the magnetic field which would 
originate if the coil group carried a positive current. Coil groups shifted by 180 electrical 
degrees are represented by arrows of different line styles (solid and dashed). 
 

 
Fig. 2. Example of a two-pole 5-phase electric machine where each phase has coil groups 
shifted by π electrical radians 

 

 
Fig. 3. Example of a two-pole 10-phase electric machine where each phase is not composed 
of coil groups shifted by π electrical radians. (a) Physical winding topology; (b) conventional 
winding representation 

2.2 Modeling assumptions 
In modelling the various types of multiphase machines, the following usual assumptions 
with be made in the rest of the  Chapter: 
1. Magnetic saturation is neglected, so inductances are assumed as constant. 
2. It is assumed that the air-gap width of the machine can be modelled as a constant plus a 

sinusoidal function whose period equals a pole pitch. 
3. All the n phases are geometrically identical except for their angular displacement, hence 

electrical machines with fractional slot windings are not covered. 



 
Engineering Education and Research Using MATLAB 

 

2 

model for any specific multiphase arrangement may require a non-trivial work due to the 
wide variety of multiphase schemes (in terms of phase number and distribution) and due to 
the several different modelling approaches which can be derived from the current literature 
on the subject (Levi et al., 2007). 
Based on the above premises, this Chapter aims at providing Matlab/Simulink users, 
interested in simulating electromechanical systems where multiphase machines are 
involved, with some general modelling and implementation strategies which enable them to 
treat all the multiphase machine schemes of practical interest in a unified manner. 
The Chapter is organized so as to sequentially cover the topics listed below: 
• Qualitative description of the various stator multiphase arrangements for multiphase 

machines. 
• Introduction of Vector-Space Decomposition as a method for a unified treatment of the 

mentioned multiphase schemes. 
• Implementation of the VSD-based model in the Matlab-Simulink environment. 
• Application examples. 

2. Variety, modelling and representation of multiphase winding schemes 
There is a large variety of multiphase machines depending on: 
1. The number of phases n constituting the stator winding; 
2. The way in which the n phases are physically arranged; 
3. The kind of rotor (which may be of squired-cage, permanent-magnet, reluctance, 

assisted-reluctance type as well as in ordinary three-phase machines). 
As concerns phase arrangement, for instance, the n phases may be distributed symmetrically 
around the stator circumference with a phase shift of 360/n electrical degrees, as it happens 
in five-phase (Pereira et al., 2006) and seven-phase (Figueroa et al., 2006) symmetrical 
machines (Fig. 1a). 
Otherwise, the n phases (with n necessarily being an integer multiple of 3) may be grouped 
into N three-phase sets, displaced by 60/N electrical degrees apart: this is the case of the so 
called split-phase winding configurations (Levi et al., 2007; Tessarolo et al., 2010) (Fig. 1b). 
Finally, more complicated solutions can be also implemented, such as in the propulsion 
motor described by Terrein et al., 2004, where n=15 stator phases are grouped into three 
five-phase sets. 
 

 
Fig. 1. Examples of multiphase winding schemes: (a) symmetrical 5-phase; (b) split-phase 
double-star 

 
Modeling and Simulation of Multiphase Machines in the Matlab/Simulink Environment 

 

3 

2.1 Graphical representation convention 
The graphical representation of the winding scheme used in Fig. 1 is quite conventional and 
widespread. However, for the sake of clarity it can be better understood referring to Fig. 2 
and Fig. 3, where such graphical representation is shown aside the physical phase 
arrangement in the case of a concentrated winding machine (the same pertains to 
distributed windings, of course). It can be seen that each coil group of the phase is 
represented by an arrow pointing in the direction of the magnetic field which would 
originate if the coil group carried a positive current. Coil groups shifted by 180 electrical 
degrees are represented by arrows of different line styles (solid and dashed). 
 

 
Fig. 2. Example of a two-pole 5-phase electric machine where each phase has coil groups 
shifted by π electrical radians 

 

 
Fig. 3. Example of a two-pole 10-phase electric machine where each phase is not composed 
of coil groups shifted by π electrical radians. (a) Physical winding topology; (b) conventional 
winding representation 

2.2 Modeling assumptions 
In modelling the various types of multiphase machines, the following usual assumptions 
with be made in the rest of the  Chapter: 
1. Magnetic saturation is neglected, so inductances are assumed as constant. 
2. It is assumed that the air-gap width of the machine can be modelled as a constant plus a 

sinusoidal function whose period equals a pole pitch. 
3. All the n phases are geometrically identical except for their angular displacement, hence 

electrical machines with fractional slot windings are not covered. 



 
Engineering Education and Research Using MATLAB 

 

4 

4. Each phase is composed of identical coil groups (or phase belts) shifted by π electrical 
radians apart (as in the 5-phase example shown in Fig. 2); in other words, each phase 
has one coil group per pole. Conversely, such winding topologies as that shown in Fig. 
3 (one phase belt per pole pair) and are not covered. 

It is noticed that the assumption made in point 4 is not importantly restrictive, since such 
winding schemes as that shown in Fig. 3 are very rarely used in practice as they give rise to 
important even-order space harmonics in the air-gap (Klingshirn, 1983).  

3. Multiphase machine modelling through Vector-Space Decomposition 
The purpose of this Section is to propose a VSD method which applies to both symmetrical 
and asymmetrical n-phase winding schemes, for whatever integer n greater than 3. To do 
this, we propose that the VSD transformation should consist of two cascaded steps (Fig. 4): 
 

 
Fig. 4. Two-step transformation for the VSD of a generic multiphase model 

1. The first is a merely geometrical transformation (W) capable of mapping the actual 
winding structure into a conventional one; the precise meaning of this “mapping” 
operation will be clarified next. 

2. The second is a decoupling transformation [represented by matrix T(x) where x is the 
rotor position] to be applied to the conventional machine model. Such transformation is 
meant to project machine variables onto a set of mutually orthogonal subspaces. 

The overall VSD transformation V(x)=T(x)W will then result from combining the two 
transformations. The advantage of this approach is that the properly called VSD theory can 
be developed only for the conventional multiphase model (thereby making abstraction of 
the particular phase arrangement of the actual machine), instead of tailoring VSD 
procedures on any particular multiphase winding topology that may occur in practice. 

3.1 Selection of the conventional multiphase model 
The question arises as to which multiphase model is the most suitable for being chosen as 
“conventional”. A natural answer would be the symmetrical n-phase winding scheme with 
2π/n phase progression, which is considered by Figueroa et al., 2006. With such a choice, the 
theory proposed in by Figueroa et al., 2006 could be in fact used to build the VSD 
transformation V(x). The problem which would occur with this choice, however, would be 
the lack of generality. In fact, there would be some n-phase schemes of practical importance 
which could not be mapped into an equivalent symmetrical winding with 2π/n phase 
progression through any transformation W. For instance, this would happen for any split-
phase (multiple-star) windings composed of an even number of phases. The concept is 
illustrated in Fig. 5a-b; the figure shows how a triple-star winding can be certainly mapped 

 
Modeling and Simulation of Multiphase Machines in the Matlab/Simulink Environment 

 

5 

into a symmetrical 9-phase scheme with 2π/9 phase progression (through a transformation 
W’3×3 mapping phase A1 into A, phase A2 into –F, phase A3 into B, etc.), while a dual-star 
winding (Fig. 5c) cannot be mapped into any 6-phase scheme with 2 π /6 phase progression, 
just because there does not exist a 6-phase scheme with 2 π /6 phase progression. 
 

 
Fig. 5. Mapping of a triple-star winding (a) into a symmetrical 9-phase scheme with 2π/9 
phase progression (b); a dual-star winding (c) cannot be mapped into any symmetrical  
6-phase scheme with 2π/6 phase progression 

 

 
Fig. 6. Conventional arrangement for an n-phase winding 
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Fig. 5. Mapping of a triple-star winding (a) into a symmetrical 9-phase scheme with 2π/9 
phase progression (b); a dual-star winding (c) cannot be mapped into any symmetrical  
6-phase scheme with 2π/6 phase progression 

 

 
Fig. 6. Conventional arrangement for an n-phase winding 
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In order to overcome the above limitation, a different choice of the conventional multiphase 
scheme is made. The conventional n-phase winding arrangement selected for the purpose is 
shown in Fig. 6 and entails n phases numbered from 0 to n−1 and sequentially arranged 
over a pole span with a phase progression angle. 

 /nα π=  (1) 

With such a choice, any n-phase winding (whether symmetrical or asymmetrical, with  
even or odd phase count) can be mapped into a conventional n-phase arrangement such as 
that in Fig. 6 by means of a geometrical transformation W, built as detailed in the next 
Section.  

3.2 Geometrical transformation into conventional winding scheme 
By geometrical transformation we mean a sequence of phase permutations and reversals 
capable of reducing the actual winding scheme into an equivalent one having the 
conventional structure shown in Fig. 6. The principle is illustrated in Fig. 7 with the 
examples of a symmetrical 5-phase winding (a) and of an asymmetrical 6-phase (dual star) 
winding (c) to be mapped into their corresponding conventional arrangements respectively 
through transformations W5 and W2×3. 
 

 
Fig. 7. Geometrical transformation into conventional phase arrangement 
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Let us suppose that the phase variables are arranged in vector form as per (2) and (3) 
respectively for the 5-phase and the dual star case and as per (4) for the conventional 
winding schemes: 

 ( )..
t

A E A B C D Ey y y y y=y  (2) 

 ( )2 1 2 1 2 1 2
t

ABC A A B B C Cy y y y y y× =y  (3) 

 ( )0 1 2 1
t

n ny y y y −=y  (4) 

where y indicates a generic phase variable, such as a current, voltage or flux linkage and 
superscript t indicates transposition. It can be easily seen that the following relationships 
must hold for the windings (a), (c) to be respectively equivalent to windings (b), (d) in Fig. 7: 

 5 5 ..A E=y W y ,   5

1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟=
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎝ ⎠

W  (5) 

 6 2 3 2 ABC× ×=y W y ,   2 3

1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 1 0

×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−

= ⎜ ⎟
−⎜ ⎟

⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

W  (6) 

3.2.1 General transformation for symmetrical n-phase configurations 
Let us now consider the general case of a symmetrical n-phase winding with 2π/n phase 
progression (see Fig. 1a and Fig. 5b as examples); it can be mapped into a conventional 
phase arrangement through the geometrical transformation Wn defined as: 

 { } ,

1 if 2 0
1 if 2 , 0, ..., 1

0 otherwise
n i j

j i
j i n i j n
− =⎧

⎪= − − = = −⎨
⎪
⎩

W ; (7) 

The formal proof of (7) is omitted for the sake of brevity as the formula can be easily 
checked on a case-by-case basis. 

3.2.2 General transformation for asymmetrical (split-phase) configurations 
Let us consider the general case of an asymmetrical (or split-phase) winding composed of N 
m-phase stars shifted by 2π/(mN) stars (Fig. 5a shows an example with m=3 and N=3, Fig. 1b 
with m=3 and N=2). Such a winding can be mapped into a conventional mN-phase 
arrangement through the geometrical transformation given by: 



 
Engineering Education and Research Using MATLAB 

 

6 

In order to overcome the above limitation, a different choice of the conventional multiphase 
scheme is made. The conventional n-phase winding arrangement selected for the purpose is 
shown in Fig. 6 and entails n phases numbered from 0 to n−1 and sequentially arranged 
over a pole span with a phase progression angle. 

 /nα π=  (1) 

With such a choice, any n-phase winding (whether symmetrical or asymmetrical, with  
even or odd phase count) can be mapped into a conventional n-phase arrangement such as 
that in Fig. 6 by means of a geometrical transformation W, built as detailed in the next 
Section.  

3.2 Geometrical transformation into conventional winding scheme 
By geometrical transformation we mean a sequence of phase permutations and reversals 
capable of reducing the actual winding scheme into an equivalent one having the 
conventional structure shown in Fig. 6. The principle is illustrated in Fig. 7 with the 
examples of a symmetrical 5-phase winding (a) and of an asymmetrical 6-phase (dual star) 
winding (c) to be mapped into their corresponding conventional arrangements respectively 
through transformations W5 and W2×3. 
 

 
Fig. 7. Geometrical transformation into conventional phase arrangement 

 
Modeling and Simulation of Multiphase Machines in the Matlab/Simulink Environment 

 

7 

Let us suppose that the phase variables are arranged in vector form as per (2) and (3) 
respectively for the 5-phase and the dual star case and as per (4) for the conventional 
winding schemes: 
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 ( )2 1 2 1 2 1 2
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ABC A A B B C Cy y y y y y× =y  (3) 

 ( )0 1 2 1
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n ny y y y −=y  (4) 

where y indicates a generic phase variable, such as a current, voltage or flux linkage and 
superscript t indicates transposition. It can be easily seen that the following relationships 
must hold for the windings (a), (c) to be respectively equivalent to windings (b), (d) in Fig. 7: 

 5 5 ..A E=y W y ,   5

1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟=
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎝ ⎠

W  (5) 

 6 2 3 2 ABC× ×=y W y ,   2 3

1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 1 0
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⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−

= ⎜ ⎟
−⎜ ⎟

⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

W  (6) 

3.2.1 General transformation for symmetrical n-phase configurations 
Let us now consider the general case of a symmetrical n-phase winding with 2π/n phase 
progression (see Fig. 1a and Fig. 5b as examples); it can be mapped into a conventional 
phase arrangement through the geometrical transformation Wn defined as: 

 { } ,

1 if 2 0
1 if 2 , 0, ..., 1

0 otherwise
n i j

j i
j i n i j n
− =⎧

⎪= − − = = −⎨
⎪
⎩

W ; (7) 

The formal proof of (7) is omitted for the sake of brevity as the formula can be easily 
checked on a case-by-case basis. 

3.2.2 General transformation for asymmetrical (split-phase) configurations 
Let us consider the general case of an asymmetrical (or split-phase) winding composed of N 
m-phase stars shifted by 2π/(mN) stars (Fig. 5a shows an example with m=3 and N=3, Fig. 1b 
with m=3 and N=2). Such a winding can be mapped into a conventional mN-phase 
arrangement through the geometrical transformation given by: 
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 { }
( )
( ),

1 if trunc 2 mod 0
1 if trunc 2 mod , 0, ..., 1

0 otherwise
N m i j

i j / m N (j, m)
i j / m N (j, m) mN i j mN×

⎧ − − =
⎪

= − − − = = −⎨
⎪
⎩

W ; (8) 

 

The formula can be easily checked to hold on a case-by-case basis. 

3.3 Machine model in conventional multiphase variables 
In the previous Section it has been shown how any multiphase scheme can be mapped into 
an equivalent one having a “conventional” phase arrangement and the suitable variable 
transformation matrices to be applied for this purpose have been presented. Therefore, it is 
not restrictive to suppose, in the following, that stator phases are distributed according to 
the conventional scheme. Hereinafter we shall present the form that the machine model 
equations take in this case. 
The stator voltage equation in matrix form is given by: 
 

 s s s s s
d
dt

= + +v R i eϕ  (9) 

 

where phase variables are (superscript t denotes transposition): 

 ( )0 1 2 1
t

s n nv v v v− −=v  (10) 

 ( )0 1 2 1
t

s n ni i i i− −=i  (11) 

 ( )0 1 2 1
t

s n nϕ ϕ ϕ ϕ− −=ϕ  (12) 

 ( )0 1 2 1
t

s n ne e e e− −=e  (13) 

The symbol xk , with x ∈  {v, i, φ, e} and k ∈  {0, 1,…, n−1} represents the kth phase voltage (v), 
current (i), flux linkage (φ) or e.m.f. due to the rotor (e). The resistance matrix R is the n×n 
diagonal matrix having all its diagonal elements equal to phase resistance r: 

 

0 0
0 0

0 0

s

r
r

r

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

R  (14) 

Phase flux linkage and current vectors are linked by the stator inductance matrix L which, 
for salient-pole machines, is a function of the rotor position x. 

 ( )s s sx= L iϕ  (15) 

The stator inductance matrix is assumed to be composed of a leakage inductance term ( )l
sL , 

not dependent on rotor position, and of an air-gap inductance term ( )( )ag
s xL : 
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 ( ) ( )( )( ) agl
s s sx x= +L L L  (16) 

Substitution of (16) into (9) gives: 

 ( )s s s s s s s s s s s s s
d d d
dt dt dt

⎛ ⎞= + + = + + +⎜ ⎟
⎝ ⎠

v R i L i e R i L i L i e  (17) 

It is easy to show (Tessarolo, 2010) that the leakage inductance matrix has the following 
structure. 

 

0 1 2 3 2 1

1 0 1 4 3 2

2 1 0 5 4 3
( )

3 4 5 0 1 2

2 3 4 1 0 1

1 2 3 2 1 0

l
s

− − −⎛ ⎞
⎜ ⎟− − −⎜ ⎟
⎜ ⎟− − −
⎜ ⎟

= ⎜ ⎟
⎜ ⎟− − −
⎜ ⎟
− − −⎜ ⎟
⎜ ⎟− − −⎝ ⎠

L  (18) 

Based on the assumptions listed in 2.2,  the air-gap inductance matrix can be written as: 

 ( ) ( )( )
1 2 3cos 2 sin 2

2 2
md mq md mqag

s
L L L L

x x
+ −

= + ⎡ + ⎤⎣ ⎦L Γ Γ Γ  (19) 

where: 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( )

1

1 cos cos 2 cos 3
cos cos 2 cos 3

cos 2 cos 3
cos 3

α α α
α α α
α α
α

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Γ  (20) 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2

1 cos cos 2 cos 3
cos 1 cos cos 2

cos 2 cos 1 cos
cos 3 cos 2 cos 1

α α α
α α α
α α α
α α α

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Γ  (21) 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

3

1 sin sin 2 sin 3
sin 1 sin sin 2

sin 2 sin 1 sin
sin 3 sin 2 sin 1

α α α
α α α
α α α
α α α

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Γ  (22) 

Equations (19)-(22) directly descend from the expression of the mutual inductance (due to 
air-gap flux) between two phases of indices “i” and “j” (Tessarolo et al., 2009):  
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 { }
( )
( ),

1 if trunc 2 mod 0
1 if trunc 2 mod , 0, ..., 1

0 otherwise
N m i j

i j / m N (j, m)
i j / m N (j, m) mN i j mN×

⎧ − − =
⎪

= − − − = = −⎨
⎪
⎩

W ; (8) 

 

The formula can be easily checked to hold on a case-by-case basis. 

3.3 Machine model in conventional multiphase variables 
In the previous Section it has been shown how any multiphase scheme can be mapped into 
an equivalent one having a “conventional” phase arrangement and the suitable variable 
transformation matrices to be applied for this purpose have been presented. Therefore, it is 
not restrictive to suppose, in the following, that stator phases are distributed according to 
the conventional scheme. Hereinafter we shall present the form that the machine model 
equations take in this case. 
The stator voltage equation in matrix form is given by: 
 

 s s s s s
d
dt

= + +v R i eϕ  (9) 

 

where phase variables are (superscript t denotes transposition): 

 ( )0 1 2 1
t

s n nv v v v− −=v  (10) 

 ( )0 1 2 1
t

s n ni i i i− −=i  (11) 

 ( )0 1 2 1
t
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The symbol xk , with x ∈  {v, i, φ, e} and k ∈  {0, 1,…, n−1} represents the kth phase voltage (v), 
current (i), flux linkage (φ) or e.m.f. due to the rotor (e). The resistance matrix R is the n×n 
diagonal matrix having all its diagonal elements equal to phase resistance r: 

 

0 0
0 0

0 0

s

r
r

r

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

R  (14) 

Phase flux linkage and current vectors are linked by the stator inductance matrix L which, 
for salient-pole machines, is a function of the rotor position x. 

 ( )s s sx= L iϕ  (15) 

The stator inductance matrix is assumed to be composed of a leakage inductance term ( )l
sL , 

not dependent on rotor position, and of an air-gap inductance term ( )( )ag
s xL : 
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 ( ) ( )( )( ) agl
s s sx x= +L L L  (16) 

Substitution of (16) into (9) gives: 

 ( )s s s s s s s s s s s s s
d d d
dt dt dt

⎛ ⎞= + + = + + +⎜ ⎟
⎝ ⎠

v R i L i e R i L i L i e  (17) 

It is easy to show (Tessarolo, 2010) that the leakage inductance matrix has the following 
structure. 

 

0 1 2 3 2 1

1 0 1 4 3 2

2 1 0 5 4 3
( )

3 4 5 0 1 2

2 3 4 1 0 1

1 2 3 2 1 0

l
s

− − −⎛ ⎞
⎜ ⎟− − −⎜ ⎟
⎜ ⎟− − −
⎜ ⎟

= ⎜ ⎟
⎜ ⎟− − −
⎜ ⎟
− − −⎜ ⎟
⎜ ⎟− − −⎝ ⎠

L  (18) 

Based on the assumptions listed in 2.2,  the air-gap inductance matrix can be written as: 

 ( ) ( )( )
1 2 3cos 2 sin 2

2 2
md mq md mqag

s
L L L L

x x
+ −

= + ⎡ + ⎤⎣ ⎦L Γ Γ Γ  (19) 

where: 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( )

1

1 cos cos 2 cos 3
cos cos 2 cos 3

cos 2 cos 3
cos 3

α α α
α α α
α α
α

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Γ  (20) 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2

1 cos cos 2 cos 3
cos 1 cos cos 2

cos 2 cos 1 cos
cos 3 cos 2 cos 1

α α α
α α α
α α α
α α α

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Γ  (21) 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

3

1 sin sin 2 sin 3
sin 1 sin sin 2

sin 2 sin 1 sin
sin 3 sin 2 sin 1

α α α
α α α
α α α
α α α

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Γ  (22) 

Equations (19)-(22) directly descend from the expression of the mutual inductance (due to 
air-gap flux) between two phases of indices “i” and “j” (Tessarolo et al., 2009):  
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 ( )( )
,

cos cos 2
2 2 2

md mq md mqag
s i j

L L L L i ji j xα α
+ − ⎡ ⎤+⎛ ⎞⎡ ⎤ ⎡ ⎤= − + −⎢ ⎥⎜ ⎟⎣ ⎦⎣ ⎦ ⎝ ⎠⎣ ⎦

L  (23) 

3.4 VFD transformation matrix 
The problem with the machine model expressed in multiphase variables is that stator model 
matrices are not constant in presence of rotor saliency (Lmd ≠ Lmq), as shown by (23). 
Furthermore, it would be desirable that model variables become constant during sinusoidal 
steady-state operation. Additionally, the model written as per 3.2 contains quite involved 
inductance matrix structure and is thereby little suitable for implementation. Finally, a 
simple expression for the machine torque cannot be derived from the model formulated as 
per 3.2. 
Vector-Space Decomposition (VSD) is a modelling technique which enables one to 
significantly simplify the machine equations (Levi et al., 2007) and finally yields a model 
structure (including diagonal matrices) which is simple to implement numerically. VSD, as 
proposed in this Chapter, is based on using a variable transformation T which maps the 
conventional multiphase vector variables (10)-(13) into “orhtonormal” vector coordinates 
(denoted with subscript dq in the following) as per (24). Model matrices are accordingly 
transformed as per (25). 
 

 ( )dq sx=v T v , ( )dq sx=i T i , ( )dq sx= Tϕ ϕ , ( )dq sx=e T e  (24) 
 

The transformation matrix T(x) proposed here to accomplish the VSD is given by: 
 

 ( ) ( )x x=T P C  (25) 

where: 

 

cos( ) sin( ) 0 0 0 0
sin( ) cos( ) 0 0 0 0

0 0 cos(3 ) sin(3 ) 0 0
0 0 sin(3 ) cos(3 ) 0 0( )
0 0 0 0 cos(5 ) sin(5 )
0 0 0 0 sin(5 ) cos(5 )

x x
x x

x x
x xx

x x
x x

ω ω
ω ω

ω ω
ω ω

ω ω
ω ω

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟

−= ⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

P  (26) 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 cos cos 2 cos 3 cos 1
0 sin sin 2 sin 3 sin 1
1 cos 3 cos 6 cos 9 cos 3 1

2
0 sin 3 sin 6 sin 9 sin 3 1
1 cos 5 cos 10 cos 15 cos 5 1
0 sin 5 sin 10 sin 10 sin 5 1

n
n
n
n

n
n
n

α α α α

α α α α

α α α α

α α α α

α α α α

α α α α

⎛ ⎞⎡ − ⎤⎣ ⎦⎜ ⎟
⎡ − ⎤⎜ ⎟⎣ ⎦

⎜
⎡ − ⎤⎜ ⎣ ⎦

⎜= ⎡ − ⎤⎣ ⎦⎜
⎜ ⎡ − ⎤⎣ ⎦⎜

⎡ − ⎤⎜ ⎣ ⎦
⎜⎜
⎝ ⎠

C

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

 (27) 
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We notice that the proposed matrices do not coincide either with those used by Figueroa et 
al., 2006, or with those mentioned in Levi et al., 2007, but are specifically design to treat an n-
phase machine with conventional multiphase arrangement (Tessarolo, 2009).  

3.5 Machine model in transformed coordinates 
In this Section, the transformation T(x) defined above will be applied to the model of the n-
phase salient-pole machine whose model in conventional multiphase coordinates has been 
established in 3.2.  
By applying transformation T(x) to model variables as per (24) and matrices (16) and (16) we 
obtain the transformed model matrices (marked by subscript dq) below: 
 

 ( )( ) ( ) ( ) ( ) ( ) ( )t t t
dq s sx x x r x r x x r= = = = =R T R T T I T T T I R  (28) 

 ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )agl l lt t t
dq sdq dq dq dqx x x x x x x= + = = +L L L T L T T L T T L T  (29) 

 

More precisely, the transformed leakage inductance matrix takes the diagonal form 
(Tessarolo, 2009): 

 

1

1

3
( ) ( )

3

5

5

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0( ) ( )
0 0 0 0 0
0 0 0 0 0

l l t
dq dqx x

λ
λ

λ
λ

λ
λ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

L T L T  (30) 

where: 

 ( )
1

0
0

2 cos
n

h k
k

khλ α
−

=
= + ∑  (31) 

 

for h = 1, 3, 5, ... is the harmonic inductance of the machine of order h (Tessarolo, 2009). 
The air-gap inductance matrix becomes: 
 

 ( ) ( )

( ) ( )
1

2 3

( ) ( ) ( ) ( )
2

( ) ( ) cos 2 ( ) ( ) sin 2
2

0 0 0
0 0 0
0 0 0 0
0 0 0 0

md mqag ag t t
dq dq

md mq t t

md

mq

L L
x x x x

L L
x x x x x x

L
L

n

+
= =

−
⎡ ⎤+ +⎣ ⎦

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

L T L T T T

T T T T

Γ

Γ Γ  (32) 
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 ( )( )
,

cos cos 2
2 2 2

md mq md mqag
s i j

L L L L i ji j xα α
+ − ⎡ ⎤+⎛ ⎞⎡ ⎤ ⎡ ⎤= − + −⎢ ⎥⎜ ⎟⎣ ⎦⎣ ⎦ ⎝ ⎠⎣ ⎦

L  (23) 
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steady-state operation. Additionally, the model written as per 3.2 contains quite involved 
inductance matrix structure and is thereby little suitable for implementation. Finally, a 
simple expression for the machine torque cannot be derived from the model formulated as 
per 3.2. 
Vector-Space Decomposition (VSD) is a modelling technique which enables one to 
significantly simplify the machine equations (Levi et al., 2007) and finally yields a model 
structure (including diagonal matrices) which is simple to implement numerically. VSD, as 
proposed in this Chapter, is based on using a variable transformation T which maps the 
conventional multiphase vector variables (10)-(13) into “orhtonormal” vector coordinates 
(denoted with subscript dq in the following) as per (24). Model matrices are accordingly 
transformed as per (25). 
 

 ( )dq sx=v T v , ( )dq sx=i T i , ( )dq sx= Tϕ ϕ , ( )dq sx=e T e  (24) 
 

The transformation matrix T(x) proposed here to accomplish the VSD is given by: 
 

 ( ) ( )x x=T P C  (25) 

where: 

 

cos( ) sin( ) 0 0 0 0
sin( ) cos( ) 0 0 0 0

0 0 cos(3 ) sin(3 ) 0 0
0 0 sin(3 ) cos(3 ) 0 0( )
0 0 0 0 cos(5 ) sin(5 )
0 0 0 0 sin(5 ) cos(5 )

x x
x x

x x
x xx

x x
x x

ω ω
ω ω

ω ω
ω ω

ω ω
ω ω

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟

−= ⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

P  (26) 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 cos cos 2 cos 3 cos 1
0 sin sin 2 sin 3 sin 1
1 cos 3 cos 6 cos 9 cos 3 1

2
0 sin 3 sin 6 sin 9 sin 3 1
1 cos 5 cos 10 cos 15 cos 5 1
0 sin 5 sin 10 sin 10 sin 5 1

n
n
n
n

n
n
n

α α α α

α α α α

α α α α

α α α α

α α α α

α α α α

⎛ ⎞⎡ − ⎤⎣ ⎦⎜ ⎟
⎡ − ⎤⎜ ⎟⎣ ⎦

⎜
⎡ − ⎤⎜ ⎣ ⎦

⎜= ⎡ − ⎤⎣ ⎦⎜
⎜ ⎡ − ⎤⎣ ⎦⎜

⎡ − ⎤⎜ ⎣ ⎦
⎜⎜
⎝ ⎠

C

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

 (27) 
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We notice that the proposed matrices do not coincide either with those used by Figueroa et 
al., 2006, or with those mentioned in Levi et al., 2007, but are specifically design to treat an n-
phase machine with conventional multiphase arrangement (Tessarolo, 2009).  

3.5 Machine model in transformed coordinates 
In this Section, the transformation T(x) defined above will be applied to the model of the n-
phase salient-pole machine whose model in conventional multiphase coordinates has been 
established in 3.2.  
By applying transformation T(x) to model variables as per (24) and matrices (16) and (16) we 
obtain the transformed model matrices (marked by subscript dq) below: 
 

 ( )( ) ( ) ( ) ( ) ( ) ( )t t t
dq s sx x x r x r x x r= = = = =R T R T T I T T T I R  (28) 

 ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )agl l lt t t
dq sdq dq dq dqx x x x x x x= + = = +L L L T L T T L T T L T  (29) 

 

More precisely, the transformed leakage inductance matrix takes the diagonal form 
(Tessarolo, 2009): 

 

1

1

3
( ) ( )

3

5

5

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0( ) ( )
0 0 0 0 0
0 0 0 0 0

l l t
dq dqx x

λ
λ

λ
λ

λ
λ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

L T L T  (30) 

where: 

 ( )
1

0
0

2 cos
n

h k
k

khλ α
−

=
= + ∑  (31) 

 

for h = 1, 3, 5, ... is the harmonic inductance of the machine of order h (Tessarolo, 2009). 
The air-gap inductance matrix becomes: 
 

 ( ) ( )

( ) ( )
1

2 3

( ) ( ) ( ) ( )
2

( ) ( ) cos 2 ( ) ( ) sin 2
2

0 0 0
0 0 0
0 0 0 0
0 0 0 0

md mqag ag t t
dq dq

md mq t t

md

mq

L L
x x x x

L L
x x x x x x

L
L

n

+
= =

−
⎡ ⎤+ +⎣ ⎦

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

L T L T T T

T T T T

Γ

Γ Γ  (32) 
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The overall inductance matrix in transformed coordinates is then the diagonal matrix below: 

 

1

1

3

3

5

5

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

md

md

dq

nL
nL

λ
λ

λ
λ

λ
λ

+⎛ ⎞
⎜ ⎟+⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

L  (33) 

Using (24), the relationship (15) between the flux linkage and current vectors becomes: 

 ( ) ( ) ( ) ( ) ( ) ( )t t t
s dq s dq dq s dqx x x x x x= = ⇒ =T L T i T L T iϕ ϕ ϕ  (34) 

which, in virtue of (29), gives: 

 dq dq dq= L iϕ  (35) 

Using the above relationships, the stator voltage equation (9) becomes: 

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

t t t
s dq s dq dq s

t t
s dq dq dq s

t t t
s dq dq dq dq dq s

t t t
s dq dq dq dq dq s

dx x x
dt

dx x
dt

d dx x x
dt dt
d dx x x
dt dt

⎡ ⎤= = + +⎣ ⎦

⎡ ⎤= + +⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + +⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤= + + +⎢ ⎥ ⎣ ⎦⎣ ⎦

v T v R T i T e

R T i T L i e

R T i T L i T L i e

R T i T L i T L i e

ϕ

 (36) 

It is important to remark that in the last passage of (37), we have used the fact that Ldq, given 
by (34), is time-invariant, i.e. 

 d
dqdt =L 0  (37) 

so that it is correct to write: 

 d d d d
dq dq dq dq dq dq dq dqdt dt dt dt

⎡ ⎤ ⎡ ⎤= + =⎣ ⎦ ⎣ ⎦L i L i L i L i  (38) 

If we left-multiply (37) by ( )xT  we obtain: 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

t t
s dq s dq dq dq dq dq dq

t
dq dq dq dq dq dq dq

t
dq dq dq dq dq dq dq

d dx x x x x x
dt dt

dx d dx x
dt dx dt

d dx x
dx dt

ω

⎡ ⎤= = + + +⎢ ⎥⎣ ⎦
⎡ ⎤= + + +⎢ ⎥⎣ ⎦
⎡ ⎤= + + +⎢ ⎥⎣ ⎦

T v v T R T i T T L i L i T e

R i T T L i L i e

R i T T L i L i e

 (39) 
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where the rotor speed in electrical radians per second has been introduced: 

 dx
dt

ω =  (40) 

The product ( ) ( )td
dxx x⎡ ⎤
⎣ ⎦T T  in (40) can be expanded using (25) as follows: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

t t t t t t t

t
t t t

d d d dx x x x x x x
dx dx dx dx

d d dx x x x x x
dx dx dx

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎛ ⎞ ⎡ ⎤= = +⎨ ⎬⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎝ ⎠ ⎣ ⎦⎩ ⎭

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

T T P C C P P C C P C P

P C C P P P P P
 (41) 

where we have used identities t =C C I  and d
dx =C 0 . 

Considering the structure (26) of P(x), the product ( ) ( )
td

dxx x⎡ ⎤⎣ ⎦P P  can be expanded as: 

 

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 3 0 0
0 0 3 0 0 0( ) ( )
0 0 0 0 0 5
0 0 0 0 5 0

td
dxx x

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟

⎡ ⎤ = =⎜ ⎟⎣ ⎦
⎜ ⎟−
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

P P J  (42) 

The final expression for the machine voltage equation in orthonormal coordinates is then: 

 dq dq dq dq dq dq dq dq
d
dt

ω= + + +v R i JL i L i e  (43) 

which is formally identical to the transformed voltage equation of a three-phase 
synchronous machine in the rotor dq reference frame. 
From (44) a simple expression for the machine electromagnetic torque can be also derived. 
In fact, if we left-multiply both sides of (44) by idqt we obtain: 

 t t t t t
dq dq dq dq dq dq dq dq dq dq dq dq dq

d
dt

ω= + + +i v i R i i JL i i L i i e . (44) 

Using (10), (11), (24), we can write the left-hand side member of (45) as follows: 

 [ ]
1

0
( ) ( ) ( ) ( )

ntt t t t
dq dq s s s s s s k k e

k
x x x x v i p

−

=
= = = = =∑i v T i T v i T T v i v  (45) 

where pe is the instantaneous electrical power entering machine terminals; using (14) and 
(28), the term t

dq dq dqi R i  can be written as: 

 
1

2

0

n
t t t t

dq dq dq dq dq k j
k

r ri p
−

=
= = =∑i R i i i  (46) 
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The overall inductance matrix in transformed coordinates is then the diagonal matrix below: 

 

1

1

3

3

5

5

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

md

md

dq

nL
nL

λ
λ

λ
λ

λ
λ

+⎛ ⎞
⎜ ⎟+⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

L  (33) 

Using (24), the relationship (15) between the flux linkage and current vectors becomes: 
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s dq s dq dq s dqx x x x x x= = ⇒ =T L T i T L T iϕ ϕ ϕ  (34) 

which, in virtue of (29), gives: 

 dq dq dq= L iϕ  (35) 

Using the above relationships, the stator voltage equation (9) becomes: 

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

t t t
s dq s dq dq s

t t
s dq dq dq s

t t t
s dq dq dq dq dq s

t t t
s dq dq dq dq dq s

dx x x
dt

dx x
dt

d dx x x
dt dt
d dx x x
dt dt

⎡ ⎤= = + +⎣ ⎦

⎡ ⎤= + +⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + +⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤= + + +⎢ ⎥ ⎣ ⎦⎣ ⎦

v T v R T i T e

R T i T L i e

R T i T L i T L i e

R T i T L i T L i e

ϕ

 (36) 

It is important to remark that in the last passage of (37), we have used the fact that Ldq, given 
by (34), is time-invariant, i.e. 

 d
dqdt =L 0  (37) 

so that it is correct to write: 

 d d d d
dq dq dq dq dq dq dq dqdt dt dt dt

⎡ ⎤ ⎡ ⎤= + =⎣ ⎦ ⎣ ⎦L i L i L i L i  (38) 

If we left-multiply (37) by ( )xT  we obtain: 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

t t
s dq s dq dq dq dq dq dq

t
dq dq dq dq dq dq dq

t
dq dq dq dq dq dq dq

d dx x x x x x
dt dt

dx d dx x
dt dx dt

d dx x
dx dt

ω

⎡ ⎤= = + + +⎢ ⎥⎣ ⎦
⎡ ⎤= + + +⎢ ⎥⎣ ⎦
⎡ ⎤= + + +⎢ ⎥⎣ ⎦

T v v T R T i T T L i L i T e

R i T T L i L i e

R i T T L i L i e

 (39) 

 
Modeling and Simulation of Multiphase Machines in the Matlab/Simulink Environment 

 

13 

where the rotor speed in electrical radians per second has been introduced: 

 dx
dt

ω =  (40) 

The product ( ) ( )td
dxx x⎡ ⎤
⎣ ⎦T T  in (40) can be expanded using (25) as follows: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

t t t t t t t

t
t t t

d d d dx x x x x x x
dx dx dx dx

d d dx x x x x x
dx dx dx

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎛ ⎞ ⎡ ⎤= = +⎨ ⎬⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎝ ⎠ ⎣ ⎦⎩ ⎭

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

T T P C C P P C C P C P

P C C P P P P P
 (41) 

where we have used identities t =C C I  and d
dx =C 0 . 

Considering the structure (26) of P(x), the product ( ) ( )
td

dxx x⎡ ⎤⎣ ⎦P P  can be expanded as: 

 

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 3 0 0
0 0 3 0 0 0( ) ( )
0 0 0 0 0 5
0 0 0 0 5 0

td
dxx x

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟

⎡ ⎤ = =⎜ ⎟⎣ ⎦
⎜ ⎟−
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

P P J  (42) 

The final expression for the machine voltage equation in orthonormal coordinates is then: 

 dq dq dq dq dq dq dq dq
d
dt

ω= + + +v R i JL i L i e  (43) 

which is formally identical to the transformed voltage equation of a three-phase 
synchronous machine in the rotor dq reference frame. 
From (44) a simple expression for the machine electromagnetic torque can be also derived. 
In fact, if we left-multiply both sides of (44) by idqt we obtain: 

 t t t t t
dq dq dq dq dq dq dq dq dq dq dq dq dq

d
dt

ω= + + +i v i R i i JL i i L i i e . (44) 

Using (10), (11), (24), we can write the left-hand side member of (45) as follows: 

 [ ]
1

0
( ) ( ) ( ) ( )

ntt t t t
dq dq s s s s s s k k e

k
x x x x v i p

−

=
= = = = =∑i v T i T v i T T v i v  (45) 

where pe is the instantaneous electrical power entering machine terminals; using (14) and 
(28), the term t

dq dq dqi R i  can be written as: 

 
1

2

0

n
t t t t

dq dq dq dq dq k j
k

r ri p
−

=
= = =∑i R i i i  (46) 
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where pj is the total amount of joule losses in stator phases; finally, the term t
dq dq dq

d
dt

i L i can 

be written as: 

 1
2

t t
dq dq dq mag dq dq dq mag

d d dw p
dt dt dt

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

i L i i L i  (47) 

where pmag is the amount of power used to change the magnetic energy 1
2

t
mag dq dq dqw = i L i  

stored in machine magnetic circuits. As a result of (46)-(48), equation (45) becomes: 

 e j mag mp p p p= + + . (48) 

where 

 t t
m dq dq dq dq dqp ω= +i JL i i e . (49) 

is the part of the power converted into mechanical power. Then, the power pm can be also 
written in terms of electromagnetic machine torque Tem and mechanical rotor speed ωm: 

 m em m emp T T
p
ωω= = . (50) 

where p is the number of pole pairs. By equalling (50) and (51) one obtains the expression for 
the electromagnetic torque: 

 t t
em dq dq dq dq dq

pT p
ω

= +i JL i i e  (51) 

where the first term represents the reluctance torque component (due to rotor saliency and 
acting even in absence of rotor MMF) and the second term represents the torque component 
due to the interaction between stator and rotor magneto-motive force fields. 
The electromagnetic torque (52) is to be used along with the externally-applied torque Text in 
the mechanical differential equation which governs the shaft speed dynamics: 

 m
em ext m

dT T J B
dt
ω ω− = +  (52) 

where J is the rotor moment of inertia, B is the viscous friction coefficient and ωm is 
mechanical rotor speed, equal to ω/p. 

4. VSD model implementation in the Matlab/Simulink environment 
The mathematical modelling of the multiphase machines described above is suitable for a 
modular, scalable and flexible implementation in the Matlab/Simulink environment. 
A block scheme which can be used for this purpose is provided in Fig. 8, where the 
particular case of a multiphase synchronous machine with wound-field rotor is considered. 
Of course, the same scheme holds in case of induction machines as well as for Permanent 
Magnet (PM) or reluctance synchronous machines, provided that the field voltage input is 
removed or properly replaced. 
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The overall system comprises a “Simulink domain”, where the multiphase machine model is 
implemented, and a “SimPowerSystems domain” where the power electronics connected to 
the machine is modelled. 
 

 
Fig. 8. Block scheme of the Simulink implementation of the multiphase machine model 

4.1 Implementation of multiphase machine model in conventional phase variables 
The core of the system represented in Fig. 8 is constituted by the “Multiphase machine 
Simulink model in conventional variables” block, whose detailed structure is depicted in 
Fig. 9. It implements the differential equations of the machine under the hypothesis that 
stator phases are geometrically arranged according to the “conventional” n-phase scheme 
discussed in 3.1. Therefore, the mathematical model implemented is the one described in 
Section 3.2 of this Chapter. The choice of using conventional variables makes the block 
independent of the phase arrangement and on the phase number. 
In order to be implemented using phase currents as state variables, the stator voltage 
equation (44) is rewritten in the following form: 

 ( ) ( )1 1
dq dq dq dq dq dq dq dq

d
dt

ω− −= − + + −i L R JL i L v e  (53) 

This differential equation directly maps into the block scheme shown in Fig. 9. 
As to the torque equation, it is implemented according to (52) as it does not involve any 
dynamics. Finally, the mechanical equation (53) is rewritten for implementation as: 

 ( )1m
em ext m

d BT T
dt J J
ω ω= − −  (54) 
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where pj is the total amount of joule losses in stator phases; finally, the term t
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d d dw p
dt dt dt

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

i L i i L i  (47) 
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A block scheme which can be used for this purpose is provided in Fig. 8, where the 
particular case of a multiphase synchronous machine with wound-field rotor is considered. 
Of course, the same scheme holds in case of induction machines as well as for Permanent 
Magnet (PM) or reluctance synchronous machines, provided that the field voltage input is 
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The overall system comprises a “Simulink domain”, where the multiphase machine model is 
implemented, and a “SimPowerSystems domain” where the power electronics connected to 
the machine is modelled. 
 

 
Fig. 8. Block scheme of the Simulink implementation of the multiphase machine model 

4.1 Implementation of multiphase machine model in conventional phase variables 
The core of the system represented in Fig. 8 is constituted by the “Multiphase machine 
Simulink model in conventional variables” block, whose detailed structure is depicted in 
Fig. 9. It implements the differential equations of the machine under the hypothesis that 
stator phases are geometrically arranged according to the “conventional” n-phase scheme 
discussed in 3.1. Therefore, the mathematical model implemented is the one described in 
Section 3.2 of this Chapter. The choice of using conventional variables makes the block 
independent of the phase arrangement and on the phase number. 
In order to be implemented using phase currents as state variables, the stator voltage 
equation (44) is rewritten in the following form: 

 ( ) ( )1 1
dq dq dq dq dq dq dq dq

d
dt

ω− −= − + + −i L R JL i L v e  (53) 

This differential equation directly maps into the block scheme shown in Fig. 9. 
As to the torque equation, it is implemented according to (52) as it does not involve any 
dynamics. Finally, the mechanical equation (53) is rewritten for implementation as: 

 ( )1m
em ext m

d BT T
dt J J
ω ω= − −  (54) 
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Fig. 9. Internal structure of the model “Multiphase machine Simulink model in conventional 
variables” 

Beside implementing equations (52), (54) and (55), the block scheme in Fig. 4 includes the 
variable transformation T(x), defined by (25)-(27), between the conventional multiphase 
variable vectors (10)-(11) and the orthonormal coordinate vectors (24). 

4.2 Interface with external blocks 
The machine block shown in Fig. 9 accepts “conventional voltages” vs as inputs and 
provides “conventional currents” is as outputs. The actual machine phases, however, are not 
arranged according to the conventional multiphase scheme assumed for unification 
purposes as per 3.1. Therefore, for the machine block to communicate with external blocks, 
it is necessary to “reorder” or “permute” conventional variable vectors to obtain the vectors 
of the physical (or natural) phase voltages and currents. 
Moreover, external blocks interfaced with the machine model are often representative of 
power electronics equipment since it is very unusual that a multiphase machine is directly 
connected to the grid or to passive loads. Power electronics blocks, used to simulate 
inverters or converters, are generally built using SimPowerSystems library items. 
As a result, the “stator interface” block appearing in Fig. 8 is added to perform these two 
tasks (the internal block structure is shown in Fig. 10): 
1. Machine variable transformation between “conventional” and “natural” coordinate 

systems. 
2. Conversion of machine phase voltages and currents from plain Simulink signals into 

SimPowerSystems bus attributes.  
The former task is performed by means of the permutation matrices W introduced in 3.1 and 
3.2. 
The latter task is performed making use of one ideal current generator block and one 
voltage measurement block per machine phase. More precisely, the voltage across each 
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machine phase is measured and used to build the natural phase voltage vector, which will 
be then transformed into the conventional phase voltage vector through matrix W. The 
natural phase currents which come from the machine model, instead, are imposed to flow 
across their relative phase bus by means of the ideal current generators. 
 

 
Fig. 10. Internal structure of the stator interface block 

4.3 Model parameterization, initialization and adaptation to different multiphase 
machines 
The advantage of the multiphase machine model implementation presented in this Chapter 
is that it can be easily parametrized and initialized so as to adapt it to simulate various kinds 
of multiphase machines, differing by the number and geometrical arrangement of the 
phases. 

4.3.1 Parametrization 
The input parameters which the user has to define, as far as the stator portion of the model 
is concerned, are the following: 
a. The number of phases 
b. The phase arrangement, to be chosen among the types described in Section 2. Typically: 

n-phase symmetrical or asymmetrical, in the latter case specifying the number N of 
winding sections and the number m of phases per section. 

c. The phase resistance r, to be used to build the diagonal resistance matrix R as per (28). 
d. The phase harmonic inductances (31), to build the diagonal transformed inductance 

matrix (30). 

4.3.2 Initialization 
The initialization can be performed through a Matlab script run only once at the beginning 
of the simulation. The script performs the following tasks: 
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a. It assigns the permutation matrices W in the stator interface blocks (Fig. 10). 
Permutation matrices are selected and defined as per 3.2.1 and 3.2.2 depending on the 
phase number and arrangement specified as an input;  

b. It defines the variable transformation matrix T(x) as per (25) depending only on the 
number of phases; 

c. It builds the diagonal matrices R and inductance matrix L using respectively the phase 
resistance and stator harmonic inductances (31) specified as input data; 

d. It builds the constant block-diagonal matrix J as per (43) depending only on the number 
of stator phases.   

4.3.3 Model adaptation to different multiphase winding schemes 
The adaptation of the model to implement different winding schemes can be essentially 
done in the initialization stage simply by properly defining the various model matrices as 
the model structure essentially remains the same. Of course, for an n-phase machine, we 
shall have n pairs of terminals (one pair per phase) and thereby n of the blocks marked with 
blue dashed contour in Fig. 10. 

5. Examples of application 
To illustrate the possible application of the method described in this Chapter, we next report 
the case of a dual-star and a triple-star synchronous machines (the dual and triple three-
phase winding schemes are respectively shown in Fig. 1b and in Fig. 5a). The former (2 MW, 
1200 V, 6300 rpm) is operated as a motor fed by two Load-Commutated Inverters (Castellan 
et al., 2008), the latter (20 kVA, 720 V, 3000 V) is operated as a driven generator with its 
stator terminals in short circuit. Both machines are simulated using the same 
Matlab/Simulink model, described in Section 3, adapted to the two cases by a different 
initialization of its matrices [W, C, P(x)] as reported below. 
Provided that natural phase variables are arranged in vector form as follows 

 ( )2 1 2 1 2 1 2
t

ABC A A B B C Cy y y y y y× =y , (55) 

 ( )3 1 1 1 2 2 2 3 3 3
t

ABC A B C A B C A B Cy y y y y y y y y× =y , (56) 

the permutation matrices in the two cases are given by (58) and (59) and the transformation 
matrices C and P(x), used to build T(x)=P(x)C, are given by (60)-(63). 
The Matlab/Simulink models used for the simulations are shown in Fig. 11 and Fig. 12, 
where the yellow block represents the same model differently initialized to represent the 
two different machines (shown in Fig. 13). 

 2 3

1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 1 0

×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−

= ⎜ ⎟
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⎝ ⎠
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a. It assigns the permutation matrices W in the stator interface blocks (Fig. 10). 
Permutation matrices are selected and defined as per 3.2.1 and 3.2.2 depending on the 
phase number and arrangement specified as an input;  

b. It defines the variable transformation matrix T(x) as per (25) depending only on the 
number of phases; 

c. It builds the diagonal matrices R and inductance matrix L using respectively the phase 
resistance and stator harmonic inductances (31) specified as input data; 

d. It builds the constant block-diagonal matrix J as per (43) depending only on the number 
of stator phases.   

4.3.3 Model adaptation to different multiphase winding schemes 
The adaptation of the model to implement different winding schemes can be essentially 
done in the initialization stage simply by properly defining the various model matrices as 
the model structure essentially remains the same. Of course, for an n-phase machine, we 
shall have n pairs of terminals (one pair per phase) and thereby n of the blocks marked with 
blue dashed contour in Fig. 10. 

5. Examples of application 
To illustrate the possible application of the method described in this Chapter, we next report 
the case of a dual-star and a triple-star synchronous machines (the dual and triple three-
phase winding schemes are respectively shown in Fig. 1b and in Fig. 5a). The former (2 MW, 
1200 V, 6300 rpm) is operated as a motor fed by two Load-Commutated Inverters (Castellan 
et al., 2008), the latter (20 kVA, 720 V, 3000 V) is operated as a driven generator with its 
stator terminals in short circuit. Both machines are simulated using the same 
Matlab/Simulink model, described in Section 3, adapted to the two cases by a different 
initialization of its matrices [W, C, P(x)] as reported below. 
Provided that natural phase variables are arranged in vector form as follows 
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the permutation matrices in the two cases are given by (58) and (59) and the transformation 
matrices C and P(x), used to build T(x)=P(x)C, are given by (60)-(63). 
The Matlab/Simulink models used for the simulations are shown in Fig. 11 and Fig. 12, 
where the yellow block represents the same model differently initialized to represent the 
two different machines (shown in Fig. 13). 
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Fig. 11. Matlab/Simulink model for the simulation of a dual-star synchronous machine 
supplied by two Load-Commutated Inverters 
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Fig. 12. Matlab/Simulink model for the simulation of a triple-star synchronous machine 
operating as a driven generator with short-circuited stator terminals 
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                                 (a)                                                                          (b) 

Fig. 13. (a) Dual-star synchronous motor (2 MW, 1200V, 6300 rpm) to be fed from two LCIs. 
(b) Triple-star synchronous generator driven with short-circuit stator terminals 

Simulation results, compared with measurements, for the dual- and triple-star machine are 
reported in Fig. 14 and Fig. 15, showing a good accordance in all the operating conditions 
 

TWO ACTIVE WINDINGS

ONE ACTIVE 
WINDING

Simulated voltage

Measured voltage

Simulated current

Measured current  
Fig. 14. Comparison between simulated and measured voltages and currents for the dual-
star synchronous motor under LCI supply in case of both active windings and one single 
active winding 
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Fig. 15. Comparison between simulated and measured short-circuit current in a triple-star 
generator driven with short-circuited stator terminals 

A further application examples of the methodology described in this Chapter can found in 
Tessarolo et al., 2009, where the same synchronous machine model used for the two 
simulation cases reported in this Section has been employed to simulate a symmetrical five-
phase synchronous motor fed by a five-phase Load Commutated Inverter. 
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1. Introduction 
Based on the fact that noise and distortion are the main factors that limit the capacity of data 
transmission in telecommunications and that they also affect the accuracy of the results in 
the signal measurement systems, whereas, modeling and removing noise and distortions are 
at the core of theoretical and practical considerations in communications and signal 
processing. Another important issue here is that, noise reduction and distortion removal are 
major problems in applications such as; cellular mobile communication, speech recognition, 
image processing, medical signal processing, radar, sonar, and  any other application where 
the desired signals cannot be isolated from noise and distortion. 
The use of wavelets in the field of de-noising audio signals is relatively new, the use of this 
technique has been increasing over the past 20 years. One way to think about wavelets 
matches the way how our eyes perceive the world when they are faced to different 
distances. In the real world, a forest can be seen from many different perspectives; they are, 
in fact, different scales of resolution. From the window of an airplane, for instance, the forest 
cover appears as a solid green roof. From the window of a car, the green roof gets 
transformed into individual trees, and if we leave the car and approach to the forest, we can 
gradually see details such as the trees branches and leaves. If we had a magnifying glass, we 
could see a dew drop on the tip of a leaf. As we get closer to even smaller scales, we can 
discover details that we had not seen before. On the other hand, if we tried to do the same 
thing with a photograph, we would be completely frustrated. If we enlarged the picture 
"closer" to a tree, we would only be able to see a blurred tree image; we would not be able to 
spot neither the branch, nor the leaf, and it would be impossible to spot the dew drop. 
Although our eyes can see on many scales of resolution, the camera can only display one at 
a time.  
In this chapter, we introduce the reader to a way to reduce noise in an audio signal by using 
wavelet transforms. We developed this technique by using the wavelet tool in MATLAB. A 
Simulink is used to acquire an audio signal and we use it to convert the signal to a digital 
format so it can be processed. Finally, a Graphical User Interface Development Environment 
(GUIDE) is used to create a graphical user interface. The reader can go through this chapter 
systematically, from the theory to the implementation of the noise reduction technique. 
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We will introduce in the first place the basic theory of an audio signal, the noise treatment 
fundamentals and principles of the wavelets theory. Then, we will present the development 
of noise reduction when using wavelet functions in MATLAB. In the foreground, we will 
demonstrate the usefulness of wavelets to reduce noise in a model system where Gaussian 
noise is inserted to an audio signal.  In the following sections, we will present a practical 
example of noise reduction in a sinusoidal signal that has been generated in the MATLAB, 
which it is followed by an example with a real audio signal captured via Simulink. Finally, 
the graphic noise reduction model using GUIDE will be shown. 

2. Basic audio theory 
Sound is the vibration of an elastic medium, whether gaseous, liquid or solid. These 
vibrations are a type of mechanical wave that has the capability to stimulate human ear and 
to create a sound sensation in the brain. In air, sound is transmitted due to pressure 
variations at a rate of change that is called frequency. The difference between the extreme 
values of pressure represents its amplitude. Pressure variations in the range of 20 Hz to 20 
kHz produce the sound which is audible to the human ear and this is more receptive when 
it is between 1 kHz to 4 kHz. In physical terms, the sound is a longitudinal wave that travels 
through the air due to vibration of the molecules. Similar to light, sound waves can be 
reflected, absorbed, diffracted, or refracted. 
Audio signals, which represent longitudinal variations of pressure in a medium, are 
converted into electrical signals by piezoelectric transducers. Transducers convert the 
energy of a mechanical displacement into an electrical signal, either voltage or current. The 
main advantage of converting an audio signal into an electrical signal is that the signal can 
now be processed. An example is an analog signal obtained from the transducer that can be 
converted into an encoded digital data stream by using an analog-digital converter (ADC) 
and constitutes digital processing of analog signals. Alternatively, if a digital-analog 
converter (DAC) is applied to a digital data stream, the audio signal transmits through an 
amplifier and a speaker. The process is show schematically in Figure 1, which identifies the 
important steps in digital audio processing. 
 

 
Fig. 1. Shows the process of digital processing of three types of audio signal. Part (a) 
represents a complete digital audio processing comprising (from left to right) a microphone, 
amplifier, ADC, digital processing material, DAC, amplifying section and speaker; an audio 
recognition system in (b), and a set of audio synthesis (c) 

2.1 Recording audio signals in Simulink/MATLAB 
Once in the digital domain, these signals can be processed, transmitted or stored. We found 
that the Audio Device block in Simulink enables experimentation and processing of digital 
signals. The From Audio Device block reads audio data from an audio device in real time. 
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Fig. 2. Shows the process identifies the main steps in a digital audio processing system 
based in Simulink software 

The From Audio Device block buffers the data from the audio device by means of using the 
process illustrated by Figure 2. We selected the block MATLAB Simulink audio and 
multimedia file block in order to save the audio acquired by a given time. Figure 3 shows 
the From Audio Device GUI, where we selected a 5 second queue period. At the start of the 
simulation, the audio device writes input data to a buffer. When the buffer is full, the From 
Audio Device block writes the contents of the buffer to the queue. The size of this queue can 
be specified in the queue duration (seconds) parameter. As the audio device appends audio 
data to the bottom of the queue, the From Audio Device block pulls data from the top of the 
queue to fill the Simulink frame. We used this file to make our de-noise method using 
wavelets. 
 

 
Fig. 3. Shows block diagram of audio acquire 

We used the wavread function. It loads a: WAVE file specified by the string filename, 
returning the sampled data in y. If the filename does not include an extension, wavread 
appends a .wav extension. Example code is: [x,Fs,nbits]= wavread(‘filename’) where the function 
returns the filename with the number of bits per sample (nbits). 
[x,Fs,nbits]= wavread ('voice'); 
y = awgn(x,10,'measured');  
For example, wavwrite(y,Fs,’filename’) writes the data stored in the variable y to a WAVE file 
called ‘filename’. The data have a sample rate, Fs, in Hz and is assumed 16-bit. 
wavwrite(y,Fs,'noisyvoice')  
wavwrite(xd,Fs,'voice5') 

3. Basic noise theory 
Noise is defined as an unwanted signal that interferes with the communication or 
measurement of another signal. A noise itself is an information-bearing signal that conveys 
information regarding the sources of the noise and the environment in which it propagates. 
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There are many types and sources of noise or distortions and they include: 
1. Electronic noise such as thermal noise and shot noise, 
2. Acoustic noise emanating from moving, vibrating or colliding sources such as revolving 

machines, moving vehicles, keyboard clicks, wind and rain, 
3. Electromagnetic noise that can interfere with the transmission and reception of voice, 

image and data over the radio-frequency spectrum,  
4. Electrostatic noise generated by the presence of a voltage, 
5. Communication channel distortion and fading and 
6. Quantization noise and lost data packets due to network congestion.  
Signal distortion is the term often used to describe a systematic undesirable change in a 
signal and refers to changes in a signal from the non-ideal characteristics of the 
communication channel, signal fading reverberations, echo, and multipath reflections and 
missing samples. Depending on its frequency, spectrum or time characteristics, a noise 
process is further classified into several categories: 
1. White noise: purely random noise has an impulse autocorrelation function and a flat 

power spectrum. White noise theoretically contains all frequencies in equal power. 
2. Band-limited white noise: Similar to white noise, this is a noise with a flat power spectrum 

and a limited bandwidth that usually covers the limited spectrum of the device or the 
signal of interest. The autocorrelation of this noise is sinc-shaped.   

3. Narrowband noise: It is a noise process with a narrow bandwidth such as 50/60 Hz from 
the electricity supply. 

4. Coloured noise: It is non-white noise or any wideband noise whose spectrum has a non-
flat shape. Examples are pink noise, brown noise and autoregressive noise. 

5. Impulsive noise: Consists of short-duration pulses of random amplitude, time of 
occurrence and duration. 

6. Transient noise pulses: Consist of relatively long duration noise pulses such as clicks, 
burst noise etc. 

3.1 Signal to noise ratio 
The signal-to-noise ratio (SNR) is commonly used to assess the effect of noise on a signal. 
This measurement is based on an additive noise model, where the quantized signal xq[n] is 
a superposition of the unquantized, undistorted signal x[n] and the additive quantization 
error e[n]. The ratio between the signal powers of x[n] and e[n] defines the SNR. To capture 
the wide range of potential SNR values and to consider the logarithmic perception of 
loudness in humans, SNR generally given in a logarithmic scale, in decibels (dB) 
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Where, σ2x and σ2e are the powers of x[n], and e[n], respectively. Specifically for the 
assessment of quantization noise, SNR is often labeled as the signal to quantization-noise 
ratio (SQNR). 

3.2 White noise 
Shown in Figure 4, white noise is defined as an uncorrelated random noise process with 
equal power at all frequencies. Random noise has the same power at all frequencies in the 
range of ∞ it would necessarily need to have infinite power, and it is therefore an only a  
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theoretical concept. However, a band-limited noise process with a flat spectrum covering 
the frequency range of a band-limited communication system is practically considered a 
white noise process. 
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Fig. 4. Shows an illustration of (a) white noise time-domain signal, (b) its autocorrelation 
function is a delta function, and (c) its power spectrum is a constant function of frequency 

3.3 Additive White Gaussian Noise Model (AWGN) 
In classical communication theory, it assumed that the noise is a stationary additive white 
Gaussian (AWGN) process. Although for some problems this is a valid assumption and 
leads to mathematically convenient and useful solutions, in practice, the noise is often time-
varying, correlated and non-Gaussian. This is particularly true for impulsive-type noise and 
for acoustic noise, which is non-stationary and non-Gaussian and hence cannot be modeled 
using the AWGN assumption. 

3.4 Adding noise using MATLAB  
How to do it with MATLAB: In the Communication Toolbox in MATLAB is possible to find 
the function awgn. This function means adding Gaussian white noise to signal. 
Syntax  
y = awgn(x,snr)  
y = awgn(x,snr,'measured') 
 

y = awgn(x,snr) adds white Gaussian noise to the vector signal x. The scalar SNR specifies the 
signal-to-noise ratio per sample, in dB. If x is complex, awgn adds complex noise. This 
syntax assumes that the power of x is 0 dBW. 
y = awgn(x,snr,'measured') is the same as y = awgn(x,snr), except that awgn measures the 
power of x before adding noise. 
Figure 5 shows one example of how to add white noise to the sinusoidal signal using the 
communication toolbox of MATLAB. We generate the interval of the signal (k), considering 
some frequency (w), then we generate a sinusoidal function with these parameters, 
considering this function with the x vector. Now we generate a Gaussian white noise and 
add to the sinusoidal function and plot. 
k = 0:9.0703e-005:5; 
w=500*pi; 
h=w.*k; 
x = sin(h); % Create sinus signal. 
y = awgn(x,10,'measured'); % Add white Gaussian noise. 
figure(1) 
plot(k,y) 
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Fig. 5. Shows adding Gaussian white noise to sine signal 

4. Wavelets theory  
Wavelets are used in a variety of fields including physics, medicine, biology and statistics. 
Among the applications in the field of physics, there is the removal of noise from signals 
containing information. There are different ways to reduce noise in audio. (Johnson et al., 
2007) demonstrated the application of the Bionic Wavelet Transform (BWT), an adaptive 
wavelet transform derived from a non-linear auditory model of the cochlea, to enhance 
speech signal. (Bahoura & Rouat, 2006) proposed a new speech enhancement method based 
on time and scale adaptation of wavelet thresholds. (Ching-Ta & Hsiao-Chuan Wang, 2003 
& 2007) proposed a method based on critical-band decomposition, which converts a noisy 
signal into wavelet coefficients (WCs), and enhanced the WCs by subtracting a threshold 
from noisy WCs in each subband. Additionally, they proposed a gain factor in each wavelet 
subband subject to a perceptual constraint. (Visser et al., 2003) has presented a new speech 
enhancement scheme by spatial integration and temporal signal processing methods for 
robust speech recognition in noisy environments. It further de-noised by exploiting 
differences in temporal speech and noise statistics in a wavelet filter bank. (Képesia & 
Weruaga, 2006) proposed new method for time–frequency analysis of speech signals. The 
analysis basis of the proposed Short-Time Fan-Chirp Transform (FChT) defined univocally 
by the analysis window length and by the frequency variation rate, that parameter predicted 
from the last computed spectral segments. (Li et al., 2008) proposed an audio de-noising 
algorithm based on adaptive wavelet soft-threshold, based on the gain factor of linear filter 
system in the wavelet domain and the wavelet coefficients teager energy operator in order 
to progress the effect of the content-based songs retrieval system. (Dong et al., 2008) has 
proposed a speech de-noising algorithm for white noise environment based on perceptual 
weighting filter, which united the spectrum subtraction and adopted auditory perception 
properties in the traditional Wiener filter. (Shankar & Duraiswamy, 2010) proposed an 
audio de-noising technique based on biorthogonal wavelet transformation. 
Wavelets are characterized by scale and position, and are useful in analyzing variations in 
signals and images in terms of scale and position. Because of the fact that the wavelet size 
can vary, it has advantage over the classical signal processing transformations to 
simultaneously process time and frequency data. The general relationship between wavelet 
scales and frequency is to roughly match the scale. At low scale, compressed wavelets are 
used. They correspond to fast-changing details, that is, to a high frequency. At high scale, 
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the wavelets are stretched. They correspond to slow changing features, that is, to a low 
frequency. 
The wavelet only has a time domain representation as the wavelet function ψ (t). The 
mother wavelet is scaled (or dilated) by a factor of a and translated (or shifted) by a factor of 
b to give 

 ,
1( ) .a b

t bt
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ψ ψ −⎛ ⎞= ⎜ ⎟
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Wavelets are defined by the wavelet function ψ (t) (i.e. the mother wavelet) and scaling 
function φ (t) (also called father wavelet) in the time domain. The wavelet function is in 
effect a band-pass filter and scaling it for each level halves its bandwidth. This creates the 
problem that in order to cover the entire spectrum, an infinite number of levels would be 
required. The scaling function filters the lowest level of the transform and ensures that the 
entire spectrum is covered. For a wavelet with compact support, φ (t) can be considered 
finite in length and is equivalent to the scaling filter g. 
Wavelets can be scaled and copied (known as "daughter wavelets") of a finite-length or fast-
decaying oscillating waveform (known as the "mother wavelet"). Wavelet transforms have 
advantages over traditional Fourier transforms for representing functions that have 
discontinuities and sharp peaks, and for accurately deconstructing and reconstructing finite, 
non-periodic and/or non-stationary signals. 
Wavelet transforms are classified into two broad groups: discrete wavelet transforms 
(DWTs) and continuous wavelet transforms (CWTs). Note that both DWT and CWT are 
continuous-time (analog) transforms and can represent continuous-time (analog) signals. 
CWTs operate over every possible scale and translation whereas DWTs use a specific subset 
of scale and translation values or representation grid. When wavelet-functions coefficients 
are expressed as z-transform, then the number of zeros at π corresponds to the number of 
vanishing moments. S, o p zeros in π means p vanishing moments. 
Having p vanishing moments means that wavelet-coefficients for p-th order polynomial will 
be zero. That is, any polynomial signal up to order p-1 can be represented completely in 
scaling space. In theory, more vanishing moments meaning that scaling function can 
represent more signals that are complex accurately, p which it is also called as the accuracy 
of the wavelet. 
Daubechies wavelets are a family of orthogonal wavelets defining a discrete wavelet 
transform and they are characterized by a maximal number of vanishing moments for some 
given support. With each wavelet type of this class, a scaling function (also called father 
wavelet) generates an orthogonal multi-resolution analysis. 
In general the Daubechies wavelets are chosen to have the highest number A of vanishing 
moments, (this does not imply the best smoothness) for given support width N=2A, and 
between the 2A−1 possible solutions the number one is chosen whose scaling filter has 
extreme phase. The wavelet transform is also easy to put into practice by using the fast 
wavelet transform. Daubechies wavelets are widely used in solving a broad range of 
problems, e.g. self-similarity properties of a signal or fractal problems, signal discontinuities, 
etc. 
Coiflets are discrete wavelets designed by Ingrid Daubechies, at the request of Ronald 
Coifman, to have scaling functions with vanishing moments. The wavelet is near symmetric 
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Fig. 5. Shows adding Gaussian white noise to sine signal 

4. Wavelets theory  
Wavelets are used in a variety of fields including physics, medicine, biology and statistics. 
Among the applications in the field of physics, there is the removal of noise from signals 
containing information. There are different ways to reduce noise in audio. (Johnson et al., 
2007) demonstrated the application of the Bionic Wavelet Transform (BWT), an adaptive 
wavelet transform derived from a non-linear auditory model of the cochlea, to enhance 
speech signal. (Bahoura & Rouat, 2006) proposed a new speech enhancement method based 
on time and scale adaptation of wavelet thresholds. (Ching-Ta & Hsiao-Chuan Wang, 2003 
& 2007) proposed a method based on critical-band decomposition, which converts a noisy 
signal into wavelet coefficients (WCs), and enhanced the WCs by subtracting a threshold 
from noisy WCs in each subband. Additionally, they proposed a gain factor in each wavelet 
subband subject to a perceptual constraint. (Visser et al., 2003) has presented a new speech 
enhancement scheme by spatial integration and temporal signal processing methods for 
robust speech recognition in noisy environments. It further de-noised by exploiting 
differences in temporal speech and noise statistics in a wavelet filter bank. (Képesia & 
Weruaga, 2006) proposed new method for time–frequency analysis of speech signals. The 
analysis basis of the proposed Short-Time Fan-Chirp Transform (FChT) defined univocally 
by the analysis window length and by the frequency variation rate, that parameter predicted 
from the last computed spectral segments. (Li et al., 2008) proposed an audio de-noising 
algorithm based on adaptive wavelet soft-threshold, based on the gain factor of linear filter 
system in the wavelet domain and the wavelet coefficients teager energy operator in order 
to progress the effect of the content-based songs retrieval system. (Dong et al., 2008) has 
proposed a speech de-noising algorithm for white noise environment based on perceptual 
weighting filter, which united the spectrum subtraction and adopted auditory perception 
properties in the traditional Wiener filter. (Shankar & Duraiswamy, 2010) proposed an 
audio de-noising technique based on biorthogonal wavelet transformation. 
Wavelets are characterized by scale and position, and are useful in analyzing variations in 
signals and images in terms of scale and position. Because of the fact that the wavelet size 
can vary, it has advantage over the classical signal processing transformations to 
simultaneously process time and frequency data. The general relationship between wavelet 
scales and frequency is to roughly match the scale. At low scale, compressed wavelets are 
used. They correspond to fast-changing details, that is, to a high frequency. At high scale, 
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the wavelets are stretched. They correspond to slow changing features, that is, to a low 
frequency. 
The wavelet only has a time domain representation as the wavelet function ψ (t). The 
mother wavelet is scaled (or dilated) by a factor of a and translated (or shifted) by a factor of 
b to give 
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Wavelets are defined by the wavelet function ψ (t) (i.e. the mother wavelet) and scaling 
function φ (t) (also called father wavelet) in the time domain. The wavelet function is in 
effect a band-pass filter and scaling it for each level halves its bandwidth. This creates the 
problem that in order to cover the entire spectrum, an infinite number of levels would be 
required. The scaling function filters the lowest level of the transform and ensures that the 
entire spectrum is covered. For a wavelet with compact support, φ (t) can be considered 
finite in length and is equivalent to the scaling filter g. 
Wavelets can be scaled and copied (known as "daughter wavelets") of a finite-length or fast-
decaying oscillating waveform (known as the "mother wavelet"). Wavelet transforms have 
advantages over traditional Fourier transforms for representing functions that have 
discontinuities and sharp peaks, and for accurately deconstructing and reconstructing finite, 
non-periodic and/or non-stationary signals. 
Wavelet transforms are classified into two broad groups: discrete wavelet transforms 
(DWTs) and continuous wavelet transforms (CWTs). Note that both DWT and CWT are 
continuous-time (analog) transforms and can represent continuous-time (analog) signals. 
CWTs operate over every possible scale and translation whereas DWTs use a specific subset 
of scale and translation values or representation grid. When wavelet-functions coefficients 
are expressed as z-transform, then the number of zeros at π corresponds to the number of 
vanishing moments. S, o p zeros in π means p vanishing moments. 
Having p vanishing moments means that wavelet-coefficients for p-th order polynomial will 
be zero. That is, any polynomial signal up to order p-1 can be represented completely in 
scaling space. In theory, more vanishing moments meaning that scaling function can 
represent more signals that are complex accurately, p which it is also called as the accuracy 
of the wavelet. 
Daubechies wavelets are a family of orthogonal wavelets defining a discrete wavelet 
transform and they are characterized by a maximal number of vanishing moments for some 
given support. With each wavelet type of this class, a scaling function (also called father 
wavelet) generates an orthogonal multi-resolution analysis. 
In general the Daubechies wavelets are chosen to have the highest number A of vanishing 
moments, (this does not imply the best smoothness) for given support width N=2A, and 
between the 2A−1 possible solutions the number one is chosen whose scaling filter has 
extreme phase. The wavelet transform is also easy to put into practice by using the fast 
wavelet transform. Daubechies wavelets are widely used in solving a broad range of 
problems, e.g. self-similarity properties of a signal or fractal problems, signal discontinuities, 
etc. 
Coiflets are discrete wavelets designed by Ingrid Daubechies, at the request of Ronald 
Coifman, to have scaling functions with vanishing moments. The wavelet is near symmetric 
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their wavelet functions have N/3 vanishing moments and scaling functions N/3−1, they are 
used in many applications using Calderón-Zygmund Operators. 
Db 10 and Db 9 are asymmetric, orthogonal and biorthogonal, Coif 5 is near symmetric, 
orthogonal and biorthogonal. Figure 6 shows the scale and wavelet function of Coiflet 5, 
Daubechies 9 and 10. 
 

 
                      (a)                                                       (b)                                                      (c) 

Fig. 6. Shows the scale function (left) and wavelet function (right) of (a) Coiflet 5,  
(b) Daubechies 9 and (c) Daubechies 10 

4.1 One stage filtering: Approximations and details 
For many signals, the low-frequency content is the most important part because it gives to 
the signal its identity. The high-frequency content, on the other hand, imparts nuance. 
Consider the human voice. If high-frequency components are removed, the voice sounds 
different, but the words are still audible and clearly recognized. However, if enough low-
frequency components are removed, the resulting audio signal is not clear. In wavelet 
analysis, approximations are the high-scale, low-frequency components and the details are 
the low-scale, high-frequency components of the signal. Figure 7 shows the steps for signal 
decomposition. 
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4.2 Multiple-level decomposition 
The decomposition process can be iterated, with successive approximations being 
decomposed in turn, so that one signal is broken down into many lower resolution 
components. This is called the wavelet decomposition tree that is shown on figure 8. 
 

 
Fig. 8. Shows the process of performing, the multiple decomposition, which it is called 
wavelet decomposition tree 

4.3 Number of levels 
Since the analysis process is iterative, in theory it can be continued indefinitely. Realistically, 
the decomposition can proceed only until the individual details consist of a single sample or 
pixel. Moreover, the processes include selecting a suitable number of levels based on the 
nature of the signal, or on a suitable criterion such as entropy. 

4.4 Wavelet reconstruction 
Discrete wavelet transform can be used to analyze, or decompose, signals and images in a 
process called decomposition or analysis. Conversely, reconstruction or synthesis is the 
process of assembling hose components back into the original signal without loss of 
information. While being this transformation, it is desirable to establish its investment, i.e. to 
return to the original signal from the output tree. This methodology follows reasoning in the 
opposite direction, i.e. from the coefficients while depending on the number of levels and 
considering the high frequency (H’) and low (L’) bands that must be obtained from the 
reconstructed signal S, shown in figure 9. The mathematical manipulation that affects 
synthesis is called: the inverse discrete wavelet transforms (IDWT). In order to synthesize a 
signal by using Wavelet Toolbox software, we reconstruct it from the wavelet coefficients. 
 

 
Fig. 9. Show how to reconstruct a signal using wavelets 

4.5 Wavelet using MATLAB 
We will describe a simple method for wavelet transform of a given signal. You must choose 
a wavelet function, which is the mother wavelet, as well as determining the value of the 
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4.2 Multiple-level decomposition 
The decomposition process can be iterated, with successive approximations being 
decomposed in turn, so that one signal is broken down into many lower resolution 
components. This is called the wavelet decomposition tree that is shown on figure 8. 
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opposite direction, i.e. from the coefficients while depending on the number of levels and 
considering the high frequency (H’) and low (L’) bands that must be obtained from the 
reconstructed signal S, shown in figure 9. The mathematical manipulation that affects 
synthesis is called: the inverse discrete wavelet transforms (IDWT). In order to synthesize a 
signal by using Wavelet Toolbox software, we reconstruct it from the wavelet coefficients. 
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4.5 Wavelet using MATLAB 
We will describe a simple method for wavelet transform of a given signal. You must choose 
a wavelet function, which is the mother wavelet, as well as determining the value of the 
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signal wavelet scale, using the command wname. In this example we use a wavelet coif5  
level 10. 
wname = 'coif5'; lev = 10; 
In most of the signals of low frequency components that give the signal most of its 
information, while the high frequency components are responsible for incorporating 
particular features, that is why we subdivide the components of a signal into two categories: 
approaches (low frequencies) and details (high frequencies). To perform this decomposition 
the wpdec command is used which is responsible for creating a tree that consists of a vector 
in this case it is the signal to break down "y" the level to be decomposed lev = 10 and the 
type of wavelet used, which in this case is coiflet 5 and it is stored as a tree in the tree 
variable: 
tree = wpdec(y,lev,wname); 
We generate the coefficients of the decomposition of the signal using the wpcoef command 
where needed as the variable information and the number of tree node that has a better 
performance in the tree that was generated, which in this case is two. 
det1 = wpcoef(tree,2); 
We determine noise threshold by using wpbmpen command that returns a global threshold 
THR for de-noising. THR obtained by a wavelet packet coefficients selection rule by means 
of using a penalization method provided by Birge-Massart. T (in our case tree) is a wavelet 
packet tree corresponding to the wavelet packet decomposition of the signal or image to be 
de-noised. SIGMA is the standard deviation of the zero mean Gaussian white noise in the 
de-noising model. alpha is a tuning parameter for the penalty term, which must be a real 
number greater than 1. The sparsity of the wavelet packet representation of the de-noised 
signal or image grows with alpha. Typically alpha = 2. 
sigma = median(abs(det1))/0.6745; 
alpha = 2; 
thr = wpbmpen(tree,sigma,alpha); 
We use command wpdencmp that performs a de-noising or compression process of a signal, 
when using wavelet packet. The ideas and the procedures for de-noising and compression 
by using wavelet packet decomposition are the same as those used in the wavelets 
framework. Wpdencmp (TREE,SORH,CRIT,PAR,KEEPAPP) has the same output arguments, 
using the same options as above, but which were obtained directly from the input wavelet 
packet tree decomposition TREE  of the signal to be de-noised or compressed. SORH ('s' or 
'h') stands for soft or hard thresholding. Best decomposition performed using entropy 
criterion defined by string CRIT and parameter PAR. Threshold parameter is also PAR. In 
addition, if CRIT = 'nobest' no optimization is done, and the current decomposition is 
thresholded. If KEEPAPP= 1, approximation coefficients cannot be thresholded; otherwise, 
they can be:  
keepapp = 1; 
xd = wpdencmp(tree,'s','nobest',thr,keepapp); 
All those parameters help us to de-noise our signals by using wavelets. 

5. Sine signal example 
With MATLAB, it is possible to process noisy signals containing certain information, such as 
an audio one, in order to reduce the quantity of noise contained in it. Non-periodicity 
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characterizes an audio signal, which is composed by a large number of different frequencies 
signals. This feature allows the use of conventional methods such as digital filters to 
eliminate noise mixed into the signal. 
In this section, we will introduce the treatment of noise in audio signals by using wavelet 
transforms, which are included as a tool in MATLAB. To do this we will start by using a sine 
wave signal, which is periodic and presents a well-known behavior. 
First, it is necessary to define the time interval k, and to define the angular frequency w. 
k = 0:9.0703e-005:5; 
w=500*pi; 

The variable h represents the argument of the sine function x in the next two instructions 
h=w.*k; 
x = sin(h);  

Once we have defined the signal to be treated x, it is necessary to generate the noise source 
in order to be mixed with the original signal. One of the most common sources of noise is 
Gaussian white noise, which contains all frequencies. Thus to generate white Gaussian noise 
we use the awgn instruction described in section 3.4. 
y = awgn(x,0,'measured');  
wname = 'coif5'; lev = 10; 
tree = wpdec(y,lev,wname); 
det1 = wpcoef(tree,2); 
sigma = median(abs(det1))/0.6745; 
alpha = 2; 
thr = wpbmpen(tree,sigma,alpha); 
keepapp = 1; 
xd = wpdencmp(tree,'s','nobest',thr,keepapp); 

Correlation between both signals, original and filtered one, is the parameter to compare 
them. We used the command crosscorr, which computes and plots the sample cross-
correlation function XCF between two univariate, stochastic time series. To plot the XCF 
sequence without the confidence bounds, set nSTDs = 0. 
D=crosscorr(x,xd); 
Finally, we plot three figures. 
figure(1) 
plot(k,xd) 
hold on 
plot(k,y,'k') 
hold on 
plot(k,x,'g') 
legend('Denoise signal','Signal with AWGN','Original signal'); 
figure(2) 
plot(z,D) 
legend('Correlation @ 0');  
The sinusoidal waveform x represents the signal to which is added white Gaussian noise; 
this will subsequently be reduced to recover the sine wave. 
We evaluate three wavelets families, Symlets 2 to 8, Daubechies 2 to 10 and Coiflet 1 to 5 by 
using the program presented above. Our results show that Coiflet 5 and Daubechies 9 and 
10 are the best options for better de-noised in our signals. We choose cross correlation to 
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signal wavelet scale, using the command wname. In this example we use a wavelet coif5  
level 10. 
wname = 'coif5'; lev = 10; 
In most of the signals of low frequency components that give the signal most of its 
information, while the high frequency components are responsible for incorporating 
particular features, that is why we subdivide the components of a signal into two categories: 
approaches (low frequencies) and details (high frequencies). To perform this decomposition 
the wpdec command is used which is responsible for creating a tree that consists of a vector 
in this case it is the signal to break down "y" the level to be decomposed lev = 10 and the 
type of wavelet used, which in this case is coiflet 5 and it is stored as a tree in the tree 
variable: 
tree = wpdec(y,lev,wname); 
We generate the coefficients of the decomposition of the signal using the wpcoef command 
where needed as the variable information and the number of tree node that has a better 
performance in the tree that was generated, which in this case is two. 
det1 = wpcoef(tree,2); 
We determine noise threshold by using wpbmpen command that returns a global threshold 
THR for de-noising. THR obtained by a wavelet packet coefficients selection rule by means 
of using a penalization method provided by Birge-Massart. T (in our case tree) is a wavelet 
packet tree corresponding to the wavelet packet decomposition of the signal or image to be 
de-noised. SIGMA is the standard deviation of the zero mean Gaussian white noise in the 
de-noising model. alpha is a tuning parameter for the penalty term, which must be a real 
number greater than 1. The sparsity of the wavelet packet representation of the de-noised 
signal or image grows with alpha. Typically alpha = 2. 
sigma = median(abs(det1))/0.6745; 
alpha = 2; 
thr = wpbmpen(tree,sigma,alpha); 
We use command wpdencmp that performs a de-noising or compression process of a signal, 
when using wavelet packet. The ideas and the procedures for de-noising and compression 
by using wavelet packet decomposition are the same as those used in the wavelets 
framework. Wpdencmp (TREE,SORH,CRIT,PAR,KEEPAPP) has the same output arguments, 
using the same options as above, but which were obtained directly from the input wavelet 
packet tree decomposition TREE  of the signal to be de-noised or compressed. SORH ('s' or 
'h') stands for soft or hard thresholding. Best decomposition performed using entropy 
criterion defined by string CRIT and parameter PAR. Threshold parameter is also PAR. In 
addition, if CRIT = 'nobest' no optimization is done, and the current decomposition is 
thresholded. If KEEPAPP= 1, approximation coefficients cannot be thresholded; otherwise, 
they can be:  
keepapp = 1; 
xd = wpdencmp(tree,'s','nobest',thr,keepapp); 
All those parameters help us to de-noise our signals by using wavelets. 

5. Sine signal example 
With MATLAB, it is possible to process noisy signals containing certain information, such as 
an audio one, in order to reduce the quantity of noise contained in it. Non-periodicity 
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characterizes an audio signal, which is composed by a large number of different frequencies 
signals. This feature allows the use of conventional methods such as digital filters to 
eliminate noise mixed into the signal. 
In this section, we will introduce the treatment of noise in audio signals by using wavelet 
transforms, which are included as a tool in MATLAB. To do this we will start by using a sine 
wave signal, which is periodic and presents a well-known behavior. 
First, it is necessary to define the time interval k, and to define the angular frequency w. 
k = 0:9.0703e-005:5; 
w=500*pi; 

The variable h represents the argument of the sine function x in the next two instructions 
h=w.*k; 
x = sin(h);  

Once we have defined the signal to be treated x, it is necessary to generate the noise source 
in order to be mixed with the original signal. One of the most common sources of noise is 
Gaussian white noise, which contains all frequencies. Thus to generate white Gaussian noise 
we use the awgn instruction described in section 3.4. 
y = awgn(x,0,'measured');  
wname = 'coif5'; lev = 10; 
tree = wpdec(y,lev,wname); 
det1 = wpcoef(tree,2); 
sigma = median(abs(det1))/0.6745; 
alpha = 2; 
thr = wpbmpen(tree,sigma,alpha); 
keepapp = 1; 
xd = wpdencmp(tree,'s','nobest',thr,keepapp); 

Correlation between both signals, original and filtered one, is the parameter to compare 
them. We used the command crosscorr, which computes and plots the sample cross-
correlation function XCF between two univariate, stochastic time series. To plot the XCF 
sequence without the confidence bounds, set nSTDs = 0. 
D=crosscorr(x,xd); 
Finally, we plot three figures. 
figure(1) 
plot(k,xd) 
hold on 
plot(k,y,'k') 
hold on 
plot(k,x,'g') 
legend('Denoise signal','Signal with AWGN','Original signal'); 
figure(2) 
plot(z,D) 
legend('Correlation @ 0');  
The sinusoidal waveform x represents the signal to which is added white Gaussian noise; 
this will subsequently be reduced to recover the sine wave. 
We evaluate three wavelets families, Symlets 2 to 8, Daubechies 2 to 10 and Coiflet 1 to 5 by 
using the program presented above. Our results show that Coiflet 5 and Daubechies 9 and 
10 are the best options for better de-noised in our signals. We choose cross correlation to 
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evaluate the best performance; the cross correlation number that we select is the maximum 
at zero. Figure 10 shows the original signal sinus waveform. Part (b) is an extension of two 
periods of part (a). We choose a frequency of 250 Hz due to voice is in that range. 
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Fig. 10. Shows original sinus waveform. The right one shows a zoom view of left figure 

We add white Gaussian noise to sine waveform represented in Figure 11 and the resulting 
graph is the plot shown in Figure 11. We set SNR to AWGN=10 
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Fig. 11. Shows sine waveform with AWGN=10. 

After running the program, we find the cross correlation D between original signal and 
signal de-noise. Figure 12 presents the result 
 

 
Fig. 12. Shows cross correlation of original signal and signal de-noise 
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Figure 13 shows the plot of a signal after its processing method using Coiflet 5. 
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Fig. 13. Shows signal after processing method of de-noise using Coiflet 5 

Evaluation of the resultant waveform xd presented in Figure 14 is compared with the 
original sine function x form Figure 11 gives numbers higher than 99% as presented in 
Figure 13. These results support the reliability of the proposed method for de-noising. 

6. Audio signal example 
As it has been described in section 2.1, to obtain an audio signal, we select the audio block 
and we connect it to the multimedia file block. This information is saved in a user-specified 
file with extension .wav and then we use the program to extract this information and 
process it with wavelets coif5, db9 and db10. Figure 14 shows the original audio signal, audio 
signal with noise and the recovered signal using the wavelet coif5. Figure 15 shows the best 
correlation using the above wavelets. 
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Fig. 14. Shows original audio signal, audio signal with noise and the recovered signal 

To make the signal processing we use the next code: 

clc,close all,clear all 
  k = 0:9.0703e-005:5; 
 w=500*pi; 
 h=w.*k; 
 [x,Fs,nbits]= wavread ('voice'); 
 y = awgn(x,10,'measured'); % Add white Gaussian noise. 
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evaluate the best performance; the cross correlation number that we select is the maximum 
at zero. Figure 10 shows the original signal sinus waveform. Part (b) is an extension of two 
periods of part (a). We choose a frequency of 250 Hz due to voice is in that range. 
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Fig. 10. Shows original sinus waveform. The right one shows a zoom view of left figure 

We add white Gaussian noise to sine waveform represented in Figure 11 and the resulting 
graph is the plot shown in Figure 11. We set SNR to AWGN=10 
 

 

A
m

pl
itu

de

 1

 0

-1

0.9        0.92        0.94       0.96       0.98         1
                              Time (s)

0.9            0.902         0.904        0.906        0.908
                              Time (s)

A
m

pl
itu

de

 1

 0

-1

 
Fig. 11. Shows sine waveform with AWGN=10. 

After running the program, we find the cross correlation D between original signal and 
signal de-noise. Figure 12 presents the result 
 

 
Fig. 12. Shows cross correlation of original signal and signal de-noise 
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Figure 13 shows the plot of a signal after its processing method using Coiflet 5. 
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Fig. 13. Shows signal after processing method of de-noise using Coiflet 5 

Evaluation of the resultant waveform xd presented in Figure 14 is compared with the 
original sine function x form Figure 11 gives numbers higher than 99% as presented in 
Figure 13. These results support the reliability of the proposed method for de-noising. 

6. Audio signal example 
As it has been described in section 2.1, to obtain an audio signal, we select the audio block 
and we connect it to the multimedia file block. This information is saved in a user-specified 
file with extension .wav and then we use the program to extract this information and 
process it with wavelets coif5, db9 and db10. Figure 14 shows the original audio signal, audio 
signal with noise and the recovered signal using the wavelet coif5. Figure 15 shows the best 
correlation using the above wavelets. 
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Fig. 14. Shows original audio signal, audio signal with noise and the recovered signal 

To make the signal processing we use the next code: 

clc,close all,clear all 
  k = 0:9.0703e-005:5; 
 w=500*pi; 
 h=w.*k; 
 [x,Fs,nbits]= wavread ('voice'); 
 y = awgn(x,10,'measured'); % Add white Gaussian noise. 
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Fig. 15. Shows cross-correlation for determine the best result after noise reduction 
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wavwrite(y,Fs,'noisyvoice') 
wname = 'coif5'; lev = 10; 
tree = wpdec(y,lev,wname); 
det1 = wpcoef(tree,2014); 
 sigma = median(abs(det1))/0.6745; 
alpha = 1.8; 
thr = wpbmpen(tree,sigma,alpha) 
keepapp = 1; 
xd = wpdencmp(tree,'s','nobest',thr,keepapp); 
D=crosscorr(x,y); 
 z=-20:1:20; 
 figure(1) 
subplot(311) 
plot(k,x) 
xlabel('time') 
ylabel('Amplitude') 
title('original signal'); 
subplot(312) 
plot(k,y,'k') 
xlabel('time') 
ylabel('Amplitude') 
title('signal with noise'); 
subplot(313) 
plot(k,xd,'g') 
xlabel('time') 
ylabel('Amplitude') 
title('signal denoise'); 
figure(2) 
plot(z,D) 
title('coif5') 
legend('Correlation @ 0'); 
wavwrite(xd,Fs,'voice5') 

In signal processing, analogue-to-digital converters also suffer linearity errors, they add 
noise, distortion, and introduces quantization error due to the precision of their voltage 
sampling process. The result of all this is a computerized sequence of samples that may not 
be as closely related to the real-world sound as you might expect. Do not be surprised when 
high-precision analysis or measurements are unrepeatable due to noise, or if delicate 
changes made to a sampled audio signal are undetectable to the naked ear upon replay. 

7. Graphical Interface using GUIDE 
For better understanding of the content of this chapter, we have developed a graphical 
interface, only in the case of a sine wave.  We used GUIDE of MATLAB to build this 
interface, you need pop-up menu, slider, edit text, four push button and four graphics 
(axes), after all that is placed in your figure you need to program each item. Figure 16 shows 
how all of this should be seen. 
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Fig. 15. Shows cross-correlation for determine the best result after noise reduction 
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wavwrite(y,Fs,'noisyvoice') 
wname = 'coif5'; lev = 10; 
tree = wpdec(y,lev,wname); 
det1 = wpcoef(tree,2014); 
 sigma = median(abs(det1))/0.6745; 
alpha = 1.8; 
thr = wpbmpen(tree,sigma,alpha) 
keepapp = 1; 
xd = wpdencmp(tree,'s','nobest',thr,keepapp); 
D=crosscorr(x,y); 
 z=-20:1:20; 
 figure(1) 
subplot(311) 
plot(k,x) 
xlabel('time') 
ylabel('Amplitude') 
title('original signal'); 
subplot(312) 
plot(k,y,'k') 
xlabel('time') 
ylabel('Amplitude') 
title('signal with noise'); 
subplot(313) 
plot(k,xd,'g') 
xlabel('time') 
ylabel('Amplitude') 
title('signal denoise'); 
figure(2) 
plot(z,D) 
title('coif5') 
legend('Correlation @ 0'); 
wavwrite(xd,Fs,'voice5') 

In signal processing, analogue-to-digital converters also suffer linearity errors, they add 
noise, distortion, and introduces quantization error due to the precision of their voltage 
sampling process. The result of all this is a computerized sequence of samples that may not 
be as closely related to the real-world sound as you might expect. Do not be surprised when 
high-precision analysis or measurements are unrepeatable due to noise, or if delicate 
changes made to a sampled audio signal are undetectable to the naked ear upon replay. 

7. Graphical Interface using GUIDE 
For better understanding of the content of this chapter, we have developed a graphical 
interface, only in the case of a sine wave.  We used GUIDE of MATLAB to build this 
interface, you need pop-up menu, slider, edit text, four push button and four graphics 
(axes), after all that is placed in your figure you need to program each item. Figure 16 shows 
how all of this should be seen. 
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Fig. 16. Shows graphical interface using GUIDE 

First you need to configure axes, you do this by  double clicking on the graphic, this will 
show you an inspector on figure 17, you need to change nextplot from replace to replacechildren 
that means to remove all child objects when HandleVisibility property is set to an on function 
and then to reset figure NextPlot property to an add function. To set axes limits you need to 
change Xlimit from 0.20 to 0.24, and in our case, Ylimit from -1 to 1. 
 

 
Fig. 17. Shows configurations of axes using inspector 
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In our case, a slider is coupled to an edit text component so that: The edit text displays the 
current value of the slider. The user can enter a value into the edit text box and cause the 
slider to update to that value. Both components update the appropriate model parameters 
when activated by the user. Our slider is called AWGN (average white generator noise) and 
it is from 0 to 10 SNR. 
function complete_OpeningFcn(hObject, eventdata, handles, varargin) 
% Choose default command line output for example5 
handles.output = hObject; 
 clc 
% initalize error count and use edit1 object's userdata to store it. 
data.number_errors = 0; 
set(handles.edit1,'UserData',data) 
% Update handles structure 
guidata(hObject, handles); 
% --- Executes on slider movement. 
function slider1_Callback(hObject, eventdata, handles) 
set(handles.edit1,'String',... 
   num2str(get(hObject,'Value')));  
% --- Executes during object creation, after setting all properties. 
function slider1_CreateFcn(hObject, eventdata, handles) 
function edit1_Callback(hObject, eventdata, handles) 
val = str2double(get(hObject,'String')); 
% Determine whether val is a number between 0 and 10. 
if isnumeric(val) && length(val)==10 && ... 
   val >= get(handles.slider1,'min') && ... 
   val <= get(handles.slider1,'max') 
   set(handles.slider1,'Value',val); 
else 
% Retrieve and increment the error count. 
% Error count is in the edit text UserData,  
% so we already have its handle. 
   data = get(hObject,'UserData'); 
   data.number_errors = data.number_errors+1; 
% Save the changes. 
   set(hObject,'UserData',data);  
% Display new total. 
   set(hObject,'String',... 
   ['You have entered an invalid entry ',... 
    num2str(data.number_errors),' times.']); 
   % Restore focus to the edit text box after error 
   uicontrol(hObject) 
end 
% --- Executes during object creation, after setting all properties. 
function edit1_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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In our case, a slider is coupled to an edit text component so that: The edit text displays the 
current value of the slider. The user can enter a value into the edit text box and cause the 
slider to update to that value. Both components update the appropriate model parameters 
when activated by the user. Our slider is called AWGN (average white generator noise) and 
it is from 0 to 10 SNR. 
function complete_OpeningFcn(hObject, eventdata, handles, varargin) 
% Choose default command line output for example5 
handles.output = hObject; 
 clc 
% initalize error count and use edit1 object's userdata to store it. 
data.number_errors = 0; 
set(handles.edit1,'UserData',data) 
% Update handles structure 
guidata(hObject, handles); 
% --- Executes on slider movement. 
function slider1_Callback(hObject, eventdata, handles) 
set(handles.edit1,'String',... 
   num2str(get(hObject,'Value')));  
% --- Executes during object creation, after setting all properties. 
function slider1_CreateFcn(hObject, eventdata, handles) 
function edit1_Callback(hObject, eventdata, handles) 
val = str2double(get(hObject,'String')); 
% Determine whether val is a number between 0 and 10. 
if isnumeric(val) && length(val)==10 && ... 
   val >= get(handles.slider1,'min') && ... 
   val <= get(handles.slider1,'max') 
   set(handles.slider1,'Value',val); 
else 
% Retrieve and increment the error count. 
% Error count is in the edit text UserData,  
% so we already have its handle. 
   data = get(hObject,'UserData'); 
   data.number_errors = data.number_errors+1; 
% Save the changes. 
   set(hObject,'UserData',data);  
% Display new total. 
   set(hObject,'String',... 
   ['You have entered an invalid entry ',... 
    num2str(data.number_errors),' times.']); 
   % Restore focus to the edit text box after error 
   uicontrol(hObject) 
end 
% --- Executes during object creation, after setting all properties. 
function edit1_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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In the case of the pushbutton 1 that is called sine, and if it only shows sine signal and signal 
with noise, it needs to be programmed as follow 
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
 k =(0:9.0703e-005:5); 
 w=500*pi; 
 h=w.*k; 
 x = sin(h); 
 f=get(handles.slider1,'Value'); 
 y = awgn(x,f,'measured'); 
 D=crosscorr(x,y); 
 z=-20:1:20; 
  plot(handles.axes1,k,x) 
  plot(handles.axes2,k,y) 
  plot(handles.axes3,z,D) 
For programming, push button 2, called de-noise sine, this button performs all the 
processing method, which was described previously. It is necessary to write all this code 
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 
menu= get(handles.popupmenu1,'Value'); 
switch menu 
   case 1  %case 1: coiflet 5 
·% example3 code 
 k =(0:9.0703e-005:5); 
 w=500*pi; 
 h=w.*k; 
 x = sin(h); 
 f=get(handles.slider1,'Value'); 
 y = awgn(x,f,'measured'); 
wname = 'coif5'; lev = 10; %  wavelet that need to change! 
tree = wpdec(y,lev,wname); 
det1 = wpcoef(tree,2); 
sigma = median(abs(det1))/0.6745; 
alpha = 2; 
thr =wpbmpen(tree,sigma,alpha); 
keepapp = 1; 
xd = wpdencmp(tree,'s','nobest',thr,keepapp); 
D=crosscorr(x,xd); 
z=-20:1:20; 
  plot(handles.axes1,k,x) 
  plot(handles.axes2,k,y) 
  plot(handles.axes3,k,xd) 
     set(gca,'XLim',[ 0.2,  0.24], ... 
        'YLim',[-1 1]); 
  plot(handles.axes4,z,D) 
    case 2     %case2 Daubechies 10 
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·% example3 code 
    case 3     %Case 3: Daubechies 9 
·% example3 code 
End 
For programing push button 3, called de-noise audio, this button performs all processing 
method, which was described previously. It is necessary to write all this code 

  % --- Executes on button press in pushbutton3. 
function pushbutton3_Callback(hObject, eventdata, handles) 
menu= get(handles.popupmenu1,'Value'); 
switch menu 
   case 1                                                                               %case 1: Coiflet 5 
·% example4 code 
 k = 0:9.0703e-005:5; 
 w=500*pi; 
 h=w.*k; 
 [x,Fs,nbits]= wavread ('voice'); 
 f=get(handles.slider1,'Value'); 
 y = awgn(x,f,'measured'); 
 wavwrite(y,Fs,'noisyvoice') 
wname = 'coif5'; lev = 10; 
tree = wpdec(y,lev,wname); 
det1 = wpcoef(tree,2); 
sigma = median(abs(det1))/0.6745; 
alpha = 2; 
thr =wpbmpen(tree,sigma,alpha); 
keepapp = 1; 
xd = wpdencmp(tree,'s','nobest',thr,keepapp); 
D=crosscorr(x,xd); 
z=-20:1:20; 
 plot(handles.axes1,k,x)  
 plot(handles.axes2,k,y)  
 plot(handles.axes3,k,xd)      
 plot(handles.axes4,z,D) 
case 2     %case2 Daubechies 10 
·% example4 code 
    case 3     %Case 3: Daubechies 9 
·% example4 code 
end 
For programing push button 4 called exit 
% --- Executes on button press in pushbutton4. 
function pushbutton3_Callback(hObject, eventdata, handles) 
close all 
Figure 18 (left) shows AWGN 1, and it plots original signal, in this case sine, and signal with 
noise, cross correlation between them. Figure 18 (right) shows sine after de-noise and cross 
correlation between the original signal and the de-noised. 
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z=-20:1:20; 
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·% example3 code 
    case 3     %Case 3: Daubechies 9 
·% example3 code 
End 
For programing push button 3, called de-noise audio, this button performs all processing 
method, which was described previously. It is necessary to write all this code 

  % --- Executes on button press in pushbutton3. 
function pushbutton3_Callback(hObject, eventdata, handles) 
menu= get(handles.popupmenu1,'Value'); 
switch menu 
   case 1                                                                               %case 1: Coiflet 5 
·% example4 code 
 k = 0:9.0703e-005:5; 
 w=500*pi; 
 h=w.*k; 
 [x,Fs,nbits]= wavread ('voice'); 
 f=get(handles.slider1,'Value'); 
 y = awgn(x,f,'measured'); 
 wavwrite(y,Fs,'noisyvoice') 
wname = 'coif5'; lev = 10; 
tree = wpdec(y,lev,wname); 
det1 = wpcoef(tree,2); 
sigma = median(abs(det1))/0.6745; 
alpha = 2; 
thr =wpbmpen(tree,sigma,alpha); 
keepapp = 1; 
xd = wpdencmp(tree,'s','nobest',thr,keepapp); 
D=crosscorr(x,xd); 
z=-20:1:20; 
 plot(handles.axes1,k,x)  
 plot(handles.axes2,k,y)  
 plot(handles.axes3,k,xd)      
 plot(handles.axes4,z,D) 
case 2     %case2 Daubechies 10 
·% example4 code 
    case 3     %Case 3: Daubechies 9 
·% example4 code 
end 
For programing push button 4 called exit 
% --- Executes on button press in pushbutton4. 
function pushbutton3_Callback(hObject, eventdata, handles) 
close all 
Figure 18 (left) shows AWGN 1, and it plots original signal, in this case sine, and signal with 
noise, cross correlation between them. Figure 18 (right) shows sine after de-noise and cross 
correlation between the original signal and the de-noised. 
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Fig. 18. (up) AWGN at 1 SNR with a correlation of 0.7497 and (down) sine after de-noise 
with SNR of 10 and correlation of 0.997 
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Fig. 19. (up). AWGN at 10 SNR with a correlation of 0.9966 after de-noise using Daubechies 9 
and (down) AWGN at 10 SNR with a correlation of 0.9967 after de-noise using Daubechies 10 
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Fig. 18. (up) AWGN at 1 SNR with a correlation of 0.7497 and (down) sine after de-noise 
with SNR of 10 and correlation of 0.997 
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Fig. 19. (up). AWGN at 10 SNR with a correlation of 0.9966 after de-noise using Daubechies 9 
and (down) AWGN at 10 SNR with a correlation of 0.9967 after de-noise using Daubechies 10 
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Fig. 20. (up). AWGN at 10 SNR with a correlation of 0.9609 after de-noise using Coiflet 5 and 
(down) AWGN at 10 SNR with a correlation of 0.9606 after de-noise using Daubechies 9 
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Figure 19  shows de-noise of sine with noise using AWGN of 10, using Daubechies 9 and 10, 
this wavelets show a better performance that any others. Figure 20 shows behavior of Coiflet 
5 and Daubechies 9 using AWGN of 10 adding to audio signal. 
In this section, it was described how to build a graphical interface using MATLAB code that 
was developed to de-noised sine and audio signals. This interface helps to be able to visualize 
the results obtained throughout this chapter, in addition to make it accessible to the user. 

8. Conclusions 
We provide a practical approach in how to put into practice wavelets in noisy audio data to 
improve clarity and signal retrieval. Since there are no books that show the code for a 
graphical interface with audio processing using wavelets, this chapter presents MATLAB 
code to reduce the Gaussian white noise in periodic signals (sine function) and in audio 
signals (composed of several frequencies) using wavelet analysis. We compared different 
wavelet families: Symlets, Daubechies and Coiflets, and we used cross-correlation to 
determine the best fit between an original signal and the processed one. By using Coiflet 5, 
Daubechies 9 and 10 we obtained the best result because they have a higher correlation at 
zero. Our signal processing technique recovers signal with a correlation higher than 99%. In 
analysis for audio signal with added Gaussian white noise, while using the technique we 
obtained a recovered signal with a correlation of 95%. This analysis is very useful to help the 
reader understand the know how in removing noise from a signal by using wavelets. 
Therefore, when a signal shows a periodic signal extraction from noise, it will be 
satisfactory. The graphical interface presented in the last section was performed while using 
GUIDE this one gives the readers a guideline to develop their own projects in MATLAB. 

9. Acknowledges 
The authors would like to thank Dr. Karen Esmonde-White for her helpful review and 
comments of this chapter. AEVL would like to thanks to Fundacion Pablo Garcia for help 
and support. 

Apendix A: Five steps to a continuous Wavelet Transform 
Here are the five steps of an easy recipe for creating a Continuous Wavelet Transform 
(CWT), see Figure A: 
1. Take a wavelet and compare it to a section at the start of the original signal. 
2. Calculate a number C, that represents how closely correlated the wavelet is with this 

section of the signal. The larger the number C is in absolute value, the more the 
similarity appears. If the signal energy and the wavelet energy are equal to one, C may 
be interpreted as a correlation coefficient. Note that, in general, the signal energy does 
not equal one and the CWT coefficients are not directly interpretable as correlation 
coefficients. Therefore, the CWT coefficients are different when you compute the CWT 
for the same signal by using different wavelets. 

3. Shift the wavelet to the right and repeat steps 1 and 2 until you have covered the whole 
signal. 

4. Scale (stretch) the wavelet and repeat steps 1 through 3. 
5. Repeat steps 1 through 4 for all scales. 
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Fig. 20. (up). AWGN at 10 SNR with a correlation of 0.9609 after de-noise using Coiflet 5 and 
(down) AWGN at 10 SNR with a correlation of 0.9606 after de-noise using Daubechies 9 
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GUIDE this one gives the readers a guideline to develop their own projects in MATLAB. 
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Apendix A: Five steps to a continuous Wavelet Transform 
Here are the five steps of an easy recipe for creating a Continuous Wavelet Transform 
(CWT), see Figure A: 
1. Take a wavelet and compare it to a section at the start of the original signal. 
2. Calculate a number C, that represents how closely correlated the wavelet is with this 

section of the signal. The larger the number C is in absolute value, the more the 
similarity appears. If the signal energy and the wavelet energy are equal to one, C may 
be interpreted as a correlation coefficient. Note that, in general, the signal energy does 
not equal one and the CWT coefficients are not directly interpretable as correlation 
coefficients. Therefore, the CWT coefficients are different when you compute the CWT 
for the same signal by using different wavelets. 

3. Shift the wavelet to the right and repeat steps 1 and 2 until you have covered the whole 
signal. 

4. Scale (stretch) the wavelet and repeat steps 1 through 3. 
5. Repeat steps 1 through 4 for all scales. 
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Fig. A. Shows recipe for creating a CWT 

Appendix B: User Interface MATLAB code 
In this appendix, it shows the complete code to develop the GUI using the GUIDE of 
MATLAB, and develops it as an example using a sine wave signal, which is added a certain 
level of noise and signal is shown graphically also recovered as the ratio correlation between 
the original signal and recovered signal. 

function varargout = complete(varargin) 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @complete_OpeningFcn, ... 
                   'gui_OutputFcn',  @complete_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
% --- Executes just before complete is made visible. 
function complete_OpeningFcn(hObject, eventdata, handles, varargin) 
handles.output = hObject; 
clc 
% Initalize error count and use edittext1 object's userdata to store it. 
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data.number_errors = 0; 
set(handles.edit1,'UserData',data) 
% Update handles structure 
guidata(hObject, handles); 
% --- Outputs from this function are returned to the command line. 
function varargout = complete_OutputFcn(hObject, eventdata, handles)  
% Get default command line output from handles structure 
varargout{1} = handles.output; 
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
 k =(0:9.0703e-005:5); 
 w=500*pi; 
 h=w.*k; 
 x = sin(h); 
 f=get(handles.slider1,'Value'); 
 y = awgn(x,f,'measured'); 
 D=crosscorr(x,y); 
 z=-20:1:20; 
 plot(handles.axes1,k,x) 
 plot(handles.axes2,k,y) 
 plot(handles.axes4,z,D) 
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 
menu= get(handles.popupmenu1,'Value'); 
switch menu 
   case 1                                                                               %case 1: Coiflet 5 
 k =(0:9.0703e-005:5); 
 w=500*pi; 
 h=w.*k; 
 x = sin(h); 
 f=get(handles.slider1,'Value'); 
 y = awgn(x,f,'measured'); 
 wname = 'coif5'; lev = 10; 
 tree = wpdec(y,lev,wname);  
 det1 = wpcoef(tree,2); 
 sigma = median(abs(det1))/0.6745; 
 alpha = 2; 
 thr =wpbmpen(tree,sigma,alpha); 
 keepapp = 1; 
 xd = wpdencmp(tree,'s','nobest',thr,keepapp); 
 D=crosscorr(x,xd); 
 z=-20:1:20; 
  plot(handles.axes1,k,x)  
  plot(handles.axes2,k,y)  
  plot(handles.axes3,k,xd) 
     set(gca,'XLim',[ 0.2,  0.24], ... 
        'YLim',[-1 1]); 
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Appendix B: User Interface MATLAB code 
In this appendix, it shows the complete code to develop the GUI using the GUIDE of 
MATLAB, and develops it as an example using a sine wave signal, which is added a certain 
level of noise and signal is shown graphically also recovered as the ratio correlation between 
the original signal and recovered signal. 

function varargout = complete(varargin) 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @complete_OpeningFcn, ... 
                   'gui_OutputFcn',  @complete_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
% --- Executes just before complete is made visible. 
function complete_OpeningFcn(hObject, eventdata, handles, varargin) 
handles.output = hObject; 
clc 
% Initalize error count and use edittext1 object's userdata to store it. 
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data.number_errors = 0; 
set(handles.edit1,'UserData',data) 
% Update handles structure 
guidata(hObject, handles); 
% --- Outputs from this function are returned to the command line. 
function varargout = complete_OutputFcn(hObject, eventdata, handles)  
% Get default command line output from handles structure 
varargout{1} = handles.output; 
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
 k =(0:9.0703e-005:5); 
 w=500*pi; 
 h=w.*k; 
 x = sin(h); 
 f=get(handles.slider1,'Value'); 
 y = awgn(x,f,'measured'); 
 D=crosscorr(x,y); 
 z=-20:1:20; 
 plot(handles.axes1,k,x) 
 plot(handles.axes2,k,y) 
 plot(handles.axes4,z,D) 
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 
menu= get(handles.popupmenu1,'Value'); 
switch menu 
   case 1                                                                               %case 1: Coiflet 5 
 k =(0:9.0703e-005:5); 
 w=500*pi; 
 h=w.*k; 
 x = sin(h); 
 f=get(handles.slider1,'Value'); 
 y = awgn(x,f,'measured'); 
 wname = 'coif5'; lev = 10; 
 tree = wpdec(y,lev,wname);  
 det1 = wpcoef(tree,2); 
 sigma = median(abs(det1))/0.6745; 
 alpha = 2; 
 thr =wpbmpen(tree,sigma,alpha); 
 keepapp = 1; 
 xd = wpdencmp(tree,'s','nobest',thr,keepapp); 
 D=crosscorr(x,xd); 
 z=-20:1:20; 
  plot(handles.axes1,k,x)  
  plot(handles.axes2,k,y)  
  plot(handles.axes3,k,xd) 
     set(gca,'XLim',[ 0.2,  0.24], ... 
        'YLim',[-1 1]); 
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  plot(handles.axes4,z,D) 
    case 2                                                                              %Case2 Daubechies 10 
 k =(0:9.0703e-005:5); 
 w=500*pi; 
 h=w.*k; 
 x = sin(h); 
 f=get(handles.slider1,'Value'); 
 y = awgn(x,f,'measured'); 
 wname = 'db10'; lev = 10; 
 tree = wpdec(y,lev,wname);  
 det1 = wpcoef(tree,2); 
 sigma = median(abs(det1))/0.6745;  
 alpha = 2; 
 thr =wpbmpen(tree,sigma,alpha);  
 keepapp = 1; 
 xd = wpdencmp(tree,'s','nobest',thr,keepapp); 
 D=crosscorr(x,xd); 
 z=-20:1:20; 
  plot(handles.axes1,k,x) 
  plot(handles.axes2,k,y) 
  plot(handles.axes3,k,xd) 
       set(gca,'XLim',[ 0.2,  0.24], ... 
        'YLim',[-1.1 1.1]); 
  plot(handles.axes4,z,D) 
    case 3                                                                              %Case 3: Daubechies 9 
 k =(0:9.0703e-005:5); 
 w=500*pi; 
 h=w.*k; 
 x = sin(h); 
 f=get(handles.slider1,'Value'); 
 y = awgn(x,f,'measured'); 
 wname = 'db9'; lev = 10; 
 tree = wpdec(y,lev,wname); 
 det1 = wpcoef(tree,2); 
 sigma = median(abs(det1))/0.6745; 
 alpha = 2; 
 thr =wpbmpen(tree,sigma,alpha);  
 keepapp = 1; 
 xd = wpdencmp(tree,'s','nobest',thr,keepapp); 
 D=crosscorr(x,xd); 
 z=-20:1:20; 
  plot(handles.axes1,k,x) 
  plot(handles.axes2,k,y) 
  plot(handles.axes3,k,xd) 
  plot(handles.axes4,z,D) 
end     
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% --- Executes on button press in pushbutton3. 
function pushbutton3_Callback(hObject, eventdata, handles) 
menu= get(handles.popupmenu1,'Value'); 
switch menu 
   case 1                                                                               %case 1: coiflet 5 
 k = 0:9.0703e-005:5; 
 w=500*pi; 
 h=w.*k; 
 [x,Fs,nbits]= wavread ('voice'); 
 f=gethandles.slider1,'Value'); 
 y = awgn(x,f,'measured'); 
 wavwrite(y,Fs,'noisyvoice')  
 wname = 'coif5'; lev = 10; 
 tree = wpdec(y,lev,wname); 
 det1 = wpcoef(tree,2); 
 sigma = median(abs(det1))/0.6745; 
 alpha = 2; 
 thr =wpbmpen(tree,sigma,alpha); 
 keepapp = 1; 
 xd = wpdencmp(tree,'s','nobest',thr,keepapp); 
 D=crosscorr(x,xd); 
 z=-20:1:20; 
  plot(handles.axes1,k,x)  
  plot(handles.axes2,k,y)  
  plot(handles.axes3,k,xd)      
  plot(handles.axes4,z,D) 
    case 2                                                                              %case 2 Daubechies 10 
 k = 0:9.0703e-005:5; 
 w=500*pi; 
 h=w.*k; 
 [x,Fs,nbits]= wavread ('voice'); 
 f=get(handles.slider1,'Value'); 
 y = awgn(x,f,'measured'); 
 wavwrite(y,Fs,'noisyvoice') 
 wname = 'db10'; lev = 10; 
 tree = wpdec(y,lev,wname); 
 det1 = wpcoef(tree,2); 
 sigma = median(abs(det1))/0.6745; 
 alpha = 2; 
 thr =wpbmpen(tree,sigma,alpha); 
 keepapp = 1; 
 xd = wpdencmp(tree,'s','nobest',thr,keepapp); 
 D=crosscorr(x,xd); 
 z=-20:1:20; 
  plot(handles.axes1,k,x)  
  plot(handles.axes2,k,y)  
  plot(handles.axes3,k,xd)      
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  plot(handles.axes4,z,D) 
    case 2                                                                              %Case2 Daubechies 10 
 k =(0:9.0703e-005:5); 
 w=500*pi; 
 h=w.*k; 
 x = sin(h); 
 f=get(handles.slider1,'Value'); 
 y = awgn(x,f,'measured'); 
 wname = 'db10'; lev = 10; 
 tree = wpdec(y,lev,wname);  
 det1 = wpcoef(tree,2); 
 sigma = median(abs(det1))/0.6745;  
 alpha = 2; 
 thr =wpbmpen(tree,sigma,alpha);  
 keepapp = 1; 
 xd = wpdencmp(tree,'s','nobest',thr,keepapp); 
 D=crosscorr(x,xd); 
 z=-20:1:20; 
  plot(handles.axes1,k,x) 
  plot(handles.axes2,k,y) 
  plot(handles.axes3,k,xd) 
       set(gca,'XLim',[ 0.2,  0.24], ... 
        'YLim',[-1.1 1.1]); 
  plot(handles.axes4,z,D) 
    case 3                                                                              %Case 3: Daubechies 9 
 k =(0:9.0703e-005:5); 
 w=500*pi; 
 h=w.*k; 
 x = sin(h); 
 f=get(handles.slider1,'Value'); 
 y = awgn(x,f,'measured'); 
 wname = 'db9'; lev = 10; 
 tree = wpdec(y,lev,wname); 
 det1 = wpcoef(tree,2); 
 sigma = median(abs(det1))/0.6745; 
 alpha = 2; 
 thr =wpbmpen(tree,sigma,alpha);  
 keepapp = 1; 
 xd = wpdencmp(tree,'s','nobest',thr,keepapp); 
 D=crosscorr(x,xd); 
 z=-20:1:20; 
  plot(handles.axes1,k,x) 
  plot(handles.axes2,k,y) 
  plot(handles.axes3,k,xd) 
  plot(handles.axes4,z,D) 
end     
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% --- Executes on button press in pushbutton3. 
function pushbutton3_Callback(hObject, eventdata, handles) 
menu= get(handles.popupmenu1,'Value'); 
switch menu 
   case 1                                                                               %case 1: coiflet 5 
 k = 0:9.0703e-005:5; 
 w=500*pi; 
 h=w.*k; 
 [x,Fs,nbits]= wavread ('voice'); 
 f=gethandles.slider1,'Value'); 
 y = awgn(x,f,'measured'); 
 wavwrite(y,Fs,'noisyvoice')  
 wname = 'coif5'; lev = 10; 
 tree = wpdec(y,lev,wname); 
 det1 = wpcoef(tree,2); 
 sigma = median(abs(det1))/0.6745; 
 alpha = 2; 
 thr =wpbmpen(tree,sigma,alpha); 
 keepapp = 1; 
 xd = wpdencmp(tree,'s','nobest',thr,keepapp); 
 D=crosscorr(x,xd); 
 z=-20:1:20; 
  plot(handles.axes1,k,x)  
  plot(handles.axes2,k,y)  
  plot(handles.axes3,k,xd)      
  plot(handles.axes4,z,D) 
    case 2                                                                              %case 2 Daubechies 10 
 k = 0:9.0703e-005:5; 
 w=500*pi; 
 h=w.*k; 
 [x,Fs,nbits]= wavread ('voice'); 
 f=get(handles.slider1,'Value'); 
 y = awgn(x,f,'measured'); 
 wavwrite(y,Fs,'noisyvoice') 
 wname = 'db10'; lev = 10; 
 tree = wpdec(y,lev,wname); 
 det1 = wpcoef(tree,2); 
 sigma = median(abs(det1))/0.6745; 
 alpha = 2; 
 thr =wpbmpen(tree,sigma,alpha); 
 keepapp = 1; 
 xd = wpdencmp(tree,'s','nobest',thr,keepapp); 
 D=crosscorr(x,xd); 
 z=-20:1:20; 
  plot(handles.axes1,k,x)  
  plot(handles.axes2,k,y)  
  plot(handles.axes3,k,xd)      
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  plot(handles.axes4,z,D) 
    case 3                                                                              %Case 3: Daubechies 9 
 k = 0:9.0703e-005:5; 
 w=500*pi; 
 h=w.*k; 
 [x,Fs,nbits]= wavread ('voice'); 
 f=get(handles.slider1,'Value'); 
 y = awgn(x,f,'measured'); 
 wavwrite(y,Fs,'noisyvoice') 
 wname = 'db9'; lev = 10; 
 tree = wpdec(y,lev,wname); 
 det1 = wpcoef(tree,2); 
 sigma = median(abs(det1))/0.6745; 
 alpha = 2; 
 thr =wpbmpen(tree,sigma,alpha); 
 keepapp = 1; 
 xd = wpdencmp(tree,'s','nobest',thr,keepapp); 
 D=crosscorr(x,xd); 
 z=-20:1:20; 
  plot(handles.axes1,k,x)  
  plot(handles.axes2,k,y)  
  plot(handles.axes3,k,xd)      
  plot(handles.axes4,z,D) 
end 
% --- Executes on slider movement. 
function slider1_Callback(hObject, eventdata, handles) 
set(handles.edit1,'String',... 
   num2str(get(hObject,'Value'))); 
% --- Executes during object creation, after setting all properties. 
function slider1_CreateFcn(hObject, eventdata, handles) 
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
function edit1_Callback(hObject, eventdata, handles) 
val = str2double(get(hObject,'String')); 
% Determine whether val is a number between 0 and 1. 
if isnumeric(val) && length(val)==10 && ... 
   val >= get(handles.slider1,'min') && ... 
   val <= get(handles.slider1,'max') 
   set(handles.slider1,'Value',val); 
else 
% Retrieve and increment the error count. 
% Error count is in the edit text UserData,  
% so we already have its handle. 
   data = get(hObject,'UserData'); 
   data.number_errors = data.number_errors+10; 
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% Save the changes. 
   set(hObject,'UserData',data);  
% Display new total. 
   set(hObject,'String',... 
   ['You have entered an invalid entry ',... 
    num2str(data.number_errors),' times.']); 
   % Restore focus to the edit text box after error 
   uicontrol(hObject) 
end 
% --- Executes during object creation, after setting all properties. 
function edit1_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
% --- Executes on selection change in popupmenu1. 
function popupmenu1_Callback(hObject, eventdata, handles) 
% --- Executes during object creation, after setting all properties. 
function popupmenu1_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
% --- Executes on button press in pushbutton4. 
function pushbutton4_Callback(hObject, eventdata, handles) 
close all 

10. References 
Abbate A, Decusatis C. M, Das P. K. (2002). Wavelets and subbands: fundamentals and 

applications, ISBN 0-8176-4136-X, Birkhauser, Boston, USA. 
Bahoura M &  Rouat J, (2006). Wavelet speech enhancement based on time–scale adaptation, 

Speech Communication, Vol. 48, No. 12, pp: 1620-1637. ISSN: 0167-6393. 
Davis, G, M, (2002). ‘Noise Reduction in Speech Applications,  CRC Press LLC, ISBN 0-8493-

0949-2, USA. 
Dong E & Pu X. (2008). Speech denoising based on perceptual weighting filter, Proceedings 

of 9th IEE International Conference on Signal Processing, pp: 705-708, October 26-
29, Beijing. Print ISBN: 978-1-4244-2178-7. 

Gold, B. & Morgan, N. (1999) Speech and audio signal processing: processing and 
perception of apeech, and music, John Wiley & Sons, INC., ISBN: 0-471-35154-7, 
New York, USA. 

Johnson M. T, Yuan X and  Ren Y, (2007). Speech Signal Enhancement through Adaptive 
Wavelet Thresholding, Speech Communications, Vol. 49, No. 2, pp: 123-133, ISSN: 
0167-6393. 

Képesia M & Weruaga L. (2006). Adaptive chirp-based time–frequency analysis of speech 
signals, Speech Communication, Vol. 48, No. 5, pp: 474-492. ISSN: 0167-6393. 



 
Engineering Education and Research Using MATLAB 

 

52 

  plot(handles.axes4,z,D) 
    case 3                                                                              %Case 3: Daubechies 9 
 k = 0:9.0703e-005:5; 
 w=500*pi; 
 h=w.*k; 
 [x,Fs,nbits]= wavread ('voice'); 
 f=get(handles.slider1,'Value'); 
 y = awgn(x,f,'measured'); 
 wavwrite(y,Fs,'noisyvoice') 
 wname = 'db9'; lev = 10; 
 tree = wpdec(y,lev,wname); 
 det1 = wpcoef(tree,2); 
 sigma = median(abs(det1))/0.6745; 
 alpha = 2; 
 thr =wpbmpen(tree,sigma,alpha); 
 keepapp = 1; 
 xd = wpdencmp(tree,'s','nobest',thr,keepapp); 
 D=crosscorr(x,xd); 
 z=-20:1:20; 
  plot(handles.axes1,k,x)  
  plot(handles.axes2,k,y)  
  plot(handles.axes3,k,xd)      
  plot(handles.axes4,z,D) 
end 
% --- Executes on slider movement. 
function slider1_Callback(hObject, eventdata, handles) 
set(handles.edit1,'String',... 
   num2str(get(hObject,'Value'))); 
% --- Executes during object creation, after setting all properties. 
function slider1_CreateFcn(hObject, eventdata, handles) 
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
function edit1_Callback(hObject, eventdata, handles) 
val = str2double(get(hObject,'String')); 
% Determine whether val is a number between 0 and 1. 
if isnumeric(val) && length(val)==10 && ... 
   val >= get(handles.slider1,'min') && ... 
   val <= get(handles.slider1,'max') 
   set(handles.slider1,'Value',val); 
else 
% Retrieve and increment the error count. 
% Error count is in the edit text UserData,  
% so we already have its handle. 
   data = get(hObject,'UserData'); 
   data.number_errors = data.number_errors+10; 
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% Save the changes. 
   set(hObject,'UserData',data);  
% Display new total. 
   set(hObject,'String',... 
   ['You have entered an invalid entry ',... 
    num2str(data.number_errors),' times.']); 
   % Restore focus to the edit text box after error 
   uicontrol(hObject) 
end 
% --- Executes during object creation, after setting all properties. 
function edit1_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
% --- Executes on selection change in popupmenu1. 
function popupmenu1_Callback(hObject, eventdata, handles) 
% --- Executes during object creation, after setting all properties. 
function popupmenu1_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
% --- Executes on button press in pushbutton4. 
function pushbutton4_Callback(hObject, eventdata, handles) 
close all 
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1. Introduction 
The literature about real-time systems presents digital control or computer controlled 
systems as one of its most important practical applications. However, it is very difficult to 
find in these textbooks real-time control aspects (Gambier, 2005). It seems to be more natural 
that these applications should be treated as part of digital control courses. In spite of that, 
control system literature rarely includes extensively the real-time subject and it does 
normally not pay much attention to real-time implementation aspects. Nevertheless, in 
practice there is the requirement for the design of control algorithms which run in the 
specified time without detriment to quality and functionality.  
Thanks to the improvement in some software products, new control algorithms can be 
designed and tested in real life practical applications very quickly with excellent quality, 
giving a new optic to the control engineering courses. Software like Matlab/Simulink with 
its RTW (Real Time Workshop) and the RTWT (Real Time Windows Target) give us the 
opportunity to work from an easy interface and produce good results, while one deals with 
time-critical applications. 
This chapter attempts to give a guide for the implementation of real-time control systems, 
using the RTWT toolbox, as a practical tool for students in control engineering. A digital PID 
controller will be tested in a real-life application (Hernandez et al., 2011), in order to present 
a description of the implementation procedure. 
The outline of the paper is as follows: a brief introduction to the application problem is 
depicted in the next section. Definitions and characteristics of real-time systems are 
described in Section 3. Section 4 treats the implementation of real-time controllers using 
RTWT in Matlab®. Section 5 is devoted to the configuration of RTWT for our specific 
application as an example, including some experimental results. Final conclusions are 
drawn in the last section. 

2. Application description: Lungs function test 
Non-invasive lung function tests are broadly used for assessing respiratory mechanics 
(Northrop, 2002; Oostveen et al., 2003). Contrary to the forced maneuvers from patient side 
and special training for the technical medical staff necessary in spirometry and in body 
plethysmography (Pellegrino et al., 2005), the technique of superimposing air pressure 
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The literature about real-time systems presents digital control or computer controlled 
systems as one of its most important practical applications. However, it is very difficult to 
find in these textbooks real-time control aspects (Gambier, 2005). It seems to be more natural 
that these applications should be treated as part of digital control courses. In spite of that, 
control system literature rarely includes extensively the real-time subject and it does 
normally not pay much attention to real-time implementation aspects. Nevertheless, in 
practice there is the requirement for the design of control algorithms which run in the 
specified time without detriment to quality and functionality.  
Thanks to the improvement in some software products, new control algorithms can be 
designed and tested in real life practical applications very quickly with excellent quality, 
giving a new optic to the control engineering courses. Software like Matlab/Simulink with 
its RTW (Real Time Workshop) and the RTWT (Real Time Windows Target) give us the 
opportunity to work from an easy interface and produce good results, while one deals with 
time-critical applications. 
This chapter attempts to give a guide for the implementation of real-time control systems, 
using the RTWT toolbox, as a practical tool for students in control engineering. A digital PID 
controller will be tested in a real-life application (Hernandez et al., 2011), in order to present 
a description of the implementation procedure. 
The outline of the paper is as follows: a brief introduction to the application problem is 
depicted in the next section. Definitions and characteristics of real-time systems are 
described in Section 3. Section 4 treats the implementation of real-time controllers using 
RTWT in Matlab®. Section 5 is devoted to the configuration of RTWT for our specific 
application as an example, including some experimental results. Final conclusions are 
drawn in the last section. 

2. Application description: Lungs function test 
Non-invasive lung function tests are broadly used for assessing respiratory mechanics 
(Northrop, 2002; Oostveen et al., 2003). Contrary to the forced maneuvers from patient side 
and special training for the technical medical staff necessary in spirometry and in body 
plethysmography (Pellegrino et al., 2005), the technique of superimposing air pressure 
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oscillations is simple and requires minimal cooperation from the patient, during tidal 
breathing (Oostveen et al., 2003). Among the air pressure oscillation techniques for lung 
function testing, the most popular one is that of Forced Oscillation Technique (FOT). FOT 
uses a multisine signal to excite the respiratory mechanical properties over a wide range of 
frequencies, usually between 4-48Hz (Oostveen et al., 2003).  
Using measurements of air pressure and air flow, it is possible to extract information 
regarding the human respiratory input impedance. However this is a linear approximation 
of a nonlinear system, hence the output will depend on the input’s amplitude and frequency 
(Schoukens & Pintelon, 2001). It is therefore important to ensure that the desired signal to be 
applied at the patient’s mouth will be delivered by the lung function testing device, without 
introducing distortions and nonlinear effects. Hence, a closed loop control system is 
necessary, to continuously monitor and correct the errors between the desired input signal 
and the one delivered by the device at the patient’s mouth. 
In practice, in order to send a sinusoidal signal of 50 Hz it is necessary to have a sample rate 
of at least 500 Hz, which means 10 samples per sinusoid period. The corresponding 
sampling time is 0.002 seconds, which can be delivered by the DAQcard 6024E used in this 
application. In this particular example, it is not possible to work with Matlab running in 
normal operation, because the delay for calculations in the closed loop is about 14ms, much  
higher than the desired sample rate. A solution to overcome this limitation consists in using 
RTWT to assign some resources of the system exclusively for this task, ensuring the desired 
sampling time. 

3. Definitions and characteristics: Real-time systems  
Nowadays, thanks to the computational and graphical power of modern computers, more 
flexible control systems including higher-level functions and advanced algorithms can be 
implemented successfully in real systems. Furthermore, most current complex control 
systems could not be implemented without the application of digital hardware; moreover 
these systems now contain not only physical components but also algorithms, which must 
be programmed, i.e. software is now included in the control loop. This leads to new aspects 
to take into account by designing control systems. 
When one builds a control algorithm in any programming language, one normally assumes 
that sampling is uniform, periodic and synchronous. However, that is not realistic since the 
control algorithm also consumes some time producing a control or feedback delay (control 
or feedback latency), i.e. a delay between a sampling instant and the instant at which a 
control-signal value is applied to the actuator. Also the computational time of control 
algorithms can change from one sampling instant to other (e.g. hybrid controller with 
controller switching mechanism, event based controllers, adaptive controllers with on-line 
parameter update, etc.). This variation in the delay is called control jitter (according to the 
IEEE, jitter is “the time-related abrupt, spurious variation in the duration of any specified 
related interval”) (Gambier, 2005) 
It is important to clarify also some other aspects about the meaning of ‘real-time’, although it 
is a vast field and therefore a complete discussion about the topic is outside the scope of this 
document. Fast computing aims at getting the results as quickly as possible, while real-time 
computing aims at getting the results at a prescribed point of time within defined time 
tolerances. This idea explains how real-time is not just for fast systems, but for any control 
loop where a task must be achieved in a specific time. 
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4. Implementation of real-time controllers using RTWT1 
4.1 Overview on RTWT 
Real-Time Windows Target™ rapid prototyping software is a PC solution for prototyping 
and testing real-time systems. Real-Time Windows Target software uses a single computer 
as a host and target. On this computer, you use the MATLAB® environment, Simulink® 
software, and Stateflow® software (optional) to create models using Simulink blocks and 
Stateflow diagrams.  
After creating a model and simulating it using Simulink software in normal mode, you can 
generate executable code using RTW and your C/C++ compiler. Then you can run your 
application in real time with Simulink in external mode. 
Integration between Simulink external mode and Real-Time Windows Target software 
allows you to use your Simulink model as a graphical user interface for 
• Signal visualization — Use the same Simulink Scope blocks that you use to visualize 

signals during a non-real-time simulation to visualize signals while running a real-time 
application. 

• Parameter tuning — Use the Block Parameter dialog boxes to change parameters in your 
application while it is running in real time. 

Typical uses for Real-Time Windows Target applications include 
• Real-time control — Create a prototype of automotive, computer peripheral, and 

instrumentation control systems. 
• Real-time hardware-in-the-loop simulation — Create a prototype of controllers connected to 

a physical plant. For example, the physical plant could be an automotive engine. Create 
a prototype of a plant connected to an actual controller. For example, the prototyped 
plant could be an aircraft engine. 

• Education — Teach concepts and procedures for modelling, simulating, testing real-time 
systems, and iterating designs 

4.2 Real time kernel 
Real-Time Windows Target software uses a small real-time kernel to ensure a deterministic 
sampling rate in the application. The real-time kernel runs at CPU ring zero (privileged or 
kernel mode) and uses the PC clock as its primary source of time. Some important aspects 
regarding the kernel operation includes: 
• Timer interrupt — The kernel intercepts the interrupt from the PC clock before the 

Windows® operating system receives it. The kernel then uses the interrupt to trigger the 
execution of the compiled model. As a result, the kernel is able to give the real-time 
application the highest priority available. To achieve precise sampling, the kernel 
reprograms the PC clock to a higher frequency. Because the PC clock is also the primary 
source of time for the Windows operating system, the kernel sends a timer interrupt to 
the operating system at the original interrupt rate. 

• Scheduler — RTWT lets you to work with a single sample rate or with 
multiple/different sampling rates in your model. Each sampling rate is defined like a 
task and is clocked by a simple scheduler that runs the executable. The maximum 

                                                 
1 Parts of the text has been subtracted from the “Real-Time Windows Target User’s Guide”, Copyright 
1999 by The MathWorks, Inc. http://www.mathworks.com/products/rtwt/ 
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oscillations is simple and requires minimal cooperation from the patient, during tidal 
breathing (Oostveen et al., 2003). Among the air pressure oscillation techniques for lung 
function testing, the most popular one is that of Forced Oscillation Technique (FOT). FOT 
uses a multisine signal to excite the respiratory mechanical properties over a wide range of 
frequencies, usually between 4-48Hz (Oostveen et al., 2003).  
Using measurements of air pressure and air flow, it is possible to extract information 
regarding the human respiratory input impedance. However this is a linear approximation 
of a nonlinear system, hence the output will depend on the input’s amplitude and frequency 
(Schoukens & Pintelon, 2001). It is therefore important to ensure that the desired signal to be 
applied at the patient’s mouth will be delivered by the lung function testing device, without 
introducing distortions and nonlinear effects. Hence, a closed loop control system is 
necessary, to continuously monitor and correct the errors between the desired input signal 
and the one delivered by the device at the patient’s mouth. 
In practice, in order to send a sinusoidal signal of 50 Hz it is necessary to have a sample rate 
of at least 500 Hz, which means 10 samples per sinusoid period. The corresponding 
sampling time is 0.002 seconds, which can be delivered by the DAQcard 6024E used in this 
application. In this particular example, it is not possible to work with Matlab running in 
normal operation, because the delay for calculations in the closed loop is about 14ms, much  
higher than the desired sample rate. A solution to overcome this limitation consists in using 
RTWT to assign some resources of the system exclusively for this task, ensuring the desired 
sampling time. 

3. Definitions and characteristics: Real-time systems  
Nowadays, thanks to the computational and graphical power of modern computers, more 
flexible control systems including higher-level functions and advanced algorithms can be 
implemented successfully in real systems. Furthermore, most current complex control 
systems could not be implemented without the application of digital hardware; moreover 
these systems now contain not only physical components but also algorithms, which must 
be programmed, i.e. software is now included in the control loop. This leads to new aspects 
to take into account by designing control systems. 
When one builds a control algorithm in any programming language, one normally assumes 
that sampling is uniform, periodic and synchronous. However, that is not realistic since the 
control algorithm also consumes some time producing a control or feedback delay (control 
or feedback latency), i.e. a delay between a sampling instant and the instant at which a 
control-signal value is applied to the actuator. Also the computational time of control 
algorithms can change from one sampling instant to other (e.g. hybrid controller with 
controller switching mechanism, event based controllers, adaptive controllers with on-line 
parameter update, etc.). This variation in the delay is called control jitter (according to the 
IEEE, jitter is “the time-related abrupt, spurious variation in the duration of any specified 
related interval”) (Gambier, 2005) 
It is important to clarify also some other aspects about the meaning of ‘real-time’, although it 
is a vast field and therefore a complete discussion about the topic is outside the scope of this 
document. Fast computing aims at getting the results as quickly as possible, while real-time 
computing aims at getting the results at a prescribed point of time within defined time 
tolerances. This idea explains how real-time is not just for fast systems, but for any control 
loop where a task must be achieved in a specific time. 
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4. Implementation of real-time controllers using RTWT1 
4.1 Overview on RTWT 
Real-Time Windows Target™ rapid prototyping software is a PC solution for prototyping 
and testing real-time systems. Real-Time Windows Target software uses a single computer 
as a host and target. On this computer, you use the MATLAB® environment, Simulink® 
software, and Stateflow® software (optional) to create models using Simulink blocks and 
Stateflow diagrams.  
After creating a model and simulating it using Simulink software in normal mode, you can 
generate executable code using RTW and your C/C++ compiler. Then you can run your 
application in real time with Simulink in external mode. 
Integration between Simulink external mode and Real-Time Windows Target software 
allows you to use your Simulink model as a graphical user interface for 
• Signal visualization — Use the same Simulink Scope blocks that you use to visualize 

signals during a non-real-time simulation to visualize signals while running a real-time 
application. 

• Parameter tuning — Use the Block Parameter dialog boxes to change parameters in your 
application while it is running in real time. 

Typical uses for Real-Time Windows Target applications include 
• Real-time control — Create a prototype of automotive, computer peripheral, and 

instrumentation control systems. 
• Real-time hardware-in-the-loop simulation — Create a prototype of controllers connected to 

a physical plant. For example, the physical plant could be an automotive engine. Create 
a prototype of a plant connected to an actual controller. For example, the prototyped 
plant could be an aircraft engine. 

• Education — Teach concepts and procedures for modelling, simulating, testing real-time 
systems, and iterating designs 

4.2 Real time kernel 
Real-Time Windows Target software uses a small real-time kernel to ensure a deterministic 
sampling rate in the application. The real-time kernel runs at CPU ring zero (privileged or 
kernel mode) and uses the PC clock as its primary source of time. Some important aspects 
regarding the kernel operation includes: 
• Timer interrupt — The kernel intercepts the interrupt from the PC clock before the 

Windows® operating system receives it. The kernel then uses the interrupt to trigger the 
execution of the compiled model. As a result, the kernel is able to give the real-time 
application the highest priority available. To achieve precise sampling, the kernel 
reprograms the PC clock to a higher frequency. Because the PC clock is also the primary 
source of time for the Windows operating system, the kernel sends a timer interrupt to 
the operating system at the original interrupt rate. 

• Scheduler — RTWT lets you to work with a single sample rate or with 
multiple/different sampling rates in your model. Each sampling rate is defined like a 
task and is clocked by a simple scheduler that runs the executable. The maximum 

                                                 
1 Parts of the text has been subtracted from the “Real-Time Windows Target User’s Guide”, Copyright 
1999 by The MathWorks, Inc. http://www.mathworks.com/products/rtwt/ 
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number of tasks is 32, and faster tasks have higher priorities than slower tasks. For 
example, a faster task can interrupt a slower task. 

• Communication with hardware — The kernel interfaces and communicates with I/O 
hardware using I/O driver blocks, and it checks for proper installation of the I/O 
board. If the board has been properly installed, the drivers allow your real-time 
application to run.  

• Simulink external mode — Communication between Simulink software and the real-time 
application is through the Simulink external mode interface module. This module talks 
directly to the real-time kernel, and is used to start the real-time application, change 
parameters, and retrieve scope data. 
Opening a dialog box for a source block causes simulation to pause. While simulation is 
paused, you can edit the parameter values. You must close the dialog box to have the 
changes take effect and allow simulation to continue. 

4.3 System concepts 
Non-real time simulation 
When you run your Simulink model using normal mode, Simulink software uses a computed 
time vector to step your model. After the outputs are computed for a given time value, the 
Simulink software immediately repeats the computations for the next time value. This 
process is repeated until it reaches the stop time. 
Because this computed time vector is not connected to a hardware clock, the outputs are 
calculated in non-real-time as fast as your computer can run. The time to run a simulation 
can differ significantly from real time.  
Real time execution 
For real-time execution on your PC, you must use Simulink external mode, Real-Time 
Workshop code generation software, Real-Time Windows Target software, and a C/C++ 
compiler, to produce an executable that the kernel can run in real time. This real-time 
application uses the initial parameters available from your Simulink model at the time of 
code generation. 
If you use continuous-time components in your model and create code with RTW code 
generation software, you must use a fixed-step integration algorithm. Based on your 
selected sample rate, RTWT software uses interrupts to step your application in real time at 
the proper rate. With each new interrupt, the executable computes all of the block outputs 
from your model. 
Development process 
With Real-Time Windows Target rapid prototyping software, one can use a desktop PC 
with the MATLAB environment, Simulink software, Real-Time Workshop code generation 
software, and Real-Time Windows Target software to: 
1. Design a control system — Use the MATLAB environment and Control System Toolbox™ 

software to design and select the system coefficients for your controller. 
2. Create a Simulink model — Use Simulink blocks to graphically model your physical 

system. 
3. Run a simulation in non-real time — Check the behavior of your model before you create 

a real-time application. For example, you can check the stability of your model. 
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4. Create a real-time application — Real-Time Workshop code generation software creates C 
code from your Simulink model. The C/C++ compiler compiles the C code to an 
executable that runs with the Real-Time Windows Target kernel.  

5. Run an application in real time — Your PC is the target computer to run the real-time 
application. 

6. Analyze and visualize signal data — Use MATLAB functions to plot data saved to the 
MATLAB workspace or a disk. 

Simulink external mode 
External mode requires a communication interface to pass external parameters. On the 
receiving end, the same communications protocol must be used to accept new parameter 
values and insert them in the proper memory locations for use by the real-time application. 
In some Real-Time Workshop targets such as Tornado/VME targets, the communications 
interface uses TCP/IP protocol. In the case of a Real-Time Windows Target application, the 
host computer also serves as the target computer. Therefore, only a virtual device driver is 
needed to exchange parameters between the MATLAB environment, Simulink memory 
space, and memory that is accessible by the real-time application. 
Signal acquisition — You can capture and display signals from your real-time application 
while it is running. Signal data is retrieved from the real-time application and displayed in 
the same Simulink Scope blocks you used for simulating your model. 
Parameter tuning — You can change parameters in your Simulink block diagram and have 
the new parameters passed automatically to the real-time application. Simulink external 
mode changes parameters in your real-time application while it is running in real time. 
Data buffer and transferring data 
At each sample interval of the real-time application, Simulink software stores contiguous 
data points in memory until a data buffer is filled. Once the data buffer is filled, Simulink 
software suspends data capture while the data is transferred back to the MATLAB 
environment through Simulink external mode. Your real-time application, however, 
continues to run. Transfer of data is less critical than maintaining deterministic real-time 
updates at the selected sample interval. Therefore, data transfer runs at a lower priority in 
the remaining CPU time after model computations are performed while waiting for another 
interrupt to trigger the next model update.  
Data captured within one buffer is contiguous. When a buffer of data has been transferred, it 
is immediately plotted in a Simulink Scope block, or it can be saved directly to a MAT-file 
using the data archiving feature of the Simulink external mode. 
With data archiving, each buffer of data can be saved to its own MAT-file. The MAT-file 
names can be automatically incremented, allowing you to capture and automatically store 
many data buffers. Although points within a buffer are contiguous, the time required to 
transfer data back to the Simulink software forces an intermission for data collection until 
the entire buffer has been transferred and may result in lost sample points between data 
buffers. 

4.4 Installation of the software RTWT 
Once Matlab® is installed all Real-Time Windows Target software is copied onto your hard 
drive, but the Real-Time Windows Target kernel is not automatically installed into the 
operating system. You must install the kernel before you can run a Real-Time Windows 
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number of tasks is 32, and faster tasks have higher priorities than slower tasks. For 
example, a faster task can interrupt a slower task. 

• Communication with hardware — The kernel interfaces and communicates with I/O 
hardware using I/O driver blocks, and it checks for proper installation of the I/O 
board. If the board has been properly installed, the drivers allow your real-time 
application to run.  

• Simulink external mode — Communication between Simulink software and the real-time 
application is through the Simulink external mode interface module. This module talks 
directly to the real-time kernel, and is used to start the real-time application, change 
parameters, and retrieve scope data. 
Opening a dialog box for a source block causes simulation to pause. While simulation is 
paused, you can edit the parameter values. You must close the dialog box to have the 
changes take effect and allow simulation to continue. 

4.3 System concepts 
Non-real time simulation 
When you run your Simulink model using normal mode, Simulink software uses a computed 
time vector to step your model. After the outputs are computed for a given time value, the 
Simulink software immediately repeats the computations for the next time value. This 
process is repeated until it reaches the stop time. 
Because this computed time vector is not connected to a hardware clock, the outputs are 
calculated in non-real-time as fast as your computer can run. The time to run a simulation 
can differ significantly from real time.  
Real time execution 
For real-time execution on your PC, you must use Simulink external mode, Real-Time 
Workshop code generation software, Real-Time Windows Target software, and a C/C++ 
compiler, to produce an executable that the kernel can run in real time. This real-time 
application uses the initial parameters available from your Simulink model at the time of 
code generation. 
If you use continuous-time components in your model and create code with RTW code 
generation software, you must use a fixed-step integration algorithm. Based on your 
selected sample rate, RTWT software uses interrupts to step your application in real time at 
the proper rate. With each new interrupt, the executable computes all of the block outputs 
from your model. 
Development process 
With Real-Time Windows Target rapid prototyping software, one can use a desktop PC 
with the MATLAB environment, Simulink software, Real-Time Workshop code generation 
software, and Real-Time Windows Target software to: 
1. Design a control system — Use the MATLAB environment and Control System Toolbox™ 

software to design and select the system coefficients for your controller. 
2. Create a Simulink model — Use Simulink blocks to graphically model your physical 

system. 
3. Run a simulation in non-real time — Check the behavior of your model before you create 

a real-time application. For example, you can check the stability of your model. 
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4. Create a real-time application — Real-Time Workshop code generation software creates C 
code from your Simulink model. The C/C++ compiler compiles the C code to an 
executable that runs with the Real-Time Windows Target kernel.  

5. Run an application in real time — Your PC is the target computer to run the real-time 
application. 

6. Analyze and visualize signal data — Use MATLAB functions to plot data saved to the 
MATLAB workspace or a disk. 

Simulink external mode 
External mode requires a communication interface to pass external parameters. On the 
receiving end, the same communications protocol must be used to accept new parameter 
values and insert them in the proper memory locations for use by the real-time application. 
In some Real-Time Workshop targets such as Tornado/VME targets, the communications 
interface uses TCP/IP protocol. In the case of a Real-Time Windows Target application, the 
host computer also serves as the target computer. Therefore, only a virtual device driver is 
needed to exchange parameters between the MATLAB environment, Simulink memory 
space, and memory that is accessible by the real-time application. 
Signal acquisition — You can capture and display signals from your real-time application 
while it is running. Signal data is retrieved from the real-time application and displayed in 
the same Simulink Scope blocks you used for simulating your model. 
Parameter tuning — You can change parameters in your Simulink block diagram and have 
the new parameters passed automatically to the real-time application. Simulink external 
mode changes parameters in your real-time application while it is running in real time. 
Data buffer and transferring data 
At each sample interval of the real-time application, Simulink software stores contiguous 
data points in memory until a data buffer is filled. Once the data buffer is filled, Simulink 
software suspends data capture while the data is transferred back to the MATLAB 
environment through Simulink external mode. Your real-time application, however, 
continues to run. Transfer of data is less critical than maintaining deterministic real-time 
updates at the selected sample interval. Therefore, data transfer runs at a lower priority in 
the remaining CPU time after model computations are performed while waiting for another 
interrupt to trigger the next model update.  
Data captured within one buffer is contiguous. When a buffer of data has been transferred, it 
is immediately plotted in a Simulink Scope block, or it can be saved directly to a MAT-file 
using the data archiving feature of the Simulink external mode. 
With data archiving, each buffer of data can be saved to its own MAT-file. The MAT-file 
names can be automatically incremented, allowing you to capture and automatically store 
many data buffers. Although points within a buffer are contiguous, the time required to 
transfer data back to the Simulink software forces an intermission for data collection until 
the entire buffer has been transferred and may result in lost sample points between data 
buffers. 

4.4 Installation of the software RTWT 
Once Matlab® is installed all Real-Time Windows Target software is copied onto your hard 
drive, but the Real-Time Windows Target kernel is not automatically installed into the 
operating system. You must install the kernel before you can run a Real-Time Windows 
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Target application. Installing the kernel configures it to start running in the background 
each time you start your computer. The kernel installation is done in the workspace by 
typing: 

>> rtwintgt – install 

You can also use the command rtwintgt -setup to install the kernel. The MATLAB 
Command Window displays one of these messages: 

>> You are going to install the Real-Time Windows Target kernel. 
Do you want to proceed? [y] : 

or: 

>> There is a different version of the Real-Time Windows Target kernel installed. 
Do you want to update to the current version? [y] : 

Type y to continue installing the kernel, or n to cancel installation without making any 
change. If you type y, the MATLAB environment installs the kernel and displays the 
message: 

>> The Real-Time Windows Target kernel has been successfully installed. 

If a message appears asking you to restart your computer, do so before attempting to use the 
kernel, or your Real-Time Windows Target model will not run correctly. After installing the 
kernel, verify that it was correctly installed by typing: 

>> rtwho 

The MATLAB Command Window should display a message that shows the kernel version 
number, followed by performance, timeslice, and other information.  

>>Real Time Windows Target version 1.00 (C) The MathWorks, Inc. 1994-2010 
Running on Multiprocessor APIC computer 
MATLAB performance = 98.5% 
Kernel timeslice period = 0.999 ms 

Matlab specifies the performance of the running application on the actual PC and the used 
sampling time. It is desirable to execute your applications near 100% performance, is not 
recommended to use values of performance near to 50% because the switching execution 
time will decrease in the real time windows target in order to attend other programs in the 
Operative system. 
Once the kernel is installed, you can leave it installed. The kernel remains idle after you 
have installed it, which allows the Windows operating system to control the execution of 
any standard Windows based application, including Internet browsers, word processors, the 
MATLAB environment, and so on. The kernel becomes active when you begin execution of 
your model, and becomes idle again after model execution completes. 
The Real-Time Windows Target requires a C compiler which is not included in the 
installation in MATLAB. To choose the compiler to use it is necessary to type the following 
command in the workspace: 

>> mex –setup 
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The following dialog will appear: 

>> Would you like mex to locate installed compilers [y]/n? y 

Select a compiler: 

[1] Intel Visual Fortran 9.1 (with Microsoft Visual C++ 2005 linker) in 
 C:\Program Files\Intel\Compiler\Fortran\9.1 
[2] Lcc-win32 C 2.4.1 in C:\PROGRA~1\MATLAB\R2007b\sys\lcc 
[3] Microsoft Visual C++ 2005 in 
 C:\Program Files\Microsoft Visual Studio 8 
[0] None 

After you choose your compiler for instance, Compiler: 2, the following dialog will appear: 

>> Please verify your choices: 
 Compiler: Lcc-win32 C 2.4.1 
Location: C:\PROGRA~1\MATLAB\R2007b\sys\lcc 
>> Are these correct?([y]/n): y 
Done . . . 

After you confirm your choice typing y the process finish it. You can use any PC-compatible 
computer that runs Microsoft® Windows XP 32-bit, or Microsoft Windows Vista ™ 32-bit. 
Your computer can be a desktop, laptop, or notebook PC. 

4.5 Hardware I/O boards 
Real-Time Windows Target applications use standard and inexpensive I/O boards for PC-
compatible computers. When running your models in real time, RTWT captures the 
sampled data from one or more input channels, uses the data as inputs to your block 
diagram model, immediately processes the data, and sends it back to the outside world 
through an output channel on your I/O board. 
Real-Time Windows Target software provides a custom Simulink block library. The I/O 
driver block library contains universal drivers for supported I/O boards. These universal 
blocks are configured to operate with the library of supported drivers. This allows easy 
location of driver blocks and easy configuration of I/O boards. You drag and drop an 
universal I/O driver block from the I/O library the same way as you would from a standard 
Simulink block library. And you connect an I/O driver block to your model just as you 
would connect any standard Simulink block. 
You create a real-time application in the same way as you create any other Simulink model, 
by using standard blocks and C-code S-functions. You can add input and output devices to 
your Simulink model by using the I/O driver blocks from the rtwinlib library provided 
with the Real-Time Windows Target software. This library contains the blocks depicted in 
figure 1.  
The Real-Time Windows Target software provides driver blocks for more than 200 I/O 
boards. These driver blocks connect the physical world to your real-time application: 
• Sensors and actuators are connected to I/O boards. 
• I/O boards convert voltages to numerical values and numerical values to voltages. 
• Numerical values are read from or written to I/O boards by the I/O drivers. 
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Fig. 1. Library Real Time Windows Target 

5. Application of the real-time control in a lung function test device 
By following the procedure described in section 4.3 the Simulink scheme will be 
implemented and configured. The computer characteristics used in this example are: Intel 
core duo processor of 1.73 GHz with 3Gb of RAM , Windows Xp 32 Bits, and expressCard to 
PCMCIA adapter. 

5.1 Implementing the simulink model 
The communication between the computer running Matlab and the FOT device is made by 
using the National Instruments DAQCard 6024E (which is recognized by Matlab and 
supported for real time applications). The corresponding Simulink model was developed in 
order to send and receive signals to/from the real FOT system, as depicted in figure 2. 
 

 
Fig. 2. Simulink model for the RTWT application 

At this point it is recommendable to create a new folder in your current directory, because 
the compilation procedure creates several files and this will let you work in an orderly 
manner. 
In this application our interest is to test a discrete PID controller; its parameters have been 
previously tuned, and its design will not be presented in detail. 
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Configuration of the simulation parameters 
Once the model has been created, we must set the simulation parameters. By pressing the 
combination of keys ‘Ctrl+E’ the configuration parameters window will appear (figure 3). 
 

 
Fig. 3. Solver configuration 

The first parameter to configure is the solver. We can choose the stop time of the simulation, 
between a fixed value or to run indefinitely by typing ‘inf’. In this application a stop time of 
40s was chose. In the solver options you can choose between variable or fixed step, in this 
application what we want is to guarantee a fixed sampling time, hence, we choose the type 
‘Fixed-step’ and as solver the ‘discrete (no continuous states)’. 
 

 
Fig. 4. Configuration System Target 

The next step is to configure the target, for this we must select the option ‘Real-time 
Workshop’ as presented in figure 4. The first option to select is the system target file, there 
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are several options available when we press the ‘Browse’ button, however we must select 
‘rtwin.tlc’ which is the Real-Time Windows Target. The language can be selected as C or 
C++, we choose C language by default. We accept these changes and return to our model in 
Simulink. At this point we can choose the simulation as external mode, as depicted in Figure 
5. Remember to save your model by pressing the keys ‘ctrl+S’ 
 

 
Fig. 5. Configuring the simulation in External mode 

Configuring the analog input and output 
After our simulation parameters has been configured, then we can continue with the process 
interfacing. By double clicking in the analog output block in our Simulink model, the 
configuration window will appear as depicted in Figure 6.  In this window we must select 
our hardware board, in this case the National Instruments acquisition board DAQCard-
6024E. The sampling time is selected as ‘Ts’, which can be previously defined in the 
workspace as Ts=0.002. In this step also the output range can be configured, which is in our 
case from -10 V to 10 V. Some initial and final values can be established at this point, for the 
cases when we need that the DAQ board remains with some value after the simulation 
stops. It is possible to test our hardware to verify that there are not communication 
problems between Simulink and our external hardware. By pressing the ‘Board Setup’ button 
a new window will appear, and by pressing the ‘Test’ Button we can test all the inputs and 
outputs available in our board. To configure the analog input the same procedure must be 
followed, the only difference is that you’ll not find the ‘initial’ and ‘final’ value parameters 
available in the analog output. 
Discrete PID configuration 
For this application we have tuned the parameters of a PID controller by means of the KCR 
algorithm (Hernandez et al, 2010); this procedure will not be described here, because our 
interest is to present how to use the Real-Time Windows Target toolbox. 
The discrete PID controller used in this work can be found in the: SimPowerSystems/Extra 
Library/Discrete Control Blocks/Discrete PID Controller (Figure 7). This block implements 
a discrete PID controller, where the Kp, Ki,  Kd and sampling time Ts parameters can be 
configured. There are also some other options available, e.g. the time constant for the 
derivative action or the constraints in the output, which have been selected as 1000 and  
[-1 1] respectively. 
Scope configuration to display and save data 
Until now, the simulation parameters, PID and I/O have been configured; nevertheless, 
another important issue to solve is how to save the data on our hard disk. By double clicking 
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Fig. 8. Scope Configuration Window to display and save the data  

 

 
Fig. 9. External mode control panel 

in the scope a new window will appear, there, the sampling will be chosen as 
‘Decimation’=0, this is done to consider this block as an analog block because the triggering 
will not be done by this block. By selecting the next tap ‘Data history’ (Figure 8-right), we 
must avoid to limit the data points and instead of this, we select save data to workspace. We 
type a name for the variable we want to save and then we choose array as data format and 
we press ‘ok’ in all the windows. 
Going back to our Simulink model, we choose in the toolbar the option Tools/External 
Mode Control Panel, a new window will appear as depicted in Figure 9.  
The first step is to press the ‘Signal & Triggering’ button; in this new window we must 
configure the trigger as ‘manual’ and the mode in ‘normal’. The duration is the number of 
samples that you are going to simulate. A very important detail when we choose this value 
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is to know how much our sampling time is, how long our simulation will be and that Real-
Time Windows Target takes zero as an extra value. By taking this into account it is possible 
to see that in 40s at 2ms sampling time, we need to save 2000 samples, however, taking into 
account the sample at time zero, finally we choose 2001 as parameter.  
After choosing the signal and trigger options, we press the ‘Data Archiving’ button; in this 
new window we have to enable ‘archiving’ and then type de directory where we want to 
save our data and the name of the file (Figure 10). If we have more than one variable to save 
then an array will be saved in this address with the name we chose, the first column is 
always the time vector and the next columns each one of our variables. In this application 
we have used a mux block to put all the measured variables into one scope (see Figure 2), 
however it is also possible to have one scope for each variable. 
 

  
Fig. 10. External Signal & Triggering and External Data Archiving configuration window 

Once the simulink model has been configured, then it has to be saved to accept all the 
changes and then compilate it, by using the combination of keys ctrl+B. 
Once all procedures have been completed, then we can press the button ‘Connect to Target’ 
and then ‘Start Simulation’, to run the simulation as depicted in figure 11. 
 

 
Fig. 11. Run simulation 

5.2 Experimental results 
By using the hardware and software described in section 4, it is possible to do the open loop 
and closed loop identification using the Chirp-TFA algorithm (Ionescu C., et al., 2010). Some 
results are given by means of Bode plots in Figure 12. It can be observed that the bandwidth 
(frequency at -3dB) of the system is about 45Hz. 
In order to be able to follow a reference signal in a closed loop it is necessary that the 
magnitude of the closed loop remains around 0dB and the phase around 0º in the frequency-
range of interest. From the Bode plot in Figure 12-right for the closed loop, we can observe 
that the results are in agreement with the expected bandwidth, and that the controller  
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performs satisfactorily. This result is also visible when a comparison in time domain 
between open loop and closed loop is done. The controller avoids distortions and nonlinear 
effects at the output of the lung function device; the desired signal will be successfully 
delivered at the patient’s mouth as depicted in Figure 12-left. 

6. Conclusions 
In this work an interactive and effective tool to design control loops in real-time has been 
presented. A real system was used as an example to discuss the importance of real-time, and 
clarify some fundamental aspects about the meaning of real time in control. An introduction 
to real-time control from an educational and practical point of view has been given. Some 
well-known misconceptions coming from the control system community were discussed. 
The relevance of the real-time implementation has been exposed by implementing the 
closed loop control of a medical device for lung function testing.  
Although Real-Time Windows Target is a good tool to run control algorithms over a higher 
priority than just using a typical m-file algorithm, this tool has two drawbacks: as this is still 
a tool running over Windows, complex algorithms could cause that it cannot ensure a fast 
sampling time, because it depends on the PC characteristics and its performance. Secondly, 
although points within a buffer are contiguous, the time required to transfer data back to the 
Simulink software forces an intermission for data collection until the entire buffer has been 
transferred and may result in lost sample points between data buffers. 
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performs satisfactorily. This result is also visible when a comparison in time domain 
between open loop and closed loop is done. The controller avoids distortions and nonlinear 
effects at the output of the lung function device; the desired signal will be successfully 
delivered at the patient’s mouth as depicted in Figure 12-left. 

6. Conclusions 
In this work an interactive and effective tool to design control loops in real-time has been 
presented. A real system was used as an example to discuss the importance of real-time, and 
clarify some fundamental aspects about the meaning of real time in control. An introduction 
to real-time control from an educational and practical point of view has been given. Some 
well-known misconceptions coming from the control system community were discussed. 
The relevance of the real-time implementation has been exposed by implementing the 
closed loop control of a medical device for lung function testing.  
Although Real-Time Windows Target is a good tool to run control algorithms over a higher 
priority than just using a typical m-file algorithm, this tool has two drawbacks: as this is still 
a tool running over Windows, complex algorithms could cause that it cannot ensure a fast 
sampling time, because it depends on the PC characteristics and its performance. Secondly, 
although points within a buffer are contiguous, the time required to transfer data back to the 
Simulink software forces an intermission for data collection until the entire buffer has been 
transferred and may result in lost sample points between data buffers. 
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1. Introduction 
This chapter’s main goal is to show how MatLab can be very useful when applied in the 
model-based design of dynamic systems, especially in the domain of power electronics 
systems. Two cases will be described that are encountered in energy conversion: i) a slip 
energy recovery (SER) system and ii) a power electronic converter for a fuel cell (FC) based 
energy generation system. In both cases, the energy handled in the process needs to be 
controlled and optimized in order to increase the efficiency of the systems.  The chapter 
explains how MatLab/Simulink, with its toolboxes, is well adapted to solve the issues of 
defining the design requirements, at developing different components’ models for the 
physical evolution processes and, through the combination of various sub-systems, how it 
enables engineers to verify that the overall performance satisfies the requirements. 
Considering the aspects mentioned above, the chapter will illustrate how a simple PC can be 
used to test any power system and through the analysis of simulation results, manufacturing 
companies can reduce the amount of experimental tests and thus save lots of money. 
For each case study some details of the requirements and implementation are discussed and 
validation results are presented in order to conclude on the advantages of modelling 
processes using the MatLab/Simulink. In fact, at designing electrical engineering systems 
that require accurate models of components and sub-systems, MatLab/Simulink is shown to 
be an accurate design tool and useful for implementation and rapid prototyping.  
In the first case, a brief explanation about the circuit‘s configuration of a SER system is 
presented and its control implementation in MatLab/Simulink are done. The SER system 
presents some problems associated with the operation of the power electronics converter, 
namely its effects on the electromagnetic torque. To analyze these effects, the model of the 
system implemented in MatLab/Simulink supports the harmonic study, with several special 
features. The oscillations of the electromagnetic torque are explained by considering the 
interaction between the stator and the rotor fundamental and harmonic currents. The 
simulation results show a strong disturbance in the electromagnetic torque in the steady 
state, caused by the power converter operation. To reduce this disturbance, and 
consequently to increase the mechanical life of the motor, an appropriate DC link coil is 
shown to be useful. 
The presentation of the second case illustrates how MatLab/Simulink can be used when 
undertaking an accurate design of electrical generation systems based on hydrogen. The 
behaviour of PEM fuel cells is dependent on so many parameters, so obtaining an accurate 
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model of a PEM fuel cell, including dynamical behaviour, becomes essential to design 
electrical power generation based on fuel cells. 
For that purpose, a mathematical model of a PEM fuel cell system developed in 
MatLab/Simulink is explained and the accuracy demonstrated. However, the difficulties 
emerge in the lack of manufacturer data about the exact values of the parameters needed for 
modelling it. The method adopted in order to determine the optimum set of parameters is 
the simulated annealing (SA) optimization algorithm, which proves to be well adapted to 
satisfy the goal of a fast convergence to establish the right values for the cell parameters.  
In fact, optimization is a key task in modelling almost all-modern technology. Optimization 
forms the basis for modelling and computational analysis, design of experiments and the 
associated statistical analysis of the data. 
The results carried out with a DC-DC power electronics converter appropriate to optimize 
the real point operation of a FC show that the MatLab model is appropriate to be applied in 
designing electrical generation systems.   
For each case study presented, the simulation results are compared with experimental data 
obtained from commercial systems. 

2. Slip energy recovery (SER) system  
A slip energy recovery system is designed over a well-known control method of motor 
speed, which increases efficiency by returning the slip power back to the energy source 
system. However, this system presents some inconveniences, for example, low power factor, 
extra losses, harmonic current generation and electromagnetic torque oscillation. As a 
consequence, electromechanical vibrations are generated, which can cause motor failure and 
therefore, a need for motor rewinding and/or replacement. 
Operation of power electronic converters typically is cause of current and voltage 
harmonics, either on the mains side and or on the motor side, and these harmonics’ 
components are transferred from one side to the other. Particularly, in a slip energy recovery 
system, harmonics are produced not only by the rectifier, but also by the inverter and motor 
through the DC link. 
This kind of analysis is not new, indeed, some authors have already studied similar 
problems. The following must be referred to: A. Mayer (1982) presented a complete study of 
a hiposynchronous converter cascade system, including the effects of the torque oscillation 
on the motor and the effects of harmonics in the mains. J. Brown and B. Jones (1986) 
developed and presented an analytical model for the analysis of performance of the Kramer 
drive system during transients. But in the present study, the system configuration is 
changed to overcome some of the remaining issues.  The developed model is validated 
through the analysis and comparison of the results obtained in four types of different 
inverter thyristor bridges, with the same motor, diode bridge, and smoothing inductance. It 
is firstly concluded that it is better to adopt controlled flywheeling rather than the normal 
fully controlled technique for single-phase recovery bridge. Secondly, a 3-phase controlled 
flywheeling bridge gives the best machine performance, but at the expense of higher 
distortion in the supply currents than in the case with a fully controlled bridge. Results for 
stator current and voltage, rotor current and voltage, rectified current and electromagnetic 
torque are compared. 
R. Hanna (1989) presented some techniques for reduction of the harmonic content produced 
by adjustable speed drives. After a brief presentation of the main harmonic sources, the 
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need to comply with harmonic standard IEEE 519 – 1982 is discussed. The effects of 
harmonics on static devices and on electrical machines are examined and some techniques 
for their reduction are given. E. Akpinar and P. Pillay (1992) developed a model to predict 
the detailed operation of a slip energy recovery drive system in the transient and in the 
steady state system. They adopted a hybrid model which retains the actual rotor phase 
variables, but transforms the stator. They concluded that measurement and simulation 
results showed a good compromise. Y. Baghzouz (1992) introduced a method to evaluate 
the harmonics of currents and voltages of the SER system. The harmonic components were 
determined from closed form expressions that were functions of the numerical values of the 
distorted waveforms. The non-periodic nature of the stator currents and the existence of 
harmonics in the rotor currents and voltages for several speeds of operation were also 
presented. L. Refoufi and P. Pillay (1994) analyzed the impact of the system in terms of 
harmonic generation, with a chopper-controlled SER induction motor drive. They studied in 
detail the waveforms of the supply, stator and recovery currents, for different values of 
speed and analyzed the respective harmonic spectrum. The simulation and experimental 
results showed good agreement. W. Zakaria et al. (1996) developed a model of machine with 
a double–circuit in the rotor, one being delta connected and the other star connected, these 
two windings fed a 12-pulse diode bridge rectifier, in order to reduce the time harmonics in 
the machine. The simulation and experimental results showed a significant reduction of the 
current harmonics injected into the network and a significant reduction in the pulsating 
torque. A. Dell’Aquila et al. (1998) developed a method for the analysis of harmonic currents 
of the line side produced by variable speed induction motor drives. They developed a 
method to reproduce the distorted current waveforms injected by the drive system into the 
grid. G. Marques and P. Verdelho (2000) presented a circuit configuration that included a 
boost-chopper to connect the diode rectifier bridge to the dc-link voltage imposed by a 
voltage source inverter. To solve the drawbacks caused by the harmonics introduced by the 
rotor rectifier, they presented two different solutions. Despite its simplicity, this system 
presented good performance. A comparison between the phase-control and SPWM 
techniques showed that the SPWM is advantageous with regard to the phase-control 
technique.   
M. N. Eskander et al. (2001) presented a comparison between two inverter topologies for 
application in industrial drives. They presented the analysis of the steady-state characteristics 
of slip energy recovery drives, employing: a three-phase thyristor bridge inverter (topology 
‘A’) and a three single-phase bridge inverter operating in the flywheeling mode (topology 
‘B’) dealing with the waveforms of voltages and currents of the stator, rotor, DC link, 
inverter output and recovery transformer output. The results indicated that the power factor 
of the system employing inverter topology ‘B’ was higher than that of inverter topology ‘A’. 
Therefore, the results encourage adopting the inverter topology ‘B’, in spite of the relatively 
more complex requirements of its control circuit. J. Faiz et al. (2001) studied the harmonics 
and performance of a slip energy recovery induction motor drive, based on the hybrid 
model dqabc. The sinusoidal pulse-with modulation (SPWM) control technique was used to 
improve the power factor of the drive and to weaken the injected low order harmonics into 
the supply. With the PWM technique, self-commutated switches (GTO or IGBT) replace the 
inverter thyristors and the inverter may operate with a zero reactive power. N. Hoshi et al. 
(1983) undertook a study of a slip power recovery system having sinusoidal rotor currents. 
The proposed system uses a PWM boost rectifier as a substitute for a diode rectifier and a 
boost chopper in a conventional compact type slip power recovery system. 
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Therefore, with the incentives for energy-economy, a cement plant company decided to 
recuperate energy from the rotor of an induction motor that powered a big-blower. Instead 
of the conventional diode bridge, DC coil, thyristor inverter and adapter transformer, a set 
consisting of a thyristor bridge, no DC coil, thyristor inverter and an adapter transformer 
were selected. This presentation serves to present and discuss the particularities of the 
detailed model implemented in MatLab/Simulink. In the model, the motor, the transformer, 
and mechanical load parameters, are estimated by the experimental data provided by each 
manufacturer. Then, a three-phase transient model is modelled and simulated. 

2.1 Circuit configuration 
Fig.1 shows the circuit configuration of the SER system, without the DC link coil, used in 
this study, with particular emphasis on the control system, represented by the S1 and S2 
subtractors and NR and IR regulators. Besides the control system, the circuit is composed of: 
1) a three-phase feedback transformer, represented by the Dd0 box; 2) the asynchronous 
motor M, fed through the stator by the three-phase mains RST; 3) the rotor windings, which 
are connected to the thyristor bridge SR1; 4) SR1 and SR2, which are the 6-pulse, 3-phase 
thyristor bridge rectifier and the 3-phase thyristor bridge inverter, respectively; 5) system 
components TG, IM and UM, which are used to measure the speed, current and voltage, 
necessary to the system control.  
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Fig. 1. Circuit configuration of the SER system 
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2.2 Model implemented in MatLab/Simulink 
The model of the induction-motor is made in the PSB library. In this model, the rotor is 
referred to the stator. The adapter transformer is modelled with tree linear single-phase 
transformer models, also available in the PSB library. The converter is modelled with two 
thyristor bridges and no DC coil. It has the following main modules shown in Fig. 2: mains 
(M), asynchronous motor (AM), adapter transformer YgY0 (AT), starter rheostat (RS), 
rectifier bridge (SR1=RB), inverter bridge (SR2=IB), inverter adapter transformer (IAT), 
circulation-current-controller (CCC), mechanical load (blower - ML), rotor slip frequency 
calculator (RSFC), rotor voltages adaptive filter (RVAF), rectifier pulse generator (RPG), 
main voltage signal filter (MVSF), inverter pulse generator (IPG), rectifier controller (RC), 
inverter controller (IC) and inverter activation controller (IAC). Next, a general description 
of the system is presented. 
 

 
Fig. 2. Model of the SER system implemented in MatLab/Simulink 

2.2.1 General description 
The rotor voltages are measured and with the slip frequency are the inputs of the adaptive 
filter (RVAF) that consists of a specially designed phase-locked 3-phase generator 
outputting three voltages with the successive 120º phase shift and phases locked with the 
corresponding unfiltered rotor voltages. The amplitudes of the generated voltages are 
limited in order to obtain a more stable system. These voltages, V_ab, V_bc and V_ca, are 
inputs to the rectifier pulse generator. In this pulse generator, V_ab, V_bc and V_ca, are 
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limited in order to obtain a more stable system. These voltages, V_ab, V_bc and V_ca, are 
inputs to the rectifier pulse generator. In this pulse generator, V_ab, V_bc and V_ca, are 
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processed in order to obtain the zero–crossing positive-going instants and a time-delay is 
computed according to the running values of the slip frequency and delay angle computed 
by the rectifier controller (RC). With these values of time, they are generated pulses, to be 
applied to the thyristors if they do not cause difficulties. 
The circulation-current-controller module (CCC) detects the occurrence of circulation 
current if it occurs and, in this case, blocks the ignition of the adequate thyristor in order to 
go out of the circulation current mode. 
The inverter controller (IC) and the rectifier controller (RC) have a rectified bridge current 
(Id) as input. The rectifier controller (RC) uses it for overcurrent protection, the inverter 
controller (IC) for imposing the current level of Id, in normal operation.  Some details of the 
implementation of the various modules are presented below.  

2.2.2 Pulse generation of the 3-phase inverter bridge 
The pulse-generator of the 3-phase inverter bridge is based on the classical method applied 
for line-commutated converters, because the mains voltages are almost perfect with the 
particularity of the IGBTs pulses blocked during system startup. 
 

 
Fig. 3. Control of rectifier bridge – module RC 

2.2.3 Rectifier controller (RC) 
The control of the rectifier bridge (RB), one of the main difficulties, is implemented 
considering that the system may operate in one of the following modes:  
1. Normal operation, corresponding to the state variable A at high level. 
2. Overcurrent operation, corresponding to the state variable B at high level. 
3. Synchronous-speed operation, corresponding to the state variable C at high level.  
4. Operation to avoid the presence of circulating currents in the cascade. 
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The control of the 3-phase rectifier is a more complex problem because the rotor voltages are 
not sinusoidal ones and have a low-frequency component proportional to the slip, which 
varies with the rotating speed. The difficulty increases because there is no DC link, therefore 
the voltage step due to the inverter appears directly in the rotor terminal voltages. 
Fig. 3 shows the details of the rectifier controller module (RC) that contains four sub-
modules. Input Id is used for detecting overcurrent operation and input wm is used to 
detect if speed is inside the narrow band centred in the synchronous speed. The action to be 
taken is dependent on the output of the decision module (D). 

1) Action module (A) 
In normal asynchronous operation the output of D is 1, the action to take is to force αR to be 
10º, using a rate limiter and the unblocking of the pulses after a delay of 0.8s, during 
rheostat system startup. In asynchronous mode with overcurrent, the output of the sum 
block is 3 and αR is forced to 90º using a rate limiter and the pulses are unblocked. This 
action tends to lower the DC current, if speed is inside the speed band and there is no 
overcurrent, the output of the sum block is 4, the action to take is to block the pulses and 
force αR to 0º using a rate limiter. Finally, if the speed is inside the speed band and there is 
overcurrent, the output of the sum block is 2, the action to take is to unblock the pulses and 
force αR to be 90º using a rate limiter. 

2) Decision module (D) 

Considering the operating modes 1, 2 and 3 described above, and using Boolean algebra, a 
table can be built, whose state variables set (A, B and C) may be in one of 32 8=  different 
states.  
Logic variable A at high level corresponds to the sub-synchronous normal mode. Logic 
variable B at high level corresponds to the overcurrent mode. Logic variable C at high level 
corresponds to the synchronous mode. The oversynchronous mode is not considered in this 
implementation. Table 1 presents the eight possible theoretical combinations; some of them 
do not occur in practice. Considering only the practical combinations, it may be verified that 
A B C= + . 

 
State Variable Values 

A B C 
Actions to be performed 

1 1 1 This combination of states is not verified in practice 

1 1 0 This combination of states is not verified in practice 

1 0 1 This combination of states is not verified in practice 

1 0 0 (a) ==> αR ≅ 10¼ 

0 1 1 (b) ==> ∧≅ º90Rα Unblock pulses to the rectifier bridge 

0 1 0 (c) ==> αR ≅ 90¼ 

0 0 1 (d) ==>  Block pulses to the rectifier bridge 

0 0 0 This combination of states is not verified in practice 

Table 1. State and actions to be performed by the decision module 
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3) Overcurrent module (OC)  
Fig. 4 shows the overcurrent module where the DC current, in SI units, is reduced to a per-
unit system using a base current of 983A. The result is passed through a low pass filter, with 
a time constant of 1.1ms, to reduce the oscillations. The output of this filter is compared with 
a per-unit maximum allowed overcurrent (2pu) and the difference is transformed into a 
logic level using a hysteretic comparator (Relay B), with ±0.01pu limits. When the output of 
the overcurrent module is equal to one, it indicates ’overcurrent’. 
 

 
Fig. 4. Overcurrent module 

4) Synchronous speed module (SS) 
In the detector of synchronous speed module presented in Fig. 3 above the speed wm, in 
radmec/s is reduced to a per-unit system, using a base speed of (3/100pi) radmec/s. The 
result is passed to a low-pass filter with time constant 1.1ms. The output of this filter is 
compared with a per-unit speed of 0.99pu and the difference is transformed into a long level 
using a hysteretic comparator (Relay C) with 0pu limits. When the output of the 
synchronous-speed module is equal to one, it indicates ‘synchronous-speed’.  
 

 
Fig. 5. Synchronous speed module 

2.2.4 Circulation current controller (CCC) 
As shown in Fig. 2, the implementation of the circulation current controller module, the sub-
systems of which are presented in Fig. 6a) and Fig. 6b), has inputs such as the rotor currents 
ia, ib and ic (A), the rectified current Id (A) and the pulses sent by the RPG module. The 
objective of this module is to send the pulses to the rectifier bridge-RB. 
In order to minimize the problem of the circulating-current, this module must implement 
some actions such as: 

 
MatLab in Model-Based Design for Power Electronics Systems 

 

79 

1st Action: Detection of the currents’ state of conduction of each thyristor. 
To know the values of the instantaneous current of each of the six thyristors rectifier, the 
rotor currents were measured and processed by hysteretic components. 
2nd Action: Detection of critical states using AND blocks. 
Critical situations occur only with more than two thyristors conducting. Therefore, it 
suffices to take action with three thyristors conducting (123, 234, 345..., and 612). Table 2 
presents these cases and the actions to be taken, that is: with thyristors 456 conducting, the  
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Fig. 6. Sub-systems of the module CCC: a) Deblocking signal module (DSM), b) Output logic 
module (OLM)  

non-safe condition occurs if thyristor 1 starts conducting. To stop this occurrence the 
blocking of pulses for thyristor 1 is activated. A similar procedure is taken for the other five 
possible cases. 
3rd Action: Blocking of pulses (sent by the RPG) to the thyristor in each instance, to short-
circuit the rectifier bridge (RB). 
The module of circulation current controller performs the all-necessary calculations, using 
AND operators to process the outputs of the DSM and RPG, for each thyristor. 
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Critical state Deblocking signal for each thyristor 
Topology Ia Ib Ic 

Thyristor to 
be blocked 1 2 3 4 5 6 

456 - - + (1R) 0 1 1 1 1 1 
561 + - + (2R) 1 0 1 1 1 1 
612 + - - (3R) 1 1 0 1 1 1 
123 + + - (4R) 1 1 1 0 1 1 
234 - + - (5R) 1 1 1 1 0 1 
345 - + + (6R) 1 1 1 1 1 0 

Table 2. Critical states and preventive actions 

2.2.5 Inverter controller (IC) 
As shown in Fig. 2, the inverter controller module inputs are the mechanical-speed (wm) 
and the DC link current (Id). This module contains two sub-modules in cascade such as the 
speed regulator (SR) and the DC current regulator (CR) as presented in the Fig. 7 below. The 
module SR sends the reference value of the current to the CR module, which in turn 
determines the value of the inverter angle, αI. 
 

 
Fig. 7. Inverter controller sub-modules 

1) Speed regulator (SR) 
The speed regulator sub-module is presented in Fig. 8 and the speed wm as the input (in 
radmec/s). This is processed by two paths: (a) In path1, wm is reduced to a per-unit value, 
using as base speed the synchronous mechanical speed, then the per-unit value wmpu is 
  

 
Fig. 8. Speed regulator module 
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passed through a low-pass filter, with a time constant of 1.1ms and compared with the per-
unit reference speed in order to obtain the filtered error speed. This error is applied to a 
limiter with limits ±0.1pu. The output of this limiter is the signal D, the per-unit filtered and 
limiter speed error, which is active during most of the time. (b) Through the path2 the 
instantaneous speed is compared with the reference of 90radmec/s. The control signal E is 
used to select the input value of the PI controller. Then the main purpose of this module is 
to send a reference current (in pu units) to the DC current regulator module. 
2) DC current regulator (CR) 
The DC current regulator module is presented in Fig. 9 below. It has the DC current Id(A) 
and reference current iref(pu) as inputs. The DC current is reduced to a per-unit value, using 
a base-current of 982.43A. The per-unit value is passed through a low-pass filter with a 
1.1ms time constant. The output of this filter is compared with irefpu and applied to a 
limited PI controller if time is higher than 0.8s.  Between 0 and 0.8s, the controller input of 
the PI is zero, keeping the αI value constant. This action minimizes the initial transients due 
to the inverter. 
 

 
Fig. 9. DC current regulator module 

2.2.6 Starter rheostat (RS) 
During startup of the system, the two bridges are blocked and the rotor starting current 
passes through a liquid rheostat. This liquid rheostat is a time-dependent resistance as can 
be seen in Fig. 10. To model the variable resistance, the rotor currents were measured and 
the measurements were used to command a voltage-controlled-source, which in turn gives 
the values of the resistors R1, R2 and R3, as presented in Fig. 11. It was considered that the  
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Fig. 10. Starter-rheostat 
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resistance decays linearly from 0.1229 to zero during the time interval of t0 to t1, being equal 
to 1MΩ during the time interval between zero and t0, and again equal to 1MΩ when either 
some starter time has elapsed or if the speed exceeds 30π radmec/s.  
 

 
Fig. 11. Starter-rheostat module 

2.3 Simulation results  
The simulation results are obtained considering the following parameters and conditions: 
integration method; ode23tb [stiff/TR-BDF2], step variable with a maximum value of 2e-4; 
absolute and relative tolerances of 10e-3; reference speed of 30π radmec/s and interval of 
time simulation of 0-10 seconds. The variations of the angles of the inverter and rectifier 
bridges are respectively: 90º 150ºIα< <  and 5º 90ºRα< < . 

2.3.1 Electromagnetic and mechanical torques 
The electromagnetic torque is measured directly from the block model of the three-phase 
asynchronous machine selected in the library of MatLab/Simulink software. The S.I. unit 
parameter is selected. All the stator and rotor quantities are referred to in the rotor reference 
frame (qd frame). Considering an electrical system with these conditions, the electromagnetic 
torque is given by Eq. 1. In this equation p corresponds to the number of pole pairs, dsϕ  and 
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qsϕ  are the stator d and q axis fluxes respectively, and ids and iqs are the d and q axis stator 
currents respectively. 

 1.5 ( )ds qs qs dsTem p i iϕ ϕ= −  (1) 

Some Simulink blocks implement the mechanical load torque. The characterization of the 
load torque took into account the information supplied by the manufacturer, namely: the 
inertia moment (J) = 142.50 kg.m2, the rated speed (NN) = 985 r.p.m and the rated torque 
(TN) = 1405 kg.m. The information is transformed to the S.I. units and a curve fitting led to 
the Eq. 2 below where wm corresponded to the mechanical speed. This equation is only 
valid for the positive speed. 

 ( )
3

2 11,75206,745 1,50325 3 0,146636 3 1447,22
wm

Tvent wm wm e
×⎛ ⎞−⎜ ⎟

⎝ ⎠= − × × + × × + ×  (2) 

 

 
Fig. 12. Electromagnetic and load torques 

2.4 Harmonic analysis 
The harmonic analysis of the system is based on a programme developed for the effect, with 
several features, namely: the capability to analyse a large range of frequencies (until 2500Hz 
or more) and high resolution of the plots. The results for the stator current, the rotor current 
and the electromagnetic torque are presented below in Fig. 13 a) and b), Fig. 14 a) and b), 
and Fig. 15 a) and b), respectively. These figures show the signal amplitude versus 
frequency modulus. In order to obtain the maximum information concerning the spectrum 
of the variable, a logarithmic y-axis scale is adopted. The Discrete Fourier Transform (DFT) 
was used in this study and its module coefficients a0, ak and bk were calculated. A total of 
10000 samples were used in the calculations. 
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2.4.1 Rotor current, ir 
In steady state behaviour, a non-quality factor can be defined such as NQFir=(irmax-
irmin)/(irmax+irmin) which corresponds to the distortion of the waveform of the rotor current. 
Without inductance in the DC link coil, this corresponds to a 0.4628 value and if an 
inductance of 10mH is used in the DC link coil, the value decays to 0.062. The spectrum of 
the harmonic components of the rotor currents due to the six-pulse rectifier (SR1) and to the 
DC side average value, appear at frequencies given by the Eq. 3, in which k=0, 1, 2, 3. 

 , 1 6R
r h msf k sf= ±  (3) 

 

 
 

  
Fig. 13. a) Rotor current referred to the stator in steady state and the frequency spectrum 
without inductance L - the rotor slip in the case is 0.3906 
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the harmonic components of the rotor currents due to the six-pulse rectifier (SR1) and to the 
DC side average value, appear at frequencies given by the Eq. 3, in which k=0, 1, 2, 3. 

 , 1 6R
r h msf k sf= ±  (3) 

 

 
 

  
Fig. 13. a) Rotor current referred to the stator in steady state and the frequency spectrum 
without inductance L - the rotor slip in the case is 0.3906 
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Fig. 13. b) Rotor current referred to the stator in steady state and the frequency spectrum 
with an inductance L of 10mH – the rotor slip in the case is 0.3906 

Considering the Eq. 3, for k=0 and the slip s=0.3906, the fundamental rotor frequency is 
equal to 19.53Hz. Then the 5th, 7th, 11th and 13th harmonic orders appears in the rotor 
current and are equal to -97.66Hz, +136.7Hz, -214.8Hz and +253.89Hz, respectively. As it can 
be observed by the rotor current spectrums of Fig. 13 a) and Fig. 13 b) and by the Table 3, 
the rotor current frequencies reflect the DC current frequencies with two side-bands of the 
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fundamental rotor frequency, which is 19.53Hz. The harmonic components, due to the six-
pulse inverter that appear on the DC current at frequencies multiples of 300Hz, appear also 
in the rotor currents with two side-bands of m300Hz±19.53Hz, which for m=1 corresponds 
to the frequencies of 285.47Hz and 319.53Hz, respectively. 
The DC current distortion introduced by the six-pulse inverter is reflected on the rotor 
currents, resulting in the appearance of additional harmonics, given by Eq. 4, with k=0, 1, 2, 
3,…  and m=0, 1, 2, 3,… 

 ( ), 1 6 6 1 6 6R
r h ms ms msf k sf mf k s m f= ± ± = ± ±  (4) 

Observing the rotor figures presented above and by comparison of the amplitude values of 
Table 3, for different values of inductance L in the DC link coil, it is possible to conclude that 
the value of the inductance of the DC link coil affects directly the ripple of the waveform of 
the rotor current, which is reflected in the values of amplitude of the frequency spectrum. 
 

Amplitude of rotor current  (A) 
Frequency (Hz)

Without L With L=1mH With L=5mH With L=10mH 
+19.53 82.16 81.33 81.17 79.7 
-97.66 21.52 17.92 14.35 14.49 

+136.71 3.8 4.436 5.7 7.26 
-214.83 4.5 4.69 5.2 3.1 
+253.89 12.3 3.1 2 2.9 
-280.47 10.5 6.3 1 1.2 
+319.53 9.3 5.5 - 1.1 

Table 3. Frequencies and amplitudes of the rotor current referred to the stator for phase a 
and for slip=0.3906 

2.4.2 Stator current, is 
It was observed that in a steady state the peak-to-peak value of the stator current is not 
greatly affected by the value of the inductance placed on the DC link coil. 
A DC component of the rotor current establishes a rotating magnetic field in the air gap and 
induces voltages in the stator winding at frequency given by Eq. 5, where s is the slip and 
fms is the fundamental frequency. For s=0.3906 and fms=50Hz, this corresponds to a 
30.47Hz with positive sequence. 
Similarly, a rotor current frequency fr manifests itself in the stator current frequencies of 
(fr+fm) with fr>0, for positive sequence rotor currents, and fr<0, for negative sequence rotor 
currents. Adding the effect of motor speed to the rotor current frequencies, the reflected 
stator frequencies are given by Eq. 5, with k=0,1,2,3,.... 

 ( ) ( ), 1 6 1 1 6R
r h ms ms msf fr fm k sf s f ks f= + = ± + − = ±  (5) 

Adding the effect of rotor side-band frequencies due to the inverter harmonics, the 
frequencies of the induced harmonics present in the stator, considering these two effects are 
given by Eq. 6, with k,m=0, 1, 2, 3. This equation will be reduced to the Eq. 5 if m = 0. 

 , 1 6 6r h msf ks m f= ± ±  (6) 
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Fig. 13. b) Rotor current referred to the stator in steady state and the frequency spectrum 
with an inductance L of 10mH – the rotor slip in the case is 0.3906 

Considering the Eq. 3, for k=0 and the slip s=0.3906, the fundamental rotor frequency is 
equal to 19.53Hz. Then the 5th, 7th, 11th and 13th harmonic orders appears in the rotor 
current and are equal to -97.66Hz, +136.7Hz, -214.8Hz and +253.89Hz, respectively. As it can 
be observed by the rotor current spectrums of Fig. 13 a) and Fig. 13 b) and by the Table 3, 
the rotor current frequencies reflect the DC current frequencies with two side-bands of the 
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fundamental rotor frequency, which is 19.53Hz. The harmonic components, due to the six-
pulse inverter that appear on the DC current at frequencies multiples of 300Hz, appear also 
in the rotor currents with two side-bands of m300Hz±19.53Hz, which for m=1 corresponds 
to the frequencies of 285.47Hz and 319.53Hz, respectively. 
The DC current distortion introduced by the six-pulse inverter is reflected on the rotor 
currents, resulting in the appearance of additional harmonics, given by Eq. 4, with k=0, 1, 2, 
3,…  and m=0, 1, 2, 3,… 

 ( ), 1 6 6 1 6 6R
r h ms ms msf k sf mf k s m f= ± ± = ± ±  (4) 

Observing the rotor figures presented above and by comparison of the amplitude values of 
Table 3, for different values of inductance L in the DC link coil, it is possible to conclude that 
the value of the inductance of the DC link coil affects directly the ripple of the waveform of 
the rotor current, which is reflected in the values of amplitude of the frequency spectrum. 
 

Amplitude of rotor current  (A) 
Frequency (Hz)

Without L With L=1mH With L=5mH With L=10mH 
+19.53 82.16 81.33 81.17 79.7 
-97.66 21.52 17.92 14.35 14.49 

+136.71 3.8 4.436 5.7 7.26 
-214.83 4.5 4.69 5.2 3.1 
+253.89 12.3 3.1 2 2.9 
-280.47 10.5 6.3 1 1.2 
+319.53 9.3 5.5 - 1.1 

Table 3. Frequencies and amplitudes of the rotor current referred to the stator for phase a 
and for slip=0.3906 

2.4.2 Stator current, is 
It was observed that in a steady state the peak-to-peak value of the stator current is not 
greatly affected by the value of the inductance placed on the DC link coil. 
A DC component of the rotor current establishes a rotating magnetic field in the air gap and 
induces voltages in the stator winding at frequency given by Eq. 5, where s is the slip and 
fms is the fundamental frequency. For s=0.3906 and fms=50Hz, this corresponds to a 
30.47Hz with positive sequence. 
Similarly, a rotor current frequency fr manifests itself in the stator current frequencies of 
(fr+fm) with fr>0, for positive sequence rotor currents, and fr<0, for negative sequence rotor 
currents. Adding the effect of motor speed to the rotor current frequencies, the reflected 
stator frequencies are given by Eq. 5, with k=0,1,2,3,.... 

 ( ) ( ), 1 6 1 1 6R
r h ms ms msf fr fm k sf s f ks f= + = ± + − = ±  (5) 

Adding the effect of rotor side-band frequencies due to the inverter harmonics, the 
frequencies of the induced harmonics present in the stator, considering these two effects are 
given by Eq. 6, with k,m=0, 1, 2, 3. This equation will be reduced to the Eq. 5 if m = 0. 

 , 1 6 6r h msf ks m f= ± ±  (6) 
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Fig. 14. Frequency spectrum of the stator current for a rotor slip=0.3906, (a) without 
inductance L and, (b) with an inductance of 10mH 

Figs. 14a) and 14b) show the spectrum of the stator current and Table 4 corresponds to the 
amplitude of the frequencies. By Eq. 6, if s=0.3906 and k=0, the fundamental frequency will 
be equal to 50Hz.  
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Amplitude of stator current (A) Frequency (Hz)
Without L With L=1mH With L=5mH With L=10mH 

50 130.5 129.6 129 127.2 
-67.19 19.5 18 12.8 13.2 

+167.18 6.5 - 6.2 7.55 
-250 10.1 9.2 2.36 1.18 
+350 9.1 9 2 1.12 

Table 4. Frequencies and amplitudes of stator current in phase A, for a slip=0.3906 

By Eq. 7, if k=1 and m=0, the 5th and 7th harmonic orders of the rotor current appear in the 
stator at frequencies modules of |-97.66 +30.47|=67.19Hz and |+136.7 +30.47| = 167.1Hz. If 
k=2 and m=0, the 11th and 13th harmonics of the rotor current appear in the stator at 
frequencies of module 184.36 Hz and 284.36Hz. If k=0 and m≠0, Eq. 6 gives the frequency 
effect due to the inverter harmonics. The 300Hz of the inverter referred to the stator 
introduces two side-band frequencies module of 250Hz, 289Hz, 310.9Hz and 350Hz, given 
from equation 300 30.47 19.53± + ± .  
The peaks presented in the stator frequency module, which corresponds to the rotor 
frequencies of 285.47Hz and 319.53Hz, are the 250Hz and 350Hz peaks, respectively. 

2.4.3 Electromagnetic torque, tem 
Figs. 15 a) and 15 b) show the spectrum of the harmonics of the electromagnetic torque, 
considering two situations without and with an inductance of 10 mH. The harmonics 
presented in the spectrum of the electromagnetic torque can be explained considering the 
interaction of the magnetomotive forces (mmf) between the stator and the rotor currents, in 
its fundamental and harmonic components. The Eq. 7 below is used for the calculation of the 
electromagnetic torque. 

 ( )3
2 sr qs dr ds qrem p L i i i i= × × −Γ  (7) 

Each component spectrum of the electromagnetic torque is due to the interaction between a 
sinusoidal component of the stator current and a sinusoidal component of the rotor current 
as is described by the Eq. 8 following: 

 ( )( ) ( )( )cos coss r mem k w t w w t= × × +Γ  (8) 

By rearranging the Eq. 8 above, this can be presented in the new form of Eq. 9, where k and 
k1 are constants, ws is the angular speed of the stator currents, wr is the angular speed of 
the rotor currents, wm is the mechanical speed in radelec/s, fs and fr are the stator and the 
rotor current frequencies and fm=(1-s).fs is the mechanical frequency in electrical Hertz. The 
values of ws and wr can be either positive or negative depending on the positive or negative 
characteristics of the sequence. 

 ( ) ( )1 cos cos
2em s s
k f fr fm t f fr fm tϕ ϕ⎡ ⎤Γ = × − − − + + + +⎣ ⎦  (9) 

The frequency components of the electromagnetic torque presented in Figs. 15 a) and 15 b) 
are for the slip=0.3906. As can be observed, with an inductance placed in the DC link, the 
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Fig. 14. Frequency spectrum of the stator current for a rotor slip=0.3906, (a) without 
inductance L and, (b) with an inductance of 10mH 

Figs. 14a) and 14b) show the spectrum of the stator current and Table 4 corresponds to the 
amplitude of the frequencies. By Eq. 6, if s=0.3906 and k=0, the fundamental frequency will 
be equal to 50Hz.  
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Amplitude of stator current (A) Frequency (Hz)
Without L With L=1mH With L=5mH With L=10mH 

50 130.5 129.6 129 127.2 
-67.19 19.5 18 12.8 13.2 

+167.18 6.5 - 6.2 7.55 
-250 10.1 9.2 2.36 1.18 
+350 9.1 9 2 1.12 

Table 4. Frequencies and amplitudes of stator current in phase A, for a slip=0.3906 

By Eq. 7, if k=1 and m=0, the 5th and 7th harmonic orders of the rotor current appear in the 
stator at frequencies modules of |-97.66 +30.47|=67.19Hz and |+136.7 +30.47| = 167.1Hz. If 
k=2 and m=0, the 11th and 13th harmonics of the rotor current appear in the stator at 
frequencies of module 184.36 Hz and 284.36Hz. If k=0 and m≠0, Eq. 6 gives the frequency 
effect due to the inverter harmonics. The 300Hz of the inverter referred to the stator 
introduces two side-band frequencies module of 250Hz, 289Hz, 310.9Hz and 350Hz, given 
from equation 300 30.47 19.53± + ± .  
The peaks presented in the stator frequency module, which corresponds to the rotor 
frequencies of 285.47Hz and 319.53Hz, are the 250Hz and 350Hz peaks, respectively. 

2.4.3 Electromagnetic torque, tem 
Figs. 15 a) and 15 b) show the spectrum of the harmonics of the electromagnetic torque, 
considering two situations without and with an inductance of 10 mH. The harmonics 
presented in the spectrum of the electromagnetic torque can be explained considering the 
interaction of the magnetomotive forces (mmf) between the stator and the rotor currents, in 
its fundamental and harmonic components. The Eq. 7 below is used for the calculation of the 
electromagnetic torque. 

 ( )3
2 sr qs dr ds qrem p L i i i i= × × −Γ  (7) 

Each component spectrum of the electromagnetic torque is due to the interaction between a 
sinusoidal component of the stator current and a sinusoidal component of the rotor current 
as is described by the Eq. 8 following: 

 ( )( ) ( )( )cos coss r mem k w t w w t= × × +Γ  (8) 

By rearranging the Eq. 8 above, this can be presented in the new form of Eq. 9, where k and 
k1 are constants, ws is the angular speed of the stator currents, wr is the angular speed of 
the rotor currents, wm is the mechanical speed in radelec/s, fs and fr are the stator and the 
rotor current frequencies and fm=(1-s).fs is the mechanical frequency in electrical Hertz. The 
values of ws and wr can be either positive or negative depending on the positive or negative 
characteristics of the sequence. 

 ( ) ( )1 cos cos
2em s s
k f fr fm t f fr fm tϕ ϕ⎡ ⎤Γ = × − − − + + + +⎣ ⎦  (9) 

The frequency components of the electromagnetic torque presented in Figs. 15 a) and 15 b) 
are for the slip=0.3906. As can be observed, with an inductance placed in the DC link, the 
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spectrum presented is cleaner and has lower amplitude values when compared to the 
situation without the inductance L. 
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(b) 

Fig. 15. Frequency spectrum of the electromagnetic torque for slip=0.3906, a) without 
inductance L and, b) with an inductance of 10mH 
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Table 5 shows the spectral components and correspondent amplitude values considering 
that the torque is higher than 10N.m. As shown in Figs. 15 a) and 15 b), and then reflected 
by the table, the most relevant peaks of the electromagnetic torque appear for frequencies 
multiples of 117 Hz and at 300Hz. 
 

Amplitude of torque components (N.m) Frequency 
Modulus (Hz) Without L With L=1mH With L=5mH With L=10mH 

0 5294 5292 5281 5193 
14 75.16 4883- 68.56 - 
28 62.05 - - - 

37.5 87.64 44.07 12.26 - 
51.5 254.2 91.21 18 25.5 
65.5 218.7 74.72 - 7.3 
79.5 21.73 - - - 
117 1223 804.3 504 513.4 
169 23.52 14.29 - - 
183 70.12 34.8 13.5 10.12 

234.5 186.1 165.8 200 160.6 
248.5 29.46 - - - 
300 1287 775.7 300 156.4 

351.5 50.26 66.99 85.86 75.28 
365 15.56 - - - 
417 41.75 22.72 - 4.5 

468.5 - 17.12 29.82 26 

Table 5. Frequencies and amplitudes of the electromagnetic torque 

Table 5 also shows that the amplitudes of the components decrease for the most relevant 
frequencies, if the DC link inductance increases. 
As examples, it appears that with the 300 Hz component of the electromagnetic torque, the 
amplitude varies between 1287N.m for L=0mH to 156.4N.m for L=10mH and the amplitude 
of the electromagnetic torque, 117Hz changes its value from 1223N.m for L=0mH to 
513.4N.m for L=10mH. 

2.5 Experimental results 
Although the main objective of this study did not focus on the power quality of the energy 
provided by the network, in order to evaluate the effects caused in this, by the system under 
analysis i.e. by the SER system, some experimental measurements were taken in the voltage 
busbars of 60kV and 6KV and also the voltage busbar that feeds directly the SER system. It 
was verified, however, that in any of the situations analyzed, only the fundamental 
frequency component of 50Hz is present. The current measured on the busbar of the SER 
system shows a waveform whose spectrum has the fundamental component of 50Hz and its 
multiples. Figs. 16 and 17 show the experimental results concerning the current waveforms 
for the rotor and the stator. 
The information relating to the harmonic spectrum of these variables is presented using 
linear scales in both x and y-axis. Due to the low plot resolution (just 256 points) used by the 
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spectrum presented is cleaner and has lower amplitude values when compared to the 
situation without the inductance L. 
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Fig. 15. Frequency spectrum of the electromagnetic torque for slip=0.3906, a) without 
inductance L and, b) with an inductance of 10mH 
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Table 5 shows the spectral components and correspondent amplitude values considering 
that the torque is higher than 10N.m. As shown in Figs. 15 a) and 15 b), and then reflected 
by the table, the most relevant peaks of the electromagnetic torque appear for frequencies 
multiples of 117 Hz and at 300Hz. 
 

Amplitude of torque components (N.m) Frequency 
Modulus (Hz) Without L With L=1mH With L=5mH With L=10mH 

0 5294 5292 5281 5193 
14 75.16 4883- 68.56 - 
28 62.05 - - - 

37.5 87.64 44.07 12.26 - 
51.5 254.2 91.21 18 25.5 
65.5 218.7 74.72 - 7.3 
79.5 21.73 - - - 
117 1223 804.3 504 513.4 
169 23.52 14.29 - - 
183 70.12 34.8 13.5 10.12 

234.5 186.1 165.8 200 160.6 
248.5 29.46 - - - 
300 1287 775.7 300 156.4 

351.5 50.26 66.99 85.86 75.28 
365 15.56 - - - 
417 41.75 22.72 - 4.5 

468.5 - 17.12 29.82 26 

Table 5. Frequencies and amplitudes of the electromagnetic torque 

Table 5 also shows that the amplitudes of the components decrease for the most relevant 
frequencies, if the DC link inductance increases. 
As examples, it appears that with the 300 Hz component of the electromagnetic torque, the 
amplitude varies between 1287N.m for L=0mH to 156.4N.m for L=10mH and the amplitude 
of the electromagnetic torque, 117Hz changes its value from 1223N.m for L=0mH to 
513.4N.m for L=10mH. 

2.5 Experimental results 
Although the main objective of this study did not focus on the power quality of the energy 
provided by the network, in order to evaluate the effects caused in this, by the system under 
analysis i.e. by the SER system, some experimental measurements were taken in the voltage 
busbars of 60kV and 6KV and also the voltage busbar that feeds directly the SER system. It 
was verified, however, that in any of the situations analyzed, only the fundamental 
frequency component of 50Hz is present. The current measured on the busbar of the SER 
system shows a waveform whose spectrum has the fundamental component of 50Hz and its 
multiples. Figs. 16 and 17 show the experimental results concerning the current waveforms 
for the rotor and the stator. 
The information relating to the harmonic spectrum of these variables is presented using 
linear scales in both x and y-axis. Due to the low plot resolution (just 256 points) used by the 
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experimental equipment, the results do not show the detailed information that is obtained in 
simulation (with 10000 points). The experimental results were obtained for slip = 0.3906 and 
are in accordance with the simulation ones for the same conditions of the SER system 
operation. 

2.5.1 Experimental rotor current, ir 
Figs. 16 a) and 16 b) show the rotor current and correspondent spectrum for the slip=0.3906, 
the correspondent fundamental rotor frequency is 19.53Hz. The harmonic components 
introduced by the six-pulse rectifier converter, due to the DC side average value, are 
reflected on the rotor currents at frequencies given by the Eq. 3. 
The frequency of 19.53Hz (100%) is obtained when k is equal to zero in Eq. 3. The harmonics 
of 5th, 7th and 11th orders are also present in the spectrum and predicted by the equation. 
They correspond to the frequencies of 97.66Hz (26.8%), 136.71Hz and 214.83Hz, 
respectively. 
As it is observed, the harmonic components, due to the six-pulse inverter that appear in the 
DC current at frequencies multiples of 300Hz, also appear in the spectrum of the rotor 
currents with two side-bands of 300Hz ± 19.53Hz. These correspond to the 280.47Hz and 
319.53Hz peak frequencies in the spectrum of Fig. 16 b), respectively. 
 

  
X Scale: 20ms/div, Y Scale: 100mV/div, 

X Resol: 25# /div, Y Resol: 25# /div, X size: 256. 

(a) 

X Scale: 97.7 Hz/div, Y Scale: 10 %/div, 
X Resol: 20 # /div, Y Resol: 25 # /div, X size: 200 

(b) 

Fig. 16. Rotor current for slip=0.3906, with relevant peaks at frequencies of 19.53Hz (100%), 
the signalised, 97.66 Hz (26.8%), 136.71 Hz, 253.89 Hz, 280.47 Hz and 319.53 Hz 

2.5.2 Experimental stator current, is 
Figs. 17 a) and 17 b) show the stator current and correspondent spectrum for the slip=0.3906. 
By the Eq. 5 and Eq. 6 presented above, the analysis of the spectrum of Fig. 17 shows that: 1) 
the 50Hz fundamental frequency can be obtained when k is equal to zero in equation 5, 2) 
the 5th and 7th harmonics of the rotor current appear in the stator at frequencies of |-97.66 
+30.47|=+67.19Hz and |+136.71 +30.47| = 167.18Hz, which correspond to using k equal to 
one and m equal to zero in equation 6, 3) the 11th harmonic of the rotor current appears in 
the stator at frequencies of |-214.83 +30.47|=184.36Hz. 
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The effects of the inverter harmonics on the stator current were obtained by Eq. 6 with k = 0. 
The highest peaks of the stator frequency are the 250Hz and the 350Hz corresponding to the 
rotating fields established by the rotor frequencies of 280.47Hz and 319.53Hz. 
 

  
X Scale: 50ms/div, Y Scale: 100mV/div, 

X Resol: 25# /div, Y Resol: 25# /div, X size: 256. 

(a) 

X Scale: 97.5 Hz/div, Y Scale: 10 %/div,  
X Resol: 20 # /div, Y Resol: 25 # /div, X size: 200 

(b) 

Fig. 17. Stator current for slip=0.3906, with relevant peaks at frequencies of 50Hz (100%), 250 
Hz (13.6%) and 350 Hz (9.6%) 

2.6 Conclusions 
With this case study it was shown in a simple but clear form that the MatLab tools could 
meet all the requirements of implementing a particular and rather complex power 
electronics system such as the SER. The implementation of the SER system in MatLab has 
allowed a better understanding of the same and, in addition, has provided the answers 
necessary to act in conformity with the results.  The implementation of the control and the 
characterization of the various elements of the system were presented in detail according to 
the strategy imposed by the commercial system. It should be noted that when this study was 
undertaken, the SER system was operating in a cement plant.  
The control strategy implemented allows the elimination of the circulation current of the 
system and for the harmonic analysis, a MatLab programme is developed for the effect, with 
several features, namely: the capability to analyze a large range of frequencies and high 
resolution. Some results for the stator current, the rotor current and the electromagnetic 
torque were presented. These results show the existence of strong components of high 
frequency on the stator and rotor currents. The oscillations presented in the electromagnetic 
torque were explained by considering the interaction between the stator and the rotor 
fundamental and harmonic currents. Considering the effect of the inductance of the DC link 
coil, it affects directly the ripple of the waveform of the rotor current, which is reflected in 
the values of amplitude of the frequency spectrum. 

3. Power electronic converter for a fuel cell (FC) system  
Power electronic converters in general and the DC-DC converters in particular are of very 
high importance in the performance and the efficiency of fuel cell (FC) processes based on 
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experimental equipment, the results do not show the detailed information that is obtained in 
simulation (with 10000 points). The experimental results were obtained for slip = 0.3906 and 
are in accordance with the simulation ones for the same conditions of the SER system 
operation. 

2.5.1 Experimental rotor current, ir 
Figs. 16 a) and 16 b) show the rotor current and correspondent spectrum for the slip=0.3906, 
the correspondent fundamental rotor frequency is 19.53Hz. The harmonic components 
introduced by the six-pulse rectifier converter, due to the DC side average value, are 
reflected on the rotor currents at frequencies given by the Eq. 3. 
The frequency of 19.53Hz (100%) is obtained when k is equal to zero in Eq. 3. The harmonics 
of 5th, 7th and 11th orders are also present in the spectrum and predicted by the equation. 
They correspond to the frequencies of 97.66Hz (26.8%), 136.71Hz and 214.83Hz, 
respectively. 
As it is observed, the harmonic components, due to the six-pulse inverter that appear in the 
DC current at frequencies multiples of 300Hz, also appear in the spectrum of the rotor 
currents with two side-bands of 300Hz ± 19.53Hz. These correspond to the 280.47Hz and 
319.53Hz peak frequencies in the spectrum of Fig. 16 b), respectively. 
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Fig. 16. Rotor current for slip=0.3906, with relevant peaks at frequencies of 19.53Hz (100%), 
the signalised, 97.66 Hz (26.8%), 136.71 Hz, 253.89 Hz, 280.47 Hz and 319.53 Hz 

2.5.2 Experimental stator current, is 
Figs. 17 a) and 17 b) show the stator current and correspondent spectrum for the slip=0.3906. 
By the Eq. 5 and Eq. 6 presented above, the analysis of the spectrum of Fig. 17 shows that: 1) 
the 50Hz fundamental frequency can be obtained when k is equal to zero in equation 5, 2) 
the 5th and 7th harmonics of the rotor current appear in the stator at frequencies of |-97.66 
+30.47|=+67.19Hz and |+136.71 +30.47| = 167.18Hz, which correspond to using k equal to 
one and m equal to zero in equation 6, 3) the 11th harmonic of the rotor current appears in 
the stator at frequencies of |-214.83 +30.47|=184.36Hz. 
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The effects of the inverter harmonics on the stator current were obtained by Eq. 6 with k = 0. 
The highest peaks of the stator frequency are the 250Hz and the 350Hz corresponding to the 
rotating fields established by the rotor frequencies of 280.47Hz and 319.53Hz. 
 

  
X Scale: 50ms/div, Y Scale: 100mV/div, 

X Resol: 25# /div, Y Resol: 25# /div, X size: 256. 

(a) 

X Scale: 97.5 Hz/div, Y Scale: 10 %/div,  
X Resol: 20 # /div, Y Resol: 25 # /div, X size: 200 

(b) 

Fig. 17. Stator current for slip=0.3906, with relevant peaks at frequencies of 50Hz (100%), 250 
Hz (13.6%) and 350 Hz (9.6%) 

2.6 Conclusions 
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electronics system such as the SER. The implementation of the SER system in MatLab has 
allowed a better understanding of the same and, in addition, has provided the answers 
necessary to act in conformity with the results.  The implementation of the control and the 
characterization of the various elements of the system were presented in detail according to 
the strategy imposed by the commercial system. It should be noted that when this study was 
undertaken, the SER system was operating in a cement plant.  
The control strategy implemented allows the elimination of the circulation current of the 
system and for the harmonic analysis, a MatLab programme is developed for the effect, with 
several features, namely: the capability to analyze a large range of frequencies and high 
resolution. Some results for the stator current, the rotor current and the electromagnetic 
torque were presented. These results show the existence of strong components of high 
frequency on the stator and rotor currents. The oscillations presented in the electromagnetic 
torque were explained by considering the interaction between the stator and the rotor 
fundamental and harmonic currents. Considering the effect of the inductance of the DC link 
coil, it affects directly the ripple of the waveform of the rotor current, which is reflected in 
the values of amplitude of the frequency spectrum. 

3. Power electronic converter for a fuel cell (FC) system  
Power electronic converters in general and the DC-DC converters in particular are of very 
high importance in the performance and the efficiency of fuel cell (FC) processes based on 
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energy generation systems. The control of the operation point of the PEM fuel cell requires 
appropriate use of static power electronic converters, capable of providing accurate support 
to the control methods. Hence, the main objective of applying converters with fuel cells is to 
obtain maximum efficiency using the easiest and correct control strategies, taking into 
account requirements like cost, efficiency, ripple current and stable operation under 
transient load conditions. 
There are two main possible converter topologies which can be utilized in order to meet the 
objective: a DC-DC converter together with a DC-AC and a DC-AC interfacing directly with 
the FC to the grid. A specific application must be considered in order to select the best 
topology. Usually the DC-DC converter is put between the fuel cell and the inverter which 
performs two functions: 1) acts as the DC isolation for the inverter; and 2) produces 
sufficient voltage for the inverter input so that the required magnitude of the AC voltage 
can be produced. 
The inverter can be single-phase or three-phase depending on the utility connection. Some 
typical structures of the electrical fuel cell system are presented in Figs. 18, 19 and 20 below. 
 

 
Fig. 18. A typical FC configuration with a DC-AC converter interfacing directly to the grid 

 

 
Fig. 19. A typical FC configuration with a DC-DC and a DC-AC converter 

 

 
Fig. 20. A typical FC configuration with a DC-AC and an AC-AC converter 

3.1 Requirements and selection of the converter topology 
The main requirements considered for selecting the converter topology are as follows:  
• Control of output voltage according to a given reference,  
• Deliver current with little ripple and harmonic distortion,  
• High efficiency in the whole operating range, 
• Proper operation in all conditions, 
• Incorporated filtering and storing possibilities, 
• Low cost. 
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Basically, the DC-DC converter can be a current-fed or a voltage-fed type. A current-fed 
DC–DC converter requires less input filtering to minimize the high frequency current ripple 
drawn by the fuel cell because the inductor is placed at the input. Then, after an analysis and 
comparison of various topologies, a full-bridge resonant inverter, followed by an HF 
transformer and rectifier, composes the power scheme selected to our application. 
Additionally, two low-pass filters are inserted, one on the primary side is used to protect the 
fuel cell ripple-current and another on the secondary side is used to improve the quality of 
the energy supplied by the power system. The next sessions give some characteristics of the 
series-resonant topology, which are necessary for its design. 

3.2 Model of the converter in MatLab/Simulink 
A modular power scheme of the DC-DC converter and its implementation in 
MatLab/Simulink is presented in Fig. 21.  The operation of this converter can be described 
as follows: the voltage supplied by the fuel cell stack, which is typically low (29V - 42V), 
must be converted to a high and constant level, in our case, for 400VDC in order to be used 
to generate power to the grid through an inverter. The HF transformer is a step-up voltage 
transformer, which also serves as galvanic isolation between the high and low voltage levels 
of the circuits. The resonant converter with its LC series resonant circuit gives the sinusoidal 
waveforms of voltage and current in the primary side of the transformer. Selecting 
appropriate values for the L and C elements, the resonant frequency of the circuit is 
established. Then, the DC voltage of the fuel cell is firstly inverted in the primary side of the 
HF transformer, being rectified on the secondary side. The LC filter in the primary side 
allows protecting the PEM fuel cell from the ripple current and voltage produced by the 
converter, and also allows the storage of energy in the DC bus. The LC filter in the 
secondary allows reducing the ripple current and ripple voltage to the load, respectively.  
 

 
Fig. 21. The power electronic converter implemented in MatLab/Simulink 
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Fig. 21. The power electronic converter implemented in MatLab/Simulink 
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3.2.1 Control structure  
The control structure implemented in MatLab/Simulink corresponds to the modular 
scheme represented in Fig. 22, which is presented and described considering two parts. 
 

 
Fig. 22. Modular scheme of the control structure selected 

3.2.2 Voltage controller 
The voltage control sub-system is implemented in MatLab/Simulink as represented in Fig.  
23 
 

 
Fig. 23. Voltage control sub-system of the converter 

Explanation of the voltage control sub-system 
The voltage control sub-system of the converter allows limiting the maximum and 
minimum values for the output voltage i.e. the control output signal, Vcontrol, is always 
equal to zero (0), if Vout> = 750V(Selector #1), on the other side is always equal to one (1), if 
Vout = 0V (Selector #2). Otherwise, the control module works according to the main goal for 
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which it was designed, that is, through a PI controller and regardless of the type and 
amount of load applied to the power system, it keeps the converter output voltage at 400V 
(Selector #3). This works as follows: the value of the output voltage (Vout) of the converter 
is obtained and compared with the reference value; an error signal is produced and 
processed by the P - proportional I -integral controller producing a reference signal of 
voltage control (Vcontrol). The proportional term responds immediately to the error voltage 
yet typically cannot achieve the required set-point accuracy without an unacceptably large 
gain. On the other hand, the integral term yields an error zero in steady state for a constant 
set-point and enables the rejection of disturbances.  

3.2.3 Frequency controller 
The frequency control sub-system implemented in MatLab/Simulink is represented in Fig. 
24. 
 

 
Fig. 24. Frequency control sub-system of the converter 
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Explanation of the frequency control sub-system 
The frequency control sub-system allows the generation of the four gate signals to the 
resonant inverter bridge, which changes accordingly to the signal reference. Once the input 
signal is known, interpreted as a voltage (VCOref), established by the PI controllers, the 
continues-time VCO generates a sinusoidal signal whose frequency shifts from the 
Quiescent frequency parameter (fc) with a sensitivity to the input parameter (kc) and 
amplitude Ac. The inverter topology is a full-bridge; then four output signals need to be 
generated by this sub-system, one for each transistor respectively (Mi, i =1,2,3,4). They are 
synchronized by φ, which is the initial phase parameter and assumes zero or π value in the 
case. Parameterization of the voltage control oscillator blocks are shown in Fig. 25 according 
to the Eq. 10. 

 ( ) ( )
0

cos 2 2
t

C c cy t A f k u dπ π τ τ ϕ
⎛ ⎞

= × + +⎜ ⎟⎜ ⎟
⎝ ⎠

∫  (10) 

 

 
Fig. 25. Parameterization of the two voltage control oscillator blocks 

3.3 PEM Controller 
While the voltage-controller is responsible for controlling the output voltage of the 
converter, the PEM-controller is responsible for controlling the operation of the PEM, 
keeping it in its optimal operation point. This controller works as follows; once 
characterized an operation point of the PEM, for certain load conditions and constant output 
voltage (maintained by the voltage-controller), assuming for example that is point P in Fig. 
26, the PEM-loop has the task of improving the performance of the system, defining a new 
point P ' or P'' that best optimizes the PEM performance, i.e. which maximizes the energy 
produced with minimum consumption of hydrogen. The algorithm of control that satisfies 
these conditions of operation is represented by the flowchart of Fig. 27 and its descriptive 
explanation are further given through the summary presented in the table below: 
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Fig. 26. Output characteristic of the PEM 

 

 
Fig. 27. Flowchart of PEM controller 
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3.3.1 Flowchart explanation  
While the voltage-loop is responsible of control-ling the output voltage of the converter, the 
PEM-loop is responsible of controlling the operation of the PEM, keeping it in its optimal 
operation point. This controller is implemented in MatLab/Simulink and works as follows; 
once characterized an operation point of the PEM, assuming for example that is point P in Fig. 
26, the PEM-loop has the task of improving the performance of the system, defining a new 
point P' or P'' that best optimizes the PEM performance, i.e. introducing small perturbations in 
the system thus leading the cell to operate under conditions of maximum efficiency of the 
PEM, in other words, providing maximum power with minimal consumption of hydrogen. 
However, a minimum consumption of hydrogen means the operation of the PEM with 
minimum current, i.e. IFC minimum and VFC maximum, just in the sense of P' of the output 
characteristic of the PEM, as exemplified in the graph above. 
A lowering of the current cell implies a lowering of the operating frequency of the resonant 
converter, so the search condition from the point of optimum operation of PEM requires the 
lowering of the resonant frequency of the converter. Once you find the optimum for the 
present conditions of load, the resonant converter is operating at a frequency that is also the 
minimum frequency that ensures the load conditions imposed on the system. The process is 
repeated whenever there is a variation of the conditions imposed by the load. The actions to 
be performed by the PEM controller considering a particular condition of operation of the 
converter are summarized in Table 6.  

3.3.2 PEM controller in MatLab/Simulink 
As shown in Fig. 28 below, the implementation in MatLab/Simulink of the PEM controller 
previously explained is a cascade of various sub-systems, such as in a first step a sub-system 
generates a DELTA value. Once known, the value of DELTA, a new sub-system, generates a 
voltage reference value (Vcontrol), according to the current value of IFC. The term of IFC 
expressed by Eq. 13 takes into account the load conditions; the fact is that the power 
transferred from the PEM to the load has no losses and the output voltage must be kept 
always constant and equal to 400VDC. The DELTA value is reduced by a factor of 0.25 as 
shown in Fig. 28. Finally, there is a sub-system to control the output voltage VFC acting 
under the control algorithm previously explained.  

 PFC Pout PLoss= +  and 0PLoss ≈  (11) 

 400VFC IFC Iout× = ×  (12) 

 400IoutIFC
VFC
×

=  (13) 

3.3.3 DELTA sub-system in MatLab/Simulink 
The sub-system DELTA and the corresponding parameterization of function relay are 
implemented in MatLab/Simulink as shown in Fig. 29 and Fig. 30. 
Explanation of the DELTA system 
For each module that produces a specific DELTA, the following methodology is used: 
a. VCO is compared with the lower limit value of the relay, 
b. VCO is compared with the upper limit value of the relay (the top line that enters in the 

comparator limit value). 
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Fig. 28. PEM controller implemented in MatLab/Simulink 
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Fig. 28. PEM controller implemented in MatLab/Simulink 
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Fig. 29. DELTA sub-system in MatLab/Simulink 

 

 
Fig. 30. Voltage control in MatLab/Simulink 

 

 
Fig. 31. Parameterization of relay function in Vcontrol 
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The upper limit of each module of the sub-system DELTA is determined by the function 
‘relay’ whose output is determined according to the following conditions. 
i. The lower value VCO to reach the ceiling value of the relay, 
ii. The higher value since the relay changes state (with VCO greater than the upper value 

of the relay), 
iii. The output relay again put on the lower value of output relay when VCO back down 

and reach the lower limit value. From this moment, the relay output (value 
upper/lower) is defined by this cycle - then turns to step i) and the cycle repeats.  

This methodology is applied for the overall DELTA steps, as an example, if the natural limit 
is 0.825, the relay has the limits > 0.825 and ≤ 1. When VCO goes up to 0.825, the output of 
relay is 0.825, and in this case there is a condition of equality. Above 0.825, VCO is greater 
and the relay function goes to the 2nd block. 
In the next internals of time, the current continues to rise and when it reaches the 1 value or 
other value may be higher it happens a singular situation, i.e. in either case in which VCO is 
'exactly' equal to 1 is on the 1st block, leaving in the next block, because the voltage in the 1st 
block is greater. With these conditions, an increase of VCO happens. 

3.3.4 Voltage control sub-system in MatLab/Simulink 
The sub-system Vcontrol and the corresponding parameterization of function relay are 
implemented in MatLab/Simulink as shown in Fig. 30 and Fig. 31. 
Explanation of the Vcontrol sub-system 
For each module that produces a specific Vcontrol, the following methodology is used:  
a. IFC is compared with the lower value of the relay, 
b. IFC is compared with the upper limit value of the relay (the top line that enters in the 

comparator limit value). 
The upper limit of each module of the sub-system Vcontrol is determined by the function 
‘relay’ whose output is determined according to the following conditions. 
i. The lower value IFC to reach the ceiling value of the relay, 
ii. The higher value since the relay changes state (with IFC greater than the upper value of 

the relay), 
iii. The output relay again put on the lower value of output relay when IFC back down and 

reach the lower limit value. From this moment, the relay output (value upper/lower) is 
defined by this cycle - then turns to step i) and the cycle repeats.  

This methodology is applied for the overall Vcontrol (92 steps), as an example, if the natural 
limit is 15A. The relay has the limits >15A and ≤ 16A. When IFC goes up to 15A, the output 
of relay is 15 and in this case there is a condition of equality. Above 15A, IFC is greater and 
the relay function goes to the 2nd block. 
In the next internals of time, the current continues to rise and when it reaches the 16A (or 
other value ... may be higher) a singular situation happens, i.e. in either case in which IFC is 
'exactly' equal to 16A on the 1st block, leaving in the next block, because the voltage in the 
1st block is greater. With these conditions, an increase of IFC happens. 

3.4 Simulation results 
The following parameter conditions were implemented in test simulations of the converter. 
Simulation method: ode23t (Stiff/ Trapezoidal) 
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Fig. 29. DELTA sub-system in MatLab/Simulink 
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Tolerances: 1e-3 (Rel.) 1e-6 (Abs.) 
Max step size: 1e-5 
Initial output voltage of capacitor = 400.1V 
Voltage control: kp=1, ki= 100 
Quiescent frequency parameter (fc):1900Hz 
Sensitivity to the input parameter (kc):45100Hz 

3.4.1 Analysis of the static behaviour of the PEM 
The analysis of the static behaviour of the PEM fuel cell is done for some variables that 
better characterizes its performance, namely, its polarisation plot Vfc =f(Ifc) and power 
delivery as function of the load supplied to the NEXA system. The voltage varies between 
45V and 22V approximately, while current varies from 5 to 45A. The efficiency of this stack 
is around 22% - 33%. 
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Fig. 32. Voltage and power variables function of the load for the NEXA PEM 

3.4.2 Analysis of the dynamic behaviour of the PEM 
The analysis of the dynamic behaviour of the PEM fuel cell is done for several variables, 
which better characterizes its behaviour. The results presented correspond to the NEXA 
system. Fig. 33 illustrates the influence of the temperature on its polarization curve. As can 
be seen, in normal operation the losses experienced by the fuel cell are converted into heat, 
the stack temperature will increase or decrease respectively to the power delivered, 
therefore, as the temperature affects the performance of the PEM fuel cell, this needs to be 
analyzed in detail. So, three levels of temperature operation were considered for this study 
(40ºC, 50°C and 60ºC). Fig. 33 clearly shows that an increase in temperature decreases the 
value of output voltage and consequently the efficiency of the fuel cell. 
The dynamic behaviour of the PEM fuel cell is also affected by capacitor value, as can be 
observed in Fig. 34. If there is a decrease in the fuel cell current, the voltage rises, showing 
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similar delay effect for different values of the capacitor. However, because each point on the 
polarisation curve is obtained in steady state, the delay due to the capacitor does not affect 
the polarization curve of the PEM fuel cell. The analysis represented is centred in the step-
up current at an instant time of 27s. 
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Fig. 33. Effect of the temperature in the dynamic response of the PEM 

 

26.6 26.8 27 27.2 27.4 27.6 27.8 28
40

41

42

43

Time(sec)

V
FC

 (V
)

 

 

(1) C= 2.48F

(2) C= 1.50F

(3) C= 3.50F

(2)
(1)

(3)

 
Fig. 34. Effect of the capacitor value on fuel cell voltage 
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3.4.3 Analysis of the converter behaviour in open loop 
Fig. 35 shows how in open loop mode, the operation of the power converter is affected 
through small variations in the reference signal VCO. It appears as an output voltage 
variation of the converter. This is because if the value of VCO is changed, the frequency of 
operation of the resonant DC-DC converter is changed. In absence of control of the 
converter (in open loop), the higher the frequency of operation (that is to say, the VCO) the 
faster the response of the system and the output voltage value is at its highest, as can be seen 
by the three plots of the figure. 
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Fig. 35. Open loop response of the converter  

3.4.4 Analysis of the converter behaviour in closed loop 
Figs. 36, 37 and 38 below correspond to time responses of the main variables of the converter 
system in closed loop. The plot response of PEM fuel cell for a change in the load at time 
0.04s is represented in Fig. 36. As can be seen, in closed loop, the response of PEM to a step 
load requested (IFC) results in a reduction in the output voltage (VFC). The PEM response is 
affected by the PI controller implemented which aims to put the PEM operating in 
accordance with the request load and maintaining a constant voltage of 400V at the 
converter output, as can be seen in the plot of Fig. 38, which corresponds to a change in the 
load at instant time 0.04s. 
In Fig. 37 the LC series resonant tank waveforms are sinusoidal. The L and C components 
are placed on the primary side of the transformer and established for a resonant frequency 
of 50kHz. Obviously, other output powers demand lower converter frequency, operating 
around resonant pulses at the middle of the semi-period of the converter frequency.  
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Fig. 36. Closed loop response of PEM fuel cell for a change in the load at time 0.04s 
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Fig. 37. Resonant waveforms ILr and VCr 
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Fig. 38. Output voltage waveform for a change in the load at time 0.04s  

3.5 Experimental results 
Figs. 39 and 40 show some experimental results obtained in the digital oscilloscope 
Tektronix TDS2024. A Tektronix A622 is used for DC current measurement, while for the 
AC current measurement a CWT miniature Rogowski coil range from Powertek is used. 
The fuel cell voltage in Fig. 39 is 20.6V and the current of the fuel cell is in this case 11.3A. 
Considering two points of the experimental PEM polarization represented in Fig. 26, (10A, 
20.88V) and (12A, 20.68V9 it can be seen that the measured values in the output of the PEM, 
during the operation of the resonant converter, are in accordance with the respective curve 
for a given request load. Fig. 40 shows the series resonant converter waveforms, namely the 
resonant voltage VCr and resonant current ILr, which are both sinusoidal as expected. The 
operation frequency of the converter is in this case 33.38Khz. 
  

 
Fig. 39. Plots showing the fuel cell voltage (CH1) and current  (CH2) for the load requested 
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Fig. 40. Plots showing the series resonant converter waveforms - VCr (CH1) and ILr (CH3)  

3.6 Conclusions 
Similarly to the first case study presented, it was demonstrated in this second case that the 
MatLab tools could meet all the requirements of designing a power electronic converter for 
fuel cell (FC) based energy generation systems. 
The modeling of the converter and the PEM in MatLab/Simulink allows a better 
understanding of the behaviour of the system and provides results that are an excellent tool 
in the project of the dynamics of the controller. 
The case presentation is divided in two parts: in the first part the authors discuss the 
methodology for an accurate model for the fuel cell stack including its static and dynamical 
behaviour which is an essential aspect in the design of electrical power generation based on 
fuel cells. The design tool adopted is MatLab/Simulink, which proves to be a very common 
and easy tool for the design of electrical control systems.  
However, due to the lack of manufacturer data-sheets about the exact values of the parameters 
needed for modelling, it is necessary to adopt a methodology in order to determine the 
optimum set of these parameters. The method adopted by the authors is the simulated 
annealing (SA) optimization algorithm, which proves to be well adapted to satisfy the goal of a 
fast convergence to establish the right values for the cell parameters. The good agreement 
between the simulation and the experimental results shows that the proposed model provides 
an accurate representation of the static and dynamic behaviour for the PEM fuel cell. 
In the second part of the paper the authors give an overview of the possible topologies to be 
adopted for the DC/DC converter which are appropriate to take control and optimization of 
operation point of the fuel cell. In that sense, the soft switching proves to be particularly 
attractive and, in particular, the series resonant topology converters because they allow for 
reducing the switching losses and consequently increasing the efficiency. The simulation 
results are compared with real data obtained from a commercial system. Finally, the 
combination of a good power converter with a well-defined controller, together with the 
well–optimized fuel stack model, makes the electrical generation systems by FC very 
attractive indeed. 

4. Conclusions  
This chapter discusses the authors’ approach to designing electrical generation systems 
based on MatLab/Simulink. It is shown, through explanation of development in MatLab 
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based on MatLab/Simulink. It is shown, through explanation of development in MatLab 
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using two examples, that MatLab is an appropriate tool for computational analysis of 
electrical systems in order to design physically controlled systems. In the first case in the 
chapter, it analyzed the implementation and control of a SER system, a conventional system 
based on power electronics and electrical drives. 
For the second case, the design process of a completely different system is chosen, also 
demanding experimental validation of results. 
The designing begins with the implementation of an appropriate model for PEM fuel cell 
behaviour based on analytical formulation of chemical processes behind fuel cell operation 
and the design of an equivalent and analogue electrical circuit describing the fuel cell 
operation. This case requires attention on the selection and implementation of an 
appropriated static power converter capable of either controlling and adapting the 
unregulated DC power generated by the fuel cell to a regulated electrical power source, or 
optimizing the efficiency of the fuel cell through appropriate input impedance. The power 
converter is a necessary sub-system for these kinds of systems, as it allows them to operate 
as controlled voltage sources for any operating point of the fuel cell.  
The quality of the approach is demonstrated through implementation of the fuel cell and 
converter models, and other conventional sub-systems in a MatLab/Simulink model of the 
generation system.  
The authors’ approach allows for optimizing the design of electrical generation systems, 
both in economical terms and in performance quality, by making available accurate models 
that describe the electrical and chemical operations involved by simple methods when using 
the available toolboxes of the MatLab/Simulink. 
The results illustrate in both cases that the MatLab/Simulink, being a cheap design 
environment tool software, can be generically adopted as an appropriate and accurate 
design tool. 
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The results illustrate in both cases that the MatLab/Simulink, being a cheap design 
environment tool software, can be generically adopted as an appropriate and accurate 
design tool. 
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1. Introduction 
Continuous advances in IC (integrated circuits) processing technologies offer the possibility 
to produce integrated circuits with increased complexity and capability at a reduced cost. In 
addition, integrated circuits are composed more and more of heterogeneous embedded 
systems with various kinds of digital, analogue, and mixed-signal circuits and sensors that 
are integrated on the same IC. In the future, the number of different embedded systems 
integrated on the same IC, as well as the number of all modules and the complexity of all 
modules, will increase. In addition, more and more heterogeneous modules (including 
analogue and mixed-signal circuits, sensors and actuators, micro-electro-mechanical-
systems) will be integrated on the same IC. 
Currently, well-established circuit design tools exist for the circuit level design of analogue 
circuits; even better design tools exist for the systematic and hierarchical design of large 
digital circuits, including an important aspect of any reliable digital circuit, that is, 
testability, which is also well covered by existing digital EDA tools (EDA stands for 
Electronic Design Automation tools). There are no such tools available at the moment for 
analogue and mixed-signal circuits except maybe Saber. Saber can help to model, design, 
and simulate a complete mixed signal system in a short amount of time. It may also be used 
in several analogue and mixed signal blocks and different kinds of integrated sensors. With 
Saber (Synopsis, 2004) it is possible to model such circuits; however, Matlab/Simulink is 
much more convenient because of many different toolboxes and libraries available. Matlab, 
together with Simulink, offers a hierarchical environment and computation engines that 
make it possible to model, simulate and design complex circuits in a very efficient way on a 
high hierarchical level. In addition, modules may be described, modelled, simulated, and 
designed at different abstraction levels and at different levels of detail. For example, 
analogue circuits could be modelled in a very simple way, that is, taking into consideration 
only system level aspects like transfer functions; conversely, more details about the 
implementation, such as offset voltage, gain bandwidth product, slew rate, thermal and 1/f 
noise, and parameters such as nonlinearity, could be added, when necessary. For digital 
circuits, it might be necessary to produce a bit-true model early in the design to take all 
aspects of the design into consideration. Appropriate decisions early in the design can 
improve the efficiency of the design process. Since large modern IC’s usually contain many 
mixed-signal functions, it is necessary to model and simulate the analogue and the digital 
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addition, integrated circuits are composed more and more of heterogeneous embedded 
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are integrated on the same IC. In the future, the number of different embedded systems 
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circuits; even better design tools exist for the systematic and hierarchical design of large 
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testability, which is also well covered by existing digital EDA tools (EDA stands for 
Electronic Design Automation tools). There are no such tools available at the moment for 
analogue and mixed-signal circuits except maybe Saber. Saber can help to model, design, 
and simulate a complete mixed signal system in a short amount of time. It may also be used 
in several analogue and mixed signal blocks and different kinds of integrated sensors. With 
Saber (Synopsis, 2004) it is possible to model such circuits; however, Matlab/Simulink is 
much more convenient because of many different toolboxes and libraries available. Matlab, 
together with Simulink, offers a hierarchical environment and computation engines that 
make it possible to model, simulate and design complex circuits in a very efficient way on a 
high hierarchical level. In addition, modules may be described, modelled, simulated, and 
designed at different abstraction levels and at different levels of detail. For example, 
analogue circuits could be modelled in a very simple way, that is, taking into consideration 
only system level aspects like transfer functions; conversely, more details about the 
implementation, such as offset voltage, gain bandwidth product, slew rate, thermal and 1/f 
noise, and parameters such as nonlinearity, could be added, when necessary. For digital 
circuits, it might be necessary to produce a bit-true model early in the design to take all 
aspects of the design into consideration. Appropriate decisions early in the design can 
improve the efficiency of the design process. Since large modern IC’s usually contain many 
mixed-signal functions, it is necessary to model and simulate the analogue and the digital 
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part of the mixed-signal circuits, and possibly also the sensors, with most important non-
ideal effects included.   
Good examples of complex mixed-signal circuits are high-resolution Σ-Δ AD and/or DA 
converters. These mixed-signal circuits trade time with accuracy. To get some samples of 
digital results, many clock samples of analogue circuits must be processed. Using circuit 
simulator for the verification of such a module would require enormous amount of time. For 
example, to be able to simulate and calculate the performance of a fifth order modulator 
using normal EDA tools, more than 1000 hours on a 3GHz computer would be required; this 
amounts only to some simulations, which of course is not acceptable. The simulation of a 
high-level model of the same circuit, with most of the important non-ideal effects included, 
takes only a couple of minutes if the circuit is modelled on a high hierarchical level using the 
Matlab. In addition, because of the speed of simulation, depending on the specifications, 
such a methodology could be used to optimize certain parameters and determine the 
minimum requirements for the building blocks. 
This chapter will explain how to model, design, and simulate mixed-signal circuits 
efficiently by using Matlab and Simulink. The design, modelling and simulation of a fifth 
order Σ-Δ A/D converter will be used as an example for high-resolution mixed-signal 
circuit. Generally, analogue and digital parts, and possibly even the sensors, are modelled 
according to needs. At the beginning of the design process, only high-level models are used; 
non-ideal effects are not yet implemented and only basic functionality is checked.  For 
example, a transfer function for linear circuits can be used to verify the concept and later on, 
non-ideal effects are added to the model to verify parameters of analogue circuit 
implementation. For the digital part, only a discrete time model with double precision of 
variables are used at the beginning, while later on, a bit-true model is used. In this way, it is 
possible to verify the correctness of the design at an early stage of the design process. Since a 
complete mixed-signal circuit is verified on a high hierarchical level, it is possible to 
simulate all parts of the circuit at the same time and in a very short time. In this way, the 
efficiency of the design process is highly improved and the design time is shortened. The 
main objective of this chapter is to explain how we can model and simulate mixed-signal 
circuits in an efficient way, using a fifth order Σ-Δ A/D converter as an example.  
For digital design, one of the trends is to integrate Matlab/Simulink tools into EDA CAD 
tools (CAD stands for computer aided design) for IC design (Perelroyzen, 2007) in order to 
facilitate and speed up the design of the digital integrated circuits and more specifically, to 
simplify and speed-up the design of the digital signal processing modules. For digital DSP 
(digital signal processing) designs, the Matlab/Simulink environment provides the 
opportunity to design and use DSP IP blocks and their models, to simulate those models on 
a functional level. Some companies (Xilinx, Altera, Synplicity) use Simulink for the 
implementation of IP-based design flow. The design starts with Matlab with the design of 
the signal processing algorithm; when the algorithm is developed, the corresponding IP 
blocks are selected from the library and then the RTL (register transfer logic) description of 
the system is synthesized (Moris, 2004). RTL description is then used in the synthesis of 
FPGA (field programmable gate array) content. For VLSI (very large scale integrated 
circuits) design, the net-list is synthesized from the RTL or HDL (hardware description 
language) code.  
The methodology and tools for analogue and mixed-signal circuits that are currently used 
are based on a Spice-like simulation environment; that is good for simple analogue circuits. 
As soon as many modules are involved, or, as in modern heterogeneous designs, many 
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different modules are integrated, no tool exists that can handle the complex nature of such 
circuits and no tool is currently available for the design of such heterogeneous and complex 
systems. For such designs, many different specialists must work together. Because of that, 
there is a real need for heterogeneous design environment and simulation tool that can be 
used on a high hierarchical level and that integrates the design solutions of many different 
specialists. We believe that the Matlab/Simulink environment provides the appropriate 
tools where representations at the high hierarchical level enables the efficient design of 
digital, analogue, and mixed-signal circuits/systems. 
In this chapter, we will present a methodology for the efficient design, modelling, and 
simulation of mixed-signal integrated circuits using the Matlab/Simulink environment; 
specifically and as our example, we shall design and model a fifth order Σ-Δ analogue to 
digital converter module. In Section  2, a short description of a top-down approach for 
design of a mixed-signal circuit is given, together with a short description of what is needed 
to design such circuits/systems successfully. It is assumed that the readers know all the 
basic tips and tricks of the Matlab/Simulink environment. In section  3, the definition of a 
mixed-signal circuit is given, together with the list of some of the libraries and elements 
used for modelling such circuits. In section  4, a system level design procedure is given for 
the Σ-Δ modulator that is used as our example together with the description of the Simulink 
blocks that are used to model such nonlinear system. In section  5, the basic behaviour, the 
mathematical model, and the Simulink model of the discrete-time integrator is presented, 
together with the mathematical and Simulink models of the most important non-ideal 
effects. Two-simulation results will be presented in this section: the Spectrum of a BS (bit-
stream) including non-ideal effects and a “scatter” plot of the SnR that results from the 
Monte Carlo analysis. Section  6  presents the decimator bit-true modelling and design, and a 
complete mixed-signal circuit/system simulation result.  

2. Top down design approach 
To verify a functional property of a complex system early in the design phase, the design 
starts from a simplified description at a high hierarchical level. This then proceeds to the 
modelling of each constituent building block in a more detailed way. Eventually, such a 
modelling is applied to the transistor level. Later on, the description and modelling of each 
constituent module is improved by adding lower level detailed information that comes 
either from experience or from the detailed design process that use other design tools and 
simulation results. For example,  for analogue interface circuits, the following might be 
important parameters: thermal noise, 1/f noise, open loop gain, gain bandwidth, slew rate, 
nonlinearities, sampling, kT/C noise; for the DSP, on the other hand, a bit-true model might 
be important to be able to see the influences. For example, one circuit level simulation of a 
simple 2nd order Δ-Σ modulator using Spectre simulator requires more than 160 hours of the 
processor time; such simulation makes sense when the design is finished, that is, the 
simulation acts as a final check to see the effect of parasitic capacitances, for example. If such 
simulation tools are used throughout the entire design process, the simulation should be 
repeated several times, so the time needed for the complete design cycle would be 
prohibitively long. When such a modulator is modelled on a high hierarchical level that 
includes the important non-ideal effects, the simulation needs only a couple of minutes. This 
means that such a tool could really be used very efficiently: once the model fulfils the 
specifications, including the specifications of the most important non-ideal effects, the 
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part of the mixed-signal circuits, and possibly also the sensors, with most important non-
ideal effects included.   
Good examples of complex mixed-signal circuits are high-resolution Σ-Δ AD and/or DA 
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using normal EDA tools, more than 1000 hours on a 3GHz computer would be required; this 
amounts only to some simulations, which of course is not acceptable. The simulation of a 
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processor time; such simulation makes sense when the design is finished, that is, the 
simulation acts as a final check to see the effect of parasitic capacitances, for example. If such 
simulation tools are used throughout the entire design process, the simulation should be 
repeated several times, so the time needed for the complete design cycle would be 
prohibitively long. When such a modulator is modelled on a high hierarchical level that 
includes the important non-ideal effects, the simulation needs only a couple of minutes. This 
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specifications, including the specifications of the most important non-ideal effects, the 
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model could be taken as a specification limit for the detailed circuit design. Once the 
detailed circuit and layout design is finished, the results of the “Spice” simulations of each 
module are taken and added into the Matlab model, and the whole simulation cycle could 
be repeated again on a high hierarchical level. This methodology is very efficient; it shortens 
the design time for mixed-signal circuits considerably.  

3. Mixed-signal integrated circuits 
Mixed-signal integrated circuits contain analogue and digital modules that are integrated on 
a single semiconductor chip; these circuits are closely interconnected and interrelated. It is 
difficult or not appropriate to design, model, and simulate analogue and digital modules 
separately. A very simple example from a complexity point of view are the Δ-Σ A/D or D/A 
converters that include low noise analogue signal processing blocks as well as digital blocks 
that are used for dynamic element matching, decimation, clock-form generation, and others. 
Furthermore, in modern heterogeneous systems, different kinds of sensors are integrated 
and their operation quality is closely related to the operation of analogue and digital 
interface circuits for data acquisition, for controlling of the properties and for driving the 
sensors. Digital signal processing is included as the integral part to extract useful 
information and/or to prepare/correct the driving signals; an example of such a complex 
system is the integrated inertial measurement system, which, besides the analogue and the 
digital signal processing modules, also includes the MEMS accelerometers and Gyro sensors 
(Strle & Kempe, 2007).  
For a mixed-signal heterogeneous system, there are no synthesis algorithms available and 
most of the work must be done “by-hand” by specialists, that is, by a system designer, a 
mixed-signal and/or analogue designer together with a digital designer. Therefore, it is very 
important for the whole design team to use a common design environment where 
everybody could participate efficiently in the design procedure. In addition to the design of 
a mixed signal circuit on a high hierarchical level, the design of functional tests for a mixed-
signal system can be performed and verified on a high hierarchical level by using 
Matlab/Simulink. This makes the design procedure even more efficient. Last but not least, 
during the design of a mixed signal circuit, a Monte Carlo simulation might be needed to 
verify efficiently whether the specifications are fulfilled for the whole spread of certain 
process parameters.  

3.1 Basic building blocks of mixed-signal circuits 
Analogue circuits are composed of a variety of modules built of CT (continuous time) 
and/or DT (discrete time) circuits. The operation of CT circuits (linear or nonlinear) is best 
described by a system of linear or nonlinear algebraic and/or differential equations, while 
the discrete time systems are best described by a system of linear and/or nonlinear 
difference equations.  Linear systems of both kinds can be described by corresponding S-
domain (for CT circuits) or Z-domain (for DT circuits) transfer functions. Usually the System 
on Chip (SoC) contains a mixture of some or all of the mentioned modules that are 
implemented either in an analogue and/or in a digital way. Some of the most popular high-
level building blocks that are used in mixed-signal systems are the following: 
• Analogue signal processing blocks 

• Amplifiers, comparators, switches, trans-conductors, 
• CT filters, S-C filters, S-I filters 
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• Mixers 
• Signal generators 
• A/D and D/A converters 
• And many others 

• Digital signal processing blocks 
• Adders, multipliers, CPU 
• Filters, mixers 
• Memory, Ram, counters, shifters  
• I/O  

Many other blocks not mentioned above might be needed for a complete description of a 
SoC (System on Chip). 

3.2 Simulink blocks that can be used for mixed-signal modules 
Matlab/Simulink offers many different libraries. In this chapter we will use only the most 
common libraries and the most common elements that are available in many versions of 
Matlab/Simulink. Some of the libraries and some of the library elements are listed below. 
The meanings and the settings of the important parameters of each individual block will be 
explained when we will use a particular block in our Σ-Δ modulator design example. The 
libraries (bold face list) and the most useful blocks within a library for modelling mixed 
signal circuits are the following: 
• Commonly used blocks 

• Constant 
• Gain 
• In, Out, Terminator 
• Sum, Product 
• Scope 
• Data Type Conversion 
• Subsystem definition 
• Saturation 
• Etcetera 

• Continuous time blocks  
• Derivative 
• Integrator, Transfer function, Zero-Pole 
• State-Space 
• Variable Time Delay 

• Discontinuous  
• Saturation, Relay 
• Dead Zone 
• Quantizer 

• Discrete time blocks  
• Zero-Order Hold 
• Integer Delay, Unit delay 
• Discrete time Transfer function 
• Discrete time Zero-Pole 
• Discrete State-Space 
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• Discrete time Integrator 
• Logic and Bit Operations 
• Math operations 

• Gain, Product, Slider Gain, Bias 
• Sum, Sum of Elements, Product, Divide, Dot Product 
• Sign, MinMax 
• Math Function 

• Ports and Subsystems  
• In, Out  
• Subsystem  

• Signal attributes 
• Data Type Conversion 
• Signal Conversion 

• Sinks  
• Out, Terminator 
• Display, Scope  
• To File, To workspace 

• Sources  
• Constant, In 
• From File 
• Sine Wave, Pulse generator, Repeating sequence 
• Signal generator, Step 
• Band-Limited White Noise, Uniform Random Number  

• User defined functions  
• Fcn, MATLAB Fcn 

Of course, for different systems, it might be necessary to use some additional libraries such 
as: 
• Communication library 
• Signal processing library 
• Control system library 
 

4. System level design 
The design, modelling, and simulations of a complex mixed-signal module using 
Matlab/Simulink will be presented, using a fifth order Σ-Δ A/D converter as a design 
example. Σ-Δ converters are currently very popular because of the possibility to achieve 
high-resolution A/D conversion with great efficiency using the elements from VLSI process 
with characteristics that are not very good and stable. Σ-Δ converter is composed mostly of 
analogue modules and small digital circuit for generating clock signals, executing dynamic 
element matching algorithm and in addition, a digital decimation filter that is a fixed-point 
digital circuit. Many books and articles have been written about the subject; two of them are 
(Schrier & Temes, 2005) and (De la Rosa, 2011). Most of them deal with basic synthesis 
algorithms and properties. However, practical design recommendations of how to bring 
such designs into life in the shortest time possible are not presented in those books. 
Predicting final characteristics early on in the design, taking into considerations the most 
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important non-ideal effects based on real circuit behaviour (kT/C noise, thermal and 1/f 
noise, offset voltages, finite gain-bandwidth product (GBW), finite open loop gain (A0), slew 
rate (SR), spread of parameters due to technology spread, stability issues, latency issues, 
meta-stability issues, etcetera), are usually not taken into considerations. In this chapter, we 
will try to model the additional characteristics that are essential for a successful design and 
use this information as a kind of specifications for the circuit design process.   

4.1 The basics of a Σ-Δ A/D converter design 
The design of an A/D converter usually starts with specifications. The simple specifications 
may be the following: 
• Nyquist rate after decimation (BW=425kHz), 
• Required  signal to noise ratio (SnR>80dB),  
• Required Harmonic distortions (THD≤80dB), 
• Maximum signal level and its spectral contents, 
• Reference level, 
• Supply voltage and supply current, and others. 
The data in brackets are the specifications of our sample A/D converter. Usually, the 
designer selects the architecture according to her/his experience. We will select a Σ-Δ A/D 
converter architecture with as small oversampling ratio as possible and as small order as 
possible in order to have as small power consumption as possible. Since the required HD is 
very demanding, we do not want to use any of the available linearization and/or dynamic-
element-matching techniques. The natural choice in that case is to use a single bit internal 
quantizer and single bit internal D/A converter. It is difficult to design such an A/D 
converter correctly. The design presents many design challenges from the system level to 
the modelling and the circuit level because it needs a deep understanding of the system 
level design as well as the circuit level design issues. In addition, for a one bit internal 
quantizer, the circuit is highly nonlinear, which means that it is not possible to complete the 
design using simple AC design principles, transformations, and methods that are valid for 
the design of “linear” circuits. Despite the fact that linear models offer a simplified insight 
into the operation of the Σ-Δ modulator, the design is not complete without extensive 
simulations where influences of nonlinearity and other circuit parameters to the SnR (signal 
to noise ratio), BW (bandwidth), HD (harmonic distortions), noise, and stability may be 
checked. Modelling on a high hierarchical level makes it possible to explore the design space 
very efficiently and the results of high-level simulations could be used as inputs to the 
circuit design. 

4.2 Synthesis of a discrete time noise transfer function 
The NTF (noise-transfer-function) can be synthesized according to the definition given in 
subsection  4.1. The selected implementation might be an S-C (switched capacitor) loop 
transfer function implementation and therefore a discrete time model is selected. The 
simplest way to synthesize the noise transfer function is to use the appropriate tool; one 
such tool that is using Matlab is described in (Schrier & Temes, 2005). The link to download 
a latest version of toolbox called “delsig” is given in (Schreier, 2009). With the help of this 
toolbox, it is possible to synthesize the required NTF(z) in an efficient way; z-domain 
equation for the specifications given in subsection  4.1 is given in equation (1). Fig. 1 shows 
the plot of the |NTF(z)| and the pass-band detail. 
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It is possible to implement such transfer function in many different ways. Based on 
additional requirements such as small power supply consumption and stability under 
different signal conditions, we selected feed-forward architecture with only one feedback, 
presented in Fig. 2. It has a one-bit internal quantizer, a one bit internal D/A converter, and 
a feed-forward structure with one feedback coefficient 1refb .   
Coefficients 0α , 0δ , 1,2β , 1,2γ , 1,2η  and 1,2λ  from (2) are related in a complex way to the 
feedback and feed-forward coefficients represented by vectors a, g, b, c of the circuit shown 
on Fig.2. They can be calculated using function: [a,g,b,c] = realizeNTF(NTF, FORM, STF) 
from package “delsig”  (Schreier, 2009), where [a,g,b,c] are vectors of coefficients from Fig. 
2. The NTF (noise transfer function) is given by (1);  STF (signal transfer function) STF=1 and 
FORM refers to the form of the architecture and are selected as the feed-forward structure. 
 

 
Fig. 1. Noise transfer function plot of (1). Upper plot: |NTF(z)| from 0 to 0.5*fs. Lower plot: 
|NTF(z)| pass-band detail 

Input signal is added to the first integrator through coefficient 1inb  and to the quantizer input 
through coefficient b6. The state variables ( )1x z  through ( )5x z  are the outputs of discrete 
time integrators. The coefficients g1 and g2 determine the positions of complex conjugate 
poles, while weighted state variables with weights 1a through 5a that are added together, 
with weighted input signal ( 6b ), contribute to the signal at the input of one bit internal 
quantizer. In this way, a complex conjugate zeros of (1) are formed. A linear model is 
formed if the internal quantizer is replaced by an adder that adds signal ( )6x z with 
quantization noise ( )Q z  and use gain 1k = . One can determine the poles and the zeroes of 
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noise transfer function ( )xNTF z  of the block diagram on Fig. 2. using symbolic and 
optimization toolbox of the Matlab and some “hand” written state space equations. The 
result is given in (2). 
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Fig. 2. Block diagram of a fifth order Σ-Δ modulator with feed-forward architecture. State 
variables ( )ix z  are outputs of the integrators 

All coefficients are calculated by assuming the linear model of the Σ-Δ modulator. Of course, 
coefficients obtained in this way do not produce appropriately scaled state variables of the 
modulators’ loop transfer function and further scaling steps will be needed; these are 
explained in the following subsections. For NTF(z) from (1), STF(z)=1, and for the selected 
feed-forward architecture the coefficients are (3): 
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To check the validity of the synthesis algorithm, we can calculate the spectrum of the linear 
model of the modulators’ bit-stream V(n). The state space description of the linear model of 
the circuit from Fig. 2 is defined in (4). 
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modulators’ loop transfer function and further scaling steps will be needed; these are 
explained in the following subsections. For NTF(z) from (1), STF(z)=1, and for the selected 
feed-forward architecture the coefficients are (3): 
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To check the validity of the synthesis algorithm, we can calculate the spectrum of the linear 
model of the modulators’ bit-stream V(n). The state space description of the linear model of 
the circuit from Fig. 2 is defined in (4). 
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The elements of the (4) are defined in (5) and (6). The meanings of the symbols are the 
following: ( )nx is a vector of state variables, ( )inv n  is input voltage, ( )y n is the output of the 
loop-filter, ( )q n is quantization noise, and ( )v n is a bit-stream output. The spectrum 
obtained by the FFT function from Matlab is given in Fig. 3. 
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Fig. 3. Power spectral density of the bit-stream of ideal linear model of Sigma-Delta 
modulator. The output signal v(n) is a consequence of  input signal vin (a sine-wave) with 
frequency 125kHz, amplitude 0.5Vrms and sampling frequency  fs=32 MHz 

Further checks require a nonlinear model of a one bit quantizer. For the first tests, a 
“signum” function instead of linear model of a quantizer can be used. In that case, the 
description is similar to (4) except that v(n) is modelled by a sign() function. The Matlab 
simulation result using nonlinear state-space description (7), with sine-wave input at a 
frequency of 125 kHz and an amplitude of 0.5 Vrms , is presented in Fig. 4. 
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Fig. 4. Power spectral density of the bit-stream of a nonlinear  model (7) at the output of a 
Sigma-Delta modulator v(n) with  input signal vin that is a sine-wave with a frequency 
125kHz, an amplitude of 0.5Vrms ; sampling frequency is fs=32 MHz 

Simulation results in Fig. 3 and Fig. 4 show almost identical spectrums. The main spectral 
component at 125 kHz is due to the input signal and the noise spectrum is a consequence of 
noise shaping of quantization noise of 1 bit internal quantizer. The biggest difference 
between linear and nonlinear model appears at high frequency; the quantization noise 
spectrum of the nonlinear model is shaped differently for frequencies above 1MHz. In 
addition, for the nonlinear model, the “tones” can be observed close to fovs/2 as sharp 
peaks of the spectrum. “Tones” can be removed by adding the appropriate dither signal to 
the quantizer input. The procedure for detecting tones and a methodology for their removal 
is presented in subsection  4.4. 

4.3 Simulink model 
The Simulink model of ideal Σ-Δ modulator is equivalent to the block diagram presented in 
Fig. 2. All coefficients are available in the work-space and are set in a Matlab m-file 
according to the values given in (3). The Simulink symbols used and the settings of some of 
their parameters are the following: 
• Gain: All coefficients are implemented with the symbol, “Gain” (Fig. 5). The main 

parameter is the gain factor that multiplies the input signal to get the output signal. The 
coefficients are defined in the m-file. After running the m-file, the coefficients are 
available in the Matlab workspace. In pane “Main”, the gain factor and the “Sample 
time” are defined. In the “Signal attributes” pane the min-max values for the output 
and the data type of the output are set. They are set to their default values. In pane 
“Parameter Attributes”, the parameter attributes are set as follows: min-max values and 
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Fig. 4. Power spectral density of the bit-stream of a nonlinear  model (7) at the output of a 
Sigma-Delta modulator v(n) with  input signal vin that is a sine-wave with a frequency 
125kHz, an amplitude of 0.5Vrms ; sampling frequency is fs=32 MHz 

Simulation results in Fig. 3 and Fig. 4 show almost identical spectrums. The main spectral 
component at 125 kHz is due to the input signal and the noise spectrum is a consequence of 
noise shaping of quantization noise of 1 bit internal quantizer. The biggest difference 
between linear and nonlinear model appears at high frequency; the quantization noise 
spectrum of the nonlinear model is shaped differently for frequencies above 1MHz. In 
addition, for the nonlinear model, the “tones” can be observed close to fovs/2 as sharp 
peaks of the spectrum. “Tones” can be removed by adding the appropriate dither signal to 
the quantizer input. The procedure for detecting tones and a methodology for their removal 
is presented in subsection  4.4. 

4.3 Simulink model 
The Simulink model of ideal Σ-Δ modulator is equivalent to the block diagram presented in 
Fig. 2. All coefficients are available in the work-space and are set in a Matlab m-file 
according to the values given in (3). The Simulink symbols used and the settings of some of 
their parameters are the following: 
• Gain: All coefficients are implemented with the symbol, “Gain” (Fig. 5). The main 

parameter is the gain factor that multiplies the input signal to get the output signal. The 
coefficients are defined in the m-file. After running the m-file, the coefficients are 
available in the Matlab workspace. In pane “Main”, the gain factor and the “Sample 
time” are defined. In the “Signal attributes” pane the min-max values for the output 
and the data type of the output are set. They are set to their default values. In pane 
“Parameter Attributes”, the parameter attributes are set as follows: min-max values and 
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output data types are set to “Inherit: Same as input”, so their data types are double. The 
rounding in this case is of no importance since the variables and constants are 
represented in a double floating-point format. 

• Zero-Order-Hold: Each input connection of the modulator is assumed to have a 
continuous time signal; therefore, it is sampled and held by using the Zero-Order-Hold 
symbol, which closely follows the behaviour of the S-C circuits. Signals like In1 and 
Vref from the modulators block diagram are equipped with the Zero-Order-Hold 
element (Fig. 6). Sampling period of the block is set to Ts. 

 

 
Fig. 5. Gain symbol 

 

 
Fig. 6. Zero-Order-Hold symbol 

• Sum: The block “Sum” (Fig. 7) adds input signals to get the output. The number of 
input signals is dependent on the number of + or – symbols that appear in the “list of 
signs”. In our example, several differently shaped “sum” symbols are used: + + , + − , 
and + + + + + + + . Number of +  or −  symbols signify how many and what kind of inputs 
are used (these are present in the “List of signs”). In addition, the shape of the symbol 
can be selected (round or rectangle). For example, for feed-forward architecture, the 
sum of weighted state variables appears at the input of the quantizer.  In the same pane, 
the sampling time is set as “-1”, which means that it is “Inherited”.  In pane “Signal 
attributes”, the “Accumulator data type” is selected as either “Inherit” or “double”; the 
output min-max values are not limited and the output data type is selected as “Inherit”. 
Since input signal data type is double, all other signals are also double. 

 

 
Fig. 7. The Sum symbols 

• Product: The block which multiplies v(n) (bit-stream BS) with reference voltage is a 
“Product” shown in Fig. 8. It is possible to define the “Number of inputs” and the “type 
of multiplication”. In our case two inputs need simple element-wise multiplication. In 
addition, Sample time is set to “-1=Inherited”. In the pane “Signal Attributes”, the 
output minimum and output maximum can be defined. The default value is 
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“unlimited”, while the output data type is set to “Inherited”, and therefore the data 
type is double. 

 

 
Fig. 8. The Product symbol 

• Relay: The comparator can be in the simplest way modelled as a relay. The parameters 
that must be set are the following: Switch on point (VH), Switch off point (VL), Output 
when on (1), Output when off (-1), Enabled zero crossing, and sample time (-
1=Inherited). The switching levels are defined in the main Matlab m-file. In our case, a 
small hysteresis is built-in and taken into consideration as follows: VH=1mV and VL=-
1mV.  The output levels (BS) are set to ±1.  

 

 
Fig. 9. The Relay symbol 

• DT integrator:  The last element used in the simplified model of our example 
modulator is a discrete time integrator shown in Fig. 10. In the ideal and simplest case, 
it can be modelled by a discrete transfer function with pole at z=1, followed by a Zero-
Order-Hold block. The transfer function coefficients are defined in the “Main” pane of 
the parameter settings, with Numerator coefficients  set to [1] and Denominator 
coefficients set to [1 -1]. In addition, the Sample time is set to Ts, and is defined in the 
main Matlab routine before running the Simulink simulation. The State attributes in this 
case are unimportant and default settings can be accepted. All five integrators are 
equivalent for the ideal Simulink model.  

 

 
Fig. 10. Discrete time integrator model used in example modulator 

• Top level: To run the simulation and to store some results, a top-level scheme is needed 
that consists of system to be simulated (Modulator_5th_order on Fig. 11), signal 
generators, and some elements that help store the selected results to the workspace or 
to the disk. The scope (osciloskope) is useful for observing some internal signals in time 
domain.The top-level Simulink scheme for our example modulator is presented in Fig. 
11. It consists of a sine-wave generator, a constant for the reference input, the circuit to 
be modelled and simulated (in our case, a fifth order modulator), the scope, and two 
sinks with names bs_mod5.mat and Comp_in.mat that store the results to the disk. 



 
Engineering Education and Research Using MATLAB 

 

124 

output data types are set to “Inherit: Same as input”, so their data types are double. The 
rounding in this case is of no importance since the variables and constants are 
represented in a double floating-point format. 

• Zero-Order-Hold: Each input connection of the modulator is assumed to have a 
continuous time signal; therefore, it is sampled and held by using the Zero-Order-Hold 
symbol, which closely follows the behaviour of the S-C circuits. Signals like In1 and 
Vref from the modulators block diagram are equipped with the Zero-Order-Hold 
element (Fig. 6). Sampling period of the block is set to Ts. 

 

 
Fig. 5. Gain symbol 

 

 
Fig. 6. Zero-Order-Hold symbol 

• Sum: The block “Sum” (Fig. 7) adds input signals to get the output. The number of 
input signals is dependent on the number of + or – symbols that appear in the “list of 
signs”. In our example, several differently shaped “sum” symbols are used: + + , + − , 
and + + + + + + + . Number of +  or −  symbols signify how many and what kind of inputs 
are used (these are present in the “List of signs”). In addition, the shape of the symbol 
can be selected (round or rectangle). For example, for feed-forward architecture, the 
sum of weighted state variables appears at the input of the quantizer.  In the same pane, 
the sampling time is set as “-1”, which means that it is “Inherited”.  In pane “Signal 
attributes”, the “Accumulator data type” is selected as either “Inherit” or “double”; the 
output min-max values are not limited and the output data type is selected as “Inherit”. 
Since input signal data type is double, all other signals are also double. 

 

 
Fig. 7. The Sum symbols 

• Product: The block which multiplies v(n) (bit-stream BS) with reference voltage is a 
“Product” shown in Fig. 8. It is possible to define the “Number of inputs” and the “type 
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“unlimited”, while the output data type is set to “Inherited”, and therefore the data 
type is double. 

 

 
Fig. 8. The Product symbol 
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when on (1), Output when off (-1), Enabled zero crossing, and sample time (-
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• Top level: To run the simulation and to store some results, a top-level scheme is needed 
that consists of system to be simulated (Modulator_5th_order on Fig. 11), signal 
generators, and some elements that help store the selected results to the workspace or 
to the disk. The scope (osciloskope) is useful for observing some internal signals in time 
domain.The top-level Simulink scheme for our example modulator is presented in Fig. 
11. It consists of a sine-wave generator, a constant for the reference input, the circuit to 
be modelled and simulated (in our case, a fifth order modulator), the scope, and two 
sinks with names bs_mod5.mat and Comp_in.mat that store the results to the disk. 
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Fig. 11. Top level Simulink symbol with generators, constants, and sinks 

• Sine-Wave: The definition of sine-wave signals needs many parameters with the 
following settings: “Sine Type” is Time based, “Amplitude = ain_real”, “Bias = adc”, 
“Frequency = 2*pi*fin”, “Phase = 0”, and “Sample Time= Ts”. Variables ain_real, adc, 
fin and Ts are defined in the main Matlab routine and are available in the Matlab 
workspace. 

•  Constant: This is used to define the reference voltage of the modulator. The parameters 
are “Constant value = Vref_real” and “Sample Time = Ts”; both are defined in a Matlab 
workspace.   

• To file: The data or variables are written to the disc. Two such blocks are available in 
Fig. 11: bs and comp. The data are stored to the files bs_mod5.mat and Comp_in.mat. 
The Parameters are the following: “Filename” that is set to, for example, bs_mod5.mat; 
“Variable name” is set to bs; “Decimation” is set to 1 (all samples are stored); and 
“Sample time” is set to Ts that is defined in the Matlab work-space. The stored data can 
be used for further analysis and plots. 

• Scope: It is possible to observe the time-domain responses of the different connected 
signals. Fig. 12 shows time-domain signals of simulated modulator for: BS, Comp_in, 
and Out1 to Out5 that are state variables x(1) to x(5) and bsref that is a feedback signal 
BS multiplied by Vref.   

The time-domain simulation results that use the ideal Simulink model, which is composed 
of the symbols defined above are presented in Fig. 12. The simulation parameters are 
specified in the Fig. 12 caption text. The signals observed are marked on the left hand side of 
the picture; BS stands for bit-stream, Comp_in for comparator input signal, X1 through X5 
for state variables (outputs of the integrators), and BS_ref for the BS multiplied by the 
reference signal. The spectrum of a bit-stream signal for the same simulation is presented in 
Fig. 13; it is almost equal to the spectrum obtained by simulation of an ideal nonlinear 
Matlab model defined with (7) and presented on Fig. 4. 
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Fig. 12. Simulation results for 5th order modulator with vref_real=1, ain_real=0.54, 
fin=125kHz, fs=32MHz 

4.4 Limit cycles analysis 
Σ-Δ modulators are nonlinear devices/systems and therefore some characteristic problems 
related to such systems can happen. An important and difficult problem is related to “Limit-
Cycles” (Mann, 1999) and (Strle, 2006).  It is possible that under certain conditions, the 
spectral components appear in the base-band (“tones”) that are not present in the input 
signal. This problem is severe in low order modulators but also not negligible in the high 
order modulators, where it is not so pronounced compared to low order modulators 
because of higher order noise shaping. Because of the non-linearity of the loop, it is very 
difficult to analyze the problem theoretically and no analytic result exists for high order 
modulators. A possible way to analyze the problem is to use a High level Simulink model 
and to perform many systematically prepared simulations at different conditions to locate 
eventual limit-cycles. The Matlab/Simulink environment is efficient because simulations 
run on a high hierarchical level. The results of a set of such simulations are presented in Fig. 
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14 as a 3D plot of spectrums, where the x-axis represents the frequency, y-axis represents 
DC input voltage, and the z-axis represents the PSD (power spectrum density) of a bit-
stream. For our experiment a small AC signal with an amplitude of Vinac=68 uV and a 
frequency of 250 kHz is connected to the input of the modulator at different DC input 
voltages (VinDC=-5mV to +5mV). On the left part of Fig. 14, the peaks (“tones”) can be 
observed at a certain DC input voltages even in the base-band. A spectrum is presented for 
the original fifth order modulator from Fig. 2. 
 

 
Fig. 13. Spectrum of a BS (bit-stream) for ideal Simulink model of a fifth order modulator 

 

 
Fig. 14. Limit cycles of a modulator: left simulation without dither and right simulation with 
pseudo-random dither signal added to the input of the quantizer 
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The right side of Fig. 14  shows the spectrum after adding a dither signal to the quantizer 
input. A dither signal is a one bit pseudo-random signal connected to the input of the 
internal quantizer, according to the Simulink scheme on Fig. 15. The weight of the dither 
signal is 0.3*Vref. A pseudo-random-noise signal (PRS) (Zepernick, 2005) that is used as a 
“dither” is for the simulation purposes generated off-line and stored into the file. A dither 
signal de-correlates “tones” and spreads their energy over the entire band, which is then 
shaped by the noise transfer function of the modulator. A 3D plot of a bit-stream’s PSD after 
adding the dither signal is presented on the right side of Fig. 14. The tones have disappeared 
but there is some small noise penalty in the base-band; the SnR is reduced by approximately 
1.5 dB. 

4.5 Scaling  
The initial implementation of a discrete-time loop filter with feed-forward structure does not 
take into consideration the real voltage levels of state-variables at maximum input voltage 
signal, as well as the real reference voltage. At the beginning of the design process, the state 
variables are almost arbitrary; their relationship is such that poles and zeroes are 
implemented, while the state variable levels are not defined. The scaling is a semi-automatic 
procedure where maximum levels of the state-variables are adjusted to the required values. 
Scaling is needed to optimize signal levels in comparison to the noise levels and to adjust 
maximum voltage levels of the integrator outputs. In this way the performance parameters 
like SnR (signal to noise ratio), HD (harmonic distortions), SR (slew-rate) requirements are 
optimized. In the first step the real reference voltage (vref_real=0.6V for our example 
modulator) and the maximum input signal voltage (vin_real=0.54V) are connected to the 
modulator. A long simulation is then performed to get the distribution of state-variables. 
Long simulations are needed because Σ-Δ modulator is a chaotic device and it is difficult to 
predict voltage levels of the state variables in a short simulation; the spectrum may contain 
some very low frequency components. The min/max values are obtained from the 
simulation results in the second step (see _ maxix  on the left side of Fig. 16). In the third 
step, the desired limit ( )L i  of each state variable is compared to the _ maxix and the vector 
of scaling coefficients s is calculated using (8). 
 

 ( ) ( ) 1,2,....
_ max
L i

s i i
xi

= =  (8) 

In the fourth step, the level of each integrator output is adjusted by multiplying all input 
coefficients that are connected to the integrator. For example, coefficients inb  and refb  are 
multiplied by ( )1s  to adjust the maximum level of ( )1x ; at the same time, the coefficient 2c  
is divided by ( )1s  to keep the positions of the poles unchanged. This scaling procedure is 
repeated for all state variables and for all coefficients using Matlab.  After scaling, maximum 
state-variable voltage levels are adjusted to the desired level, as shown on the right side of 
Fig. 16. In a real circuit, the required voltage range of state variables is dependent on the 
architecture, technology, and design of the modules. Histogram plots for all state variables 
before and after the scaling procedure are, for our example modulator, shown in Fig. 16.  
The maximum levels of the state variables for our example modulator are optimized to  
the following levels:  ( )

max
1 0.4x V=  down to ( )

max
5 0.2x V= . All other state variables  

are scaled in such a way that the levels are linearly distributed between 0.4 V to 0.2 V. Such 
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pseudo-random dither signal added to the input of the quantizer 
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The right side of Fig. 14  shows the spectrum after adding a dither signal to the quantizer 
input. A dither signal is a one bit pseudo-random signal connected to the input of the 
internal quantizer, according to the Simulink scheme on Fig. 15. The weight of the dither 
signal is 0.3*Vref. A pseudo-random-noise signal (PRS) (Zepernick, 2005) that is used as a 
“dither” is for the simulation purposes generated off-line and stored into the file. A dither 
signal de-correlates “tones” and spreads their energy over the entire band, which is then 
shaped by the noise transfer function of the modulator. A 3D plot of a bit-stream’s PSD after 
adding the dither signal is presented on the right side of Fig. 14. The tones have disappeared 
but there is some small noise penalty in the base-band; the SnR is reduced by approximately 
1.5 dB. 

4.5 Scaling  
The initial implementation of a discrete-time loop filter with feed-forward structure does not 
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of scaling coefficients s is calculated using (8). 
 

 ( ) ( ) 1,2,....
_ max
L i

s i i
xi

= =  (8) 

In the fourth step, the level of each integrator output is adjusted by multiplying all input 
coefficients that are connected to the integrator. For example, coefficients inb  and refb  are 
multiplied by ( )1s  to adjust the maximum level of ( )1x ; at the same time, the coefficient 2c  
is divided by ( )1s  to keep the positions of the poles unchanged. This scaling procedure is 
repeated for all state variables and for all coefficients using Matlab.  After scaling, maximum 
state-variable voltage levels are adjusted to the desired level, as shown on the right side of 
Fig. 16. In a real circuit, the required voltage range of state variables is dependent on the 
architecture, technology, and design of the modules. Histogram plots for all state variables 
before and after the scaling procedure are, for our example modulator, shown in Fig. 16.  
The maximum levels of the state variables for our example modulator are optimized to  
the following levels:  ( )

max
1 0.4x V=  down to ( )

max
5 0.2x V= . All other state variables  

are scaled in such a way that the levels are linearly distributed between 0.4 V to 0.2 V. Such 
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Fig. 15. Fifth order modulator model with dither added to the quantizer input signal 
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Fig. 16. Histograms of state variables for Vin=0.54 V and Vref=0.6V. Left figure: before 
scaling. Right histogram:  after scaling 

limits are selected because of the following stability considerations.  With a large input 
voltage, the modulator could become unstable because of the high order loop filter and 
because the feedback cannot follow the input voltage. Therefore, for input voltage larger 
than the selected limit, the first state variable enters the saturation of the first integrator and 
reduces the loop filter order, and hence, the conditions for stability are improved. For 
slightly higher input voltage, the second integrating stage enters the saturation, and so on. 
Maximum voltage at the quantizer input ( 6 _ maxx ) is not important for the stability reasons 
but for the proper operation of the quantizer; a big input voltage is allowed (2 V in our 
example modulator) since we know that a passive adder before the quantizer will contain 
some parasitic capacitances that will reduce the level. The only requirement for the input 
signal of a one bit quantizer is that it is big enough to reliably drive the internal quantizer. 
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5. High level modelling of the mixed-signal circuits 
Up to now, a discrete time loop-filter was implemented using ideal discrete time integrator 
transfer functions (see Fig. 2). The model is good enough if we are not interested in real 
implementation and circuit parameter influences. In real designs, it is beneficial if we can 
predict the influence of circuit parameters at a high hierarchical level; it is even better if we 
can determine the required circuit parameters from a system level model and simulation 
results. 
The first step in including circuit non-ideal effects is to select the possible implementation of 
the discrete time integrators. In our case, we selected a Switched-Capacitor (S-C) 
implementation of the loop transfer function, which is composed of switched capacitor 
integrators, and therefore, it is necessary to develop the models of their behaviour. The 
procedure is defined in the following subsections. 

5.1 Modelling Switched-Capacitor (S-C) circuits 
Switched capacitor circuits are used in analogue and mixed signal circuits for a very long 
time. One of the first books that treated the subject systematically was “Analog MOS 
Integrated Circuits for signal processing” written by R. Gregorian and G.C. Temes (Gregorian, 
1986); many other books about the subject were published until today. The most important 
block used extensively in most of the switched-capacitor circuits is the parasitic-capacitance 
insensitive discrete-time S-C integrator with a simplified electrical scheme presented in Fig. 
17. The circuit is composed of switches, capacitors, and operational amplifier. The difference 
between left and right S-C integrator is the connection of phase Φ1 and Φ2 and how they 
drive the switches. For the circuit to function properly, the phases should be non-
overlapping signals. 
Assuming that input and output signals are discrete-time signals that change their states at 
the end of signal Φ2, we can describe the operation of the S-C integrator on the left (non-
inverting integrator) by writing the difference equation that relate the output signal of the 
integrator and the input signal at discrete times according to (9). The 1C  and intC are input 
and integrating capacitors respectively, while ( )1V n  and ( )outV n  are input and output 
voltages at time slot n, (see left part of  Fig. 17). 

 [ ] ( )int 1 1( ) ( 1) 1out outC V n V n C V n− − − = − −  (9) 

 

 
Fig. 17. Simplified circuit diagrams of S-C integrators. Left: non-inverting S-C integrator, 
Right: inverting S-C integrator 
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The output voltage for this simple integrator is, in time domain equal to  (10). 

 ( )1
1

int

( ) ( 1) 1out out
CV n V n V n
C

= − + −  (10) 

Capacitor ratio determines the constant of the integrator. In z domain, the description 
becomes (11), so  the transfer function of ideal non-inverting S-C integrator is (12). 

 ( ) ( ) ( )1 11
1

int
out out

CV z z V z z V z
C

− −= +  (11) 

 ( ) ( )
( )

1
1 1

1
1 int int

1
1 1

outV z C z CH z
V z C z C z

−

−= = =
− −

 (12) 

If switches are driven according to the right part of Fig. 17, the ideal z-domain transfer 
function is (13). Therefore, it implements an inverting S-C integrator.  

 ( ) ( )
( )

1 1
1

1 int int

1
1 1

outV z C C zH z
V z C z C z−= = − = −

− −
 (13) 

Both integrators can be modelled by discrete time models where all voltages are described 
by double floating point numbers to be able to represent the continuum of analogue 
variables available in any analogue or mixed signal circuits.  The models of discrete-time 
integrators are presented in Fig. 18. The left side shows the non-inverting S-C integrator and 
the right side shows inverting S-C integrator. Usually, this is the level of abstraction that is 
used in modelling mixed signal circuits. However, real circuit influences must be taken into 
consideration if one wants to see the contributions of these influences. The discrete time 
transfer function of the integrator ( )1 1z −  is implemented with non-inverting S-C 
integrator, which is modelled on the left part of Fig. 18. A complete DT integrator that is 
used in the simplified model of our example modulator is presented in Fig. 19. 
 

 
Fig. 18. Simulink model of ideal discrete-time (DT) integrator. Left: non-inverting; Right: 
inverting 

 

 
Fig. 19. DT non-inverting integrator  Simulink model including Saturation and Zero-Order-
Hold blocks 
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The output voltage for this simple integrator is, in time domain equal to  (10). 
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Fig. 19. DT non-inverting integrator  Simulink model including Saturation and Zero-Order-
Hold blocks 
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The architecture of the example modulator remains as it was defined in Fig. 15, except that 
all the blocks that implement the DT integrators are replaced with the model from Fig. 19; 
coefficients remain exactly the same and are shown in Fig. 15.  
Only non-inverting integrators are used in our example circuit because of power 
consumption reasons. Two Simulink blocks in Fig. 19 were not described before: “Unit 
Delay” and “Saturation”.  “Unit delay” needs the settings of two Block Parameters: “Initial 
conditions” that are set to 0 and “Sampling time” that is set to Ts, as defined in a Matlab 
work-space. The block “saturation” is defined in the subsection  5.3. 

5.2 Capacitor ratios 
The coefficients are implemented with capacitor ratios as defined in (12). Each capacitor 
ratio defines one coefficient. For example, coefficient ( ) ( ) ( )1 1 1in u Ib c C=  is the ratio of 
input switched capacitor and the integrating capacitor of the first integrator. Assuming at 
the beginning that ( ) ( )1 1in refb b≤  (see Fig. 2), then the input switched capacitor is selected 
as a unit ( )1 1uc = , while all other capacitors connected to the first integrator are bigger than 

( )1uc . It is easy then to calculate the relative capacitance of, for example, ( )1IC . In this way, 
all coefficients can be replaced by corresponding capacitor ratios. For each integrator, the 
smallest coefficient determines the unit capacitor and all other capacitors in the same 
integrator stage are just multiples of the unit corresponding to that. How big the unit 
capacitance of each integrator stage must be is dependent on the required noise level 
allowed for each integrator stage i. and the architecture of the circuit. To reflect that, all 
coefficients implemented by the “Gain” blocks in Fig. 15 are changed; they now contain 
appropriate capacitor ratios expressed as the explicit quotient of two capacitors, where 
capacitance in the denominator is always corresponding to the integrating capacitor. 

5.3 Adding circuit design parameters to the model 
In a real S-C integrator, the charges are transferred from input capacitors to the integrating 
capacitors ideally without loss of charge, while the time of charge transfer is negligible. We 
can model that by difference equations (9) and the DT model in Fig. 18. In reality, this 
transfer is not complete and several additional non-ideal effects contribute to the results. It is 
beneficial if one is able to predict the influence of such effects on a high hierarchical level 
before the start of the circuit design. To be able to take into consideration the important 
circuit parameters of a mixed-signal circuit, the model of the S-C integrator must be 
improved by adding circuit design parameters such as: nonlinearity of the opamp 
characteristics, kT/C noise, thermal and 1/f noise, open loop gain of the amplifier (A0), 
offset voltage (Voff), unity gain bandwidth (GB), slew rate (SR), and others. In our improved 
model of the DT integrator, some discrete time processes will be influenced by the 
continuous time processes inside the sampling period. In addition, random signals will be 
added to model the kT/C noise and other circuit noise sources. The model parameters that 
give acceptable simulation results are the result of optimisation of power consumption, unit 
capacitor size, the architecture of the circuit and optimum selection of other parameters. 
Optimized parameters define the limits for the circuit design. The possible non-ideal effects 
that we modelled in our example modulator are the following: 
• Nonlinearities of the DT integrators are modelled using the block “Saturation” on Fig. 

19. Parameters that must be set in the block are the following: “Upper Limit” and 
“Lower limit”; they are set to +LIMIT and –LIMIT respectively and are defined in the 
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Matlab workspace. The element is treated as a gain when voltage is increasing and the 
“zero-crossing” detection is enabled. Sampling rate is “inherited”, therefore Ts. The 
value of the LIMIT is obtained from the knowledge of the circuit behaviour of the 
opamp used in the S-C integrator. If the modulator is appropriately scaled as is 
presented on the right side of Fig. 16, we can be sure that under all normal conditions, 
the state variables will always remain within the linear region of the integrator. For  
our example design, the first integrator saturation level and limit is: 

( ) ( )1 1 0.4LIMIT L V= = . Other limits can be obtained from the same figure.  
• kT/C noise: Each switched-capacitor, in addition to the charge transfer, produces noise 

as a consequence of  a thermal noise generated due to finite ON resistance of the switch 
(Gregorian & Temes, 1986). The noise power of the switched capacitor is independent of 
the switch ON resistance because the switch and the capacitor form a low-pass filter; 
with the increase of resistance comes the increase in noise power density and the 
decrease in bandwidth. Therefore, a smaller part of the noise gets under-sampled. 
Consequently, the noise power becomes independent of the resistance but inversely 
proportional to the capacitance. The noise-power of a switched-capacitor is distributed 
in the band from 0 to fs/2, which can be calculated according to (14), where 

23 11.38 10k J K− −⎡ ⎤= ⋅ ⋅⎣ ⎦ , T is absolute temperature in K° , ic  is relative capacitance of the 
switched capacitor, and ( )unitc i  is the absolute capacitance of the unit capacitor that 
corresponds to the integrator stage. 

 
( ), [ ]n i

i unit

k TP W
c c i

=
⋅

 (14) 

Each coefficient implemented by the switched-capacitor generates a noise that is 
modelled in Simulink as a noise source by using a block “Random source” (see Fig. 20 
for the 2nd integrator). The parameters are set as follows: “Source type” to Gaussian, 
“Mean” to  0, “Variance” to noise power according to  (14), “Sample mode” to discrete, 
“Sample time” to Ts, “Samples per frame” to 1, “Output data type” to Double, and 
“Complexity” to Real.  

 

 
Fig. 20. kT/C noise modelling adding Random source to each S-C stage 
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The architecture of the example modulator remains as it was defined in Fig. 15, except that 
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conditions” that are set to 0 and “Sampling time” that is set to Ts, as defined in a Matlab 
work-space. The block “saturation” is defined in the subsection  5.3. 
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capacitance in the denominator is always corresponding to the integrating capacitor. 

5.3 Adding circuit design parameters to the model 
In a real S-C integrator, the charges are transferred from input capacitors to the integrating 
capacitors ideally without loss of charge, while the time of charge transfer is negligible. We 
can model that by difference equations (9) and the DT model in Fig. 18. In reality, this 
transfer is not complete and several additional non-ideal effects contribute to the results. It is 
beneficial if one is able to predict the influence of such effects on a high hierarchical level 
before the start of the circuit design. To be able to take into consideration the important 
circuit parameters of a mixed-signal circuit, the model of the S-C integrator must be 
improved by adding circuit design parameters such as: nonlinearity of the opamp 
characteristics, kT/C noise, thermal and 1/f noise, open loop gain of the amplifier (A0), 
offset voltage (Voff), unity gain bandwidth (GB), slew rate (SR), and others. In our improved 
model of the DT integrator, some discrete time processes will be influenced by the 
continuous time processes inside the sampling period. In addition, random signals will be 
added to model the kT/C noise and other circuit noise sources. The model parameters that 
give acceptable simulation results are the result of optimisation of power consumption, unit 
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Optimized parameters define the limits for the circuit design. The possible non-ideal effects 
that we modelled in our example modulator are the following: 
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19. Parameters that must be set in the block are the following: “Upper Limit” and 
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Matlab workspace. The element is treated as a gain when voltage is increasing and the 
“zero-crossing” detection is enabled. Sampling rate is “inherited”, therefore Ts. The 
value of the LIMIT is obtained from the knowledge of the circuit behaviour of the 
opamp used in the S-C integrator. If the modulator is appropriately scaled as is 
presented on the right side of Fig. 16, we can be sure that under all normal conditions, 
the state variables will always remain within the linear region of the integrator. For  
our example design, the first integrator saturation level and limit is: 

( ) ( )1 1 0.4LIMIT L V= = . Other limits can be obtained from the same figure.  
• kT/C noise: Each switched-capacitor, in addition to the charge transfer, produces noise 
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the switch ON resistance because the switch and the capacitor form a low-pass filter; 
with the increase of resistance comes the increase in noise power density and the 
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Consequently, the noise power becomes independent of the resistance but inversely 
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Each coefficient implemented by the switched-capacitor generates a noise that is 
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Fig. 20. kT/C noise modelling adding Random source to each S-C stage 
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Fig. 21. Simulink model of the fifth order modulator, with kT/C noise sources included 
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Our fifth order modulator schematics is improved (Fig. 21) by adding appropriate noise 
sources, with noise power inversely proportional to the absolute value of the 
corresponding switched capacitance. The contribution of each noise source to the final 
noise level at the BS output is shaped by a particular noise transfer function. The 
biggest contributions (not attenuated) come from the input and reference switched 
capacitors. For high order circuits, the contribution of each k/TC noise source is hard to 
predict and optimize; hence, the Simulink model can be used to optimize all unit 
capacitor sizes, which may be different for each integrator in the loop. The power-
consumption of each integrator is proportional to the absolute capacitance on one side, 
while kT/C noise of each S-C stage is inversely proportional to its capacitance, so the 
smallest power consumption could be achieved by optimizing the absolute value of the 
unit capacitor of each integrator stage. 

• Open loop gain A0: Ideal charge transfer requires infinite open loop gain of the opamp 
that was used in the S-C integrator. In a real integrator, part of the charge that is 
supposed to be transferred to the integrating capacitor is lost. The consequences are that 
the pole is not anymore at z=1 and the coefficient is different than the ratio of input and 
integrating capacitance. The real transfer function of DT S-C integrator is given by (15). 
The model of DT integrator is changed to Fig. 22, where α can be calculated according 
to (16). The pole frequency is moved from an ideal location at 1pz =  to pz α= , while 
the gain of the integrating stage is moved from k  to k α⋅ . In this expression, 0A  is low-
frequency open loop gain of the amplifier, ,x iC∑ is the sum of all switched capacitors 
connected to the integrator i and ,I iC is the integrating capacitance of the integrator i . 

 

 
Fig. 22. DT integrator with a model of A0 influence 
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• Dynamic properties of the integrator’s opamp:  The response of each integrator during 
charge transfer depends on dynamic opamp characteristics: Slew-Rate (SR) and Gain 
Bandwidth Product (GB); in addition, it also depends on the finite open loop gain of the 
opamp (Maloberti, 2007). During charge transfer (phase Φ2 on the left part of Fig. 17), 
the opamp may enter 2 different modes of operation:  SR limited mode at the first part 
of the transient, if the input charge is big enough, and the “linear” settling mode in the 
second part. The whole transient might follow a “linear” settling mode if input charge 
is small.  For 0RG SR≤ , where ( )0 0R o t

G dv t dt
=

= ⎡ ⎤⎣ ⎦  the time domain response of the 
output voltage can be modelled using (17), assuming the dominant pole model of the 
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Fig. 21. Simulink model of the fifth order modulator, with kT/C noise sources included 
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Our fifth order modulator schematics is improved (Fig. 21) by adding appropriate noise 
sources, with noise power inversely proportional to the absolute value of the 
corresponding switched capacitance. The contribution of each noise source to the final 
noise level at the BS output is shaped by a particular noise transfer function. The 
biggest contributions (not attenuated) come from the input and reference switched 
capacitors. For high order circuits, the contribution of each k/TC noise source is hard to 
predict and optimize; hence, the Simulink model can be used to optimize all unit 
capacitor sizes, which may be different for each integrator in the loop. The power-
consumption of each integrator is proportional to the absolute capacitance on one side, 
while kT/C noise of each S-C stage is inversely proportional to its capacitance, so the 
smallest power consumption could be achieved by optimizing the absolute value of the 
unit capacitor of each integrator stage. 

• Open loop gain A0: Ideal charge transfer requires infinite open loop gain of the opamp 
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supposed to be transferred to the integrating capacitor is lost. The consequences are that 
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The model of DT integrator is changed to Fig. 22, where α can be calculated according 
to (16). The pole frequency is moved from an ideal location at 1pz =  to pz α= , while 
the gain of the integrating stage is moved from k  to k α⋅ . In this expression, 0A  is low-
frequency open loop gain of the amplifier, ,x iC∑ is the sum of all switched capacitors 
connected to the integrator i and ,I iC is the integrating capacitance of the integrator i . 

 

 
Fig. 22. DT integrator with a model of A0 influence 
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• Dynamic properties of the integrator’s opamp:  The response of each integrator during 
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the opamp may enter 2 different modes of operation:  SR limited mode at the first part 
of the transient, if the input charge is big enough, and the “linear” settling mode in the 
second part. The whole transient might follow a “linear” settling mode if input charge 
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opamp with ( )1 1 2p GBω τ π= = ⋅ ; α is defined in (16), , ,x i I ik C C= is the capacitor 
ratio, xv is the voltage on the input capacitor slightly before the start of the charge 
transfer, and ( )1 2o s sv nT T− is the output voltage of the integrator slightly before the 
start of the charge transfer. For 0RG SR> , the first part of the transient follows the SR 
limited behaviour according to (18), while the second part follows the “linear” settling 
behaviour according to (19). 0T is the time where the slopes of the SR limited behaviour 

( )1ov t  and  settling limited behaviour ( )2ov t  are equal according to (20). The complete 
behaviour in that case is (21). 
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A complete Simulink model of the S-C integrator stage, excluding input coefficients 
(they are defined on the top level of the Simulink model shown in Fig. 21), is presented 
in Fig. 23. The model includes dynamic contributions due to SR  andGB  and the model 
of static error cause by 0A . The result of continuous time output voltage at the end of 
charge transfer that is at time snT is calculated by using an “Embedded” Matlab 
function, GBW_SR1, as shown on the left part of the S-C integrator Simulink  
model on Fig. 23. The constants for all integrators from Fig. 21 (constants for second 
integrator: Constant=tau(2), Constant1=alpha(2),  Constant2=SR(2) and Constant3=Ts) 
are defined in the m-file and are available in the Matlab work-space. The code that 
evaluates (18) to (21) is presented in Fig. 24. Thermal noise generator (random Source8 
on Fig. 23) is added at the output of the integrator and is thus multiplied by appropriate 
capacitor ratio. It models the contribution of the thermal noise generated in the opamp; 
input referred opamp noise power is multiplied by the appropriate coefficient 

( ), ,x i I iC C∑ so, that it can be added to the output of the integrator model.  

5.4 Quantizer model 
In a nonlinear model defined by state-space equations (7), it is assumed that the quantizer is 
described by a sign() function. This function has an infinitely steep response to the input 
signal. In reality, the gain of the quantizer alone is finite, which means that for very small  
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Fig. 23. Model of static and dynamic properties of non-inverting S-C integrator, including 
opamp thermal noise 

 

 
Fig. 24. Code that calculates output voltage of the S-C integrator, according to (18), (19), (20), 
and (21) 
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A complete Simulink model of the S-C integrator stage, excluding input coefficients 
(they are defined on the top level of the Simulink model shown in Fig. 21), is presented 
in Fig. 23. The model includes dynamic contributions due to SR  andGB  and the model 
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are defined in the m-file and are available in the Matlab work-space. The code that 
evaluates (18) to (21) is presented in Fig. 24. Thermal noise generator (random Source8 
on Fig. 23) is added at the output of the integrator and is thus multiplied by appropriate 
capacitor ratio. It models the contribution of the thermal noise generated in the opamp; 
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signals, the decision may be wrong. For low resolution devices, this is of no consequence  
but for high resolution devices many wrong decisions could have consequences by 
increasing the noise in the base-band. It is very difficult to determine the gain of a one bit 
quantizer from a system point of view, that is, by just observing the reaction to the input 
signals. The output signal is always limited, whatever the input signal might be. The intuitive 
explanation is that the system gain of the quantizer is dependent on the amplitude of the 
input signal: it is large for small signals and small for large input signals. Therefore, it would 
be necessary to check the NTF and the stability of the loop as a function of the quantizer’s 
gain. Some authors have proposed complicated statistical models of the one bit quantizer 
(Boche & Monich, 2010); however, we prefer to use simple intuitive understanding and as 
simple a model as possible. It is possible to check the NTF for the linear model as a function 
of the large signal gain (system gain) of the quantizer, taking into consideration the different 
values of k from Fig. 2. Further discussions about the problem are presented in the 
continuation of this subsection, where the influence of a small system gain on a more 
realistic model of the quantizer is presented, together with its influence to the operation of 
the modulator.   
 

 
Fig. 25. |NTF| and |STF| plots for ideal quantizer and different system gain of the 
quantizer. Solid line: system gain of the quantizer k=1. Dashed line: system gain of the 
quantizer k=2.5. Upper plots:  linear model of the |NTF|. Lower plots: |STF|. Left plots: 
un-scaled modulator; Right plots: rescaled modulator with system gain k=2.5 taken into 
considerations 

Fig. 25 shows plots of the NTF and the STF for the ideal linear model of the fifth order 
modulator for different quantizers’ gains. On both plots, the solid line presents the ideal 
linear model with system gain of the quantizer k=1, while the dashed lines represent plots of 
NTF and STF for system signal gain of a quantizer increased to k=2.5. The system gain of a 
linear model of a modulator (k=2.5) is deduced from extensive statistical simulations. Left 
plots are for an un-scaled modulator, while the right side of Fig. 25 plots the NTF and STF of 
rescaled linear model of the modulator. Rescaling is such that it compensates for the 
eventual change in the average system gain of the one bit quantizer in a linear model. 

 
Mixed-Signal Circuits Modelling and Simulations Using Matlab 

 

141 

A simple nonlinear model of a one bit quantizer that includes the small signal gain of a 
differential stage, saturation block relay, offset voltage, input referred noise, and no latency 
is presented in Fig. 26. The model follows the implementation of the comparator, which is 
composed of the gain stage with gain G_comp, offset voltage Voff, and input referred noise 
power pncomp. The three blocks Fcn model the behaviour of the comparator in a good way: 
they calculate the decision under different conditions according to (22). 

 _ _ _ _

_ _

1 1 1
0 0 0 otherwise

th H th L th L th H

th H th L

u V u V V u V
x y z

u V u V
≥ − ≤ ≤ ≤⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬< >⎪ ⎪ ⎪ ⎪ ⎩ ⎭⎩ ⎭ ⎩ ⎭
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The decision is stable and correct if the difference between input voltage and the offset 
voltage of the comparator, multiplied by the gain of differential stage, is bigger than the 
threshold voltage high (x), or if the difference is smaller than the threshold voltage low (y).  
In those two cases, the decision is +1 or -1, respectively. However, for small input voltage, 
the decision is difficult and may be arbitrary because of comparator noise (z). Using this 
model, we can study the influence of some of the characteristics of the internal quantizer 
(comparator) as a function of its performance. In Fig. 27, the simulation results for different 
small signal comparator gains are presented. The spectrum on the left is for a small signal 
comparator gain Gcomp=1000, which gives a correct result, while the spectrum on the right 
side of Fig. 27 for Gcomp=100 is not acceptable because the SnR has been degraded 
considerably. The explanation for the increased base-band noise level is the following: 
because of very small signal gain of the comparator’s differential stage, the decision was 
many times dictated by the random noise of the comparator instead of the signal, and this 
causes the increase of the baseband noise. 
 

 
Fig. 26. Nonlinear model of the quantizer 

5.5 Simulation and analysis 
Using the models defined in the previous subsections, one can study the influence of many 
different effects due to non-ideal parameters. The complete model can also be used to 
optimize the main parameters of the circuit. Due to lack of space, only two simulation 
results will be presented for our fifth order modulator. In reality, many different simulations 
must be performed to verify the correctness of the design and to verify the influence of the 
non-ideal parameters on the behaviour of a mixed signal module.  
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A simple nonlinear model of a one bit quantizer that includes the small signal gain of a 
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The decision is stable and correct if the difference between input voltage and the offset 
voltage of the comparator, multiplied by the gain of differential stage, is bigger than the 
threshold voltage high (x), or if the difference is smaller than the threshold voltage low (y).  
In those two cases, the decision is +1 or -1, respectively. However, for small input voltage, 
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many times dictated by the random noise of the comparator instead of the signal, and this 
causes the increase of the baseband noise. 
 

 
Fig. 26. Nonlinear model of the quantizer 

5.5 Simulation and analysis 
Using the models defined in the previous subsections, one can study the influence of many 
different effects due to non-ideal parameters. The complete model can also be used to 
optimize the main parameters of the circuit. Due to lack of space, only two simulation 
results will be presented for our fifth order modulator. In reality, many different simulations 
must be performed to verify the correctness of the design and to verify the influence of the 
non-ideal parameters on the behaviour of a mixed signal module.  



 
Engineering Education and Research Using MATLAB 

 

142 

 
Fig. 27. BS spectrum of the example modulator for nonlinear Quantizer model. Left spectrum: 
Gcomp=1000, Right spectrum: Gcomp=100 

 

 
Fig. 28. Spectrum of the BS of the fifth order modulator, with non-ideal effects included. Left 
spectrum: No noise circuit included, Right spectrum: All noise sources and all other non-
ideal effects included 

Fig. 28 shows two simulation results. Both are calculated from the bit-stream of our fifth 
order example modulator. All non-ideal effects are included with parameters given in (23). 
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The kT/C noise source effects have been excluded from the simulation for the left part of 
Fig. 28, while on the right side of Fig. 28, all noise sources have been included with 
optimized unit capacitor sizes. The evidence of circuit noise is clearly seen on the right part 
of the figure. The switched capacitors and integrator contributions have been optimized so 
that their influences are acceptable and power consumption is optimized. 
The last simulation result shown in Fig. 29 presents a Monte Carlo analysis of our fifth order 
modulator, with all non-ideal effects included. The absolute values of the capacitances and 
the capacitor ratios were randomly changed around their nominal (mean) value, with 
standard deviations defined on the upper part of the scatter plot. This information is 
compliant with technology information. The capacitor ratios were spread according to the 
matching information from the process technology. The properties of the opamps and the 
comparator were kept constant, with values slightly different than the values defined in 
(23). It would be possible to include also the spread of this circuit parameter values obtained 
from the circuit simulation results. The x-axis of Fig. 29 represents rms “distance” of each 
experiment from its nominal value, while the y-axis shows the SnR in dB. Each circle 
represents one result. 
 

 
Fig. 29. Monte Carlo simulation result of the 5th order modulator. Each circle represent result 
(SnR) of one simulation at the conditions defined in upper left portion of the picture. The 
capacitors are spread by 5%σ = . The x-axis is the rms distance of each capacitor set of the 
experiment from the nominal rms value  
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6. Decimator 
Each Σ-Δ A/D converter is composed of a modulator and a decimation filter. This pair 
forms a simple mixed-signal system (circuit). Many different decimation filter architectures 
are possible (Schrier & Temes, 2005). In this chapter, we will not go into the details of a 
decimation filter design; rather, we will present the bit-true model of one example filter 
using simple Simulink element library and blocks. The model used is very simple. It leads to 
the efficient design of decimation filters. 
The simplest decimation filter architecture is the so-called sinc filter defined in z-domain 
transfer function (24), where ord is the order of the filter and R1 is the decimation factor. To 
implement that, a delay, registers, and adder Simulink blocks are needed; the structure is 
regular which leads to efficient VLSI design. 
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Usually, the order of the decimation filter must be bigger than the order of the modulator to 
suppress the out of band quantization noise sufficiently. For our example, a sixth order Sinc 
decimation filter is used. The block diagram of the filter is presented in Fig. 30. A complete 
filter is built with fixed word-length of WL=32 bits using so called wrap-around two’s 
complement arithmetic. The digital integrator stages are running with fs while 
differentiators are running with fs/R1 (R1=32). The word length needed is calculated in such a 
way that no additional quantization noise is added into the process and that the wrap-
around two’s complement arithmetic works correctly. At the output of the filter, the word-
length is reduced to 24 bits using block Gain6 with correct parameter settings.  
 

 
Fig. 30. 6th order sinc decimation filter structure  

The number of bits used in integrator stages can be fixed by the appropriate number of bits 
of the input signal and appropriate settings of the adders. The input signal to the decimation 
filter is obtained from the bit-stream of the modulator; in our example, the modulator has a 
one bit internal quantizer with a data type double. For the fixed point arithmetic used in the 
decimation filter, the BS signal is first converted to an integer by using block Convert (SI) on 
Fig. 33. Fixed point arithmetic inside a decimation filter is defined by parameters inside the 
adders, as presented on the left part of Fig. 31, where accumulator data type is set to fixed 
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point with WL1=32 bits. This number is calculated in Matlab m-file using formula 
( )1 1 1* log 2( ) inWL ceil ord R WL= + ; the output data type of the adder block is also set to WL1. The 

adder must not saturate on integer overflow to accommodate wrap-around arithmetic. 
 

 
Fig. 31. Adder and Down-sampler parameters. Left: Adder. Right: Down-sampler 
 

 
 

 
Fig. 32. Settings for block Gain6 that determines output word-length 
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6. Decimator 
Each Σ-Δ A/D converter is composed of a modulator and a decimation filter. This pair 
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decimation filter design; rather, we will present the bit-true model of one example filter 
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Usually, the order of the decimation filter must be bigger than the order of the modulator to 
suppress the out of band quantization noise sufficiently. For our example, a sixth order Sinc 
decimation filter is used. The block diagram of the filter is presented in Fig. 30. A complete 
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complement arithmetic. The digital integrator stages are running with fs while 
differentiators are running with fs/R1 (R1=32). The word length needed is calculated in such a 
way that no additional quantization noise is added into the process and that the wrap-
around two’s complement arithmetic works correctly. At the output of the filter, the word-
length is reduced to 24 bits using block Gain6 with correct parameter settings.  
 

 
Fig. 30. 6th order sinc decimation filter structure  
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Fig. 33. Fixed point arithmetic inside a decimation filter is defined by parameters inside the 
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Fig. 33. Top-level Simulink block diagram for modulator-decimator simulation 

 

 
Fig. 34. Left spectrum: Spectrum of the modulator’s BS including non-ideal effects. Spectrum 
on the right: The decimation filter output (the decimator is driven by the BS with spectrum 
on the left side 

At the end of the sixth integrator stage, every R1th sample is taken, which is implemented by 
a Down-sampler. The parameter settings are presented on the right side of Fig. 31. The 
whole decimator is running with the same number of bits WL1 because the structure in this 
case is more regular. Nevertheless, it is possible to use a smaller number of bits at the 
beginning of the chain and increase the word-length at the end of the structure, taking into 
consideration only the quantization noise penalty.   
For our example decimator, the lower eight bits are removed by block Gain6 (from Fig. 30) 
at the output by setting appropriate parameters as shown in Fig. 32. 
Fig. 33 shows a top-level Simulink block diagram that includes a modulator 
(mod5CIFFARCH3_noise_A0_GBWSR) with all previously defined non-ideal effects, and a 
model of a decimation filter (DEC6_v4) using previously defined settings for fixed-point 
arithmetic. 
Fig. 34 shows the results of a Simulink simulations in two spectrums. The left plot shows the 
spectrum of the bit-stream of the 5th order modulator model that includes all non-ideal 
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circuit effects defined before with nominal capacitor ratios, while the spectrum on the right 
side corresponds to the bit-true decimation filter output.  

7. Conclusion 
This chapter deals with modelling and simulation of a mixed-signal module (circuit) using 
high level Matlab/Simulink model on a high hierarchical level. More specifically, it presents 
an example design and the modelling details of a fifth order Σ-Δ A/D converter, which is 
built of a fifth order modulator and sixth order decimation filter. The modulator is modelled 
by using data types “double” and models of many non-ideal circuit effects, while the 
decimator is modelled by using different fixed-point data types. The most important non-
ideal effects are included into the model of the “analogue part”; the decimation filter uses a 
bit-true, fixed-point arithmetic and hence we can say that it uses a bit-true model. Using the 
proposed modelling technique, one can speed up the design and simulations of complex 
mixed-signal circuits and systems considerably. For example, in the design shown in Fig. 34, 
less than one minute simulation time is needed to obtain 218 samples and to get the 
presented final spectrums.  
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1. Introduction 
The automatic modelling system using MATLAB-Simulink software package applies the 
Cohen-Coon method for determining the closed loop PID parameters and plotting the 
system response clue. Implementing the same system in a closed loop PID adjustment using 
LabVIEW software package, requires, at first, an additional procedure, namely, the use of 
transfer functions in Z domain, which means the use of a sampling signal. The study in this 
paper intends to determine the parameters of a PID regulator using two software packages - 
MATLAB-Simulink and LabVIEW. As a mathematical pattern, a DC machine has been used. 
To exemplify regulators such as PID, LQR (Linear Quadratic Regulator) and PI-MIMO (PI – 
Multiple Input Multiple Output) were used. The application is easily implemented, the 
inverted pendulum being used to emphasize the results. The closed loop system and its 
evolution over time are easily implemented. This software package offers an easy user 
interface, which means it is convenient to introduce the programme functions (Niţu, C., et 
al., 1974). 
MATLAB is a tool with high performance in technical estimations. It integrates the calculation, 
visualization and programming in an easy to use environment where problems and 
solutions are expressed in familiar mathematical notation. Using the MATLAB software 
package has the following main purposes: mathematical calculation, the development of 
algorithms, data acquisition, modelling, simulation and prototype development, visualization, 
exploration and data analysis, scientific graphics and engineering, and application 
development of a graphical user interface. MATLAB is an interactive system whereby the 
basic element to define data is the string that does not require sizing (Andrei, H., et al., 1999; 
Călin, S., 1970; Călin, S., et al., 1979, 2002; Dumitrache, I., 1971; Papadache, I., 1975). 
With LabVIEW virtual instruments are built (VI), having the appearance of instruments or 
physical systems. Virtual instruments have an interactive user interface front panel - and with 
one part for the programmer - block diagram. For identification and use in other applications, 
each virtual instrument has an icon with specific entries and exits (Bishop, R., 2010). 
Automatic systems modelling using the MATLAB-Simulink software package applied the 
Cohen-Coon method for determining the closed loop PID parameters and plotting the 
system response clue. The limit of the over adjustment was found to be 20%, the timing of 
the transitional regime - 3 seconds, and the maximum response time was 10 seconds. Also, 
one represented the chart of the evolution over time, in a closed loop system, to unit step 
input. 
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This software package offers an easy user interface, which means that it is convenient to 
introduce the programme functions. The application has implemented the conversion done 
from a field of definition of transfer functions to another (ex. obviously c2d function 
transforming the transfer function of s field in Z domain, using a sampling period by the 
user), and includes the Simulink tool that greatly facilitates the user's work as the user wants 
to consider in detail the operation of each block and many other features in the field of 
automation and theory systems. 
MATLAB integrates the calculation, visualization and programming in an easy to use 
environment where problems and solutions are expressed in familiar mathematical notation.  
Automatic systems modelling using the MATLAB-Simulink software package applied the 
Cohen-Coon method for determining the closed loop PID parameters and plotting the 
system response clue. This software package offers an easy user interface, which means that 
it is convenient to introduce the programme functions.  
This paper intends to determine the parameters of a PID regulator using two software 
packages - MATLAB-Simulink and LabVIEW (Mahesh, L., et al., 1998).  
To exemplify, PID, LQR (Linear Quadratic Regulator) and PI-MIMO (PI – Multiple Input 
Multiple Output) regulators types were used.  
In the case of the LQR regulator, the Control System Toolbox was necessary since it is an 
extended version of the problem from the Simulink demo file. 
Using LQG / LTR techniques, one can design a Kalman state estimator and a corresponding 
amplifier regulator for the linear system, by adding an integrator to ensure a zero steady 
error (Gibson, J., 1967; Ionescu, V., 1975). 
An initial design regulator using the LQG / LTR methods is designed starting from a linear 
application. 
The third problem of control design involves designing a centralized PI-MIMO regulator for 
a turbine engine of LVI00 fuel. The application is modelled as a system with two inputs, two 
outputs and a minimum of five phase states. Inputs are fuel flow and variable area turbine 
nozzle. 
The work from this paper intended to determine the parameters of a PID controller using 
two software packages, namely MATLAB-Simulink and LabVIEW. 
A comparative analysis of the features of the two programmes - MATLAB-Simulink and 
LabVIEW to determine the same automatic performances of the system – indicates that the 
MATLAB-Simulink software is more efficient. It has different features from its libraries 
already implemented, with coverage areas of automation and systems theory. LabVIEW is a 
software package dedicated to particular virtual instrumentation and graphical applications 
in time (Bishop, R., 2010). 
Passing to study cases, first of all, one tries to present the classical case of the inverted 
pendulum and, also, the modelling of the robotic arm. We compared the results obtained 
using MATLAB-Simulink and LabVIEW software. The equations of the model are presented 
and the modelling results are given comparatively. 

2. PID regulator 
At first, the problem of control design is shaped by the transfer application as having a 
single input and a single output (Single Input Single Output, SISO) of third order, where a1 
= 43 and a1=3 with an approximation of ± 0.7 and a non-linear saturation ± 1.5. 
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In addition, due to design tolerances, the current dynamics presents suggestive variations 
from the base model. Specifically, the denominator coefficient a2 varies between 40 and 50 
and coefficient a1 between half and 1.5 times the nominal value of 3 (Franklin, G., et al., 
1987; Potvin, A. F., 1991). 
 

 

 
Fig. 1. NCD block attached to the result of the plant 
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A PID regulator is designed so that closed-cycle system may meet the following 
specifications for tracking: 
• Maximum oscillation 20%; 
• Up to 10 seconds for the propagation; 
• Maximum response time of 30 seconds (Franklin, G., et al., 1987; Potvin, A. F., 1991). 
This results in the answer that the closed-cycle is resistant to uncertainty in the installation’s 
dynamics. 
The Simulink ncddemo1 system contains the application and the control structure. It is 
noted that non-linearity and saturation speed are included in the model plant. An input step 
drives the system. An NCD block is attached to the outlet installation (Figure 1) because it is 
the signal which will be restricted. On checking the System's Parameters dialog box one can 
notice that each simulation lasts 100 seconds. 
Tuneable and uncertain variables are initialized. The uncertain variables a1 and a2 are 
initialized at nominal values of 40 and 3 respectively. Tuneable parameters Kp, Ki and Kd 
are initialized at 0.63, 0.05, 2.02 respectively. These values result from the use of the Ziegler-
Nichols method for PID regulators. 
The Ziegler-Nichols method for PID regulators can be summarized as follows: 
• The entire amplification and derivative is established to zero. Than, all these are 

increased proportionally, until the system becomes unstable; 
• This amplification is defined as Ku, the measure of the oscillation period is Pu; 
• The coefficients are established one by one: 
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Then, the limitations of time are defined. Upper and lower restriction limits define oscillation, 
propagation time and response time (Franklin, G., et al., 1987; Potvin, A. F., 1991). 
Note that the uncertainty in the parameters a1 and a2 is defined and that the restrictions are 
applied to the installation only nominally. After running optimization, the time, the cost 
function evolution and the final values for tunable parameters vary depending on 
computer’s performance. Optimization should provide a regulator to satisfy any restrictions 
(National Instruments; MathWorks; MathWorks User’s Guide, 2003). 
The lower and superior limits are restricted and the optimizing process is started with 
uncertainty. One can consider that these restrictions cannot be satisfied, but the result shows 
a maximum violation of the restriction under the value of 0.01. 
One can experiment by moving the limits of restriction to achieve better performances of the 
system. For example, one can reduce the time spread or decrease the restrictions of 
oscillation (Figure 2.) 
 

 
 

 
Fig. 2. Moving the limits of restriction to achieve better performance of the system 
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3. LQR regulator with feed-forward controller 
The second problem requires a Control System Toolbox since it is an extended version of the 
problem from the Simulink demo lqgdemos file.  
The SISO application can be modelled as a linear ranking 4 system with an enlarging 
saturation by ± 5 and a non-linear limit of error of ± 10.  
The equations are (Franklin, G., et al., 1987; Potvin, A. F., 1991; National Instruments; 
MathWorks; MathWorks User’s Guide, 2003):  
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They define the nominal plant model. One allows the installation’s matrix to vary between 
half to two times of its nominal value. 
Using LQG / LTR techniques, one can design a Kalman state estimator and a k amplifier 
regulator for the linear system. Add an integrator to ensure a zero steady error.  
To achieve an increased time response one adds a feed-forward amplifier (FF). 
In the demo Simulink Iqgopt system, the control parameters k and FF are granted by ‘the 
method presented above (National Instruments; MathWorks; MathWorks User’s Guide, 2003).  
These parameters can be accorded using the NCD Blockset.  
In particular the control parameters k and FF are granted, so that the closed-cycle system 
may meet the following specifications: 
• Maximum oscillation - 20%; 
• Propagation time - one second; 
• Response time - three seconds (Franklin, G., et al., 1987; Potvin, A. F., 1991; National 

Instruments; MathWorks; MathWorks User’s Guide, 2003). 
The Simulink system contains the application and the control structure below: 
After starting the system, it is noted that the non-linearity error (± 10) and the saturation (± 5) 
are included in the model’s installation. 
Using the From Workspace block, one introduces a step that goes from zero to one in one 
second. An NCD block is attached to the result of the installation because there is a 
restricted signal. Checking the System’s Parameters one observes that each simulation 
always lasts 10 seconds. 
Tunable and uncertain variables are initialized. Domain restrictions for this demonstration 
are defined. Upper and lower restriction limits on the oscillation, propagation time and 
response time are defined. As described above, an initial design regulator using the LQG / 
LTR methods is designed starting from a linear application. For non-linear control 
optimization the feed-forward amplifier FF and regulatory matrix amplifier k are tunable 
(Franklin, G., et al., 1987; Potvin, A. F., 1991; National Instruments; MathWorks; MathWorks 
User’s Guide, 2003). 
Note how the installation (reaction) matrix A is defined and also that the optimization 
restrictions are applied only on nominal installation (reaction). 
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Then, the limitations of time are defined. Upper and lower restriction limits define oscillation, 
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Fig. 2. Moving the limits of restriction to achieve better performance of the system 
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3. LQR regulator with feed-forward controller 
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LTR methods is designed starting from a linear application. For non-linear control 
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Fig. 3. NCD block attached to the result of the plant 

 

 
Fig. 4. Plant & Actuator 

 

 
Fig. 5. Moving the limits of restriction to achieve better performance of the system 
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After the optimization starts, one monitors the response evolution in time. The optimization 
time, the cost function evolution and final values for tunable parameters vary depending on 
computer (Savant, C. J., 1967; Sprânceană, N., et al., 1978).  
Optimization should produce a regulator which satisfies any restrictions. 
One must always restrict the upper and lower limits and start the optimization with 
uncertainty. Considering that these restrictions can be satisfied, the result shows a 
maximum violation of the restriction under 0.01 (1%). 
One can experiment by moving the limits of restriction to achieve better performances of the 
system; for example, reducing the propagation time or using restrictions on oscillation 
(Figure 5). 

3.1 Results and simulation after using LQR 
Simulation using the optimal LQR has been implemented. Figure 6 shows the unit step 
system response. As shown in the figure, the displacement reaches its final value in 3*10-6 
sec., gives zero tracking error and the system has better stability. In comparison to the 
results obtained previously, it is quite clear that the use of LQR triggers a much better 
response (Jalili-Kharaajoo, M. and Dahastani, A., 2003; Roshan N., 2004). 
 

 
Fig. 6. State variables versus time for unit step input tracking 

Figure 7 and Figure 8 show unit ramps and the unit acceleration system response. As shown 
from the figure the displacement reaches its final value in a few microseconds and gives 
zero tracking error, which means much better sensitivity and accuracy for the micro 
accelerometer compared to previous approaches. 
The speed of reaching the final values depends on choosing the values of matrix Q, as 
choosing high values of Q means having faster response for any input signal and having 
better stability. 
Finally, for all inputs, the mass speed when using the LQR is faster and almost has no 
oscillations, for example, for unit step input the average speed is 1.82*10-3 m/sec., 
compared to 1.71*10-4 m/sec. as described by some authors. That is, the mass reaches its 
final position faster with no oscillations.  
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Using LQR, has increased and improved the accelerometer bandwidth, stability, accuracy 
and response time (Ibrahim, H. E. A., 2010; Jalili-Kharaajoo, M and Dahastani, A., 2003). 
 

 
Fig. 7. State variables versus time for unit ramp input tracking 

 

 
Fig. 8. State variables versus time for unit acceleration input tracking 

4. PI-MIMO regulator 
The third problem of control design involves designing a centralized PI-MIMO regulator for 
a turbine engine of LVI00 fuel. One models the application as a system with two inputs, two 
outputs and a minimum of five phase states. The inputs are fuel flow and variable area 
turbine nozzle. The outputs are speed coil generator fuel and temperature. The five stages 
are speed spool generator, the output power, temperature, the driving level of the fuel flow 
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and the driving level of the turbine nozzle (Franklin, G., et al., 1987; Potvin, A. F., 1991; 
National Instruments; MathWorks; MathWorks User’s Guide, 2003). 
Saturation non-linearities exist in the system as limited efforts and maximum temperatures.  
These non-linearities can be included in the problem formulation as in previous examples. 
Also, the demonstration plant will exaggerate uncertainty of installation. 
More precisely, one permits a variation of a matrix A between half and twice its nominal 
value. 
We want to design a centralized controller 2-by-2 PI for the application so that the system 
closed-cycle track meets the following specifications: 
• Maximum propagation delay time of one second; 
• 0 oscillation in the first channel and less than 10% in one second; 
• Less than 5% across the channel coupling. 
The Simulink system contains the software and control structure below (Figure 9).  
To open the system this can be written in MATLAB prompt or double-click on the NCD 
block 3 demo Simulink system.  
One model the PI regulator as a state-space system with the value 0 for matrix A and the 
identical matrix B. 
The C and D matrix are variable tuneable K, and Kp, for a total of eight tuneable variables. 
 

 
Fig. 9. Control structure of the system 

One can note that there are two optimization of NCD blocks that can be displayed 
simultaneously (Mejhed, N. H., et al., 2005). 
The approach suggested for MIMO regulator design requires the sequencing of input steps. 
When the first channel comes in, the first result should follow up the step and the other 
channels must reject the signal. When the second channel comes in, the second signal must 
follow up the step and the other channels must reject the signal etc. (Franklin, G., et al., 1987; 
Potvin, A. F., 1991; National Instruments; MathWorks; MathWorks User’s Guide, 2003). 
Note that we used the From Workspace block to enter the sequential steps inside the system. 
Double-click on the NCD blocks to open the restriction NCD images and to display all the 
other restrictions. It is noted that restrictions for the first result define the limits step 
response as shown above. Meanwhile, the output restrictions limits keep the signal near the 
± 0.05 value. 
Before starting the optimization, the Optimization Parameters dialog box opens by selecting 
Parameters from the Optimization menu and it should be noticed that ‘how’ is defined by 
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the Parameters Optimization. Also opened is the Uncertain Variables and one observes 
‘how’ is defined by the A matrix installation and that optimization restrictions are only 
nominally applied on installation. 
One can press Start or one can hold down the acceleration key and start the optimizing 
process. Then, follows the time response evolution, during the optimizing process. 
Optimization time, cost function evolution and final values for tuneable parameters vary 
depending on the computer. Optimization should produce a regulator that satisfies all 
restrictions (Franklin, G., et al., 1987; Potvin, A.F., 1991; National Instruments; MathWorks; 
MathWorks User’s Guide, 2003). 
Now, one returns to the Uncertainty Variables dialog box and one restricts the lower and 
upper limits. Press Start to begin optimizing with uncertainty. We can consider that these 
restrictions cannot be satisfied, since the result appears to show a maximum restraint 
violation of less than 0.01. 
We can experiment by moving the restriction limits to achieve a higher system performance. 
For example, one reduces the propagation time or lessens the oscillation restrictions (Figure 
10). 
 

 
 

 
Fig. 10. Moving the limits of restriction to achieve better performance of the system 
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5. Case studies 
We have chosen to present two case studies. The first is the inverted pendulum and the 
second is the modelling of a robotic arm. 

5.1 Inverted pendulum 
The inverted pendulum can be described as a cylindrical metal rod attached to a device 
controlled by an engine powered to revolve only around an axis. The device follows a linear 
track to create a stabilized problem (Figure 11). 
 

 
Fig. 11. Inverted pendulum 

The inverted pendulum is a classic problem in dynamics and control theory, and is widely 
used as a benchmark for testing control algorithms (PID controllers, neural networks, fuzzy 
control, genetic algorithms, etc). Variations on this problem include multiple links, allowing 
the motion of the cart to be commanded while maintaining the pendulum and balancing the 
cart-pendulum system on a see-saw. The inverted pendulum is related to rocket or missile 
guidance, where thrust is actuated at the bottom of a tall vehicle. The understanding of a 
similar problem is built in the technology of Segway, a self-balancing transportation device. 
The largest implemented use of this is on huge lifting cranes in shipyards. When moving the 
shipping containers back and forth, the cranes move the box accordingly so that it never 
swings or sways. It always stays perfectly positioned under the operator, even when 
moving or stopping quickly. 
Another way that an inverted pendulum may be stabilized, without any feedback or control 
mechanism, is by oscillating the support rapidly up and down. If the oscillation is 
sufficiently strong (in terms of its acceleration and amplitude) then the inverted pendulum 
can recover from perturbations in a strikingly counterintuitive manner. If the driving point 
moves in simple harmonic motion, the pendulum's motion is described by the Mathieu 
equation. 
In practice, the inverted pendulum is frequently made of an aluminium strip, mounted on a 
ball-bearing pivot; the oscillatory force is conveniently applied with a jigsaw. 
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The equation of motion is similar to that for an un-inverted pendulum, except that the sign 
of the angular position is measured from the vertical unstable equilibrium position: 

 sin 0g
l

θ θ− =  (4) 

When added to both sides, it will have the same sign as the angular acceleration term: 

 sing
l

θ θ=  (5) 

Thus, the inverted pendulum will accelerate away from the vertical unstable equilibrium in 
the direction initially displaced and the acceleration is inversely proportional to the length. 
Tall pendulums fall more slowly than short ones. 
The inverted pendulum with small parametric forcing is considered as an example of a 
wider class of parametrically forced Hamiltonian systems. The qualitative dynamics of the 
Poincare map corresponding to the central periodic solution is studied via an approximating 
integrable normal form. At bifurcation points we construct local universal models in the 
appropriate symmetry context, using the equi-variant singularity theory. In this context, 
structural stability can be proved under generic conditions (Van Noort, M., 2001). 
The upper equilibrium of a pendulum can be stabilized by a vertical oscillation of the 
suspension point within a specific range of excitation frequencies and amplitudes. This 
follows from classical perturbation theory applied to the linearized equation of motion, e.g., 
according to van der Pol and Strutt, Stoker and Hale.  
The corresponding bifurcation is determined by the non-linear dynamics. Our aim is to 
understand this dynamics in a qualitative way, with special interest in persistence. 
Here, the symmetries of the system are first maintained. However, we consider a system 
that is slightly more general, but still in the 1 and ½ degree-of-freedom Hamiltonian setting 
(Van Noort, M., 2001). 
We study the corresponding Poincare map, following the approach of Broer and Vegter.  
Normal form theory yields a planar Hamiltonian vector field which gives an integrable 
approximation of this map, valid for every angular displacement and small velocity of the 
pendulum. The relation between the Poincare map and its approximation is briefly 
discussed in terms of perturbation theory (Sultan, K., 2003, 2007; Van Noort, M., 2001). 
At each bifurcation point of the approximating vector field a model is constructed that is 
locally equivalent to this approximation, by performing small perturbations that respect the 
symmetries and conjugating these perturbations to the model by symmetry-preserving local 
morphisms (Van Noort, M., 2001). 
The study of the inverted pendulum could be a collection of MATLAB functions and scripts, 
and SIMULINK models, useful for analyzing the inverted pendulum system and designing 
a control system for it. 
The inverted pendulum is one of the most important classical problems of control 
engineering. ‘Broom balancing’ is a well known example of a non-linear, unstable control 
problem. This problem becomes further complicated when a flexible broom, in place of a 
rigid broom, is employed. The degree of complexity and difficulty in its control increases 
with its flexibility. This problem has been a research interest of control engineers. In this 
paper, however, we have analyzed the inverted pendulum only with a rigid broom (Sultan, 
K., 2003, 2007). 
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The aim of the study is to stabilize the inverted pendulum so that the position of the carriage 
on the track is controlled quickly and accurately so that the pendulum is always erected in 
its inverted position during such movements. 
The inverted pendulum (IP) is among the most difficult systems to control in the field of 
control engineering. Due to its importance in the field of control engineering, it has been a 
task of choice to be assigned to control engineering students to analyze its model and 
propose a linear compensator according to the PID control law (Sultan, K., 2003, 2007). 
For device, a stabilized runway requires the existence of the initial LQR stabilizer. The 
generation of this regulator rules is realized starting with writing the non-linear equations 
which define the inverted pendulum. Ignoring the dynamics of the engine, the non-linear 
equations of motion, for the inverted pendulum system, are (Franklin, G., et al., 1987; 
Potvin, A. F., 1991; National Instruments; MathWorks; MathWorks User’s Guide, 2003): 
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Where:  
• f is the force applied to the cart by the engine in Newton (N); 
• m is the position of the cart in meters; 
•  y is the vertical angle of the pendulum in radians; 
• θ is the mass of the cart (0.45 kg); 
• M is the pendulum mass (0.21 kg); 
• l is the distance from the mass centre of the pendulum (half of its length of 0.61 m); 
• g is gravitational acceleration (m/s). 
It is necessary that those equations to be linear in the operating point y=0 and (=0 to obtain 
the linear system: 
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 (8) 

Using MATLAB command: 
Klqr = lqr(A.b,diag( [0.25 0 4 0],0.003) 

one obtains the gained stability: 
K1qr = (-28.86 -28.56 -145.00 14 -14.86) 

Besides the obvious non-linearity of the system’s equations, the voltage limit applied to the 
engine gives a restriction of the action saturation of 1 N (Franklin, G., et al., 1987; Potvin, A. 
F., 1991; National Instruments; MathWorks; MathWorks User’s Guide, 2003).  
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The aim of the study is to stabilize the inverted pendulum so that the position of the carriage 
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Where:  
• f is the force applied to the cart by the engine in Newton (N); 
• m is the position of the cart in meters; 
•  y is the vertical angle of the pendulum in radians; 
• θ is the mass of the cart (0.45 kg); 
• M is the pendulum mass (0.21 kg); 
• l is the distance from the mass centre of the pendulum (half of its length of 0.61 m); 
• g is gravitational acceleration (m/s). 
It is necessary that those equations to be linear in the operating point y=0 and (=0 to obtain 
the linear system: 
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Using MATLAB command: 
Klqr = lqr(A.b,diag( [0.25 0 4 0],0.003) 

one obtains the gained stability: 
K1qr = (-28.86 -28.56 -145.00 14 -14.86) 

Besides the obvious non-linearity of the system’s equations, the voltage limit applied to the 
engine gives a restriction of the action saturation of 1 N (Franklin, G., et al., 1987; Potvin, A. 
F., 1991; National Instruments; MathWorks; MathWorks User’s Guide, 2003).  
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The sensors measure the position and the angle of the pendulum device. In addition, 
according with the pendulum stability, one obtains a commanded reference signal for the 
presenting device. Specifically, one has to design a controller for the system to meet the 
following specifications of closed loop: 
• up to 4 sec. for propagation time; 
• up to 6 sec. for the response time; 
• zero oscillation; 
• less than 0.2 radians deviation from vertical. 
It should be noted that the saturation non-linearity included in the process model and 
hidden pendulum block contain the motion system with non-linear equations.  
One commands the input device position with a signal-type unit. NCD blocks are attached 
to the pendulum angle and device position signal (Figure 12). It is noted that each 
simulation lasts 15 sec. 
The control structure contents have finite estimated status differences for the speed of the 
device and angular velocity of the pendulum.  
As part of an internal control cycle, the estimations for the speed and angular velocity are 
multiplied by the amplification, collected and then introduced into the engine (Franklin, G., 
et al., 1987; Potvin, A. F., 1991; National Instruments; MathWorks; MathWorks User’s Guide, 
2003). 
 

 
Fig. 12. NCD block attached to the result of the inverted pendulum 

The gain is initialized from 1 at 3 with: Klqr = Clqr (2:4), where Clqr is the solution from 1 to 
4 at LQR. In a series of external controls (used to allow the device to follow a commanded 
signal) a feed-forward amplifier Kf is initialized by Kf=C1qr(1) and an integral amplifier, Ki 
is initialized as zero. It is noted that, in the absence of a commanded signal, these baseline 
controllers reduce the control structure at LQR amplification described in the previous 
section (Andrei, H., et al., 1999; Călin, S. et al., 1979; Franklin, G., et al., 1987; Potvin, A. F., 
1991). 
Tunable variables are initialized and, in accordance, restrictions of time domain response 
are defined. The configuration of these restrictions should be known like a step response. 
Pendulum angle channel contains restrictions that define a disturbance rejection problem of 
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perturbations. In other words, while the device moves to the controlled position, the 
pendulum must remain in balance. 
The optimization begins. The optimization time, the cost function evolution and final values 
for tunable parameters vary depending on computer. Optimization should produce a 
controller to meet any restrictions. 
It is noted that this optimization runs slower than others. This is, due to the estimating 
finite-state involved, frequently updated during the simulation (Figure 13). 
 

 
 

 
Fig. 13. Moving the limits of restriction to achieve better performance of the inverted 
pendulum 

5.2 Modelling of a robotic arm 
Modelling the manipulator’s arm in a MATLAB-Simulink environment will be achieved by 
integrating the equations of state, twice. Note that the expressions depend, beside the 
mechanical parameters of the system, on the state variable and its first order derivative, 
which means considering them as integration reaction in the Simulink scheme of the two 
variables (Sciavicco, L., Siciliano, B., 2000; Stanciulescu F., 2003). 
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To obtain a general model that can be used regardless of the values of mechanical 
parameters of the system, the Simulink model will be developed with formal parameters. 
But, before starting the simulation, the numerical values of mechanical parameters (m1, m2, 
I2, b, g0) will be initialized in the MATLAB environment. The following scheme is done in 
Simulink (Patic, P. C., Gorghiu, G., 2009; Stanciulescu, F., 2003):  
 

 
Fig. 14. Simulink scheme regarding the arm modelling 

The localization of the blocks in Simulink sub-libraries is (Patic, P. C., Gorghiu, G., 2009; 
Stanciulescu, F., 2003): 

x_A, x_B, x_C, 1/D, t_A, t_B, t_C, 1/D1 – blocks Fcn in Functions & Tables; 
F, M – blocks Constant in Sources; 
Sum, Sum1 – blocks Sum in Math; 
Mux, Mux1 – blocks Mux in Signals&Systems; 
Integrator, Integrator1, …. – blocks Integrator in Continuous; 
Rad-grd – block Gain in Math; 
FM, x1, Teta2 – blocks Scope in Sinks 

The functions performed by each block are:  
x_A: -(I2+m2*b^2*(sin(u[2]))^2)*m2*b*sin(u[2])*(u[1]^2); 
x_B: -(m2*b)^2*sin(u[1])*cos(u[1])*g0; 
x_C: (I2+m2*b^2*(sin(u[3]))^2)*u[1]-(m2*b*cos(u[3]))*u[2]; 
t_A: (m2*b)^2*sin(u[2])*cos(u[2])*(u[1]^2); 
t_B: (m1+m2)*m2*b*sin(u[1])*g0; 
t_C: -(m2*b*cos(u[3]))*u[1]+(m1+m2)*u[2]; 
1/D, 1/D1: u[1]/((m1+m2)*(I2+m2*b^2*(sin(u[2]))^2)-(m2*b*cos(u[2]))^2).   
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Fig. 15. The evolution of the system - changing external stimuli 
 

 
Fig. 16. The evolution of the system - changing external stimuli 
 

 
Fig. 17. The evolution of the system - changing external stimuli 
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The block rad-grd being Gain type, with value 180/pi, transform the position θ2 from 
radians to degrees, just for viewing. As a method of integration, we will choose the method 
with variable step ode45, maximum integration step is imposed being 0.0001 [s], as well as 
the final time (stop time), which is 10 [s]. The maximum step 0.0001 was chosen to track the 
influence of changing values in the simulation stimuli on the evolution of the system 
(Stanciulescu, F., 2003; Stareţu, I., Ionescu, M., 2005). 
After the model realization, a MATLAB file by “m” type is created in which are initialized 
the values of the mechanical parameters (Patic, P.C., Gorghiu, G., 2009): 

m1=1; 
m2=1; 
I2=0.01; 
b=0.2; 
g0=9.81; 
brat; 

When typing in MATLAB window, the name of this file will be loaded in MATLAB space 
with the mechanic’s parameter values, the last line of the file causing the opening model 
(Stanciulescu, F., 2003).  
The simulation will aim to highlight the evolution of the system to changes in external 
stimuli. 
The results exemplified correspond to a force application F = 2 [Nm] at time of t = 1 sec. 

5.2.1 Simulation of the robotic arm using the 3rd degree polynomial interpolation 
Continuing our study, for the proper representation of variations of positions, velocities and 
accelerations for these study couplers robots, we used two methods, utilized very often, to 
solve these problems of movements of a robot. The first method used was the 3rd degree 
polynomial interpolation. The other method is the connection of linear functions in parables 
(Pozna, C., 2000). 
One can say that both methods transform the task space in joint coordinates. Polynomials 
can be used to approximate more complicated curves. A relevant application is the 
evaluation of the natural logarithm and trigonometric functions. This results in significantly 
faster computations. Polynomial interpolation also forms the basis for algorithms in 
numerical quadrate and numerical ordinary differential equations. 
Polynomial interpolation is also essential to perform sub-quadratic multiplication and 
squaring, where an interpolation through points on a polynomial which defines the product, 
yields the product itself (Scritube Industrial Robots). 
The interpolation polynomial of three degree is like below: 

 P(x) = a3x3 + a2x2 + a1x + a0 (9) 

The statement that P interpolates the data points means that: 

 P(xi) = yi, where i∈{0, 1, 2, 3} (10) 

The second method is the connecting of the linear functions in parables. This method is 
generally used when the robot trajectory passes through several points, but can be used, 
also, to move from point to point. To join two different points, rectilinear trajectories are 
used and to respect the conditions of speed and acceleration (by crossing points) straight 
paths are connected in parables. 
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The trajectory of motion of the robot is studied from two points of the workspace (Patic, P. 
C., Gorghiu, G., 2009). 
Below we represent only the polynomial interpolation of degree 3 method, with a view for 
further research to developing the other method - connecting linear functions in parables. So 
one can observe, graphically, the methods explained, theoretically, above. 
First of all, we choose to determine a simulation of a robot arm translation (T) which moves 
from P1 (0, 0, 0) to P2 (150, 0, 200) (the shape of the trajectory is not required). In fact, in the 
next case:  
the translation couple make a displacement by 150 mm: 

di=0, df=150 mm. 
the rotation couple make a rotation by 200 rad:  

qi=0, qf=200 rad. 
So, one tries to move the robotic arm from point P1(0, 0, 0) to P2(150, 0, 200), using two 
couples with two different degrees of freedom - Translation and Rotation. 
After the graphic representation one obtains that both actions, the accelerations and 
breakings, are different from one couple to another, because the lengths of paths, which are 
moving, are different. The movement is performed simultaneously on all three directions 
(Pozna, C., 2000). 
In figure 18 one represents the displacement versus time. The displacement from couple 1 is 
smaller than those from couple 2 (Patic, P. C., et al., 2010). 
In figure 19 one determines the velocities versus time. Like above, the speed for couple 1, is 
smaller than for couple 2. 
The graphical differences are more evident than above, when one uses the displacements. 
In figure 20 one has the accelerations versus time. The acceleration has a decreasing trend, 
being noted that in five seconds the accelerations for those two couples is zero (Patic, P. C., 
et al., 2010). 
 

 
Fig. 18. The displacements of the robotic arm 
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Fig. 18. The displacements of the robotic arm 
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Fig. 19. The velocities of the robotic arm 

 

 
Fig. 20. The accelerations of the robotic arm 

6. Conclusion 
The work from this paper intended to determine the parameters of a PID controller using 
two software packages, namely MATLAB-Simulink and LabVIEW. As a mathematical 
model, a DC machine was used. 
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Automatic modelling systems using MATLAB-Simulink software packages applied the 
Cohen-Coon method for determining the closed loop PID parameters and plotted the 
system response clue. The limit of the over adjustment was found to be of 20%, the timing of 
the transitional regime - 3 seconds, and maximum response time was 10 seconds. Also, one 
represented the chart of the evolution over time, in a closed loop system, to unit step input. 
The use of these software packages offers an easy way of working, which means that it is 
convenient to utilize the programme functions. 
Implementing the same system in a closed loop PID adjustment using the LabVIEW 
software package, one requires, at first, an additional procedure, namely, the use of the 
transfer functions in Z domain. For the displayed example the sampling period is 60 μs and 
so can be determined the transfer function graph, sampled to the entry with a unitary step. 
By the use of the graphical features of the LabVIEW software package for the adjustment of 
the PID controller, one recorded the best performance, since they include zero stationary 
error due to the integrative component for minimum stabilization time, due to the 
anticipatory component derivative etc. 
Using the LabVIEW package to study the reaction systems involved additional procedures.  
A comparative analysis of the two programmes using MATLAB-Simulink and LabVIEW to 
determine the same automatic performances of the system indicates that MATLAB-Simulink 
software is more efficient, having different features of its libraries already implemented, 
with coverage areas of automation and systems theory. LabVIEW is a software package 
dedicated to particular virtual instrumentation and graphical applications in time. 
For the robotic simulation one can say that a functional simulation, using a 3D model is very 
important for obtaining an optimum version of a robotic arm and for a robot. After the 
graphic representation, one obtains that both actions, the accelerations and breakings, are 
different from one couple to another, because the lengths of paths, which are moving, are 
different. The movement is performed simultaneously on all three directions. In conclusion, 
one recorded the maximum values of the couples that make big displacements, so the 
engines that lead such couples are very loaded. 
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Fig. 19. The velocities of the robotic arm 

 

 
Fig. 20. The accelerations of the robotic arm 
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1. Introduction 
The Electrical Engineering (EE) Department at the University Arab Emirates (UAE) 
University incorporates numerous software tools in teaching the diverse electrical 
engineering (EE) courses imparted at undergraduate and graduate level. The most common 
being the use of MATLAB, Simulink and LabView, in addition to standard circuits, 
electronics, and power systems software packages such as OrCAD, MultiSim and PSCAD. 
Instructors also make use of free available online JAVA applets that apply to specific 
advanced EE courses such as signals and systems, electromagnetics, antenna engineering, 
among others. The variety of tools used in each EE course makes it difficult for students to 
learn a new tool or program for each course. This suggests that MATLAB can be used as a 
common platform for all courses given its rich library and available tools. Student 
evaluations over the past years have reflected favourably on the use of MATLAB tools as a 
valuable support in graphical visualization, numerical evaluation and modelling tasks in the 
diverse EE course. Most books published nowadays in the various EE subjects include 
MATLAB exercises and applications in each chapter. The use of these software tools is 
intended to enhance student appreciation of theoretical concepts and as support tools for 
hands-on analysis and design experience. Most EE students use the limited 
MATLAB/Simulink Student Version which does not include many of the needed MATLAB 
toolboxes. As a result students have to work on campus in order to access the specialized 
toolboxes. Developing GUI-based applets offers the advantage of providing more 
independent MATLAB-based tools for use by students on their own Laptop anywhere.  
Numerous educators have been developing software applets in different electrical 
engineering subjects. Such tools are indispensable in helping students better understand 
basic scientific and engineering concepts through a user-friendly interactive environment 
that also counts with an adequate help menu to guide students through the application. 
(Azemi & Stook, 1996) utilized MATLAB in undergraduate electric circuit courses. They 
focused on features of MATLAB that have not been adapted by other educators before. They 
worked on generating analytical solutions with the Symbolic Math toolbox, creating 
interactive simulations with user interface control, and the use of MATLAB Compiler and 
MATLAB C Library to produce stand-alone applications. They presented examples 
illustrating the above mentioned features and made the code available on their website. 
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They also discussed student response to use of the developed MATLAB software package in 
circuits analysis. (Andreatos & Michalareas, 2008) developed a MATLAB-based application 
for e-assessment in an introductory analog electronic design course. The application 
included separate MATLAB GUI interfaces for students and instructor. The applet was 
intended to help students design a transistor amplifier and in parallel provide an automated 
qualitative and quantitative assessment tool for instructors. The added assessment tool 
aimed at ensuring that students engage in actual circuit evaluation rather than making 
random guesses. (Andreatos & Zagorianos, 2009) also presented a MATLAB-based GUI tool 
for teaching Automatic Control Systems. The tool is demonstrated using a step-by-step 
exercise on a typical aircraft control system. (Attia, 1995, 1996) designed AC circuits and 
electronics teaching tools using MATLAB to teach circuit theory, filter design, random 
processes, control system and communication theory. The tools employ matrix functions for 
experimental data analysis as well as graphical features to display the frequency response of 
amplifiers and illustrate the principles and concepts of semiconductor physics. The circuits 
MATLAB exercises cover sinusoidal ac analysis, network characteristics and frequency 
response. The interactive programming and versatile graphics of MATLAB are especially 
effective in exploring some of the characteristics of devices and electronic circuits. 
(Rajashekar & Bovik, 2000) presented a suite of user-friendly interactive Digital Signal 
Processing (DSP) demonstration modules using MATLAB. Their focus was on providing 
visualization tools that emphasize the intuitive aspects of DSP algorithms. A MATLAB/GUI 
based educational tool was developed by (Koç & Aydoğmus, 2009) for power system fault 
calculations. This software provides a user-friendly interface to help the student understand 
the symmetrical components and fault calculations. The tool allows students to choose one 
of four fault options for which fault current and voltage calculations are performed. The 
GUI provides a graphical output representation of currents and voltages. For such 
application, the instructor expects students to check their answers with hand calculations.  
The EE Department at UAE University offers two circuits courses, namely, Electric Circuits I 
(ELEC 320) and Electric Circuits II (ELEC 325). The Electric Circuits I course runs through 
both semesters of the academic year. It focuses on the analysis of basic DC and AC electric 
circuits. Among the topics covered in this introductory course are operational amplifier (OP-
AMP) circuits. The average student population each year ranges from 25 to 30 students. At 
the beginning of the course, students have background knowledge of basic mathematics, 
physics, and MATLAB programming skills needed throughout the course. One of the most 
significant course design objectives is the development of a tool for achieving improved 
learning process. Today, during the teaching process of the fundamentals principles of 
Electronics, the emphasis is not given on tedious calculations, but rather on offering 
engineering education, by utilizing efficient software tools. Computer-aided applications are 
appropriate tools, because they improve the efficiency of learning. In this chapter, basic 
electronic and electric circuits are investigated using an interactive MATLAB GUI program 
applet (MATLAB, 2010). The developed comprehensive and user-friendly tool called 
Electronics Teaching Assistant (abbreviated herein as ETA) can perform typical operational 
amplifier (OP-AMP) gain calculations and displays analog graphs for input and output 
currents and voltages in a user friendly MATLAB environment. 
Section 2 will address the operational amplifier and basic configurations used in teaching 
OP-AMP circuits. Section 3 briefly discusses the voltage and current divider circuits. Section 
4 explains in detail the development of the GUI tool including code used and input and 
output windows. Conclusions are then presented in Section 5. 
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The authors intend to develop more GUI-based applets for numerous circuits and 
electronics subjects with the objective of making student learning of basic electrical topics 
fun and interactive. Proper assessment of student learning is followed each semester in line 
with the ABET outcome assessment process. 

2. Operational amplifiers 
Operational amplifiers (op amps) typically have 2 inputs, a positive (non-inverting) input 
and a negative (inverting) input. A signal fed into the positive (non-inverting) input will 
produce an output signal which is in phase with the input. If the signal is fed into the 
negative (inverting) input, the output will be 180 degrees out of phase when compared to 
the input.  
The following sub-sections represent an attempt to give you the basic understanding of OP-
AMP configurations. None of the power supply connections are shown. Most OP-AMP 
circuits used in audio applications use a ±15 volts power supply. They can also be used with 
a single ended supply (no negative voltage). 
The diagram below (Fig. 1) shows the OP-AMP symbol. 
 

 
Fig. 1. The OP-AMP symbol 

2.1 Inverting amplifier 
This is a fundamental OP-AMP configuration whose schematic diagram depicted in Fig. 2 
shows the basic circuit configuration. 
 

 
Fig. 2. The inverting configuration 
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An input voltage, Vin is applied to the input resistor, R1. The OP-AMP amplifies the input 
voltage it receives and inverts its polarity, producing an output voltage, Vout. This same 
output voltage is also applied to a feedback resistor, R2, which is connected to the amplifier 
input along with R1. 
The OP-AMP itself has a very high voltage gain. As a result, the junction of the two 
resistors, which is also the OP-AMP input, must be virtually at ground potential. A non-zero 
input voltage will be amplified so that the output voltage would try to exceed its electronic 
limits. At the same time, the OP-AMP requires an extremely small input current to operate. 
Therefore, the input current (Vin/R1) must be the same as the feedback current (Vout/R2). 
This implies that the effective gain of the circuit with feedback in place is simply the 
resistance ratio, R2/R1. With such configuration, we can obtain accurate results if we use 
precision resistors, and yielding a gain of: 

 2

1

out

in

V RGain
V R

= =  (1) 

2.2 Non-inverting amplifier 
Fig. 3 shows a non-inverting OP-AMP circuit. In this circuit, the input signal is effectively 
used as the reference voltage at the "+" input, while the "-" input is indirectly referenced to 
ground. In order to keep the two input voltages the same, the OP-AMP must set Vout to 
whatever voltage is required to make the feedback voltage to the "-" input match the input 
voltage to the "+" input. 
 

 
Fig. 3. The non-inverting configuration 

Since R2 and R1 form a voltage divider, the feedback voltage will be: 
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The gain of this circuit becomes: 
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2.3 Voltage follower 
This is a special case of the non-inverting amplifier with R1 = ∞ and R2 = 0. Fig. 4 shows the 
voltage follower circuit. 
 

 
Fig. 4. The voltage follower 

For the circuit shown in Fig. 4, and using equation (3), one can easily find: 

 out inV V=  (4) 

This is a very useful circuit, because the input impedance of the OP-AMP is very high, 
giving effective isolation of the output from the signal source. The circuit draws very little 
power from the signal source, avoiding "loading" effects. This circuit in general is a useful 
first stage. The voltage follower is often used for the construction of buffers for logic circuits. 

2.4 Summing amplifier 
This is special case of the inverting configuration with more than one input as shown in Fig. 
5. 
 

 
Fig. 5. The summing amplifier 

This circuit will amplify each individual input voltage and produce an output voltage signal 
that is proportional to the algebraic "SUM" of the two individual input voltages Vin1 and 
Vin2. We can also add more inputs if required. The point of using an OP-AMP to add 
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 out inV V=  (4) 

This is a very useful circuit, because the input impedance of the OP-AMP is very high, 
giving effective isolation of the output from the signal source. The circuit draws very little 
power from the signal source, avoiding "loading" effects. This circuit in general is a useful 
first stage. The voltage follower is often used for the construction of buffers for logic circuits. 

2.4 Summing amplifier 
This is special case of the inverting configuration with more than one input as shown in Fig. 
5. 
 

 
Fig. 5. The summing amplifier 

This circuit will amplify each individual input voltage and produce an output voltage signal 
that is proportional to the algebraic "SUM" of the two individual input voltages Vin1 and 
Vin2. We can also add more inputs if required. The point of using an OP-AMP to add 
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multiple input signals is to avoid interaction between them, so that any change in one input 
voltage will not have any effect on the other input. This is because the input signals are 
effectively isolated from each other by the "virtual earth" node at the inverting input of the 
OP-AMP.  
For the circuit shown in Fig. 5, the voltage at the output is given by: 

 1 2

1 2
out F

V VV R
R R

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
 (5) 

A direct voltage addition can also be obtained when all the resistances are of equal value 
(i.e. RF = R1 = R2): 

 ( )1 2outV V V= − +  (6) 

2.5 Differential amplifier 
The circuit of a differential amplifier is shown in Fig. 6. Apply the superposition principle to 
obtain the gain expression: 
 

 
Fig. 6. The differential amplifier 
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For R2 = R4, the output will be: 
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Finally, for R2 = R1 one can obtain the exact difference of Vin2 and Vin1: 

 2 1out in inV V V= −  (9) 
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3. Basic electric circuits  
This section explains briefly two basic circuit configurations of general use in electronic 
circuit analysis. 

3.1 Voltage divider 
The two resistor voltage divider, shown in Fig. 7, is used often to supply a voltage different 
from that of an available battery or power supply. In practice, the output voltage depends 
upon the resistance of the load it drives. Note here that R2 includes also the load resistance. 
 

R

R

1

2

V Voutin

 
Fig. 7. The voltage divider 
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3.1 Current divider 
For the circuit shown in Fig. 8, one can easily derive the following relation: 
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3. Basic electric circuits  
This section explains briefly two basic circuit configurations of general use in electronic 
circuit analysis. 

3.1 Voltage divider 
The two resistor voltage divider, shown in Fig. 7, is used often to supply a voltage different 
from that of an available battery or power supply. In practice, the output voltage depends 
upon the resistance of the load it drives. Note here that R2 includes also the load resistance. 
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4. Graphical MATLAB-based tool 
A graphical user interface tool was designed using the Matlab GUIDE environment which 
greatly simplifies the process of building and developing GUIs. GUIDE Layout Editor 
allows the user to populate a GUI by clicking and dragging GUI components namely, axes, 
panels, buttons, text fields, sliders into the layout area. Moreover, from the Layout Editor, 
the user can size the GUI, modify component look and feel, align components, set tab order, 
view a hierarchical list of the component objects, and set GUI options. 
GUIDE automatically generates a program file containing MATLAB functions that controls 
how the GUI operates. This code file helps initialize the GUI and contains a framework for 
the GUI callbacks; the routines that execute when a user interacts with a GUI component. 
The MATLAB Editor should be used to add code to callbacks in order to perform the 
required actions [MATLAB Creating Graphical User Interfaces, 2004]. 

4.1 GUI layout and programming 
The main window (Electronics Teaching Assistant) is designed to allow the user choose 
between Operational Amplifier circuits and Electric Circuits and exit the tool as shown in 
Fig. 9. It consists of two Axes, text and three push buttons namely, OP AMP Circuits, 
Electric Circuits and Close. The two axes are used for presenting images: one for logo and 
the other for background. The text displays the tool’s name. OP AMP Circuits button will 
allow the user to analyze different types of OP AMP Circuits. Electric Circuits button will let 
the user analyze different types of electric circuits (voltage and current dividers). Close 
button will simply close the whole program. 
The following code blocks show how the three buttons are programmed. The set function 
set(handle, 'PropertyName', value) is used to set a property value of buttons.  
 
% --- Programming theOP_AMP_Circuits_Button. 
functionOP_AMP_Circuits_Button_Callback(hObject, eventdata, handles) 
% hObject=handle to OP_AMP_Circuits_Button (see GCBO) 
% eventdata= reserved to be defined in a future version of MATLAB 
% handles = structure with handles and user data (see GUIDATA) 
%---- To open Electric Circuits window ---------% 
set(ETA_OP_AMP_Circuits,'Visible','on') 
 %---- To Close Electronics_Teaching_Assistant window ------% 
set(Electronics_Teaching_Assistant,'Visible','off') 
functionElectronic_Circuit_Button_Callback(hObject, eventdata, handles) 
%---- To open Electric Circuits window ---------% 
set(ETA_Electric_Circuits,'Visible','on') 
%---- To close main window window ------------% 
set(Electronics_Teaching_Assistant,'Visible','off') 
functionClose_Button_Callback(hObject, eventdata, handles) 
%---- To terminate the program ---------% 
delete(get(0,'Children')); 
 
In order to show the logo and background images and their axes, the code is written under 
Opening Function. Axes function is used to determine which axes the image should 
display followed by imshowfunction.  
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functionElectronics_Teaching_Assistant_OpeningFcn(hObject, eventdata, handles, 
varargin) 
% This function has no output arguments. See OutputFcn. 
% hObject= handle to figure 
% eventdata reserved = to be defined in a future version of MATLAB 
% handles = structure with handles and user data (see GUIDATA) 
% varargin= command line arguments to Electronics_Teaching_Assistant (see VARARGIN) 
% Choose default command line output for Electronics_Teaching_Assistant 
handles.output = hObject; 
%------------- Add logo---------------------------% 
axes(handles.Axes_UAEU_Logo);  
imshow('uaeu_logo.png'); 
%------------- Add Background --------------------%  
axes(handles.Axes_Background) 
imshow('Electronic_Circuit.jpg'); 
% Update handles structure 
guidata(hObject, handles); 
 

 
Fig. 9. Electronics Teaching Assistant 

The ETA_Op_AMP_Circuits window shown in Fig. 10 is designed to allow the user choose 
between different types of circuits through a pop-up menu. The user can also visualize the 
circuit diagram when updated according to the user choices. This diagram is presented on 
Circuit Axes which is located on the top right hand. Input and output parameters vary 
according to circuit types. All circuit components are first laid out then their values are 
defined. For example, the R1 and R3 text located in the background of R1 has its visibility 
property set to off. Once the user selects the differential amplifier circuit, the text becomes 
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panels, buttons, text fields, sliders into the layout area. Moreover, from the Layout Editor, 
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the other for background. The text displays the tool’s name. OP AMP Circuits button will 
allow the user to analyze different types of OP AMP Circuits. Electric Circuits button will let 
the user analyze different types of electric circuits (voltage and current dividers). Close 
button will simply close the whole program. 
The following code blocks show how the three buttons are programmed. The set function 
set(handle, 'PropertyName', value) is used to set a property value of buttons.  
 
% --- Programming theOP_AMP_Circuits_Button. 
functionOP_AMP_Circuits_Button_Callback(hObject, eventdata, handles) 
% hObject=handle to OP_AMP_Circuits_Button (see GCBO) 
% eventdata= reserved to be defined in a future version of MATLAB 
% handles = structure with handles and user data (see GUIDATA) 
%---- To open Electric Circuits window ---------% 
set(ETA_OP_AMP_Circuits,'Visible','on') 
 %---- To Close Electronics_Teaching_Assistant window ------% 
set(Electronics_Teaching_Assistant,'Visible','off') 
functionElectronic_Circuit_Button_Callback(hObject, eventdata, handles) 
%---- To open Electric Circuits window ---------% 
set(ETA_Electric_Circuits,'Visible','on') 
%---- To close main window window ------------% 
set(Electronics_Teaching_Assistant,'Visible','off') 
functionClose_Button_Callback(hObject, eventdata, handles) 
%---- To terminate the program ---------% 
delete(get(0,'Children')); 
 
In order to show the logo and background images and their axes, the code is written under 
Opening Function. Axes function is used to determine which axes the image should 
display followed by imshowfunction.  
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functionElectronics_Teaching_Assistant_OpeningFcn(hObject, eventdata, handles, 
varargin) 
% This function has no output arguments. See OutputFcn. 
% hObject= handle to figure 
% eventdata reserved = to be defined in a future version of MATLAB 
% handles = structure with handles and user data (see GUIDATA) 
% varargin= command line arguments to Electronics_Teaching_Assistant (see VARARGIN) 
% Choose default command line output for Electronics_Teaching_Assistant 
handles.output = hObject; 
%------------- Add logo---------------------------% 
axes(handles.Axes_UAEU_Logo);  
imshow('uaeu_logo.png'); 
%------------- Add Background --------------------%  
axes(handles.Axes_Background) 
imshow('Electronic_Circuit.jpg'); 
% Update handles structure 
guidata(hObject, handles); 
 

 
Fig. 9. Electronics Teaching Assistant 

The ETA_Op_AMP_Circuits window shown in Fig. 10 is designed to allow the user choose 
between different types of circuits through a pop-up menu. The user can also visualize the 
circuit diagram when updated according to the user choices. This diagram is presented on 
Circuit Axes which is located on the top right hand. Input and output parameters vary 
according to circuit types. All circuit components are first laid out then their values are 
defined. For example, the R1 and R3 text located in the background of R1 has its visibility 
property set to off. Once the user selects the differential amplifier circuit, the text becomes 
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visible and R1 text will become invisible.The relationship between input and output voltage 
(i.e. the gain) is plotted on Vin_Vout_Axes which is located underneath Circuit Axes. Three 
push buttons are presented namely; Calculate, Reset and Main. The calculate button 
computes gain(s) and plots input and output voltages. The Reset button clears the contents 
of input and output texts and axes. The Main button opens the main window and closes 
current window. 
 

 
Fig. 10. ETA_OP_AMP_Circuits GUI Layout 

The program code of pop-upmenu and Calculate_Buttoncall functions for case 4 (Summing 
Amplifier) are listed below.  
 
functionCircuit_Type_Popupmenu_Callback(hObject, eventdata, handles) 
% hObject handle theCircuit_Type_Popupmenu (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles structure with handles and user data (see GUIDATA) 
% Hints:  
% contents = get(hObject,'String') returns Circuit_Type_Popupmenu contents as cell array 
% contents{get(hObject,'Value')} returns selected item from Circuit_Type_Popupmenu 
switch get(handles.Circuit_Type_Popupmenu,'Value') 
 %------------------ Summing Amplifier-------------------%   
case 4 
axes(handles.Circuit_Axes); 
imshow('Summation.png'); 
set(handles.Gain_Text,'Visible','off');  
set(handles.Gain_Out_Text,'Visible','off'); 
  %------------------ IF follower was chosen---------------% 
  %----------------- Extra inputs -------------------------% 
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set(handles.Vin_2_Text,'Visible','on'); %Vin 2 label invisible 
set(handles.R1_Edit,'Visible','on'); 
set(handles.R2_Edit,'Visible','on'); 
%************** R1 & R2 *****************% 
set(handles.R1_Text,'Visible','on');  
set(handles.R1_Edit,'Visible','on'); 
set(handles.R1_Unit_Text,'Visible','on');  
set(handles.R2_Text,'Visible','on');  
set(handles.R2_Edit,'Visible','on'); 
set(handles.R2_Unit_Text,'Visible','on'); 
 %----------------- Extra inputs -------------------------% 
set(handles.Vin_2_Text,'Visible','on'); %Vin 2 label visiable 
set(handles.Vin_2_Edit,'Visible','on'); %Vin 2 Edit text visiable 
set(handles.V_Text,'Visible','on');   %Measure Unit of Vin2 visiable 
set(handles.RF_Text,'Visible','on');   % Rf text visible 
set(handles.R_FEdit,'Visible','on');  % Rf Edit visible  
set(handles.RF_Unit_Text,'Visible','on');  % Rf unit text visible 
set(handles.R1_R3_Text,'Visible','off');  
set(handles.R2_R4_Text,'Visible','off'); 
 %------------------ Clear All the Edit Text -------------------------% 
set(handles.Vin_Edit,'string', ' ') 
set(handles.Vin_2_Edit,'string', ' ') 
set(handles.R1_Edit,'string', ' ') 
set(handles.R2_Edit,'string', ' ') 
set(handles.R_FEdit,'string', ' ') 
set(handles.Gain_Out_Text,'string', ' ') 
set(handles.Vout_Out_Text,'string', ' ') 
 %------------- Clear Vin-Vout axes before plotting, clear previous plot ---------------% 
axes(handles.Vin_Vout_Axes) 
cla 

functionCalculate_Button_Callback(hObject, eventdata, handles) 
% hObject  handle theCalculate_Button (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles and user data (see GUIDATA) 
%------------- Clear Vin-Vout axes before plotting, clear previous plot ---------------% 
axes(handles.Vin_Vout_Axes) 
cla %  
%---------------------- Basic inputs--------------------------------% 
Vin   = str2double(get(handles.Vin_Edit, 'string'))% Input voltage  
R1   = str2double(get(handles.R1_Edit, 'String'));  % input Resistor1 
R2   = str2double(get(handles.R2_Edit, 'String'));  % input Resistor2 
%------------------------------------------------------------------------% 
%Menu List : 
% 1 :Default setting 
% 2 : Inverting Amplifier 
% 3 : Non- Inverting Amplifier 
% 4 : Voltage Follower 
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set(handles.Vin_2_Text,'Visible','on'); %Vin 2 label invisible 
set(handles.R1_Edit,'Visible','on'); 
set(handles.R2_Edit,'Visible','on'); 
%************** R1 & R2 *****************% 
set(handles.R1_Text,'Visible','on');  
set(handles.R1_Edit,'Visible','on'); 
set(handles.R1_Unit_Text,'Visible','on');  
set(handles.R2_Text,'Visible','on');  
set(handles.R2_Edit,'Visible','on'); 
set(handles.R2_Unit_Text,'Visible','on'); 
 %----------------- Extra inputs -------------------------% 
set(handles.Vin_2_Text,'Visible','on'); %Vin 2 label visiable 
set(handles.Vin_2_Edit,'Visible','on'); %Vin 2 Edit text visiable 
set(handles.V_Text,'Visible','on');   %Measure Unit of Vin2 visiable 
set(handles.RF_Text,'Visible','on');   % Rf text visible 
set(handles.R_FEdit,'Visible','on');  % Rf Edit visible  
set(handles.RF_Unit_Text,'Visible','on');  % Rf unit text visible 
set(handles.R1_R3_Text,'Visible','off');  
set(handles.R2_R4_Text,'Visible','off'); 
 %------------------ Clear All the Edit Text -------------------------% 
set(handles.Vin_Edit,'string', ' ') 
set(handles.Vin_2_Edit,'string', ' ') 
set(handles.R1_Edit,'string', ' ') 
set(handles.R2_Edit,'string', ' ') 
set(handles.R_FEdit,'string', ' ') 
set(handles.Gain_Out_Text,'string', ' ') 
set(handles.Vout_Out_Text,'string', ' ') 
 %------------- Clear Vin-Vout axes before plotting, clear previous plot ---------------% 
axes(handles.Vin_Vout_Axes) 
cla 

functionCalculate_Button_Callback(hObject, eventdata, handles) 
% hObject  handle theCalculate_Button (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles  structure with handles and user data (see GUIDATA) 
%------------- Clear Vin-Vout axes before plotting, clear previous plot ---------------% 
axes(handles.Vin_Vout_Axes) 
cla %  
%---------------------- Basic inputs--------------------------------% 
Vin   = str2double(get(handles.Vin_Edit, 'string'))% Input voltage  
R1   = str2double(get(handles.R1_Edit, 'String'));  % input Resistor1 
R2   = str2double(get(handles.R2_Edit, 'String'));  % input Resistor2 
%------------------------------------------------------------------------% 
%Menu List : 
% 1 :Default setting 
% 2 : Inverting Amplifier 
% 3 : Non- Inverting Amplifier 
% 4 : Voltage Follower 
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% 5 : Summing Amplifier 
% 6 : Differential Amplifier 
%------------------------------------------------------------------------% 
switch get(handles.Circuit_Type_Popupmenu,'Value') 
%---------------------------- Summing Amplifier---------------------------% 
case 4 
 Vin2  = str2double(get(handles.Vin_2_Edit, 'string'))  % Input voltage 2   
 Rf  = str2double(get(handles.R_FEdit, 'string'));  % input Resistor 3 
 %--------------Summing Equation -------------%   
Gain_Result   = -Rf/R1  % Gain 1 
Gain_Result_2 = -Rf/R2  % Gain 2 
 %-------output voltage---------% 
 Vout_1 = Gain_Result * Vin 
 Vout_2 = Gain_Result_2 * Vin2 
Vout = Vout_1+ Vout_2; 
set(handles.Vout_Out_Text,'String',num2str(Vout)) 
 n = 1; % one cycle   
t = 0 :pi/8 : 2*n*pi % time domain 
Vin_Plot  = Vin * sin(t) 
Vout_Plot = Vout * sin(t) 
if (abs (Vout) <= abs(Power_Supply)) % Check if clipping problem is occurred 
plot(t, Vin_Plot,'RED' ,'linewidth',2) 
grid on 
axis([ 0 max(t) -20  20]) 
hold on 
plot(t,  Vout_Plot,'GREEN' ,'linewidth',2) 
grid on 
xlabel('Time (t)','fontweight','bold') 
ylabel('Input - Output Voltage (V)','fontweight','bold') 
legend('Vin', 'Vout'); 
else 
axes(handles.Vin_Vout_Axes) 
Vin_Plot  = Vin * sin(t) 
Vout_Plot = Vout * sin(t) 
for i = 1 : length(Vout_Plot) 
if (Vout_Plot(i)>Power_Supply) 
Vout_Plot(i)= Power_Supply 
elseif (Vout_Plot(i) < -Power_Supply) 
Vout_Plot(i)= -Power_Supply 
end 
end 
plot(t, Vin_Plot,'RED' ,'linewidth',2) 
grid on 
axis([ 0 max(t) -20  20]) 
hold on 
plot(t,  Vout_Plot,'GREEN' ,'linewidth',2) 
grid on 
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xlabel('Time (t)','fontweight','bold') 
ylabel('Input - Output Voltage (V)','fontweight','bold') 
legend('Vin', 'Vout');      
end 
 %------------------------- Display warning message (Clipping)-------------% 
if abs(Vout) > 15  
msgboxText{1} =  'Clipping!'; 
msgbox(msgboxText,'Clipping Phenomena', 'warn'); 
end 
% --- ExecuteReset_Button. 
functionReset_Button_Callback(hObject, eventdata, handles) 
% hObject    handle to Reset_Button (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%----------- Clear the contents-----------------% 
set(handles.Vin_Edit,'string', ' ') 
set(handles.Vin_2_Edit,'string', ' ') 
set(handles.R1_Edit,'string', ' ') 
set(handles.R2_Edit,'string', ' ') 
set(handles.R_FEdit,'string', ' ') 
set(handles.Gain_Out_Text,'string', ' ') 
set(handles.Vout_Out_Text,'string', ' ') 
set(handles.Circuit_Type_Popupmenu, 'value', 1)%popup menu go to default 
axes(handles.Circuit_Axes); 
imshow('White_Background.jpg');  
axes(handles.Vin_Vout_Axes) 
cla % Clear current axis 
% --- Execute Main_Button. 
functionMain_Button_Callback(hObject, eventdata, handles) 
% hObject    handle theMain_Button (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%---- To open Main Window window ------% 
set(Electronics_Teaching_Assistant,'Visible','on') 
%---- To close Main Window window ------%     
set(ETA_OP_AMP_Circuits,'Visible','off') 

The Electric Circuits window, shown in Fig. 11, is designed to allow users analyze voltage 
and current dividers. This window consists of a pop-up menu where the user can choose 
between voltage and current dividers. The Electric Circuit Axes is updated accordingly. The 
inputs and outputs are varied between the different circuit types, with all components laid 
out first then their values specified. Three buttons are used namely; Calculate, Reset and 
Main, to perform the following functions: compute voltage and current, clear input and 
output text, and navigate to education window, respectively. 
The codes shown below define the pop-up menu of the callback function and calculated 
push button callback function for case 3 (Current Divider). 
functionElectric_Circuit_Popupmenu_Callback(hObject, eventdata, handles) 
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% 5 : Summing Amplifier 
% 6 : Differential Amplifier 
%------------------------------------------------------------------------% 
switch get(handles.Circuit_Type_Popupmenu,'Value') 
%---------------------------- Summing Amplifier---------------------------% 
case 4 
 Vin2  = str2double(get(handles.Vin_2_Edit, 'string'))  % Input voltage 2   
 Rf  = str2double(get(handles.R_FEdit, 'string'));  % input Resistor 3 
 %--------------Summing Equation -------------%   
Gain_Result   = -Rf/R1  % Gain 1 
Gain_Result_2 = -Rf/R2  % Gain 2 
 %-------output voltage---------% 
 Vout_1 = Gain_Result * Vin 
 Vout_2 = Gain_Result_2 * Vin2 
Vout = Vout_1+ Vout_2; 
set(handles.Vout_Out_Text,'String',num2str(Vout)) 
 n = 1; % one cycle   
t = 0 :pi/8 : 2*n*pi % time domain 
Vin_Plot  = Vin * sin(t) 
Vout_Plot = Vout * sin(t) 
if (abs (Vout) <= abs(Power_Supply)) % Check if clipping problem is occurred 
plot(t, Vin_Plot,'RED' ,'linewidth',2) 
grid on 
axis([ 0 max(t) -20  20]) 
hold on 
plot(t,  Vout_Plot,'GREEN' ,'linewidth',2) 
grid on 
xlabel('Time (t)','fontweight','bold') 
ylabel('Input - Output Voltage (V)','fontweight','bold') 
legend('Vin', 'Vout'); 
else 
axes(handles.Vin_Vout_Axes) 
Vin_Plot  = Vin * sin(t) 
Vout_Plot = Vout * sin(t) 
for i = 1 : length(Vout_Plot) 
if (Vout_Plot(i)>Power_Supply) 
Vout_Plot(i)= Power_Supply 
elseif (Vout_Plot(i) < -Power_Supply) 
Vout_Plot(i)= -Power_Supply 
end 
end 
plot(t, Vin_Plot,'RED' ,'linewidth',2) 
grid on 
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xlabel('Time (t)','fontweight','bold') 
ylabel('Input - Output Voltage (V)','fontweight','bold') 
legend('Vin', 'Vout');      
end 
 %------------------------- Display warning message (Clipping)-------------% 
if abs(Vout) > 15  
msgboxText{1} =  'Clipping!'; 
msgbox(msgboxText,'Clipping Phenomena', 'warn'); 
end 
% --- ExecuteReset_Button. 
functionReset_Button_Callback(hObject, eventdata, handles) 
% hObject    handle to Reset_Button (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%----------- Clear the contents-----------------% 
set(handles.Vin_Edit,'string', ' ') 
set(handles.Vin_2_Edit,'string', ' ') 
set(handles.R1_Edit,'string', ' ') 
set(handles.R2_Edit,'string', ' ') 
set(handles.R_FEdit,'string', ' ') 
set(handles.Gain_Out_Text,'string', ' ') 
set(handles.Vout_Out_Text,'string', ' ') 
set(handles.Circuit_Type_Popupmenu, 'value', 1)%popup menu go to default 
axes(handles.Circuit_Axes); 
imshow('White_Background.jpg');  
axes(handles.Vin_Vout_Axes) 
cla % Clear current axis 
% --- Execute Main_Button. 
functionMain_Button_Callback(hObject, eventdata, handles) 
% hObject    handle theMain_Button (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%---- To open Main Window window ------% 
set(Electronics_Teaching_Assistant,'Visible','on') 
%---- To close Main Window window ------%     
set(ETA_OP_AMP_Circuits,'Visible','off') 

The Electric Circuits window, shown in Fig. 11, is designed to allow users analyze voltage 
and current dividers. This window consists of a pop-up menu where the user can choose 
between voltage and current dividers. The Electric Circuit Axes is updated accordingly. The 
inputs and outputs are varied between the different circuit types, with all components laid 
out first then their values specified. Three buttons are used namely; Calculate, Reset and 
Main, to perform the following functions: compute voltage and current, clear input and 
output text, and navigate to education window, respectively. 
The codes shown below define the pop-up menu of the callback function and calculated 
push button callback function for case 3 (Current Divider). 
functionElectric_Circuit_Popupmenu_Callback(hObject, eventdata, handles) 
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Fig. 11. ETA_Electric_Circuits GUI Layout 

% hObject= handle theElectric_Circuit_Popupmenu (see GCBO) 
% eventdata= reserved to be defined in a future version of MATLAB 
% handles = structure with handles and user data (see GUIDATA) 
switch get(handles.Electric_Circuit_Popupmenu,'Value') 
%---------------- current divider ----------------------%     
case 3 
axes(handles.Electric_Circuit_Axes); 
imshow('Current_Divider.png'); 
        %----------- Current divider inputs are visible------------% 
set(handles.Is_Text,'Visible','on'); 
set(handles.Is_Edit,'Visible','on'); 
set(handles.Is_Unit_Text,'Visible','on'); 
set(handles.R1_Current_Edit,'Visible','on'); 
set(handles.R1_Current_text,'Visible','on'); 
set(handles.R1_Unit_Text,'Visible','on'); 
set(handles.IR2_Text,'Visible','on'); 
set(handles.R2_Current_Edit,'Visible','on'); 
set(handles.R2_Unit_Text,'Visible','on'); 
     %----------- Current divider outputs are visible------------% 
set(handles.I1_Text,'Visible','on'); 
set(handles.I_1_Edit,'Visible','on'); 
set(handles.I1_Unit_Text,'Visible','on'); 
set(handles.I2_Text,'Visible','on'); 
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set(handles.I_2_Edit,'Visible','on'); 
set(handles.I2_Unit_Text,'Visible','on'); 
      %----------- Voltage divider inputs are invisible------------% 
set(handles.Vin_Text,'Visible','off'); 
set(handles.Vin_Edit,'Visible','off'); 
set(handles.Vin_Unit_Text,'Visible','off'); 
set(handles.R1_Text,'Visible','off'); 
set(handles.R1_Voltage_Edit,'Visible','off'); 
set(handles.Voltage_R1_Unit_Text,'Visible','off'); 
set(handles.Rb_Text,'Visible','off'); 
set(handles.R2_Voltage_Edit,'Visible','off'); 
set(handles.Rb_Unit_Text,'Visible','off'); 
        %----------- Voltage divider output is invisible------------% 
set(handles.Vout_Text,'Visible','off'); 
set(handles.Vout_Edit,'Visible','off'); 
set(handles.Vout_Unit_Text,'Visible','off'); 
end 
functionCalculate_Button_Callback(hObject, eventdata, handles) 
% hObject= handle theCalculate_Button (see GCBO) 
% eventdata=reserved to be defined in a future version of MATLAB 
% handles =  structure with handles and user data (see GUIDATA) 
switch get(handles.Electric_Circuit_Popupmenu,'Value') 
case 3 

Is = str2double(get(handles.Is_Edit, 'string'))% Input current 
R1 = str2double(get(handles.R1_Current_Edit,  'String'));   % input Resistor 
R2 = str2double(get(handles.R2_Current_Edit,  'String'));   % current drain 
I1 = (R2/(R1+R2)) * Is  
I2 = (R1/(R1+R2)) * Is  

set(handles.I_1_Edit,'Visible','on'); 
set(handles.I_2_Edit,'Visible','on'); 
set(handles.I_1_Edit,'String',num2str(I1)) 
set(handles.I_2_Edit,'String',num2str(I2)) 
end 

4.2 Running the GUI 
When the program is running, the main window appears as shown in Fig. 12. As mentioned 
earlier, this window allows the user to open the “OP AMP circuits” window by clicking the 
'OP AMP Circuits' button. One can also open “Electric Circuits window” by clicking the 
'Electric Circuits' button. Finally, the program can be closed by clicking the 'Close' button.  
When the 'OP AMP Circuits' button is clicked, the OP_AMP_Circuits window opens while 
the main window (Education) disappears. The user can choose one of the following basic 
OP-AMP circuits types: Inverting Amplifier, Non Inverting Amplifier, Summing Amplifier, 
Voltage Follower and Differential Amplifier (Fig. 13). By selecting the circuit type from the 
menu; the schematic of the selected circuit will display on the upper axes and the inputs and 
outputs will change accordingly. The Calculate, Reset, and Main buttons perform functions 
as described earlier. 
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% eventdata= reserved to be defined in a future version of MATLAB 
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set(handles.I_2_Edit,'Visible','on'); 
set(handles.I2_Unit_Text,'Visible','on'); 
      %----------- Voltage divider inputs are invisible------------% 
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set(handles.Vin_Edit,'Visible','off'); 
set(handles.Vin_Unit_Text,'Visible','off'); 
set(handles.R1_Text,'Visible','off'); 
set(handles.R1_Voltage_Edit,'Visible','off'); 
set(handles.Voltage_R1_Unit_Text,'Visible','off'); 
set(handles.Rb_Text,'Visible','off'); 
set(handles.R2_Voltage_Edit,'Visible','off'); 
set(handles.Rb_Unit_Text,'Visible','off'); 
        %----------- Voltage divider output is invisible------------% 
set(handles.Vout_Text,'Visible','off'); 
set(handles.Vout_Edit,'Visible','off'); 
set(handles.Vout_Unit_Text,'Visible','off'); 
end 
functionCalculate_Button_Callback(hObject, eventdata, handles) 
% hObject= handle theCalculate_Button (see GCBO) 
% eventdata=reserved to be defined in a future version of MATLAB 
% handles =  structure with handles and user data (see GUIDATA) 
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case 3 
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R1 = str2double(get(handles.R1_Current_Edit,  'String'));   % input Resistor 
R2 = str2double(get(handles.R2_Current_Edit,  'String'));   % current drain 
I1 = (R2/(R1+R2)) * Is  
I2 = (R1/(R1+R2)) * Is  

set(handles.I_1_Edit,'Visible','on'); 
set(handles.I_2_Edit,'Visible','on'); 
set(handles.I_1_Edit,'String',num2str(I1)) 
set(handles.I_2_Edit,'String',num2str(I2)) 
end 

4.2 Running the GUI 
When the program is running, the main window appears as shown in Fig. 12. As mentioned 
earlier, this window allows the user to open the “OP AMP circuits” window by clicking the 
'OP AMP Circuits' button. One can also open “Electric Circuits window” by clicking the 
'Electric Circuits' button. Finally, the program can be closed by clicking the 'Close' button.  
When the 'OP AMP Circuits' button is clicked, the OP_AMP_Circuits window opens while 
the main window (Education) disappears. The user can choose one of the following basic 
OP-AMP circuits types: Inverting Amplifier, Non Inverting Amplifier, Summing Amplifier, 
Voltage Follower and Differential Amplifier (Fig. 13). By selecting the circuit type from the 
menu; the schematic of the selected circuit will display on the upper axes and the inputs and 
outputs will change accordingly. The Calculate, Reset, and Main buttons perform functions 
as described earlier. 
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Fig. 12. Running Electronics Teaching Assistant GUI 

 

 
Fig. 13. Running the Operational Amplifier GUI 
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Figures 14 and 15 show the functions of the inverting and non- inverting amplifier circuits, 
respectively. The inputs for these circuits are named Vin (V), R1 (Ohm) and R2 (Ohm). The 
inputs and outputs are represented as sinusoidal waves and the relationship between them 
(i.e. gain) can be plotted. The red waveform represents the input of the amplifier while the 
green waveform represents the output. The value of the gain and Vout are displayed 
numerically.  
 

 
Fig. 14. Running the Inverting Amplifier GUI 

 

 
Fig. 15. Running the Non Inverting Amplifier GUI 
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The Summing Amplifier function is shown in Fig. 16. The inputs areVin1 (V), Vin2 (V), R1 
(Ohm), R2 (Ohm) and RF (Ohm) while the output is Vout (V).  
 

 
Fig. 16. Running the Summing Amplifier GUI 

TheVoltage Follower function is shown in Fig. 17. This circuit has only one input Vin (V) 
with unity gain implying that the input and output values are equal. The Vin waveform does 
not appear because Vout = Vin. 
 

 
Fig. 17. Running the Voltage Follower GUI 
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The Differential Amplifier function is shown in Fig. 18. Parameters Vin1, Vin2, (R1, R3), and 
(R2, R4) are the inputs of the differential amplifier circuit, while Vout is the output.  
 

 
Fig. 18. Running the Differential Amplifier GUI 

 

 
Fig. 19. Clipping Phenomena Warning Message 

This ETA program has the ability to check if the clipping phenomena is occurring and notifies 
the user by displaying a warning message as illustrated in Fig. 19. Moreover, it checks user 
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inputs; if the user unintentionally enters a non-numeric value, the error message will be 
shown as Fig. 20. The error message will be display if the user attempts to enter a voltage 
input that exceeds power supply voltage values (-15 V, 15V) as shown in Fig. 21. In case the 
user enters maximum input voltage, a warning message will be shown as shown in Fig. 22. 
 

 
Fig. 20. The Input is not a Number Warning Message 
 

 
Fig. 21. The Input is out of the Range Error Message 
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Fig. 22. The Maximum input chosen Warning Message 

 

 
Fig. 23. Running the Electric Circuit GUI 

When the user clicks the 'Electric Circuits' button, the ETA_Electric_Circuits window opens 
while the main window (Electronics Teaching Assistant) disappears. For this version of the 
ETA tool, the user can choose the electric circuit type (i.e. Voltage divider or Current 
divider) from the menu as shown in Fig. 23. By selecting the circuit from the menu; the 
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schematic of the selected circuit will be shown on the upper axes and the inputs and outputs 
will change accordingly. The Calculate, Reset, and Main buttons perform functions as 
described earlier. 
 

 
Fig. 24. Runningthe Voltage Divider GUI 

 

 
Fig. 25. Running the Voltage Divider GUI 
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Fig 24 shows the function of the basic voltage divider circuit. When the voltage divider 
circuit is selected from the menu, the circuit's schematic is displayed on axes. The inputs of 
this circuit are: Vin (V), R1 (Ohm) and R2 (Ohm).The Calculate, Reset, and Main buttons 
perform functions as described earlier. 
Fig. 25 shows the function of the current divider circuit. When the current divider circuit is 
selected from the menu, the circuit's schematic is displayed on axes. The inputs of this 
circuit are: Is (A), R1 (Ohm) and R2 (Ohm). The values of I1 and I2 are displayed. The 
Calculate, Reset, and Main buttons perform functions as described earlier. 

5. Conclusion 
This chapter presented a user-friendly interactive MATLAB-based GUI tool for teaching 
basic electrical OP-AMP circuits. The programming code for the GUI tool development was 
also addressed in addition to explanation of input and output parameters needed for 
different types of OP-AMPs. In addition, MATLAB has a rich collection of mathematical 
functions and tools to compute and visualize data for different circuit applications. Students 
can use OrCAD PSpice to compare with the developed applet results. The interactive and 
friendly nature of MATLAB and its immediate graphing tools are indispensable for helping 
electrical engineering students achieve a better understanding of basic concepts and 
principles of semiconductor fundamentals and other electrical topics.  
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1. Introduction 
Many researchers have modeled weather data using classical regression, time-series regression 
and Artificial Neural Networks (ANN) techniques. MATLAB is used in handling data and 
writing task specific codes for models as well as in performing statistical analysis and curve 
fitting works. This is due to the dynamic nature of MATLAB and its rich toolboxes that cover 
almost every aspect of mathematical and statistical engineering applications. 
Numerous authors (Abdalla & Feregh, 1988; Assi & Jama, 2010; Akinoglu & Ecevit, 1990; Al 
Mahdi et al., 1992; Ampratwum & Drovlo, 1999; Elagib & Mansell, 2000; Khalil & Alnajjar, 
1995; Menges et al., 2006; Newland, 1988; Podesta’ et al., 2004; Sahin, 2007; Samuel, 1991; 
Ulgen & Hepbasli, 2002) to count few developed empirical regression models to predict the 
monthly average daily global solar radiation (GSR) in their region using various parameters. 
The mean daily sunshine duration was the most commonly used and available parameter. 
The most popular model was the linear model by Angström-Prescott (Podesta’ et al., 2004;  
Assi & Jama, 2010) which establishes a linear relationship between GSR and sunshine 
duration with knowledge of extra-terrestrial solar radiation and the theoretical maximum 
daily solar hours. Many studies with empirical regression models were done for diverse 
regions around the world. (Menges et al. 2006) reviewed 50 GSR empirical models available 
in literature for computing the monthly average daily GSR on a horizontal surface. They 
tested the models on data recorded in Konya, Turkey for comparison of model accuracy. 
The number of weather parameters varied between models. The diverse regression models 
used include linear, logarithmic, quadratic, third order polynomial, logarithmic-linear and 
exponential and power models relating the normalized GSR to normalized sunshine hours. 
Other models included in Menges work used direct regression models involving various 
weather parameters such as precipitation, cloud cover, etc., in addition to geographical data 
(altitude, latitude). (Şahin, 2007) presented a novel method for estimating the solar 
irradiation and sunshine duration by incorporating the atmospheric effects due to extra-
terrestrial solar irradiation and length of day. The author compares his model with 
Angström’s equation with favourable advantages as his method does not use Least Square 
Method in addition to having no procedural restrictions or assumptions. (Ulgen & Hepbasli, 
2002) developed two empirical correlations to estimate the monthly average daily GSR on a 
horizontal surface for Izmir, Turkey. Their models resemble Angström type equations. They 
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Mahdi et al., 1992; Ampratwum & Drovlo, 1999; Elagib & Mansell, 2000; Khalil & Alnajjar, 
1995; Menges et al., 2006; Newland, 1988; Podesta’ et al., 2004; Sahin, 2007; Samuel, 1991; 
Ulgen & Hepbasli, 2002) to count few developed empirical regression models to predict the 
monthly average daily global solar radiation (GSR) in their region using various parameters. 
The mean daily sunshine duration was the most commonly used and available parameter. 
The most popular model was the linear model by Angström-Prescott (Podesta’ et al., 2004;  
Assi & Jama, 2010) which establishes a linear relationship between GSR and sunshine 
duration with knowledge of extra-terrestrial solar radiation and the theoretical maximum 
daily solar hours. Many studies with empirical regression models were done for diverse 
regions around the world. (Menges et al. 2006) reviewed 50 GSR empirical models available 
in literature for computing the monthly average daily GSR on a horizontal surface. They 
tested the models on data recorded in Konya, Turkey for comparison of model accuracy. 
The number of weather parameters varied between models. The diverse regression models 
used include linear, logarithmic, quadratic, third order polynomial, logarithmic-linear and 
exponential and power models relating the normalized GSR to normalized sunshine hours. 
Other models included in Menges work used direct regression models involving various 
weather parameters such as precipitation, cloud cover, etc., in addition to geographical data 
(altitude, latitude). (Şahin, 2007) presented a novel method for estimating the solar 
irradiation and sunshine duration by incorporating the atmospheric effects due to extra-
terrestrial solar irradiation and length of day. The author compares his model with 
Angström’s equation with favourable advantages as his method does not use Least Square 
Method in addition to having no procedural restrictions or assumptions. (Ulgen & Hepbasli, 
2002) developed two empirical correlations to estimate the monthly average daily GSR on a 
horizontal surface for Izmir, Turkey. Their models resemble Angström type equations. They 
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compared their models with 25 models previously reported in literature on the basis of 
statistical error tests (MBE (mean bias error), RMSE (root mean square error), MPE (mean 
percentage error), and R2 (coefficient of determination)) with favourable results. 
Other authors worked on prediction models based on artificial neural network techniques 
and most specifically Multi-Layer Perceptron (MLP) and Radial-Basis Function (RBF) 
methods (Al-Alawi & Al-Hinai, 1998; Assi et al., 2010; Behrang et al., 2010; Benghanem et al., 
2009; Boccol et al., 2010; Elminir et al., 2005; Krishnaiah et al., 2007; Mohandes et al., 1998; 
Mohandes et al., 2000; Rehman & Mohandes, 2008). The advantage of the ANN models is 
their ability to handle large amounts of data as well as the ability to handle random data 
without worry of incomplete, inaccurate or noise-contaminated data. 
Another approach followed by many researchers is using time-series modeling techniques 
which employ regression for the deterministic component and Box-Jenkins Auto-Regressive 
Integrated Moving Average (ARIMA) modeling for the stochastic residual component (Box 
& Jenkins, 1994; Enders, 2010). (Sulaiman et al., 1997) and (Zaharim et al., 2009) use the 
ARMA Box-Jenkins method to model GSR data in Malaysia. They model the data using non-
seasonal autoregressive models where the model adequacy is checked using the Ljung-Box 
statistic for diagnostic data. However, only short-term data was used for testing their model. 
(Reikard, 2009) employs a combination of logarithmic regression and ARIMA modeling to 
predict solar radiation at high resolution and compares his models with other forecast 
methods such as ANN and considered the 24-hour daily seasonality not taken into account 
in most modeling approaches. (Boland, 1995) and (Zeroual et al., 1995) use a combination of 
regression model with Fourier series for the deterministic part and ARMA modeling for the 
residual stochastic component.  
The potential of solar energy harvesting in the UAE is significant, with an average annual 
sunshine hours of 3568 h (i.e. 9.7 h/day), which corresponds to an average annual solar 
radiation of approximately 2285 kWh/m2, i.e. 6.3 kWh/m2 per day (Assi & Abdi, 2010).The 
main limitation of using many weather parameters is the difficulty of obtaining this data 
due to the high expenses and availability of recording equipment. Some of the regression 
models are more accurate for monthly data than daily data and most published works only 
show monthly data comparison results as the daily mean data are less accurate. 
The authors are doing extensive work on the analysis of weather data in three UAE cities, 
namely, Al-Ain, Abu Dhabi and Sharjah. The prediction techniques employed range from 
classical one-parameter based regression techniques (Sunshine data), Artificial Neural 
Networks (ANN) Multi-Layer Perceptron (MLP) and Radial-Basis Function (RBF) techniques, 
and lately using time-series regression techniques with Auto-Regressive Integrated Moving-
Average (ARIMA) modeling. Most of the work done relies on the use of MATLAB as a 
common platform for preparing and processing data as well as for testing the suggested 
prediction models. MATLAB was also used in curve fitting the output data and finding the 
statistical error parameters that judge the accuracy and dependability of our prediction 
models. The used correlations included the linear Angstrom-Prescott model and its 
derivations, namely, the second and third order correlations, in addition to the single term 
exponential model, logarithmic model, linear logarithmic model and power model.  
This chapter uses examples with classical empirical regression techniques and time-series 
techniques to predict the monthly average daily GSR data in Al-Ain, UAE. In time-series 
regression technique, the deterministic component was modeled by decomposing it into a 
multiple linear regression component as a function of the available weather variables plus a 
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seasonal component accounting for the annual periodicity and a linear trend. The residual 
error is studied using Box-Jenkins ARIMA modeling techniques for the sake of further 
enhancing the predicted solar radiation data. The resultant noise residual error renders 
Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF) plots 
within the 95 % confidence interval bounds and a quasi-normal noise error with zero mean 
and constant variance. The stationary form of the resulting time-series and the white-noise 
type residual error provide extra confidence of the long-term prediction accuracy of the 
estimated model. The MATLAB codes written by authors and their group involve 
employing various data modeling techniques such as linear regression, curve fitting, de-
trending, FFT algorithm, statistical data analysis as well as Box-Jenkins method to predict a 
time-series model for the residual error.  
The current work on solar radiation data in Al-Ain City, UAE will be correlated with other 
ongoing studies by authors to come up with solar radiation prediction models for the UAE 
cities of Abu Dhabi and Sharjah. The final objective is to come up with a good national 
weather model capable of predicting the mean monthly GSR for the whole UAE within an 
acceptable prediction error. 

2. Methodology  
The weather database meteorological data provided by the National Center of Meteorology 
& Seismology (NCMS) in Abu Dhabi) for the periods between 1995 and 2007 was divided 
into two sets: A model data set with daily record of the variables: air temperature, wind 
speed, sunshine hours and relative humidity for the years 1995- 2004 (10 years), and a test 
data set for the years of 2005-2007. All regression modeling and simulation work is done 
using MATLAB tools and with the help of the statistical software packages Minitab 
(Minitab, 2010) and SPSS (IBM SPSS Statistics, 2010). The next section will explain the 
modeling procedure for both the classical empirical regression and time-series regression 
techniques. Validation of model accuracy is presented along with corresponding error 
statistics. Then, a comparison between both empirical approaches is made. 

2.1 Procedure  
In this section we discuss two methods used to generate the weather data models for Al-
Ain, UAE for years 1995-2004. Selected models are validated with data from years 2005-
2007. The two models discussed in this chapter are: 
1. Classical regression methods (Empirical models) 
2. Time-series regression model (Regression with Box-Jenkins ARIMA method) 
The use of MATLAB in each approach will be fully discussed along with the details of 
commands used and computation results for the models under investigation. 

2.1.1 Classical regression modelling approach (empirical models) 
The empirical regression models are generated with help of MATLAB and verified using 
SPSS. The appropriate MATLAB commands used are addressed with each procedural step. 
2.1.1.1 Data preparation for nonlinear regression models  
The 10-year mean daily GSR data in Al-Ain, UAE is computed for both sunshine hours and 
mean daily GSR yielding a data set of size N=365 for each variable. In MATLAB, this is done 
as follows: 
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compared their models with 25 models previously reported in literature on the basis of 
statistical error tests (MBE (mean bias error), RMSE (root mean square error), MPE (mean 
percentage error), and R2 (coefficient of determination)) with favourable results. 
Other authors worked on prediction models based on artificial neural network techniques 
and most specifically Multi-Layer Perceptron (MLP) and Radial-Basis Function (RBF) 
methods (Al-Alawi & Al-Hinai, 1998; Assi et al., 2010; Behrang et al., 2010; Benghanem et al., 
2009; Boccol et al., 2010; Elminir et al., 2005; Krishnaiah et al., 2007; Mohandes et al., 1998; 
Mohandes et al., 2000; Rehman & Mohandes, 2008). The advantage of the ANN models is 
their ability to handle large amounts of data as well as the ability to handle random data 
without worry of incomplete, inaccurate or noise-contaminated data. 
Another approach followed by many researchers is using time-series modeling techniques 
which employ regression for the deterministic component and Box-Jenkins Auto-Regressive 
Integrated Moving Average (ARIMA) modeling for the stochastic residual component (Box 
& Jenkins, 1994; Enders, 2010). (Sulaiman et al., 1997) and (Zaharim et al., 2009) use the 
ARMA Box-Jenkins method to model GSR data in Malaysia. They model the data using non-
seasonal autoregressive models where the model adequacy is checked using the Ljung-Box 
statistic for diagnostic data. However, only short-term data was used for testing their model. 
(Reikard, 2009) employs a combination of logarithmic regression and ARIMA modeling to 
predict solar radiation at high resolution and compares his models with other forecast 
methods such as ANN and considered the 24-hour daily seasonality not taken into account 
in most modeling approaches. (Boland, 1995) and (Zeroual et al., 1995) use a combination of 
regression model with Fourier series for the deterministic part and ARMA modeling for the 
residual stochastic component.  
The potential of solar energy harvesting in the UAE is significant, with an average annual 
sunshine hours of 3568 h (i.e. 9.7 h/day), which corresponds to an average annual solar 
radiation of approximately 2285 kWh/m2, i.e. 6.3 kWh/m2 per day (Assi & Abdi, 2010).The 
main limitation of using many weather parameters is the difficulty of obtaining this data 
due to the high expenses and availability of recording equipment. Some of the regression 
models are more accurate for monthly data than daily data and most published works only 
show monthly data comparison results as the daily mean data are less accurate. 
The authors are doing extensive work on the analysis of weather data in three UAE cities, 
namely, Al-Ain, Abu Dhabi and Sharjah. The prediction techniques employed range from 
classical one-parameter based regression techniques (Sunshine data), Artificial Neural 
Networks (ANN) Multi-Layer Perceptron (MLP) and Radial-Basis Function (RBF) techniques, 
and lately using time-series regression techniques with Auto-Regressive Integrated Moving-
Average (ARIMA) modeling. Most of the work done relies on the use of MATLAB as a 
common platform for preparing and processing data as well as for testing the suggested 
prediction models. MATLAB was also used in curve fitting the output data and finding the 
statistical error parameters that judge the accuracy and dependability of our prediction 
models. The used correlations included the linear Angstrom-Prescott model and its 
derivations, namely, the second and third order correlations, in addition to the single term 
exponential model, logarithmic model, linear logarithmic model and power model.  
This chapter uses examples with classical empirical regression techniques and time-series 
techniques to predict the monthly average daily GSR data in Al-Ain, UAE. In time-series 
regression technique, the deterministic component was modeled by decomposing it into a 
multiple linear regression component as a function of the available weather variables plus a 
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seasonal component accounting for the annual periodicity and a linear trend. The residual 
error is studied using Box-Jenkins ARIMA modeling techniques for the sake of further 
enhancing the predicted solar radiation data. The resultant noise residual error renders 
Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF) plots 
within the 95 % confidence interval bounds and a quasi-normal noise error with zero mean 
and constant variance. The stationary form of the resulting time-series and the white-noise 
type residual error provide extra confidence of the long-term prediction accuracy of the 
estimated model. The MATLAB codes written by authors and their group involve 
employing various data modeling techniques such as linear regression, curve fitting, de-
trending, FFT algorithm, statistical data analysis as well as Box-Jenkins method to predict a 
time-series model for the residual error.  
The current work on solar radiation data in Al-Ain City, UAE will be correlated with other 
ongoing studies by authors to come up with solar radiation prediction models for the UAE 
cities of Abu Dhabi and Sharjah. The final objective is to come up with a good national 
weather model capable of predicting the mean monthly GSR for the whole UAE within an 
acceptable prediction error. 

2. Methodology  
The weather database meteorological data provided by the National Center of Meteorology 
& Seismology (NCMS) in Abu Dhabi) for the periods between 1995 and 2007 was divided 
into two sets: A model data set with daily record of the variables: air temperature, wind 
speed, sunshine hours and relative humidity for the years 1995- 2004 (10 years), and a test 
data set for the years of 2005-2007. All regression modeling and simulation work is done 
using MATLAB tools and with the help of the statistical software packages Minitab 
(Minitab, 2010) and SPSS (IBM SPSS Statistics, 2010). The next section will explain the 
modeling procedure for both the classical empirical regression and time-series regression 
techniques. Validation of model accuracy is presented along with corresponding error 
statistics. Then, a comparison between both empirical approaches is made. 

2.1 Procedure  
In this section we discuss two methods used to generate the weather data models for Al-
Ain, UAE for years 1995-2004. Selected models are validated with data from years 2005-
2007. The two models discussed in this chapter are: 
1. Classical regression methods (Empirical models) 
2. Time-series regression model (Regression with Box-Jenkins ARIMA method) 
The use of MATLAB in each approach will be fully discussed along with the details of 
commands used and computation results for the models under investigation. 

2.1.1 Classical regression modelling approach (empirical models) 
The empirical regression models are generated with help of MATLAB and verified using 
SPSS. The appropriate MATLAB commands used are addressed with each procedural step. 
2.1.1.1 Data preparation for nonlinear regression models  
The 10-year mean daily GSR data in Al-Ain, UAE is computed for both sunshine hours and 
mean daily GSR yielding a data set of size N=365 for each variable. In MATLAB, this is done 
as follows: 
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N= 365;   NY= 10;   
% N= 365 days of the year and NY= # years of model data used (1995-2004) 
for k=1:N,      % Day index of year 
     GSR(k)= mean( GSR_10yr (k:N:(NY-1)*N+k));   
end 

 
where GSR_10yr is the data sheet containing the daily mean GSR data array of size 3650 
days (1995-2004). Similarly, we generate the 10-year average daily SSH from the sunshine 
hours data. 
2.1.1.2 Extra-terrestrial radiation parameters 
Mean daily values of GSR data are calculated from the knowledge of the latitude and 
longitude in the city of Al-Ain (Latitude = 240 16’ and Longitude = 550 36’). The 
extraterrestrial solar radiation on horizontal surface in kWh/m2 (G0) and theoretical 
maximum daily sun hours (S0) are calculated from the equations (Assi et al., 2010): 
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where n is the day index, ωs the mean sunrise hour angle for the month, φ the latitude, and δ 
the declination angle. GSC is a constant representing the daily extraterrestrial solar radiation 
on horizontal and is given by 1.367 kWh/m2. The declination angle (δ) is defined by the 
equation: 
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The GSR and SSH data are next normalized to the extraterrestrial values G0 and S0 described 
in eq. (1)-(2), and the resulting normalized data arrays denoted by clearness index 
(RSSH=GSR/G0) and Sunshine duration ratio (RSSH = SSH/S0) are stored in excel file 
solardata.xlsx in the form: 
 

>> gsrdata=[N, S0, G0, RSSH, RGSR];     
>> s=xlswrite('solardata.xlsx',gsrdata,'Sheet1', 'A1:E365'); 

 
The RGSR-RSSH data is then fitted to different nonlinear regression models as per Table 1.   
 

Model reference Type Equation 
(Podesta, 2004) Linear y= b1+b2* x 
(Akinoglu & Ecevit, 1990) Quadratic y= b1+b2* x+b3* x2 
(Samuel, 1991) Cubic y= b1+b2* x+b3* x2+b4* x3 
(Ampratwum & Dorvlo, 1999) Logarithmic y= b1+ b2 *log( x) 
(Newland, 1988) Log-Linear y= b1+ b2* x+ b3*log( x) 
(Elagib & Monsell, 2000) Exponential y= b1* exp(b2*x) 

Table 1. Nonlinear empirical regression models used for Al-Ain, UAE weather data 
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2.1.1.3 MATLAB application in nonlinear regression 
The nonlinear regression in MATLAB is performed using two tools: 
1. Interactive nonlinear regression toolbox (nlintool ) 
2. Nonlinear mixed-effects estimation (nlmefit) 
The procedure followed in each approach is discussed in the next sections including sample 
output results from the weather GSR modeling. Alternative approaches include specifically 
written MATLAB m-files or the use of commercial statistical software packages such as 
SPSS, Minitab or SAS. All our MATLAB results agree well with results obtained using SPSS 
and Minitab. 
2.1.1.3.1 Use of the interactive nonlinear regression toolbox (nlintool) 
The MATLAB procedure to use “nlintool” is explained through the application of the log-
linear regression model, described in Table 1, to model the relation between the clearness 
index (RGSR) and sunshine duration ratio (RSSH) through the following steps: 
1. Given RSSH and RGSR data (N points each). Read the input data to MATLAB 

workspace from an Excel data sheet “GSRdata.xlsx” as follows: 
 

>> inputdata=xlsread (‘GSRdata.xlsx’, ‘sheet1’,’A1:B365’) 
>> RSSH=inputdata(:,1); 
>> RGSR=inputdata(:,2); 

 
The input data array contains two columns of length N=365, namely, RSSH 
(independent variable or predictor) and RGSR (dependent variable). 

2. Next, generate an m-file script called “loglinear.m” containing the regression function 
as follows: 

 
function yhat = loglinear(beta, x) 
 b1 = beta(1); 
 b2 = beta(2); 
 b3 = beta(3); 
yhat = b1 + b2*x + b3*log(x); 

 
3. In command window type: 
 

>> beta0=[ 0 0 0]; % define initial guess of constants beta(k), k=1,2,3 
>> nlintool(RSSH, RGSR,@loglinear,beta0)  % Invoke the interactive  
      nonlinear regression toolbox   

 
The output is the log-linear regression curve with error bounds as shown in Fig. 1. 
4. Data that can be downloaded to MATLAB workspace include the regression 

coefficients (beta) and root-mean square error (rmse). This is done as follows: 
 

>> rmse   % root mean-square error 
rmse = 
   0.0262 
>> beta   % regression model coefficients  
beta= 
  -0.1778  6.1287E-05   0.2251 
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N= 365;   NY= 10;   
% N= 365 days of the year and NY= # years of model data used (1995-2004) 
for k=1:N,      % Day index of year 
     GSR(k)= mean( GSR_10yr (k:N:(NY-1)*N+k));   
end 

 
where GSR_10yr is the data sheet containing the daily mean GSR data array of size 3650 
days (1995-2004). Similarly, we generate the 10-year average daily SSH from the sunshine 
hours data. 
2.1.1.2 Extra-terrestrial radiation parameters 
Mean daily values of GSR data are calculated from the knowledge of the latitude and 
longitude in the city of Al-Ain (Latitude = 240 16’ and Longitude = 550 36’). The 
extraterrestrial solar radiation on horizontal surface in kWh/m2 (G0) and theoretical 
maximum daily sun hours (S0) are calculated from the equations (Assi et al., 2010): 
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where n is the day index, ωs the mean sunrise hour angle for the month, φ the latitude, and δ 
the declination angle. GSC is a constant representing the daily extraterrestrial solar radiation 
on horizontal and is given by 1.367 kWh/m2. The declination angle (δ) is defined by the 
equation: 
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The GSR and SSH data are next normalized to the extraterrestrial values G0 and S0 described 
in eq. (1)-(2), and the resulting normalized data arrays denoted by clearness index 
(RSSH=GSR/G0) and Sunshine duration ratio (RSSH = SSH/S0) are stored in excel file 
solardata.xlsx in the form: 
 

>> gsrdata=[N, S0, G0, RSSH, RGSR];     
>> s=xlswrite('solardata.xlsx',gsrdata,'Sheet1', 'A1:E365'); 

 
The RGSR-RSSH data is then fitted to different nonlinear regression models as per Table 1.   
 

Model reference Type Equation 
(Podesta, 2004) Linear y= b1+b2* x 
(Akinoglu & Ecevit, 1990) Quadratic y= b1+b2* x+b3* x2 
(Samuel, 1991) Cubic y= b1+b2* x+b3* x2+b4* x3 
(Ampratwum & Dorvlo, 1999) Logarithmic y= b1+ b2 *log( x) 
(Newland, 1988) Log-Linear y= b1+ b2* x+ b3*log( x) 
(Elagib & Monsell, 2000) Exponential y= b1* exp(b2*x) 

Table 1. Nonlinear empirical regression models used for Al-Ain, UAE weather data 
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2.1.1.3 MATLAB application in nonlinear regression 
The nonlinear regression in MATLAB is performed using two tools: 
1. Interactive nonlinear regression toolbox (nlintool ) 
2. Nonlinear mixed-effects estimation (nlmefit) 
The procedure followed in each approach is discussed in the next sections including sample 
output results from the weather GSR modeling. Alternative approaches include specifically 
written MATLAB m-files or the use of commercial statistical software packages such as 
SPSS, Minitab or SAS. All our MATLAB results agree well with results obtained using SPSS 
and Minitab. 
2.1.1.3.1 Use of the interactive nonlinear regression toolbox (nlintool) 
The MATLAB procedure to use “nlintool” is explained through the application of the log-
linear regression model, described in Table 1, to model the relation between the clearness 
index (RGSR) and sunshine duration ratio (RSSH) through the following steps: 
1. Given RSSH and RGSR data (N points each). Read the input data to MATLAB 

workspace from an Excel data sheet “GSRdata.xlsx” as follows: 
 

>> inputdata=xlsread (‘GSRdata.xlsx’, ‘sheet1’,’A1:B365’) 
>> RSSH=inputdata(:,1); 
>> RGSR=inputdata(:,2); 

 
The input data array contains two columns of length N=365, namely, RSSH 
(independent variable or predictor) and RGSR (dependent variable). 

2. Next, generate an m-file script called “loglinear.m” containing the regression function 
as follows: 

 
function yhat = loglinear(beta, x) 
 b1 = beta(1); 
 b2 = beta(2); 
 b3 = beta(3); 
yhat = b1 + b2*x + b3*log(x); 

 
3. In command window type: 
 

>> beta0=[ 0 0 0]; % define initial guess of constants beta(k), k=1,2,3 
>> nlintool(RSSH, RGSR,@loglinear,beta0)  % Invoke the interactive  
      nonlinear regression toolbox   

 
The output is the log-linear regression curve with error bounds as shown in Fig. 1. 
4. Data that can be downloaded to MATLAB workspace include the regression 

coefficients (beta) and root-mean square error (rmse). This is done as follows: 
 

>> rmse   % root mean-square error 
rmse = 
   0.0262 
>> beta   % regression model coefficients  
beta= 
  -0.1778  6.1287E-05   0.2251 
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Fig. 1. Nonlinear regression curve with a log-linear function between Clearness index (RGSR) 
and sunshine duration ration (RSSH) 

The command “whos” provides information on available workspace variables. Similarly, 
other nonlinear regression curve fits could be obtained by generating the corresponding m-
file for each regression function and specifying the corresponding initial guess values for the 
unknown parameters. 
Table 2 shows the coefficients obtained for each regression model shown in Table 1.  The 
statistical error parameters resulting from each regression model can be computed using 
SPSS, Minitab or using MATLAB from the expressions displayed in section 2.3. 
 

Type Equation b1 b2 b3 b4 
Linear y= b1+b2* x 0.4619 0.0047   
Quadratic y= b1+b2* x+b3* x2 0.2980 0.0118 -7.400E-05  
Cubic y= b1+b2* x+b3* x2+b4* x3 8.4297 -0.5183 0.0114 -8.2410E-05 
Logarithmic y= b1+b2*log( x) -0.1697 0.2223   
Log-Linear y= b1+ b2* x+ b3*log( x) -0.1778 -6.133E-05 0.2252  
Exponential y= b1* exp(b2*x) 0.4948 0.0069   

Table 2. Estimated coefficients for empirical regression models of weather data for years 
1995-2004 in Al-Ain, UAE. Variables are y = RGSR = GSR/G0 and x = RSSH = SSH/S0 

2.1.1.3.2 Use of the nonlinear mixed-effects estimation (nlmefit) 
The nonlinear regression in MATLAB can also be performed using the nonlinear mixed-
effects estimation (nlmefit). This tool fits the model by maximizing an approximation to the 
marginal likelihood with random effects integrated out, assuming that [See MATLAB help] 
random effects are multivariate normally distributed and independent between groups, and 
that observation errors are independent, identically normally distributed, and independent 
of the random effects. As an example, the format for the log-linear regression equation is as 
follows: 

 
MATLAB-Assisted Regression Modeling of Mean Daily Global Solar Radiation in Al-Ain, UAE   

 

201 

>> model = @(phi,t)(phi(:,1)+ phi(:,2).*t + phi(:,3).*log(t));  
>> phi0 =[0 0 0]; 
>> group=[1:365]; 
>> [beta,psi,stats] = nlmefit(RSSH(:),RGSR(:),group,[],model,phi0) 

 
The arguments of the MATLAB function ‘nlmefit’ used for our regression are: 
RSSH: is an n-by-1 array of n observations on 1 predictor. 
RGSR: is an n-by-1 vector of responses. 
Group: is a grouping variable indicating m groups in the observations. Here, we enter size 
of rows of predictors, i.e. group=[1:365]. 
Model: is a function handle that accepts predictor values and model parameters and 
returns fitted values.  
phi0: contains the initial values of the regression for equation parameters. 
The program outputs are: 
beta= contains the estimated regression model parameters 
psi= an r-by-r estimated covariance matrix for the random effects. By default, r is equal 
to the number of model parameters p. 
stats= returns a structure with the following parameters: 
• logl — The maximized log-likelihood for the fitted model 
• mse — The estimated error variance for the fitted model 
• aic — The Akaike information criterion for the fitted model 
• bic — The Bayesian information criterion for the fitted model 
• sebeta — The standard errors for beta 
• dfe — The error degrees of freedom for the model 
The following is the MATLAB output to the log-linear regression model: 
 

beta = 
  -0.1778 
  -6.1336E-05 
   0.2252 
psi = 
  1.0e-003 * 
   0.6821                   0                   0 
        0                 0.0000                0 
        0                       0               0.0000 
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logl: 8.1257e+002 
mse: 3.7845e-028 
rmse:1.9454e-014 
aic: -1.6111e+003 
bic: -1.5838e+003 
sebeta: [1.3834 0.0104 0.4869] 
dfe: 358 

 
The regression model parameters obtained using the ‘nlmefit’ function match with the 
values computed using the “nlintool” function and listed in Table 2. The best regression 
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Fig. 1. Nonlinear regression curve with a log-linear function between Clearness index (RGSR) 
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The regression model parameters obtained using the ‘nlmefit’ function match with the 
values computed using the “nlintool” function and listed in Table 2. The best regression 
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model should yield the lowest value of AIC, BIC and RMSE in addition to the 
autocorrelation test requirements discussed later in the chapter. Fig.2 shows the ten-year 
mean daily GSR computed from the log-linear regression model with estimated coefficients 
listed in Table 2. Note the very good agreement between regression model and measured 
data. The error statistics yield a deterministic coefficient of R2= 97.74 % in addition to low 
statistics RMSE = 0.2104, MBE = -0.0755, MABE = 0.1872, and MAPE= 3.11 %. A comparison 
of the remaining regression yields excellent agreement with measured data with R2 values 
exceeding 96 %. 
 

 
Fig. 2. Ten-year mean daily GSR data comparison between the empirical log-linear regression 
model and measured data in Al-Ain, UAE for years 1995-2004 

2.1.1.4 Validation of empirical regression models 
The six selected empirical regression models are validated by computing the predicted GSR 
data from these models using the test data set of years 2005-2007. The empirical models 
compare very well with measured data for the test data period as depicted in Fig. 3. All 
models yield deterministic coefficients values R2 better than 98 %. The models also yield low 
values for RMSE, MBE, MABE and MAPE indicating their adequacy as weather prediction 
models for Al-Ain, UAE. The 3rd-order polynomial regression model (Cubic) outperforms 
the other five empirical models with lowest error statistics and highest deterministic 
coefficient. 
 

 
Fig. 3. Comparison of monthly mean regression model GSR with measured data for test 
period of 2005-2007 
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2.1.2 Time-series regression modelling with ARIMA approach 
The time-series regression modelling approach makes use of the four weather parameters 
measured daily over a period of 10 years, i.e. 1995-2004 in Al-Ain, UAE. These parameters 
are:  
1. Mean daily temperature (0C) abbreviated as T 
2. Mean daily wind speed (knots) abbreviated as W 
3. Daily sunshine hours abbreviated as SSH 
4. Mean daily relative humidity (%) abbreviated as RH 
5. Mean daily global solar radiation (kWh/m2) abbreviated as GSR 
The modeling procedure steps are as follows:  
Step 1. Explore the form and characteristics of the dependent variable (GSR) and the 

predictors (T, W, SSH and RH) by looking at their time-series plots with the help of 
MATLAB. These plots will help in identifying the behavior of each variable and to 
check the trend and seasonality of GSR data. 

Step 2. Compute the descriptive statistics of the four independent variables (T, W, SSH, 
and RH) and the dependent variable (mean daily GSR). The correlation between 
these variables is shown in Table 3. It shows that wind speed has the least effect on 
GSR performance. From the time-series plots of GSR, T and SSH data we can 
observe a cyclical behavior. Wind and humidity data on the other hand are more 
random.  The best model is obtained when all four independent variables are 
considered in the GSR regression model. 

 
 T W SSH RH GSR 

T 1.0000 0.1907 0.4555 -0.7419 0.7958 
W 0.1907 1.0000 -0.1099 -0.2170 0.1425 

SSH 0.4555 -0.1099 1.0000 -0.4566 0.6972 
RH -0.7419 -0.2170 -0.4566 1.0000 -0.6761 

GSR-kWh/m2 0.7958 0.1425 0.6972 -0.6761 1.0000 
 

Table 3. Correlation between the measured weather data parameters for the city of Al-Ain, 
UAE for years 1995-2004 

The Pearson correlation values between the response (GSR) and the four predictor variables 
(T, W, SSH, RH) are found in MATLAB using the command: 
 

>> corr(T, W, SSH, RH, GSR) 
 
Table 3 shows that the temperature and sunshine hours have dominant effect on the GSR 
parameter followed closely by relative humidity and with less influence by wind speed.  
The computation of the descriptive statistics can be done directly in SPSS or Minitab. In 
MATLAB we can either write a script m-file to compute all needed statistical parameters or 
we can use the already available functions in MATLAB and other functions that can be run 
under the Statistics toolbox. One MATLAB command that generates some statistical 
parameters is: 
 

>> [xds,yds] = datastats (xdata, ydata) 
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2.1.2 Time-series regression modelling with ARIMA approach 
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1. Mean daily temperature (0C) abbreviated as T 
2. Mean daily wind speed (knots) abbreviated as W 
3. Daily sunshine hours abbreviated as SSH 
4. Mean daily relative humidity (%) abbreviated as RH 
5. Mean daily global solar radiation (kWh/m2) abbreviated as GSR 
The modeling procedure steps are as follows:  
Step 1. Explore the form and characteristics of the dependent variable (GSR) and the 

predictors (T, W, SSH and RH) by looking at their time-series plots with the help of 
MATLAB. These plots will help in identifying the behavior of each variable and to 
check the trend and seasonality of GSR data. 

Step 2. Compute the descriptive statistics of the four independent variables (T, W, SSH, 
and RH) and the dependent variable (mean daily GSR). The correlation between 
these variables is shown in Table 3. It shows that wind speed has the least effect on 
GSR performance. From the time-series plots of GSR, T and SSH data we can 
observe a cyclical behavior. Wind and humidity data on the other hand are more 
random.  The best model is obtained when all four independent variables are 
considered in the GSR regression model. 
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Table 3. Correlation between the measured weather data parameters for the city of Al-Ain, 
UAE for years 1995-2004 

The Pearson correlation values between the response (GSR) and the four predictor variables 
(T, W, SSH, RH) are found in MATLAB using the command: 
 

>> corr(T, W, SSH, RH, GSR) 
 
Table 3 shows that the temperature and sunshine hours have dominant effect on the GSR 
parameter followed closely by relative humidity and with less influence by wind speed.  
The computation of the descriptive statistics can be done directly in SPSS or Minitab. In 
MATLAB we can either write a script m-file to compute all needed statistical parameters or 
we can use the already available functions in MATLAB and other functions that can be run 
under the Statistics toolbox. One MATLAB command that generates some statistical 
parameters is: 
 

>> [xds,yds] = datastats (xdata, ydata) 
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which returns statistics for the column vectors xdata and ydata to the structures xdata and 
ydata, respectively. xdata and ydata must be of the same size. The returned statistics 
include: sample size, maximum value, minimum value, mean, median, range, and standard 
deviation. MATLAB also has standalone functions for statistical values such as: max, min, 
length (sample size), mean, median, mode, std (standard deviation), and var (variance). The 
coefficient of variation is found from the ratio of std(x)/mean(x). One can also use hist(x) to 
get a histogram of the sample data. Other statistical measures need to be programmed or 
can be determined using the MATLAB Statistics toolbox. Table 4 lists the commands that 
can be employed to obtain the central and dispersion measures for the data sets under study. 
 

Central Measures  Dispersion Measures 
Command Description  Command Description 
geomean Geometric mean  iqr Interquartile range 

harmean Harmonic Mean absolute 
deviation  mad Mean absolute deviation 

mean Arithmetic mean  moment Central moment of all 
orders 

median 50 % Percentile  range Range 
trimmean Trimmed mean  std Standard deviation 

mode Most frequent value  var Variance 

Table 4. MATLAB commands for computing central and dispersion measures of a data set 

The following commands can be used under the Statistics toolbox: 
 

>> locate = [geomean(x) harmmean(x) mean(x) median(x), trimmean(x,25)] 
>> stats = [iqr(x) mad(x) range(x) std(x)] 

 
On the other hand, measures of shape are found using quantiles (0 < p < 1) or percentiles 
(0< p <100). The percentiles for a data sequence xdata are found in the Statistics toolbox 
using the command: 
 

>> y = prctile(xdata,p);   % p= percentile needed  
>> y = quantile(xdata,p);   % p= quantileneeded  

 
The shape of a data distribution is also measured by the Statistics Toolbox functions 
skewness, kurtosis, and, more generally, moment. 
Table 5 shows the descriptive statistics obtained for the mean daily global solar radiation 
data for Al-Ain, UAE for period 1994-2005. 
Step 3. Fig. 4 shows the time-series plot of the mean daily GSR for years 1995-2004 with 

leap days excluded. The plot shows a clear periodicity of one year (365 days).  
Step 4. The partial least square regression technique is used to model the relation between 

GSR data for ten years (1995-2004) and the four aforementioned dependent weather 
variables. The model equation obtained using MATLAB or using either software 
packages SPSS or Minitab is of the form: 

 regression 1 2 3 4 5GSR (t) a a T(t) a W(t) a (t) a RH(t)SSH= + ∗ + ∗ + ∗ + ∗     (4) 

where the regression coefficients are given in Table 6. 
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Statistical Parameters T W SSH RH GSR 
Mean ( μ ) 36.501 7.5305 9.9472 44.0450 6.3332 

StdDev ( σ ) 7.7250 1.9896 1.5849 16.8160 1.3962 
SE Mean( / Nσ ) 0.1280 0.0329 0.2620 0.2780 0.0231 

Variance ( 2σ ) 59.6690 3.9585 2.5121 282.7660 1.9494 
CoefVar ( σ/μ ) in % 21.1600 26.4200 15.9300 38.1800 22.0500 

Min 16.2000 0.2084 0.8000 7.3750 1.1350 
Median 37.6000 7.2506 10.2000 43.4170 6.5540 

Max 49.1000 22.7936 12.8000 97.2300 8.8210 
Skewness (σk) -0.3000 1.6000 -1.5200 0.2000 -0.3600 
Kurtosis (ku) -1.2100 5.7300 3.7700 -0.7000 -0.9000 

Table 5. Descriptive data statistics for the measured weather data parameters for the city of 
Al-Ain (Years 1995-2004) where N= 3650 data samples 

 

 
Fig. 4. Daily mean Global Solar Radiation (GSR) in Al-Ain, UAE for years 1995-2004 

 
Coefficient a1 a2 a3 a4 a5 

Value -1.1973 0.0971 0.0513 0.3850 - 0.0052 

Table 6. Regression coefficients of eq. (4) 

The regression model of eq. (4) yields a deterministic coefficient R2 = 0.7824 and  
MSE = 0.4247. In MATLAB, the regression between GSR and predictor variables (T, W, SSH, 
RH) is done using the Statistics Toolbox command 

 
>> regcoef= robustfit(xdata, GSR )   

 
Where ‘xdata‘ is an array matrix containing the four predictors, i.e. xdata=[T, WS, SSH, RH], 
and ‘regcoef‘ is a vector returning the regression coefficients between GSR and the four 
predictor weather variables resulting from the robust multi-linear regression process. The 
correlation between the regression component GSRregression and GSR can be found using  
 

>> corr(GSR, GSRregression) 
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Where ‘xdata‘ is an array matrix containing the four predictors, i.e. xdata=[T, WS, SSH, RH], 
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Step 5. Trend and Seasonality components of the residual regression error 
The residual error from the multivariate linear regression model in eq. (4), denoted by 
GSRresidue1 (t) = GSR - GSRregression(t), is shown in Fig. 5. The objective is to first examine it for 
trends and/or seasonality and decompose it to yield: 

 residue1 trend seasonal residue2GSR (t) GSR (t) GSR (t) GSR (t)= + +  (5) 

 

 
Fig. 5. Residual term of mean daily GSR after subtracting regression model of eq. (4) 

The trend component is extracted in MATLAB using the statement 
 

>> gsrdet=detrend(gsrresidue1`); % This gives GSRresidue1 with trend removed 
>> gsrtrend=gsr-gsrdet;    

 
The trend equation can be deduced using the cftool command in MATLAB that invokes the 
curve fitting GUI and then performs a linear polynomial fit to yield the linear trend 
equation: 

 trendGSR (t) 0.0771 4.2211E 05 t= − − ∗  (6) 

The mathematical model for the seasonal component, i.e. GSRseasonal(t), is found from 
MATLAB using the FFT algorithm. The resulting model is: 

 
NP 1

2
seasonal k k1

2 2GSR (t) a cos kt b sin kt
NP NPk

−

=

⎡ ⎤π π⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑  (7) 

The MATLAB statement to generate the Fourier Coefficients for a periodic sequence 
(period=NP=365) of data x[n], n=1, 2,.., N=3650 is done using: 
 

>> N=3650; 
>> y=fft(x,N);   % here x is an array representing the de-trendedGSR residual   
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The overall decomposition leads to the following regression model: 

 regression trend seasonalGSR(t) GSR (t) + GSR (t) GSR (t) residual Error(t)= + +  (8) 

where the multivariable linear regression, trend and seasonal components are described in 
eqs. (4), (6) and (7), respectively. The overall residual error of the time-series regression-
based model is shown in Fig. 6. 
 

 
Fig. 6. Residual mean daily global solar radiation error for 1995-2004 data of Al-Ain, UAE 

2.1.2.1 Time-series ARMA modelling for the residual term (stochastic component) 
The Box-Jenkins models (Box & Jenkins, 1994) are only applicable to stationary time series. 
The identification of an appropriate box-Jenkins model for a particular time-series would 
first require a check for stationarity. If the residual term exhibits a normal distribution 
behavior with zero mean and constant variance then it resembles white noise error and 
there is no need for further ARIMA modeling.  
The behavior of the ACF and PACF plots can help identify the ARMA model that best 
describes the resulting stationary time-series. Table 7 summarizes the ARMA model 
selection criteria (Enders 2010). In general, if the ACF of the time series value either cuts off 
or dies down fairly quick, then the time series values should be considered stationary. On 
the other hand, if the ACF dies down extremely slow, then the time series values may be 
considered non-stationary. If the model is adequate then these plots should show all spikes 
within the 95 % Confidence Interval (CI) bounds ( 1.96 / N± ) where N is the sample size. If 
the series results non-stationary, one could try to apply differencing or log- transformation 
and then check if these make the series stationary. A stationary time-series would have a 
quasi-normal distribution with zero mean and constant variance.  
Fig. 7 shows the ACF and PACF plots for the residual component as obtained from Minitab. 
Note that the ACF decays in an oscillating form after few lags within CI bounds thus 
implying a fairly stationary time-series. Differencing the residual component made the ACF 
and PACF more unstable with further deterioration of their behavior thus implying that 
differencing is inappropriate for this data. The PACF plot cuts off quickly after 1 lag 
indicating that an AR(2) or higher could be adequate. 
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∑  (7) 

The MATLAB statement to generate the Fourier Coefficients for a periodic sequence 
(period=NP=365) of data x[n], n=1, 2,.., N=3650 is done using: 
 

>> N=3650; 
>> y=fft(x,N);   % here x is an array representing the de-trendedGSR residual   
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The overall decomposition leads to the following regression model: 

 regression trend seasonalGSR(t) GSR (t) + GSR (t) GSR (t) residual Error(t)= + +  (8) 

where the multivariable linear regression, trend and seasonal components are described in 
eqs. (4), (6) and (7), respectively. The overall residual error of the time-series regression-
based model is shown in Fig. 6. 
 

 
Fig. 6. Residual mean daily global solar radiation error for 1995-2004 data of Al-Ain, UAE 

2.1.2.1 Time-series ARMA modelling for the residual term (stochastic component) 
The Box-Jenkins models (Box & Jenkins, 1994) are only applicable to stationary time series. 
The identification of an appropriate box-Jenkins model for a particular time-series would 
first require a check for stationarity. If the residual term exhibits a normal distribution 
behavior with zero mean and constant variance then it resembles white noise error and 
there is no need for further ARIMA modeling.  
The behavior of the ACF and PACF plots can help identify the ARMA model that best 
describes the resulting stationary time-series. Table 7 summarizes the ARMA model 
selection criteria (Enders 2010). In general, if the ACF of the time series value either cuts off 
or dies down fairly quick, then the time series values should be considered stationary. On 
the other hand, if the ACF dies down extremely slow, then the time series values may be 
considered non-stationary. If the model is adequate then these plots should show all spikes 
within the 95 % Confidence Interval (CI) bounds ( 1.96 / N± ) where N is the sample size. If 
the series results non-stationary, one could try to apply differencing or log- transformation 
and then check if these make the series stationary. A stationary time-series would have a 
quasi-normal distribution with zero mean and constant variance.  
Fig. 7 shows the ACF and PACF plots for the residual component as obtained from Minitab. 
Note that the ACF decays in an oscillating form after few lags within CI bounds thus 
implying a fairly stationary time-series. Differencing the residual component made the ACF 
and PACF more unstable with further deterioration of their behavior thus implying that 
differencing is inappropriate for this data. The PACF plot cuts off quickly after 1 lag 
indicating that an AR(2) or higher could be adequate. 
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Model ACF PACF 

AR (p) Spikes decay towards zero. 
Coefficients may oscillate. 

Spikes decay to zero after 
lag p 

MA (q) Spikes decay to zero after lag q Spikes decay towards zero. 
Coefficients may oscillate. 

ARMA (p,q) 
Spikes decay (either direct or 
oscillatory) to zero beginning 
after lag q 

Spikes decay (either direct or 
oscillatory) to zero beginning  
after lag p 

Table 7. Behavior of ACF and PACF for each of the general non-seasonal models 
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Fig. 7. Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF) for 
residual component of the mean daily GSR data 

2.1.2.2 Description of ARMA modeling process  
The time-series analysis of the residual stochastic component of the mean daily GSR data is 
conducted using SPSS and Minitab with help of MATLAB. The nature of the ARMA model 
used is first described followed by explanation of the model selection process with 
diagnostic measures used to validate the selected model. 
The non-seasonal autoregressive-moving average of order (p, q), e.g. ARMA(p, q) is 
described by the equation (Enders, 2010): 

 1 1 2 2 1 1 2 2... ...t t t p t p t t t q t qy y y y є є є єδ φ φ φ θ θ θ− − − − − −= + + + + + − − − − є (9) 

where δ is a random shock and 1 2, ,..., pφ φ φ are unknown autoregressive model coefficients 
that are estimated from sample data. The constant parameter is proportional to the mean 
value μ which is zero in our case. 1 2, ,..., qθ θ θ  are unknown moving average model 
coefficients that depend on the sample data. Moreover, 1 2, , ,...,t t t t qє є є є− − −  are statistically 
independent random shocks assumed to be randomly selected from a normal distribution 
with zero mean and constant variance. 
The ARMA(p, q) model parameters ( , 1,2,...,   , 1,2,..., )i ji p and j qφ θ= = described in eq. (9) 
are estimated using Least Square methods with known values of yt representing the residual 
component data. The estimated parameters of the selected ARMA(p, q) models should have 
t-values higher than 2.0 in order to be judged significantly different from zero at the 5 % 
level. Moreover, the coefficients should not be strongly correlated with each other in order 
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to yield a parsimonious ARMA model, whilst passing the diagnostic checks. A parsimonious 
model is desirable because including irrelevant lags in the model increases the coefficient 
standard errors and therefore reduces the t-statistics. Models that incorporate large numbers 
of lags tend not to forecast well as they fit data specific features, explaining much of the 
noise or random features in the data. Therefore, model coefficients with p-values higher 
than 0.05 are insignificant and should be eliminated to avoid over-fitting as they have little 
effect on the prediction model (Enders, 2010). Different models can be obtained for various 
combinations of AR and MA individually and collectively. The best model is selected using 
the following diagnostics: 
(a) Low Akaike Information Criteria (AIC)/ Schwarz-Bayesian Information Criteria (SBC, 
BIC)  
These model parameters are dependent on the data sample size, model mean-square error 
(MSE), and the (p, q) values of the ARMA model. Their definition can be found in MATLAB 
help (MATLAB, 2010) or (Enders, 2010). SBC selects the more parsimonious model and is 
better than AIC for large samples. The best model should have the lowest AIC/SBC value and the 
least MSE. 
(b) Plot of residual autocorrelation function (ACF) 
The appropriate ARMA model, once fitted, should have a residual error whose ACF plot 
varies within the 95% CI bounds ( 1.96 / N± ) where N is the number of observations upon 
which the model is based.  
(c) Non-significance of auto correlations of residuals via Portmanteau tests (Q-tests based 
on Chi-square statistics) such as Box-Pierce or Ljung-Box tests(White noise tests) 
Once the optimal ARMA(p,q) model for the residual GSR time-series is selected, there is a 
need to check the white noise test if the ACF/PACF correlograms show significant spikes at 
one or more lags that could be just by chance. These tests indicate whether there is any 
correlation in the time-series or whether the abnormal spikes encountered in the ACF and 
PACF of the residual error are just a set of random, identically distributed variables overall. 
The Ljung-Box Q-statistics can be used to check if the residuals from the ARMA(p, q) model 
behave as a white-noise process (Ljung & Box, 1978; Enders, 2010). Ljung & Box use the Q 
statistic: 

 ( )( )
2

12 K k
k

rQ n n
n k=

= +
−∑  (10) 

which yields a more accurate variance of ACF [variance becomes (n-K)/n2 instead of 1/n] 
compared to the statistic defined earlier by(Box & Pierce, 1970). K is the degrees of freedom 
representing the maximum lags considered (normally 20). n = N-d with N being the number 
of data points and d the degree of differencing (no differencing is assumed in this work so d 
= 0), and rk is the sample ACF at lag k.   
Under the null-hypothesis that all values of autocorrelation rk = 0, the Q Statistic is 
compared to critical values from chi-square distribution χ2 distributed with K-degrees of 
freedom. If the model is correctly specified, the residuals should be uncorrelated and Q 
should be small and consequently the probability value should be large. A white noise 
process would ideally have Q = 0. Therefore, if Q > 2

,DF αχ  at the specified DF and 
significance level α, then the we can reject the null hypothesis.  
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Fig. 7. Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF) for 
residual component of the mean daily GSR data 
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used is first described followed by explanation of the model selection process with 
diagnostic measures used to validate the selected model. 
The non-seasonal autoregressive-moving average of order (p, q), e.g. ARMA(p, q) is 
described by the equation (Enders, 2010): 
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where δ is a random shock and 1 2, ,..., pφ φ φ are unknown autoregressive model coefficients 
that are estimated from sample data. The constant parameter is proportional to the mean 
value μ which is zero in our case. 1 2, ,..., qθ θ θ  are unknown moving average model 
coefficients that depend on the sample data. Moreover, 1 2, , ,...,t t t t qє є є є− − −  are statistically 
independent random shocks assumed to be randomly selected from a normal distribution 
with zero mean and constant variance. 
The ARMA(p, q) model parameters ( , 1,2,...,   , 1,2,..., )i ji p and j qφ θ= = described in eq. (9) 
are estimated using Least Square methods with known values of yt representing the residual 
component data. The estimated parameters of the selected ARMA(p, q) models should have 
t-values higher than 2.0 in order to be judged significantly different from zero at the 5 % 
level. Moreover, the coefficients should not be strongly correlated with each other in order 

 
MATLAB-Assisted Regression Modeling of Mean Daily Global Solar Radiation in Al-Ain, UAE   

 

209 

to yield a parsimonious ARMA model, whilst passing the diagnostic checks. A parsimonious 
model is desirable because including irrelevant lags in the model increases the coefficient 
standard errors and therefore reduces the t-statistics. Models that incorporate large numbers 
of lags tend not to forecast well as they fit data specific features, explaining much of the 
noise or random features in the data. Therefore, model coefficients with p-values higher 
than 0.05 are insignificant and should be eliminated to avoid over-fitting as they have little 
effect on the prediction model (Enders, 2010). Different models can be obtained for various 
combinations of AR and MA individually and collectively. The best model is selected using 
the following diagnostics: 
(a) Low Akaike Information Criteria (AIC)/ Schwarz-Bayesian Information Criteria (SBC, 
BIC)  
These model parameters are dependent on the data sample size, model mean-square error 
(MSE), and the (p, q) values of the ARMA model. Their definition can be found in MATLAB 
help (MATLAB, 2010) or (Enders, 2010). SBC selects the more parsimonious model and is 
better than AIC for large samples. The best model should have the lowest AIC/SBC value and the 
least MSE. 
(b) Plot of residual autocorrelation function (ACF) 
The appropriate ARMA model, once fitted, should have a residual error whose ACF plot 
varies within the 95% CI bounds ( 1.96 / N± ) where N is the number of observations upon 
which the model is based.  
(c) Non-significance of auto correlations of residuals via Portmanteau tests (Q-tests based 
on Chi-square statistics) such as Box-Pierce or Ljung-Box tests(White noise tests) 
Once the optimal ARMA(p,q) model for the residual GSR time-series is selected, there is a 
need to check the white noise test if the ACF/PACF correlograms show significant spikes at 
one or more lags that could be just by chance. These tests indicate whether there is any 
correlation in the time-series or whether the abnormal spikes encountered in the ACF and 
PACF of the residual error are just a set of random, identically distributed variables overall. 
The Ljung-Box Q-statistics can be used to check if the residuals from the ARMA(p, q) model 
behave as a white-noise process (Ljung & Box, 1978; Enders, 2010). Ljung & Box use the Q 
statistic: 
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12 K k
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rQ n n
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= +
−∑  (10) 

which yields a more accurate variance of ACF [variance becomes (n-K)/n2 instead of 1/n] 
compared to the statistic defined earlier by(Box & Pierce, 1970). K is the degrees of freedom 
representing the maximum lags considered (normally 20). n = N-d with N being the number 
of data points and d the degree of differencing (no differencing is assumed in this work so d 
= 0), and rk is the sample ACF at lag k.   
Under the null-hypothesis that all values of autocorrelation rk = 0, the Q Statistic is 
compared to critical values from chi-square distribution χ2 distributed with K-degrees of 
freedom. If the model is correctly specified, the residuals should be uncorrelated and Q 
should be small and consequently the probability value should be large. A white noise 
process would ideally have Q = 0. Therefore, if Q > 2

,DF αχ  at the specified DF and 
significance level α, then the we can reject the null hypothesis.  
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Several ARMA models were analyzed based on the recommended criteria and two models 
surfaced out to be the best, namely, ARMA (2,1) and ARMA (4,3). Any further increase in 
the q-coefficients above 3 (q > 3) lead to over-fitting as witnessed by p-values exceeding 
0.05. The best parsimonious model obtained based on the suggested diagnostics is the 
ARMA(2,1) model. Table 8 shows the ARMA (2, 1) model parameters obtained from SPSS. 
All the estimated model coefficients have p -value less than 0.05 ( α= 5 %). This implies that 
all the coefficients of the selected Box-Jenkins model are significant since the null hypothesis 
H0: φ= 0 (AR) or θ=0 (MA) can be rejected for the preset significance level α (can be chosen 
as 0.05 or 0.01). Table 9 shows the model fit statistics for the ARMA (2,1) model. The Ljung-
Box statistic value Q = 15.462 at lag 18 has a corresponding p = 0.419 > 0.05. Hence, we 
cannot reject the adequacy of model by setting α = 0.05.  The resulting ARMA (2,1) model 
will therefore yield a residual error that resembles white noise error. The ACF and PACF 
plots of the residual error of the ARMA(2, 1) model, shown in Fig. 8, vary within the 95% CI 
bounds. The spikes in the ACF and PACF at lag 7 are due to random events and thus cannot 
be explained. However, since it is a 95% confidence interval, one can expect this to happen 
once in every twenty lags and so we will not be concerned with this. 
 

Parameter Lag Estimate Standard Error t-value Sig. (p-value) 
AR (1) 1 1.4504 0.0189 76.7886 0.000 
AR (2) 2 -0.4568 0.0172 -26.5608 0.000 
MA (1) 1 0.9699 0.0100 97.0868 0.000 

Table 8. SPSS least square estimation of the model parameters for ARMA(2, 1) model of 
residual GSR component 

 

Model Fit statistics Ljung-Box Q(18) 
Stationary R2 R2 RMSE MAPE MAE MaxAPE MaxAE Norm. BIC Statistics DF Sig. 

.265 .265 .337 458.224 .238 240313.424 2.491 -2.168 15.462 15 .419 

Table 9. ARMA(2, 1) model statistics 

Another method to ensure that the selected ARMA model yields a stationary residual error 
is by checking the Unit-root rule for stationarity. Assume that the lag operator in eq. (9) is B. 
Then Byt= yt-1. Eq. (9) can then be written in the form (assume zero mean; δ= 0): 

 ( ) ( )2 2
1 2 1 21 ... 1 ...p q

p t q tB B B y B B B єφ φ φ θ θ θ− − − − = − − − −  (11) 

or 

 ( ) ( )t tB y B єφ θ=  (12) 

where 

 1 1( ) 1  ;    ( ) 1p qi i
i ii iB B B Bφ φ θ θ

= =
= − = −∑ ∑  (13) 

The stationarity of the time-series sequence yt requires that all the roots of the AR(p) 
coefficients polynomial φ (B) should lie outside the unit circle (Enders, 2010). 
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Fig. 8. ACF and PACF plots for the residual error of the ARMA(2, 1) model 

The MATLAB function “roots(c)” computes the roots of the polynomial P(x) whose 
coefficients are the elements of the vector c. If c has (n+1) components, the polynomial is   

P(x)=c(1)*xn+ ... + c(n)*x + c(n+1). 

Next, the ARMA(2,1) model parameters φ(B) obtained from SPSS are used in MATLAB to 
perform the stationarity unit-root test as follows : 
 

>> phi=[1.4504    -0.4568]; 
>> phiB=[-phi(end:-1:1), 1]  
 phiB=  
 0.4568  -1.4504   1 
>> roots(phiB)   % find roots of polynomial with coefficients phiB 
 ans = 
     2.1631 
     1.0120 

 
Note that all roots of φ(B) lie outside the unit circle thus implying a stationary ARMA(2, 1) 
model. Once the ARMA(p, q) model is selected and checked for stationary residual error, 
the GSR regression model involving the ARMA model becomes: 

 regression trend seasonal ARIMAGSR(t) GSR (t) + GSR (t) GSR (t) GSR (t) + WN(t)= + +  (14) 

where WN(t) is the final residual error which resembles white noise with zero mean and 
constant variance. 
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2.1.2.3 Comparison of Time-series regression model with measured data  
Use cftool MATLAB GUI toolbox to study the correlation between the regression model 
without (eq (8)) and with ARMA modeling (eq (14)) and the measured data set for years 
1995-2004. This MATLAB tool sketches the data and finds the polynomial fit and descriptive 
statistics as depicted in Fig. 9 (a-b). The predicted time-series regression model with and 
without ARMA modeling yields deterministic coefficients of 94.4% and 92.4 %, respectively, 
as shown in Fig.9 (a)-(b).The ARMA-based model yields lower error statistics RMSE, MABE 
and MAPE and hence will do a better forecasting job. 
 

 
(a) 

 
(b) 

Fig. 9. MATLAB “cftool” GUI comparison between regression and measured data for years 
1995-2004 (a) with, and (b) without ARMA model 
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The mean daily GSR data comparison between the measured and the regression model for 
years 1995-2004 in Al-Ain is shown in Fig. 10. The residual error term of GSR is written as:  

 residual measured regressionGSR (t) GSR (t) GSR (t)= −  (15) 

This error is required to have normal distribution with zero mean and constant variance 
thus resembling a white noise error. The check of normality can be done in SPSS or Minitab 
or other statistical package. In MATLAB and after invoking the Statistics toolbox, we can use 
the command ‛normplot(x)’ where x is the time-series data array. We can also use the 
Quantile-Quantile Plots (Q-Q Plot) ‘qqplot(x,xa)’ where x and xa represent the measured 
and approximate data sequences. A linear relationship between x ad xa suggests that the 
two samples may come from the same distribution family and hence ensure a normally 
distributed residual error. Additional statistical studies may be done including ANOVA 
test and two-sample variance tests with the help of Minitab, SPSS or other statistical 
software packages. In MATLAB, we can use the Statistics toolbox functions ANOVA1 and 
ANOVA2. 
 

 
Fig. 10. Mean daily GSR data for years 1995-2004 in Al-Ain, UAE 

The residual error of the GSR regression model was checked for normality in the previous 
section in order to ensure its stationarity for proper prediction of weather data. Minitab or 
SPSS are used to confirm the normality of the residual error. Fig. 11 shows the normality test 
results from Minitab showing a residual error with near zero mean (5.8380E-05) and a 0.3364 
standard deviation. Note from Fig. 11 that the residual error moves along the normality line 
between 1 % and 95% percentiles. The computed Skewness (0.204) and Kurtosis (4.85) 
constants indicate a quasi-normal distribution behavior that is slightly shifted to the left of 
the mean and with more pointed bell shape than the normal distribution curve. 
Table 10 shows the result of running Fisher’s two-tailed F-test on the Regression and 
Measured data for years 1995-2004.  This variance ratio test follows the Null hypothesis (H0) 
that the ratio between variances is equal to 1 against the alternative (Ha) that the ratio 
between variances is different from 1. The computed p-value shown in Table 10 is greater 
than the significance level alpha=0.05 and thus we cannot reject the null hypothesis H0. The 
risk to reject the null hypothesis H0 while it is true is 22.04% and 18.23 % for Regression and 
Regression with ARMA cases, respectively. 
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The mean daily GSR data comparison between the measured and the regression model for 
years 1995-2004 in Al-Ain is shown in Fig. 10. The residual error term of GSR is written as:  

 residual measured regressionGSR (t) GSR (t) GSR (t)= −  (15) 

This error is required to have normal distribution with zero mean and constant variance 
thus resembling a white noise error. The check of normality can be done in SPSS or Minitab 
or other statistical package. In MATLAB and after invoking the Statistics toolbox, we can use 
the command ‛normplot(x)’ where x is the time-series data array. We can also use the 
Quantile-Quantile Plots (Q-Q Plot) ‘qqplot(x,xa)’ where x and xa represent the measured 
and approximate data sequences. A linear relationship between x ad xa suggests that the 
two samples may come from the same distribution family and hence ensure a normally 
distributed residual error. Additional statistical studies may be done including ANOVA 
test and two-sample variance tests with the help of Minitab, SPSS or other statistical 
software packages. In MATLAB, we can use the Statistics toolbox functions ANOVA1 and 
ANOVA2. 
 

 
Fig. 10. Mean daily GSR data for years 1995-2004 in Al-Ain, UAE 

The residual error of the GSR regression model was checked for normality in the previous 
section in order to ensure its stationarity for proper prediction of weather data. Minitab or 
SPSS are used to confirm the normality of the residual error. Fig. 11 shows the normality test 
results from Minitab showing a residual error with near zero mean (5.8380E-05) and a 0.3364 
standard deviation. Note from Fig. 11 that the residual error moves along the normality line 
between 1 % and 95% percentiles. The computed Skewness (0.204) and Kurtosis (4.85) 
constants indicate a quasi-normal distribution behavior that is slightly shifted to the left of 
the mean and with more pointed bell shape than the normal distribution curve. 
Table 10 shows the result of running Fisher’s two-tailed F-test on the Regression and 
Measured data for years 1995-2004.  This variance ratio test follows the Null hypothesis (H0) 
that the ratio between variances is equal to 1 against the alternative (Ha) that the ratio 
between variances is different from 1. The computed p-value shown in Table 10 is greater 
than the significance level alpha=0.05 and thus we cannot reject the null hypothesis H0. The 
risk to reject the null hypothesis H0 while it is true is 22.04% and 18.23 % for Regression and 
Regression with ARMA cases, respectively. 
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Fig. 11. Normality test for residual error with Minitab 

 

Parameter Regression vs. 
Measured 

Regression with ARMA 
vs. Measured 

95% CI on ratio of variances ] 0.976, 1.111 [ ] 0.979, 1.115 [ 
Ratio of variances 1.041 1.045 

F (Observed value) 1.041 1.045 
F (Critical value) 1.067 1.067 

DF1, DF2 3649, 3649 3649, 3649 
p-value (Two-tailed) 0.2204 0.1823 

Table 10. Fisher's two-tailed F-test for the model data of 10 years 

Levene’s equal variances test can also be applied as shown in Table 11. As the computed p-
value in Tables 11 is greater than the significance level alpha=0.05, one cannot reject the null 
hypothesis H0. The risk to reject the null hypothesis H0 in Levene’s test while it is true is 
55.62% and 43.96% for Regression and Regression with ARMA cases, respectively. Levene’s 
test is mostly used in samples with normal distribution. 
 

Parameter Regression Vs 
Measured 

Regression with ARMA Vs 
Measured 

F (Observed value) 0.346 0.597 
F (Critical value) 3.843 3.843 

DF1, DF2 1, 7298 1, 7298 
p-value (one-tailed) 0.5562 0.4396 

Table 11. Levene's two-tailed variance test 

2.1.2.5 Validation of time-series regression model 
In the following section, the time-series regression model is validated with measured test 
data set for years 2005-2007 in Al-Ain, UAE. A MATLAB code is written to implement the 
regression model for the input test data (1095 points). The generated regression model test 
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data is then compared with the test data samples to check the correlation and to study the 
accuracy of the prediction model. An excellent agreement is noted between the mean daily 
regression and measured test data for years 2005-2007. The statistical error data computed 
with MATLAB yields deterministic coefficients R2 = 92.6% and 90.77% with and without 
ARMA modeling, respectively, thus indicating good model prediction performance. 
MATLAB is again used to determine the monthly mean GSR data for the test data period 
(2005-2007). The resulting monthly mean GSR data comparison between test (measured) 
and regression model for years 2005-2007 is shown in Fig. 12.  Note the excellent agreement 
between regression model and the test data. Fig. 12 also shows comparison results obtained 
using Multi-layer Perceptron (MLP) and Radial Basis Function (RBF) Artificial Neural 
Networks (ANN) obtained by the co-author (Al-Shamisi & Assi, 2011) using the same model 
and test data sets. Fig. 12 shows a better prediction performance for the regression models 
over the ANN-based models for Al-Ain test data. The low error parameters (RMSE, MBE, 
MABE, MBE, and MAPE) obtained for the regression models provide a clear indication of 
the potential of these techniques for long term GSR data prediction. 
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Fig. 12. Monthly mean GSR data comparison for test data 2005-2007 in Al-Ain city 

2.2 Definition of the statistical error parameters  
This section defines formulas used to compute the statistical error parameters in MATLAB. 
These parameters attest to the accuracy of the models used for predicting the mean daily 
global solar radiation (GSR). The error parameters were also computed using EXCEL and 
SPSS and values agree very well with MATLAB results. The formulas used are: 
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i i
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= × ∑  
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data is then compared with the test data samples to check the correlation and to study the 
accuracy of the prediction model. An excellent agreement is noted between the mean daily 
regression and measured test data for years 2005-2007. The statistical error data computed 
with MATLAB yields deterministic coefficients R2 = 92.6% and 90.77% with and without 
ARMA modeling, respectively, thus indicating good model prediction performance. 
MATLAB is again used to determine the monthly mean GSR data for the test data period 
(2005-2007). The resulting monthly mean GSR data comparison between test (measured) 
and regression model for years 2005-2007 is shown in Fig. 12.  Note the excellent agreement 
between regression model and the test data. Fig. 12 also shows comparison results obtained 
using Multi-layer Perceptron (MLP) and Radial Basis Function (RBF) Artificial Neural 
Networks (ANN) obtained by the co-author (Al-Shamisi & Assi, 2011) using the same model 
and test data sets. Fig. 12 shows a better prediction performance for the regression models 
over the ANN-based models for Al-Ain test data. The low error parameters (RMSE, MBE, 
MABE, MBE, and MAPE) obtained for the regression models provide a clear indication of 
the potential of these techniques for long term GSR data prediction. 
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Fig. 12. Monthly mean GSR data comparison for test data 2005-2007 in Al-Ain city 

2.2 Definition of the statistical error parameters  
This section defines formulas used to compute the statistical error parameters in MATLAB. 
These parameters attest to the accuracy of the models used for predicting the mean daily 
global solar radiation (GSR). The error parameters were also computed using EXCEL and 
SPSS and values agree very well with MATLAB results. The formulas used are: 
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where i
mGSR  is the ith measured value, i

pGSR  is the predicted value from the regression 
model, and N is the total number of data points.   

3. Conclusion  
This chapter addresses the MATLAB tools employed in finding appropriate prediction 
models for the mean daily and monthly global solar radiation in the city of Al-Ain, United 
Arab Emirates. A detailed description of tools used in obtaining the classical empirical 
regression models as well as time-series ARMA models is presented including computation 
of error statistics and use of diagnosis tests to validate the selected models. Excellent 
agreement is observed between the empirical regression and time-series prediction models 
and measured test data with high deterministic coefficients exceeding 90 % and low MBE, 
MABE, MAPE and RMSE error statistics that attest to the suitability of these models for 
long-term weather data prediction. The same MATLAB tools will be used to come up with 
prediction models for other UAE cities. 
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1. Introduction 
Information about the availability of solar radiation on horizontal surface is essential for the 
optimum design and study of solar energy systems. For a country like UAE, the efficient 
application of solar energy seems inevitable because of abundant sunshine available 
throughout the year. The traditional way of knowing the amount of global solar radiation 
(GSR) in a particular region is to install pyranometers at as many locations as possible in this 
region thus requiring daily maintenance and data recording, and consequently increasing 
cost of GSR data collection. Therefore, it is rather more economical to develop methods to 
estimate the GSR using climatological parameters (Akhlaque et al., 2009; Kassem et al., 2009; 
Falayi et al., 2008; El-Sebaii & Trabea, 2005). 
Many researchers estimated global solar radiation by using artificial neural networks. 
(Mohandes et al, 1998) applied ANN techniques to predict GSR using weather data from 41 
stations in Saudi Arabia. Data from 31 stations was used in training the NN and the 
remaining data was used for testing. Input variables to the NN included 4 parameters: 
latitude, longitude, altitude and sunshine duration. Their sample data was not large enough 
to allow a credible comparison between the ANN models used and empirical regression 
models. (Lam et al., 2008) have used Artificial Neural networks ANNs to develop 
predication models for daily global solar radiation using measured sunshine duration for 40 
cities covering 9 major thermal climatic zones and sub-zones in China. (Alam et al., 2009) 
used ANNs to estimate monthly mean hourly and daily diffuse solar radiation based on 
weather data from 10 Indian stations which have different climatic conditions. (Alawi & 
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using different combination of day of year, time day of year, air temperature and relative 
humidity. (Krishnaiah et al., 2007) considered the artificial neural network (ANN) approach 
for estimating hourly global solar radiation (HGSR) in India. The ANN models are 
presented and implemented on real meteorological data. The solar radiation data from 7 
stations are used for training the ANN and data from two stations are used for testing the 
predicted values. (Mubiru, 2008) predicted a monthly average daily total solar irradiation on 
a horizontal surface for locations in Uganda by using artificial neural network technique, 
where both geographical and meteorological data are used to develop model. 
For countries like UAE, where solar radiation has significant strength, the average annual 
solar hours is 3568 h (i.e. 9.7 h/day), which corresponds to an average annual solar radiation 
of approximately 2285 kWh/m2 (i.e. 6.3 kWh/m2 per day) (Assi & Jama, 2010). 
This book chapter will show the potential of MATLAB tools in writing scripts that help in 
developing Artificial Neural Network (ANN) models for the prediction of global solar 
radiation in Al Ain city, UAE. The developed scripts use built-in commands and functions 
for customizing data processing, network architecture, training algorithms and testing 
performance of the ANN models. 

2. Background 
2.1 Neural network 
A neural network is a massively parallel distributed processor made up of simple 
processing units that have a natural tendency for storing experiential knowledge and 
making it available for us. Artificial neural network (ANN) is a type of Artificial Intelligence 
technique that mimics the behavior of the human brain (Haykin, 2009). 
ANNs have the ability to model linear and non-linear systems without the need to make 
assumptions implicitly as in most traditional statistical approaches. They have been applied 
in various aspects of science and engineering (Rivard & Zmeureanu, 2005; Chantasut et al., 
2005). 
ANNs can be grouped into two major categories: feed-forward and feedback (recurrent) 
networks. In the former network, no loops are formed by the network connections, while 
one or more loops may exist in the latter. The most commonly used family of feed-forward 
networks is a layered network in which neurons are organized into layers with connections 
strictly in one direction from one layer to another (Jain et al., 1996). 

2.2 Multilayer preceptor (MLP) 
MLPs are the most common type of feed-forward networks. Fig. 1 shows an MLP which has 
three types of layers: an input layer, an output layer and a hidden layer. 
Neurons in input layer only act as buffers for distributing the input signals xi (i=1, 2 …n) to 
neurons in the hidden layer. Each neuron j (Fig. 2) in the hidden layer sums up its input 
signals xi after weighting them with the strengths of the respective connections wji from the 
input layer and computes its output yj as a function f of the sum. 
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f can be a simple threshold function or a sigmoidal, hyperbolic tangent or radial basis 
function. 
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Fig. 1. A Multi-layered perceptron (MLP) network 

The output of neurons in the output layer is computed similarly. The backpropagation 
algorithm, a gradient descent algorithm, is the most commonly adopted MLP training 
algorithm. It gives the change ∆wji the weight of a connection between neurons iand j as 
follows: 
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Fig. 2. Detail of the perceptron process 

where η is a parameter called the learning rate and δj is a factor depending on whether 
neuron j is an input neuron or a hidden neuron. For output neurons, 

 δj = (∂f/∂netj)(yj(t) − yj) (3) 

and for hidden neurons 

 δj = (∂f/∂netj)(∑qwjqδq) (4) 

In Eq. (3), netj is the total weighted sum of input signals to neurons j and yj(t) is the target 
output for neuron j. 
As there are no target outputs for hidden neurons, in Eq. (4), the difference between the 
target and actual output of a hidden neurons j is replaced by the weighted sum of the δq 
terms already obtained for neurons q connected to the output of j. 
The process begins with the output layer, the δ term is computed for neurons in all layers 
and weight updates determined for all connections, iteratively. The weight updating process 
can happen after the presentation of each training pattern (pattern-based training) or after 
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the presentation of the whole set of training patterns (batch training). Training epoch is 
completed when all training patterns have been presented once to the MLP. 
A commonly adopted method to speed up the training is to add a “momentum” term to Eq. 
(5) which effectively lets the previous weight change influence the new weight change: 

 ∆wij (I + 1) = η δj xi + µ ∆wij(I)  (5) 

where ∆wij (I + 1) and ∆wij (I) are weight changes in epochs (I + 1) and (I), respectively, and µ 
is “momentum” coefficient (Jayawardena & Fernando, 1998). 

2.3 Radial Basis Function (RBF) 
Radial basis function network consists of three layers Fig 3. The input layer has neurons 
with a linear function that simply feed the input signals to the hidden layer. Moreover, the 
connections between the input and hidden layer are not weighted. The hidden neurons are 
processing units that perform the radial basis function. Each unit is mathematically defined 
as 

 φj (x) = φ(║ x - xj║), j = 1 ,2, …, n (6) 
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Fig. 3. Radial basis function network 

The jth input data point xj denotes the center of the radial basis function, and the vector x is 
the pattern applied to input layer. Selecting the basis function is not crucial to the 
performance of the network the most common being the Gaussian basis function which is 
used in this study. It is defined as 

 φj (x) = exp(-1/2σ2j (║ x - xj║2 )), j = 1 ,2, …, n (7) 

The output neuron is a summing unit to produce the output as a weighted sum of the 
hidden layer outputs as shown by  
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(Haykin, 2009; Jayawardena & Fernando, 1998) 

3. Problem definition 
Building reliable solar energy systems regardless whether the system is a photovoltaic or 
thermal solar energy system requires information on the GSR in the region where the 
system is to be built. Many countries developed models for the GSR to predict the solar 
radiation and help in building solar energy systems. In UAE we still lack such models for 
GSR, and this work is the first attempt to generate a weather model for Al Ain city (see Fig.4 
for its geographical location in the UAE) and which will later be extended to other UAE 
cities. 
In this work, the maximum temperature (°C), mean wind speed(knot), sunshine(hours), 
mean relative humidity(%) and solar radiation (kWh/m2) for Al Ain city are provided by 
Abu Dhabi’s National Center of Meteorology and Seismology (NCMS), for the period 
between 1995 and 2007. The data between 1995 and 2004 is used for training the MLP and 
RBF- based ANN techniques while the data between 2005 and 2007 is used for testing the 
models. 
 

 
Fig. 4. Geographical location of Al Ain city in the UAE (southwest of UAE at Latitude: 24° 
16’ N and Longitude: 55° 36’ E) 

Fig. 5 shows the time-series plot of the four measured weather predictors namely, maximum 
temperature (T), mean wind speed (W), sunshine (SH), relative humidity (RH), as well as 
the mean daily global solar radiation (GSR, dependent model variable) for Al-Ain city 
between 1995 and 2007. All the plots show a clear seasonal component of period equals to 
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365 days. These plots can help examine the correlation between the output variable (GSR) 
and the four weather predictors. 
 

 
Fig. 5. Measured weather data for Al Ain City, UAE between 1995 and 2007 
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Eleven combinations of weather predictor variables were considered, as shown in Table 1, in 
order to investigate their effect on GSR. Both the MLP and RBF neural network methods are 
applied for predicting the GSR in Al-Ain city based on the combinations shown in Table 1. 
 

Model No. Input parameters Model No. Input parameters 
1 T, W, SH & RH 7 T& SH 
2 T, W & SH 8 T& RH 
3 T, W & RH 9 W & SH 
4 T, SH & RH 10 W& RH 
5 W, SH & RH 11 SH & RH 
6 T & W   

Table 1. Models based on different combinations of input parameters 

Various network architectures were investigated in order to determine the optimal MLP 
architecture (i.e. the highest coefficient of determination, the lowest root mean square error 
and the lowest mean bias error) for each combination of input variables. Different training 
algorithms were used with changes in the number of neurons and hidden layers. In addition, 
different transfer functions including the tangent sigmoid, log sigmoid and linear functions 
in the hidden layer were also investigated. 
Fourteen back-propagation training algorithms were tested in order to obtain the most 
appropriate algorithm for the training process. The algorithms include: Levenberg-Marquardt, 
Bayesian regularization, BFGS quasi-Newton, Powell -Beale conjugate gradient, Gradient 
descent, Gradient descent with momentum, Gradient descent with adaptive learning rate, 
Gradient descent with momentum & adaptive learning rate , One step secant, Fletcher-
Powell conjugate gradient, Random order incremental training with learning, Resilient, 
Polak-Ribiere conjugate gradient, and Batch training with weight and bias learning rules. 
The radius value (known as spread) of the function and the number of neurons are varied 
for best performance of the RBF network. Basically, the larger the value of spread, the 
smoother the function approximation will be. However, if the spread value is too large, 
many neurons may be required to fit the rapidly-changing function. On the other hand, very 
small spread values will require many neurons in order to fit the smooth function and 
networks cannot be generalized well (Beale et al, 2010). In this paper, the spread will be 
varied between 1 and 60 whereas the number of neurons is changed between 5 and 600 in 
order to come up with the most suitable ANN prediction models. 

4. Designing and programming ANN models 
4.1 Designing ANN models 
Designing ANN models follows a number of systemic procedures. In general, there are five 
basics steps: (1) collecting data, (2) preprocessing data, (3) building the network, (4) train, 
and (5) test performance of model as shown in Fig 6. 

4.1.1 Data collection 
Collecting and preparing sample data is the first step in designing ANN models. As it is 
outlined in section 3, measurement data of maximum temperature (°C), mean wind 
speed(knot), sunshine (hours), mean relative humidity(%) and solar radiation (kWh/m2) for 
Al Ain city for 13-year period from 1995 to 2007 was collected through the NCMS. 
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4.1.2 Data pre-processing 
After data collection, three data preprocessing procedures are conducted to train the ANNs 
more efficiently. These procedures are: (1) solve the problem of missing data, (2) normalize 
data and (3) randomize data. The missing data are replaced by the average of neighboring 
values during the same week. Normalization procedure before presenting the input data to 
the network is generally a good practice, since mixing variables with large magnitudes and 
small magnitudes will confuse the learning algorithm on the importance of each variable 
and may force it to finally reject the variable with the smaller magnitude (Tymvios et al., 
2008).  
 

 
Fig. 6. Basic flow for designing artificial neural network model 

4.1.3 Building the network 
At this stage, the designer specifies the number of hidden layers, neurons in each layer, 
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Hyperbolic Tangent Sigmoid (logsig) and Logistic Sigmoid (tansig). The graphical 
illustration and mathematical form of such functions are shown in Table 2. 
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In order to evaluate the performance of the developed ANN models quantitatively and 
verify whether there is any underlying trend in performance of ANN models, statistical 
analysis involving the coefficient of determination (R2), the root mean square error (RMSE), 
and the mean bias error (MBE) were conducted. RMSE provides information on the short 
term performance which is a measure of the variation of predicated values around the 
measured data. The lower the RMSE, the more accurate is the estimation. MBE is an 
indication of the average deviation of the predicted values from the corresponding 
measured data and can provide information on long term performance of the models; the 
lower MBE the better is the long term model prediction. A positive MBE value indicates the 
amount of overestimation in the predicated GSR and vice versa. The expressions for the 
aforementioned statistical parameters are: 

 ( ),
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p i i
i

MBE I I
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where Ip,I denotes the predicted GSR on horizontal surface in kWh/m2, Ii denotes the 
measured GSR on horizontal surface in kWh/m2, and n denotes the number of observations. 

4.2 Programming the neural network model  
MATLAB is a numerical computing environment and also a programming language.  
It allows easy matrix manipulation, plotting of functions and data, implementation  
of algorithms, creating user interfaces and interfacing with programs in other languages. 
The Neural Network Toolbox contains the MATLAB tools for designing, implementing, 
visualizing and simulating neural networks. It also provides comprehensive support  
for many proven network paradigms, as well as graphical user interfaces (GUIs) that  
enable the user to design and manage neural networks in a very simple 
way(http://www.mathworks.com/products/neuralnet). 
In this paper MATLAB (R2010a) is used to write script files for developing MLP and RBF 
ANN models and performance functions for calculating the model performance error 
statistics such as R2, RMSE and MBE. Fig. 7 shows the procedural steps to develop the ANN 
models. The MLP program starts by reading data from an Excel file (Training.xlsx and 
Testing.xlsx). “xlsread” function is used to read the data specified in the Excel file. 
Data_Inputs = xlsread('AlAin_TrainingSet_1995-2004_Model_1.xlsx');  
Testing_Data = xlsread('AlAin_TestingSet_2005-2007_Model1.xlsx'); 
Training data samples are randomized by using the function “randperm”. This function 
returns a random permutation of the 3650 integers (training samples) while the order of 
columns is kept unchanged (T, W, SH, RH & GSR). 
Shuffling_Inputs = Data_Inputs(randperm(3650),1:5); 
Next, the input variables (maximum temperature, mean wind speed, sunshine and mean 
relative humidity) and output variable (global solar radiation) are specified for training and 
testing. The first four columns present the inputs while the last column denotes the output 
data (target). The total number of training samples is 3650 (10 years from 1995 to 2004 
excluding leap days) while the testing samples are 1095 (3 years from 2005 to 2007). 
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Fig. 7. Flow Chart for developing MLP and RBF networks using MATLAB 

Training_Set = Shuffling_Inputs(1:3650,1:4)% specify training set [1995 - 2004] 
Target_Set  = Shuffling_Inputs(1:3650,5)  % specify target set [1995 - 2004] 
Testing_Set = Testing_Data(1:1095,1:4) % specify Testing set [2005- 2007] 
Testing_Target_Set = Testing_Data(1:1095, 5)  % specify Testing set, Target [2005- 2007] 
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A normalization process is applied for training and testing the data. Function “mapstd” is 
used to normalize the inputs and target in order to yield zero mean and unity standard 
deviation. The output is converted back into the same unit that is used for the original 
target. Training and testing data are converted to rows (MATLAB requires that all data must 
be presented as row vectors). 
[pn, ps] = mapstd(Training_Set');  
[tn, ts] = mapstd(Target_Set'); 
The settings structures pn and tn contain normalized values of inputs and output, 
respectively, while ps and ts contain the means and standard deviations of the original 
inputs and targets.  
MATLAB helps devise the MLP model by using the built-in function “newff” which creates 
a feed-forward back-propagation network. The designer can specify the number of hidden 
layers, the neurons in each layer, the transfer function in each layer, the training function, 
the weight/bias learning function, and the performance function. Moreover, this command 
will automatically initialize the weights and biases. The function is called as follows: 
MyNetwork = newff(pn,tn, [i] , {tf}); 
where the arguments pn and tn are the normalized input and output, respectively. [i] 
implies that the network structure consists of one hidden layer and “i” neurons. For “j” 
hidden layers we use [i, j]. The argument {tf} denotes the transfer function of the ith layer. 
The network is next configured as follows 
MyNetwork.trainFcn = LM; 
MyNetwork.trainparam.min_grad = 0.00000001; 
MyNetwork.trainParam.epochs = 1000; 
MyNetwork.trainParam.lr = 0.4; 
MyNetwork.trainParam.max_fail =20;  
where 
“trainFcn”: defines the function used to train the network. It can be set to the name of any 
 training function (LM ='trainlm'; %Levenberg-Marquardt back-propagation) 
“trainparam.min_grad”: denotes the minimum performance gradient 
“trainParam.epochs”: denotes the maximum number of epochs to train 
“trainParam.lr”: denotes the learning rate 
“trainParam.max_fail”: denotes the maximum validation failures 
The function “newrb” is used for iteratively creating an RBF network by including one 
neuron at a time. Neurons are added to the network until the sum squared error is found to 
be very small or the maximum numbers of neurons are reached. The call for this function is: 
MyNetwork= newrb(pn,tn,goal,spread, mn, df);  
where pn and tn are the input and target, respectively. The argument “goal” denotes the 
mean squared error goal, set here to be 0.01, and “spread” represents the spread of radial 
basis functions, changed between 1 and 60 and denoted here as “i”. The argument “mn” is 
the maximum number of neurons, changed between 5 and 600 and denoted here “j’, while 
“df” represents the number of neurons to add between displays and is set to 50. 
The MLP network is trained using the “trainFcn” and “trainParam” train functions. The 
trained network is then saved in MATLAB by calling the functions  
MyNetwork = train(MyNetwork,pn,tn); 
save(NetworkName,'MyNetwork'); 
“NetworkName“ is a variable name which can be changed according to the network train 
function and configuration in order to yield a meaningful name. 
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When the training is complete, the network performance should be checked. Therefore, 
unseen data (testing) will be exposed to the network. The testing simulation process is called 
with the statement: 
y = sim(MyNetwork, testn); % simulate network 
Fig. 8 and Fig. 9 show, respectively, screen captions of the MLP and RBF ANN training 
windows obtained using the “nntraintool” GUI toolbox in MATLAB.  
 

 
Fig. 8. MLP network Training Window 

The output from the network (daily GSR) is denormalized in order to compare it with the 
measured data. After the network has been trained, one should use these settings to 
transform any future inputs that are applied to the network. 
y_again = mapstd('reverse',y, targets) % denormlized 
The performance function is then called to calculate and store the performance error 
statistics as follows 
Daily_Result = performance(y,t,'all', 'v') % calculate statstics 
Daily measured and predicted data are processed to compute and store the daily mean 
values along with corresponding error statistics. Afterwards, the daily mean of measured 
and predicted data are processed to produce monthly mean of measured as well as 
predicted data. This process is followed by using a MATLAB script to calculate the 
statistical results. The last step concludes with writing the mean daily and monthly test 
results along with corresponding statistical data to an Excel sheet. 
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The output from the network (daily GSR) is denormalized in order to compare it with the 
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transform any future inputs that are applied to the network. 
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Fig. 9. RBF network Training Window 

These steps are performed repeatedly where in MLP the control loop is a number of hidden 
layers and a number of neurons, while in RBF, the loop is controlled by spread and number 
of neurons. The stored results are checked and compared for all tested models in order to 
find the optimal network structure which has highest R2 and lowest RMSE and MBE. 

5. Results and discussion  
This section presents the best achieved results for both the MLP and RBF ANN models. 
Tables 3 and 4 show the computed values of R2, RMSE and MBE for the developed ANN 
models (MLP and RBF) considering different network structures. For the network structure 
identification used in the second column of Tables 3-4, the first number indicates number of 
neurons in the input layer, the last number represents neurons in the output layer, and the 
numbers in between represent neurons in the hidden layers. 
From Table 3 we note that model one is the best among all the investigated MLP models for 
long performance prediction as it yields the lowest values of MBE, RMSE and a 92 % 
coefficient of determination. The input parameters used in the selected model are the 
maximum temperature, daily sunshine hours, and the mean relative humidity. Table 4 on 
the other hand, shows that model four is the best among all the investigated RBF models; 
the input parameters for this model are again the maximum temperature, sunshine hours, 
and mean relative humidity. 
In the seventh, eighth and eleventh models, the MLP technique has better accuracy for 
predicting the average monthly GSR compared to RBF. For these models, the computed 
MBE values of 0.00376, 0.06900 and 0.00193, respectively, are promising and provide good 
accuracy for long term prediction. On the other hand, some RBF models perform better in 
terms of low MBE values. 
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Model Network Structure R2 RMSE MBE 

1 4 –100– 1 0.92 0.349 -0.00571 

2 3 – 30 -1 0.91 0.370 -0.00754 

3 3 – 35 -1 0.84 0.495 -0.01611 

4 3 – 20 – 30 – 25 -1 0.92 0.356 -0.02271 

5 3- 125 – 1 0.95 0.351 -0.07429 

6 3 – 190 -1 0.83 0.518 -0.05402 

7 2 – 80 – 1 0.91 0.384 0.00376 

8 2 – 195 – 1 0.89 0.485 0.06900 

9 2 – 110 – 1 0.91 0.519 -0.03544 

10 2- 85 – 1 0.91 0.576 -0.02722 

11 2 – 155 – 1 0.93 0.435 0.00193 
 

Table 3. Statistical error parameters of developed MLP models for different network structures 

 

Model Network Structure R2 RMSE MBE 

1 4- 50 -1 0.91 0.445 0.00069 

2 3- 35 -1 0.86 0.459 -0.00055 

3 3-75 -1 0.84 0.503 0.00073 

4 3- 140 -1 0.92 0.356 -0.00307 

5 3- 50 -1 0.93 0.446 0.01989 

6 2- 50 – 1 0.80 0.556 -0.0208 

7 2- 55- 1 0.90 0.401 -0.01835 

8 2- 65 -1 0.85 0.483 0.48336 

9 2- 15 -1 0.91 0.564 -0.03223 

10 2 – 65 – 1 0.91 0.616 0.00611 

11 2 – 385 – 1 0.92 0.466 -0.02073 
 

Table 4. Statistical error parameters of developed RBF models for different network 
structures 
 

Fig. 10 shows the comparison between predicted ANN models and the measured GSR data 
for all the eleven MLP and RBF-based networks models. This validation is done using 
measured GSR data for years 2005-2007. The predicted ANN models provide a very good 
prediction of monthly GSR behavior in Al-Ain, city.  
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10 2 – 65 – 1 0.91 0.616 0.00611 

11 2 – 385 – 1 0.92 0.466 -0.02073 
 

Table 4. Statistical error parameters of developed RBF models for different network 
structures 
 

Fig. 10 shows the comparison between predicted ANN models and the measured GSR data 
for all the eleven MLP and RBF-based networks models. This validation is done using 
measured GSR data for years 2005-2007. The predicted ANN models provide a very good 
prediction of monthly GSR behavior in Al-Ain, city.  
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Fig. 10. Comparison between measured data and predicted ANN (MLP and RBF) models  
(1- 11) 

6. Conclusion 
In this work, MATLAB tools are used to predict monthly average global solar radiation in 
Al Ain city - UAE. Weather data between 1995 and 2004 are used for training the neural 
network, while data between 2005 and 2007 are used for testing. Eleven models with 
different input combinations are modeled with MLP and RBF ANN techniques. The 
obtained results confirm the superiority of the RBF technique over the MLP technique in 
most of the cases, namely, models 2- 6 and 9- 10, with deterministic coefficients near 90 % 
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and low MBE, MAPE and RMSE values. Moreover, ANN models have in general good 
performance even if one or more input parameters are unavailable. Currently, our focus is 
on modeling the GSR for other UAE cities and comparing the optimal ANN models with 
classical empirical regression and time-series regression models being investigated by this 
chapter’s co-authors. 
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1. Introduction

The term fractional calculus is more than 300 years old. It is a generalization of the ordinary
differentiation and integration to non-integer (arbitrary) order. The subject is as old as the
calculus of differentiation and goes back to times when Leibniz, Gauss, and Newton invented
this kind of calculation. In a letter to L’Hospital in 1695 Leibniz raised the following question
(Miller and Ross, 1993): “Can the meaning of derivatives with integer order be generalized to
derivatives with non-integer orders?" The story goes that L’Hospital was somewhat curious
about that question and replied by another question to Leibniz. “What if the order will
be 1/2?" Leibniz in a letter dated September 30, 1695 replied: “It will lead to a paradox,
from which one day useful consequences will be drawn." The question raised by Leibniz for
a fractional derivative was an ongoing topic in the last 300 years. Several mathematicians
contributed to this subject over the years. People like Liouville, Riemann, and Weyl made
major contributions to the theory of fractional calculus. The story of the fractional calculus
continued with contributions from Fourier, Abel, Leibniz, Grünwald, and Letnikov.
Nowadays, the fractional calculus attracts many scientists and engineers. There are several
applications of this mathematical phenomenon in mechanics, physics, chemistry, control
theory and so on (Caponetto et al., 2010; Magin, 2006; Monje et al., 2010; Oldham and Spanier,
1974; Oustaloup, 1995; Podlubny, 1999). It is natural that many authors tried to solve the
fractional derivatives, fractional integrals and fractional differential equations in Matlab.
A few very good and interesting Matlab functions were already submitted to the MathWorks,
Inc. Matlab Central File Exchange, where they are freely downloadable for sharing among
the users. In this chapter we will use some of them. It is worth mentioning some addition to
Matlab toolboxes, which are appropriate for the solution of fractional calculus problems. One
of them is a toolbox created by CRONE team (CRONE, 2010) and another one is the Fractional
State–Space Toolkit developed by Dominik Sierociuk (Sierociuk, 2005). Last but not least we
should also mention a Matlab toolbox created by Dingyü Xue (Xue, 2010), which is based on
Matlab object for fractional-order transfer function and some manipulation with this class of
the transfer function. Despite that the mentioned toolboxes are mainly for control systems,
they can be “abused" for solutions of general problems related to fractional calculus as well.
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2. Fractional calculus fundamentals

2.1 Special functions
Here we should mention the most important function used in fractional calculus - Euler’s
gamma function, which is defined as

Γ(n) =
∫ ∞

0
tn−1 e−t dt. (1)

This function is a generalization of the factorial in the following form:

Γ(n) = (n − 1)! (2)

This gamma function is directly implemented in the Matlab with syntax []=gamma().
Another function, which plays a very important role in the fractional calculus, was in fact
introduced in 1953. It is a two-parameter function of the Mittag-Leffler type defined as
(Podlubny, 1999):

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, (α > 0, β > 0). (3)

The Mittag-Leffler function (3) can be expressed in the integral representation as

Eα,β(z) =
1

2πi

∫

C

tα−βet

tα − z
dt, (4)

the contour C starts and ends at −∞ and circles around the singularities and branch points of
the integrand.
There are some relationships (given e.g. in (Djrbashian, 1993; Podlubny, 1999)):

E1,1(z) = ez, E1/2,1(
√

z) =
2√
π

e−zerfc(−√
z),

E2,1(z) = cosh(
√

z), E2,1(−z2) = cos(z), E1,2(z) =
ez − 1

z
.

For β = 1 we obtain the Mittag-Leffler function in one parameter (Podlubny, 1999):

Eα,1(z) =
∞

∑
k=0

zk

Γ(αk + 1)
≡ Eα(z). (5)

For the numerical evaluation of the Mittag-Leffler function (3) with the default accuracy set
to 10−6 the Matlab routine [e]=mlf(alf,bet,c,fi), written by Podlubny and Kacenak
(2005) can be used. Another Matlab function f=gml_fun(a,b,c,x,eps0) for a generalized
Mittag-Leffler function was created by YangQuan Chen (Chen, 2008).
In Fig. 1(a) and Fig. 1(b) are plotted the well-known functions (ez and cos(z)) computed via
the Matlab routine []=mlf() created for the evaluation of the Mittag-Leffler function.
Another important function Ek(t, λ; μ, ν) of the Mittag-Leffler type was introduced by
(Podlubny, 1999). The function is defined by

Ek(t, λ; μ, ν) = tμk+ν−1E(k)
μ,ν(λtμ), (k = 0, 1, 2, . . .), (6)
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Fig. 1. Mittag-Leffler function (3) for various parameters

where E(k)
μ,ν(z) is k-th derivative of the Mittag-Leffler function of two parameters given by

E(k)
μ,ν(z) =

∞

∑
i=0

(i + k)! zi

i! Γ(μi + μk + ν)
, (k = 0, 1, 2, . . .). (7)

2.2 Fractional derivatives and integrals
Fractional calculus is a generalization of integration and differentiation to non-integer-order
fundamental operator aDα

t , where a and t are the bounds of the operation and α ∈ R. The
continuous integrodifferential operator is defined as

aDα
t =

⎧⎪⎨
⎪⎩

dα

dtα : α > 0,
1 : α = 0,� t

a (dτ)α : α < 0.

The three most frequently used definitions for the general fractional differintegral are: the
Grünwald-Letnikov (GL) definition, the Riemann-Liouville (RL) and the Caputo definition
(Miller and Ross, 1993; Oldham and Spanier, 1974; Podlubny, 1999). Other definitions are
connected with well-known names as for instance Weyl, Fourier, Cauchy, Abel, etc.

The GL definition is given as

aDα
t f (t) = lim

h→0
h−α

[ t−a
h ]

∑
j=0

(−1)j
�

α

j

�
f (t − jh), (8)

where [.] means the integer part. The RL definition is given as

aDα
t f (t) =

1
Γ(n − α)

dn

dtn

� t

a

f (τ)
(t − τ)α−n+1 dτ, for (n − 1 < α < n), (9)
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The GL definition is given as

aDα
t f (t) = lim

h→0
h−α

[ t−a
h ]

∑
j=0

(−1)j
�

α

j

�
f (t − jh), (8)

where [.] means the integer part. The RL definition is given as

aDα
t f (t) =

1
Γ(n − α)

dn

dtn

� t

a

f (τ)
(t − τ)α−n+1 dτ, for (n − 1 < α < n), (9)
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where Γ(.) is the gamma function. The Caputo definition of fractional derivatives can be
written as

aDα
t f (t) =

1
Γ(n − α)

∫ t

a

f (n)(τ)

(t − τ)α−n+1 dτ, for (n − 1 < α < n). (10)

In this chapter we will consider mainly the GL, the RL, and the Caputo definitions. This
consideration is based on the fact that, for a wide class of functions, the three best known
definitions - GL, RL, and Caputo - are equivalent under some conditions (Podlubny, 1999).
As it was already mentioned, under the homogeneous initial conditions the
Riemann-Liouville and the Caputo derivative are equivalent. Let us denote the
Riemann-Liouville fractional derivative as RL

a Dα
t t(t) and the Caputo definition as C

a Dα
t f (t),

then the relationship between them is:

RL
a Dα

t t(t) = C
a Dα

t f (t) +
n−1

∑
k=0

(t − a)k−α

Γ(k − α + 1)
f (k)(a),

for f (k)(a) = 0 (k = 0, 1, . . . , n − 1).
The initial conditions for the fractional-order differential equations with the Caputo
derivatives are in the same form as for the integer-order differential equations. It is an
advantage because applied problems require definitions of fractional derivatives, where there
are clear interpretations of initial conditions, which contain f (a), f

�
(a), f

��
(a), etc.

In addition, for approximation purpose we consider the Laplace transform method of the
fractional differintegral aDα

t . The Laplace transform of the join operator of order α for the GL,
RL and Caputo definitions, under the zero initial conditions is:

L{ 0Dα
t f (t); s} = sαF(s). (11)

Laplace transform technique is considered as an efficient way in solving differential equations
with integer order and fractional order as well. For differential equations with fractional
order, the Laplace transform technique works effectively only for relatively simple equations,
because of the difficulties of calculating inversion of Laplace transforms. This problem was
solved by applying a numerical inverse Laplace transform algorithms in fractional calculus
(Sheng et al., 2011). Three numerical inverse Laplace transform algorithms in Matlab, named
invlap(), gavsteh(), and nilt(), were described there and tested.
The Laplace transforms for several known Mittag-Leffler type functions are summarized as
follows (Magin, 2006; Podlubny, 1999):

L{Eα(−λtα)} =
sα−1

sα + λ
, L{tα−1Eα,α(−λtα)} =

1
sα + λ

, (12)

L{tβ−1Eα,β(−λtα)} =
sα−β

sα + λ
, L{Ek(t,±λ; α, β)} =

k!sα−β

(sα ∓ λ)k+1 .

2.3 Numerical methods for fractional calculus
There are many numerical methods appropriate for the fractional calculus computation. They
were described in several works and a good survey can be found in (Vinagre et al., 2000; 2003).
In the above-mentioned papers are described the time domain and frequency methods in
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the form of IIR and FIR approximations together with illustrative examples. Some of the
mentioned frequency methods in both forms of approximation have been realized as the
Matlab routines in Duarte Valerio’s toolbox called ninteger (see detail review in (Valério, 2005)).
Also created in this toolbox was a Simulink block nid for fractional derivative and integral,
where the order of derivative/integral and method of its approximation can be selected.

2.3.1 Grünwald-Letnikov method
For numerical calculation of fractional-order derivatives we can use the relation (13) derived
from the GL definition (8). This approach is based on the fact that for a wide class of functions
the three definitions - GL (8), RL (9), and Caputo’s (10) - are equivalent if f (a) = 0. The relation
for the explicit numerical approximation of q-th derivative at the points kh, (k = 1, 2, . . . ) has
the following form (Dorčák, 1994; Podlubny, 1999):

(k−Lm/h)D
q
tk

f (t) ≈ h−q
k

∑
j=0

(−1)j
(

q
j

)
f (tk−j) = h−q

k

∑
j=0

c(q)
j f (tk−j), (13)

where Lm is the “memory length", tk = kh, h is the time step of calculation and c(q)
j (j =

0, 1, . . . , k) are binomial coefficients. For their calculation we can use for instance the following
expression (Dorčák, 1994):

c(q)
0 = 1, c(q)

j =

(
1 − 1 + q

j

)
c(q)

j−1. (14)

The binomial coefficients c(q)
j (j = 0, 1, . . . , k) can be also expressed by using a factorial.

Writing the factorial as a gamma function (2), it allows the binomial coefficient to be
generalized to non-integer arguments. We can write the relations:

(−1)j
(

q
j

)
= (−1)j Γ(q + 1)

Γ(j + 1)Γ(q − j + 1)
=

Γ(j − q)
Γ(−q)Γ(j+ 1)

. (15)

Obviously, for this simplification we pay a penalty in the form of some inaccuracy. If f (t) ≤
M, we can easily establish the following estimate for determining the memory length Lm,
providing the required accuracy ε:

Lm ≥
(

M
ε|Γ(1 − q)|

)1/q
. (16)

The above-described numerical method is called Power Series Expansion (PSE) of a generating
function. It is important to note that PSE leads to approximation in the form of polynomials,
that is, the discretized fractional operator is in the form of FIR filter, which has only zeros
(Chen and Moore, 2002; Vinagre et al., 2003).
The resulting discrete transfer function, approximating fractional-order operators, can be
expressed in z-domain as follows:

0D±r
kT G(z) =

Y(z)
F(z)

=

(
1
T

)±r
PSE

{(
1 − z−1

)±r
}

n
≈ T∓rRn(z−1), (17)

243Fractional Derivatives, Fractional Integrals, and Fractional Differential Equations in Matlab



4 Will-be-set-by-IN-TECH
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In addition, for approximation purpose we consider the Laplace transform method of the
fractional differintegral aDα

t . The Laplace transform of the join operator of order α for the GL,
RL and Caputo definitions, under the zero initial conditions is:

L{ 0Dα
t f (t); s} = sαF(s). (11)

Laplace transform technique is considered as an efficient way in solving differential equations
with integer order and fractional order as well. For differential equations with fractional
order, the Laplace transform technique works effectively only for relatively simple equations,
because of the difficulties of calculating inversion of Laplace transforms. This problem was
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The Laplace transforms for several known Mittag-Leffler type functions are summarized as
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the form of IIR and FIR approximations together with illustrative examples. Some of the
mentioned frequency methods in both forms of approximation have been realized as the
Matlab routines in Duarte Valerio’s toolbox called ninteger (see detail review in (Valério, 2005)).
Also created in this toolbox was a Simulink block nid for fractional derivative and integral,
where the order of derivative/integral and method of its approximation can be selected.

2.3.1 Grünwald-Letnikov method
For numerical calculation of fractional-order derivatives we can use the relation (13) derived
from the GL definition (8). This approach is based on the fact that for a wide class of functions
the three definitions - GL (8), RL (9), and Caputo’s (10) - are equivalent if f (a) = 0. The relation
for the explicit numerical approximation of q-th derivative at the points kh, (k = 1, 2, . . . ) has
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j (j = 0, 1, . . . , k) can be also expressed by using a factorial.

Writing the factorial as a gamma function (2), it allows the binomial coefficient to be
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Obviously, for this simplification we pay a penalty in the form of some inaccuracy. If f (t) ≤
M, we can easily establish the following estimate for determining the memory length Lm,
providing the required accuracy ε:
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The above-described numerical method is called Power Series Expansion (PSE) of a generating
function. It is important to note that PSE leads to approximation in the form of polynomials,
that is, the discretized fractional operator is in the form of FIR filter, which has only zeros
(Chen and Moore, 2002; Vinagre et al., 2003).
The resulting discrete transfer function, approximating fractional-order operators, can be
expressed in z-domain as follows:
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=
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T
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where T is the sample period, PSE{u} denotes the function resulting from applying the power
series expansion to the function u, Y(z) is the Z transform of the output sequence y(kT), F(z)
is the Z transform of the input sequence f (kT), n is the order of the approximation, and R is
polynomial of degree n, respectively, in the variable z−1, and k = 1, 2, . . . . A Matlab routine
dfod2() of this method (17) can be downloaded (see (Petráš, 2003b)).

EXAMPLE 2.1. Let us consider the fractional-order derivative α ∈ [0, 1] of the function y=sin(t)
for t ∈ [0, 2π]. The following Matlab code using a function fderiv(), which was created by
Bayat (2007) and is based on relation (13), can be used:

clear all; close all;
h=0.01; t=0:h:2*pi;
y=sin(t);
order=0:0.1:1;
for i=1:length(order)

yd(i,:)=fderiv(order(i),y,h);
end
[X, Y]=meshgrid(t,order);
mesh(X,Y,yd)
xlabel(’t’); ylabel(’\alpha’); zlabel(’y’)

Fig. 2. Fractional derivatives of function y=sin(t)

In Fig. 2 is depicted the fractional derivative of the sine function for fractional order of
derivative 0 < α < 1 and 0 < t < 2π.

2.3.2 Continuous and discrete-time approximation techniques
Other approach can be realized by Continued Fraction Expansion (CFE) of the generating
function and then the approximated fractional operator is in the form of IIR filter, which has
poles and zeros.
Taking into account that our aim is to obtain equivalents to the fractional integrodifferential
operators in the Laplace domain, s±r, the result of such approximation for an irrational
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function, G(s), can be expressed in the form (Vinagre et al., 2003):

G(s) � a0(s) +
b1(s)

a1(s) +
b2(s)

a2(s)+ b3 (s)
a3(s)+...

= a0(s) +
b1(s)

a1(s)+
b2(s)

a2(s)+
b3(s)

a3(s)+
. . . (18)

where ais and bis are rational functions of the variable s, or are constants. The application
of the method yields a rational function, which is an approximation of the irrational function
G(s).
In other words, for evaluation purposes, the rational approximations obtained by CFE
frequently converge much more rapidly than the PSE and have a wider domain of
convergence in the complex plane. On the other hand, the approximation by PSE and the
short memory principle is convenient for the dynamical properties consideration.
For interpolation purposes, rational functions are sometimes superior to polynomials. This
is, roughly speaking, due to their ability to model functions with poles. These techniques are
based on the approximations of an irrational function, G(s), by a rational function defined by
the quotient of two polynomials in the variable s in frequency s-domain:

G(s) � Ri(i+1)...(i+m) =
Pμ(s)
Qν(s)

=
p0 + p1s + . . . + pμsμ

q0 + q1s + . . . + qνsν
, (m + 1 = μ + ν + 1) (19)

passing through the points (si, G(si)), . . . , (si+m, G(si+m)).
The resulting discrete transfer function, approximating fractional-order operators, can be
expressed as (Vinagre et al., 2003):

0D±r
kT G(z) =

Y(z)
F(z)

=

�
2
T

�±r
CFE

⎧⎨
⎩

�
1 − z−1

1 + z−1

�±r
⎫⎬
⎭

p,n

≈
�

2
T

�±r Pp(z−1)

Qn(z−1)
, (20)

where T is the sample period, CFE{u} denotes the function resulting from applying the
continued fraction expansion to the function u, Y(z) is the Z transform of the output sequence
y(kT), F(z) is the Z transform of the input sequence f (kT), p and n are the orders of the
approximation, and P and Q are polynomials of degrees p and n, respectively, in the variable
z−1, and k = 1, 2, . . . .
In general, the discretization of fractional-order differentiator/integrator s±r (r ∈ R) can be
expressed by the generating function s ≈ ω(z−1). This generating function and its expansion
determine both the form of the approximation and the coefficients (Lubich, 1986).
In this section, for direct discretizing sr, (0 < r < 1), we will concentrate on the IIR form
of discretization where as a generating function we will adopt an Al-Alaoui idea on mixed
scheme of Euler and Tustin operators (Al-Alaoui, 1993; 1997), but we will use a different ratio
between both operators. The mentioned new operator, raised to power ±r, has the form
(Petráš, 2003a):

(ω(z−1))±r =

�
1 + a

T
1 − z−1

1 + az−1

�±r

, (21)

245Fractional Derivatives, Fractional Integrals, and Fractional Differential Equations in Matlab



6 Will-be-set-by-IN-TECH
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y(kT), F(z) is the Z transform of the input sequence f (kT), p and n are the orders of the
approximation, and P and Q are polynomials of degrees p and n, respectively, in the variable
z−1, and k = 1, 2, . . . .
In general, the discretization of fractional-order differentiator/integrator s±r (r ∈ R) can be
expressed by the generating function s ≈ ω(z−1). This generating function and its expansion
determine both the form of the approximation and the coefficients (Lubich, 1986).
In this section, for direct discretizing sr, (0 < r < 1), we will concentrate on the IIR form
of discretization where as a generating function we will adopt an Al-Alaoui idea on mixed
scheme of Euler and Tustin operators (Al-Alaoui, 1993; 1997), but we will use a different ratio
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where a is the ratio term and r is the fractional order. The ratio term a is the amount of phase
shift and this tuning knob is sufficient for most engineering problems being solved.
In expanding the above in rational functions, we will use the CFE. It should be pointed
out that, for control applications, the obtained approximate discrete-time rational transfer
function should be stable. Furthermore, for a better fit to the continuous frequency response,
it would be of high interest to obtain discrete approximations with poles an zeros interlaced
along the line z ∈ (−1, 1) of the z plane. The direct discretization approximations proposed in
this paper enjoy the desired properties.
The result of such approximation for an irrational function, �G(z−1), can be expressed by
G(z−1) in the CFE form (Vinagre et al., 2000):

G(z−1) � a0(z−1) +
b1(z−1)

a1(z−1) + b2(z−1)

a2(z−1)+
b3 (z−1)

a3(z−1)+...

= a0(z
−1) +

b1(z−1)

a1(z−1)+

b2(z−1)

a2(z−1)+
. . .

b3(z−1)

a3(z−1)+
. . .

where ai and bi are either rational functions of the variable z−1 or constants. The application
of the method yields a rational function, G(z−1), which is an approximation of the irrational
function �G(z−1).
The resulting discrete transfer function, approximating fractional-order operators, can be
expressed as:

(ω(z−1))±r ≈
�

1 + a
T

�±r
CFE

⎧
⎨
⎩

�
1 − z−1

1 + az−1

�±r
⎫
⎬
⎭

p,q

=

�
1 + a

T

�±r Pp(z−1)

Qq(z−1)
,=

�
1 + a

T

�±r p0 + p1z−1 + · · ·+ pmz−p

q0 + q1z−1 + · · ·+ qnz−q , (22)

where CFE{u} denotes the continued fraction expansion of u; p and q are the orders of the
approximation and P and Q are polynomials of degrees p and q. Normally, we can set p =
q = n. A Matlab routine dfod1() for this described method (22) can be downloaded (see
(Petráš, 2003a)).

EXAMPLE 2.2. Here we present some results for fractional order r = ±0.5 (half-order
derivative/integral). The value of approximation order n is truncated to n = 3 and weighting
factor a was chosen a = 1/3. Assume sampling period T = 0.001 sec.
For r = 0.5 we have the following approximation of the fractional half-order derivative:

G(z−1) =
985.9 − 1315z−1 + 328.6z−2 + 36.51z−3

27 − 18z−1 − 3z−2 + z−3 (23)

A Matlab sequence for the the fractional half-order derivative approximation (23) follows:

sys=dfod1(3, 0.001, 1/3, 0.5)
bode(sys)
step(sys)
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s0.5: continuous analytical solution

s0.5: approximated discrete solution

(a) Bode plots
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(b) Unit step responses

Fig. 3. Characteristics of approximated fractional-order differentiator (23) obtained from (22)
for r = 0.5, n = 3, a = 1/3, and T = 0.001 sec

The Bode plots and unit step response of the digital fractional-order differentiator (23) and the
analytical continuous solution of a fractional semi-derivative are depicted in Fig. 3. Poles and
zeros of the transfer function (23) lie in a unit circle.
For r = −0.5 we have the following approximation of the fractional half-order integral:

G(z−1) =
0.739 − 0.493z−1 − 0.0822z−2 + 0.0274z−3

27 − 36z−1 + 9z−2 + z−3 (24)

A Matlab sequence for the the fractional half-order integral approximation (24) is the
following:

sys=dfod1(3, 0.001, 1/3, -0.5)
bode(sys)
step(sys)
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Fig. 4. Characteristics of approximated fractional-order integrator (24) obtained from (22) for
r = −0.5, n = 3, a = 1/3, and T = 0.001 sec
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where a is the ratio term and r is the fractional order. The ratio term a is the amount of phase
shift and this tuning knob is sufficient for most engineering problems being solved.
In expanding the above in rational functions, we will use the CFE. It should be pointed
out that, for control applications, the obtained approximate discrete-time rational transfer
function should be stable. Furthermore, for a better fit to the continuous frequency response,
it would be of high interest to obtain discrete approximations with poles an zeros interlaced
along the line z ∈ (−1, 1) of the z plane. The direct discretization approximations proposed in
this paper enjoy the desired properties.
The result of such approximation for an irrational function, �G(z−1), can be expressed by
G(z−1) in the CFE form (Vinagre et al., 2000):

G(z−1) � a0(z−1) +
b1(z−1)

a1(z−1) + b2(z−1)

a2(z−1)+
b3 (z−1)

a3(z−1)+...

= a0(z
−1) +

b1(z−1)

a1(z−1)+

b2(z−1)

a2(z−1)+
. . .

b3(z−1)

a3(z−1)+
. . .

where ai and bi are either rational functions of the variable z−1 or constants. The application
of the method yields a rational function, G(z−1), which is an approximation of the irrational
function �G(z−1).
The resulting discrete transfer function, approximating fractional-order operators, can be
expressed as:

(ω(z−1))±r ≈
�

1 + a
T

�±r
CFE

⎧
⎨
⎩

�
1 − z−1

1 + az−1

�±r
⎫
⎬
⎭

p,q

=

�
1 + a

T

�±r Pp(z−1)

Qq(z−1)
,=

�
1 + a

T

�±r p0 + p1z−1 + · · ·+ pmz−p

q0 + q1z−1 + · · ·+ qnz−q , (22)

where CFE{u} denotes the continued fraction expansion of u; p and q are the orders of the
approximation and P and Q are polynomials of degrees p and q. Normally, we can set p =
q = n. A Matlab routine dfod1() for this described method (22) can be downloaded (see
(Petráš, 2003a)).

EXAMPLE 2.2. Here we present some results for fractional order r = ±0.5 (half-order
derivative/integral). The value of approximation order n is truncated to n = 3 and weighting
factor a was chosen a = 1/3. Assume sampling period T = 0.001 sec.
For r = 0.5 we have the following approximation of the fractional half-order derivative:

G(z−1) =
985.9 − 1315z−1 + 328.6z−2 + 36.51z−3

27 − 18z−1 − 3z−2 + z−3 (23)

A Matlab sequence for the the fractional half-order derivative approximation (23) follows:

sys=dfod1(3, 0.001, 1/3, 0.5)
bode(sys)
step(sys)
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Fig. 3. Characteristics of approximated fractional-order differentiator (23) obtained from (22)
for r = 0.5, n = 3, a = 1/3, and T = 0.001 sec

The Bode plots and unit step response of the digital fractional-order differentiator (23) and the
analytical continuous solution of a fractional semi-derivative are depicted in Fig. 3. Poles and
zeros of the transfer function (23) lie in a unit circle.
For r = −0.5 we have the following approximation of the fractional half-order integral:

G(z−1) =
0.739 − 0.493z−1 − 0.0822z−2 + 0.0274z−3

27 − 36z−1 + 9z−2 + z−3 (24)

A Matlab sequence for the the fractional half-order integral approximation (24) is the
following:

sys=dfod1(3, 0.001, 1/3, -0.5)
bode(sys)
step(sys)
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Fig. 4. Characteristics of approximated fractional-order integrator (24) obtained from (22) for
r = −0.5, n = 3, a = 1/3, and T = 0.001 sec

247Fractional Derivatives, Fractional Integrals, and Fractional Differential Equations in Matlab



10 Will-be-set-by-IN-TECH

The Bode plots and unit step response of the digital fractional-order integrator (24) and the
analytical continuous solution of a fractional semi-derivative are depicted in Fig. 4. Poles and
zeros of the transfer function (24) lie in a unit circle.
For simulation purpose, here we also present the Oustaloup’s Recursive Approximation
algorithm (Oustaloup et al., 2000). The method is based on the approximation of a function of
the form:

H(s) = sr, r ∈ R, r ∈ [−1; 1] (25)

for the frequency range selected as (ωb, ωh) by a rational function:

Ĥ(s) = Co

N

∏
k=−N

s + ω�
k

s + ωk
(26)

using the following set of synthesis formulas for zeros, poles and the gain:

ω�
k = ωb

(
ωh
ωb

) k+N+0.5(1−r)
2N+1

, ωk = ωb

(
ωh
ωb

) k+N+0.5(1−r)
2N+1

, Co =

(
ωh
ωb

)− r
2 N

∏
k=−N

ωk
ω�

k
, (27)

where ωh, ωb are the high and low transitional frequencies. An implementation of this
algorithm in Matlab as a function ora_foc() is given in (Chen, 2003).

EXAMPLE 2.3. Using the described Oustaloup’s-Recursive-Approximation (ORA) method
with:

ωb = 10−2, ωh = 102 (28)

the obtained approximation for fractional function H(s) = s− 1
2 nad for N = 3 is as follows:

Ĥ(s) =
0.03162s7 + 22.42s6 + 1940s5 + 2.292 × 104s4 + 3.755 × 104s3 + 8523s2 + 264.3s + 1
s7 + 264.3s6 + 8523s5 + 3.755 × 104s4 + 2.292 × 104s3 + 1940s2 + 22.42s + 0.03162

.

(29)
A Matlab sequence for the the fractional half order derivative approximation (29) follows:

sys=ora_foc(-0.5,3,0.01,100)
bode(sys)
step(sys)

The Bode plots and the unit step response of the approximated half-order integrator (29)
obtained for the frequency range (28) and N = 3 are depicted in Fig. 5.

2.3.3 Podlubny’s matrix approach
This approach is based on the fact that operation of the fractional calculus can be expressed
by matrix (Podlubny et al., 2009). It follows from Podlubny (2000), that the left-sided
Riemann-Liouville or Caputo fractional derivative v(α)(t) = 0Dα

t v(t) can be approximated
in all nodes of the equidistant discretization net t = jτ (j = 0, 1, . . . , n) simultaneously with

the help of the upper triangular strip matrix B(α)
n as (Podlubny, 2000):

[
v(α)

n v(α)
n−1 . . . v(α)

1 v(α)
0

]T
= B(α)

n

[
vn vn−1 . . . v1 v0

]T
, (30)
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Fig. 5. Characteristics of approximated fractional-order integrator (29) obtained from (27) for
r = −0.5, frequency range (28) and N = 3

where

B(α)
n =

1
τα

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω
(α)
0 ω

(α)
1

. . .
. . . ω

(α)
n−1 ω

(α)
n

0 ω
(α)
0 ω

(α)
1

. . .
. . . ω

(α)
n−1

0 0 ω
(α)
0 ω

(α)
1

. . .
. . .

· · · · · · · · · . . .
. . .

. . .

0 · · · 0 0 ω
(α)
0 ω

(α)
1

0 0 · · · 0 0 ω
(α)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (31)

ω
(α)
j = (−1)j

�
α

j

�
, j = 0, 1, . . . , n. (32)

Similarly, the right-sided Riemann-Liouville or Caputo fractional derivative v(α)(t) = tDα
b v(t)

can be approximated in all nodes of the equidistant discretization net t = jτ (j = 0, 1, . . . , n)

simultaneously with the help of the lower triangular strip matrix F(α)
n (Podlubny, 2000):

�
v(α)

n v(α)
n−1 . . . v(α)

1 v(α)
0

�T
= F(α)

n

�
vn vn−1 . . . v1 v0

�T
, (33)

F(α)
n =

1
τα

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω
(α)
0 0 0 0 · · · 0

ω
(α)
1 ω

(α)
0 0 0 · · · 0

ω
(α)
2 ω

(α)
1 ω

(α)
0 0 · · · 0

. . .
. . .

. . .
. . . · · · · · ·

ω
(α)
n−1

. . . ω
(α)
2 ω

(α)
1 ω

(α)
0 0

ω
(α)
n ω

(α)
n−1

. . . ω
(α)
2 ω

(α)
1 ω

(α)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (34)
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The Bode plots and unit step response of the digital fractional-order integrator (24) and the
analytical continuous solution of a fractional semi-derivative are depicted in Fig. 4. Poles and
zeros of the transfer function (24) lie in a unit circle.
For simulation purpose, here we also present the Oustaloup’s Recursive Approximation
algorithm (Oustaloup et al., 2000). The method is based on the approximation of a function of
the form:

H(s) = sr, r ∈ R, r ∈ [−1; 1] (25)

for the frequency range selected as (ωb, ωh) by a rational function:

Ĥ(s) = Co

N

∏
k=−N

s + ω�
k

s + ωk
(26)

using the following set of synthesis formulas for zeros, poles and the gain:

ω�
k = ωb

(
ωh
ωb

) k+N+0.5(1−r)
2N+1

, ωk = ωb

(
ωh
ωb

) k+N+0.5(1−r)
2N+1

, Co =

(
ωh
ωb

)− r
2 N

∏
k=−N

ωk
ω�

k
, (27)

where ωh, ωb are the high and low transitional frequencies. An implementation of this
algorithm in Matlab as a function ora_foc() is given in (Chen, 2003).

EXAMPLE 2.3. Using the described Oustaloup’s-Recursive-Approximation (ORA) method
with:

ωb = 10−2, ωh = 102 (28)

the obtained approximation for fractional function H(s) = s− 1
2 nad for N = 3 is as follows:

Ĥ(s) =
0.03162s7 + 22.42s6 + 1940s5 + 2.292 × 104s4 + 3.755 × 104s3 + 8523s2 + 264.3s + 1
s7 + 264.3s6 + 8523s5 + 3.755 × 104s4 + 2.292 × 104s3 + 1940s2 + 22.42s + 0.03162

.

(29)
A Matlab sequence for the the fractional half order derivative approximation (29) follows:

sys=ora_foc(-0.5,3,0.01,100)
bode(sys)
step(sys)

The Bode plots and the unit step response of the approximated half-order integrator (29)
obtained for the frequency range (28) and N = 3 are depicted in Fig. 5.

2.3.3 Podlubny’s matrix approach
This approach is based on the fact that operation of the fractional calculus can be expressed
by matrix (Podlubny et al., 2009). It follows from Podlubny (2000), that the left-sided
Riemann-Liouville or Caputo fractional derivative v(α)(t) = 0Dα

t v(t) can be approximated
in all nodes of the equidistant discretization net t = jτ (j = 0, 1, . . . , n) simultaneously with

the help of the upper triangular strip matrix B(α)
n as (Podlubny, 2000):

[
v(α)

n v(α)
n−1 . . . v(α)

1 v(α)
0

]T
= B(α)

n

[
vn vn−1 . . . v1 v0

]T
, (30)
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Fig. 5. Characteristics of approximated fractional-order integrator (29) obtained from (27) for
r = −0.5, frequency range (28) and N = 3

where

B(α)
n =

1
τα

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω
(α)
0 ω

(α)
1

. . .
. . . ω

(α)
n−1 ω

(α)
n

0 ω
(α)
0 ω

(α)
1

. . .
. . . ω

(α)
n−1

0 0 ω
(α)
0 ω

(α)
1

. . .
. . .

· · · · · · · · · . . .
. . .

. . .

0 · · · 0 0 ω
(α)
0 ω

(α)
1

0 0 · · · 0 0 ω
(α)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (31)

ω
(α)
j = (−1)j

�
α

j

�
, j = 0, 1, . . . , n. (32)

Similarly, the right-sided Riemann-Liouville or Caputo fractional derivative v(α)(t) = tDα
b v(t)

can be approximated in all nodes of the equidistant discretization net t = jτ (j = 0, 1, . . . , n)

simultaneously with the help of the lower triangular strip matrix F(α)
n (Podlubny, 2000):

�
v(α)

n v(α)
n−1 . . . v(α)

1 v(α)
0

�T
= F(α)

n

�
vn vn−1 . . . v1 v0

�T
, (33)

F(α)
n =

1
τα

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω
(α)
0 0 0 0 · · · 0

ω
(α)
1 ω

(α)
0 0 0 · · · 0

ω
(α)
2 ω

(α)
1 ω

(α)
0 0 · · · 0

. . .
. . .

. . .
. . . · · · · · ·

ω
(α)
n−1

. . . ω
(α)
2 ω

(α)
1 ω

(α)
0 0

ω
(α)
n ω

(α)
n−1

. . . ω
(α)
2 ω

(α)
1 ω

(α)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (34)
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The symmetric Riesz derivative of order β can be approximated based on its definition as a
combination of the approximations (30) and (33) for the left and right-sided Riemann-Liouville
derivatives, or using the centered fractional differences approximation of the symmetric
Riesz derivative suggested recently by Ortigueira (2006). The general formula is the same
(Podlubny et al., 2009):

�
v(β)

m v(β)
m−1 . . . v(β)

1 v(β)
0

�T
= R(β)

m

�
vm vm−1 . . . v1 v0

�T
(35)

In the first case, the approximation for the left-sided Caputo derivative is taken one step
ahead, and the approximation for the right-sided Caputo derivative is taken one step back.
This leads to the matrix

R(β)
m =

h−α

2

�
−1Um + +1Um

�
(36)

In the second case (Ortigueira’s definition) we have the following symmetric matrix:

R(β)
m = h−β

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω
(β)
0 ω

(β)
1 ω

(β)
2 ω

(β)
3 · · · ω

(β)
m

ω
(β)
1 ω

(β)
0 ω

(β)
1 ω

(β)
2 · · · ω

(β)
m−1

ω
(β)
2 ω

(β)
1 ω

(β)
0 ω

(β)
1 · · · ω

(β)
m−2

. . .
. . .

. . .
. . . · · · · · ·

ω
(β)
m−1

. . . ω
(β)
2 ω

(β)
1 ω

(β)
0 ω

(β)
1

ω
(β)
m ω

(β)
m−1

. . . ω
(β)
2 ω

(β)
1 ω

(β)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(37)

ω
(β)
k =

(−1)k Γ(β + 1) cos(βπ/2)
Γ(β/2 − k + 1) Γ(β/2 + k + 1)

, k = 0, 1, . . . , m. (38)

Both these approximations of symmetric Riesz derivatives give practically the same numerical
results and in the case of numerical solution of partial fractional differential equations lead to
a well-posed matrix of the resulting algebraic system.
Similarly, if in addition to fractional-order time derivative we also consider symmetric
fractional-order spatial derivatives, then we have to use all nodes at the considered time layer
from the leftmost to the rightmost spatial discretization node.
Let us consider the nodes (ih, jτ), j = 0, 1, 2, . . . , n, corresponding to all time layers at i-th
spatial discretization node. It has been shown in Podlubny (2000) that all values of α-th
order time derivative of u(x, t) at these nodes are approximated using the discrete analogue
of differentiation of arbitrary order (Podlubny et al., 2009):

�
u(α)

i,n u(α)
i,n−1 . . . u(α)

i,2 u(α)
i,1 u(α)

i,0

�
= B(α)

n

�
ui,n ui,n−1 . . . ui,2 ui,1 ui,0

�T
. (39)

In order to obtain a simultaneous approximation of α-th order time derivative of u(x, t) in all
nodes, we need to arrange all function values uij at the discretization nodes to the form of
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a column vector (Podlubny et al., 2009):

unm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

um,n um−1,n . . . u1,n u0,n

um,n−1 um−1,n−1 . . . u1,n−1 u0,n−1

. . .
um,1 um−1,1 . . . u1,1 u0,1

um,0 um−1,0 . . . u1,0 u0,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

In visual terms, we first take the nodes of n-th time layer, then the nodes of (n − 1)-th time
layer, and so forth, and put them in this order in a vertical column stack.

The matrix that transforms the vector Unm to the vector U(α)
t of the partial fractional derivative

of order α with respect to time variable can be obtained as a Kronecker product of the matrix

B(α)
n , which corresponds to the fractional ordinary derivative of order α (recall that n is

the number of time steps), and the unit matrix Em (recall that m is the number of spatial
discretization nodes):

T(α)
mn = B(α)

n ⊗ Em. (40)

Similarly, the matrix that transforms the vector U to the vector U(β)
x of the partial fractional

derivative of order β with respect to spatial variable can be obtained as a Kronecker product of
the unit matrix En (recall that n is the number of spatial discretization nodes), and the matrix

R(β)
m , which corresponds to a symmetric Riesz ordinary derivative of order β (Ortigueira,

2006), (recall that m is the number of time steps):

S(α)
mn = En ⊗ R(β)

n . (41)

Having these approximations for partial fractional derivatives with respect to both variables,
we can immediately discretize the general form of the fractional diffusion equation by simply
replacing the derivatives with their discrete analogs. Namely, the equation (Podlubny et al.,
2009):

C
0 Dα

t u − χ
∂βu

∂|x|β = f (x, t) (42)

is discretized as �
B(α)

n ⊗ Em − χ En ⊗ R(β)
m

�
unm = fnm. (43)

The initial and boundary conditions must be equal to zero. If it is not so, then an
auxiliary unknown function must be introduced, which satisfies the zero initial and boundary
conditions. In this way, the non-zero initial and boundary conditions moves to the right-hand
side of the equation for the new unknown function.

3. Ordinary fractional differential equations

A general fractional-order system can be described by a fractional differential equation of the
form

anDαn
t y(t) + an−1Dαn−1

t y(t) + . . . + a0Dα0
t y(t) =

= bmDβm
t u(t) + bm−1Dβm−1

t u(t) + . . . + b0Dβ0
t u(t), (44)
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combination of the approximations (30) and (33) for the left and right-sided Riemann-Liouville
derivatives, or using the centered fractional differences approximation of the symmetric
Riesz derivative suggested recently by Ortigueira (2006). The general formula is the same
(Podlubny et al., 2009):

�
v(β)

m v(β)
m−1 . . . v(β)

1 v(β)
0

�T
= R(β)

m

�
vm vm−1 . . . v1 v0

�T
(35)

In the first case, the approximation for the left-sided Caputo derivative is taken one step
ahead, and the approximation for the right-sided Caputo derivative is taken one step back.
This leads to the matrix

R(β)
m =

h−α

2

�
−1Um + +1Um

�
(36)

In the second case (Ortigueira’s definition) we have the following symmetric matrix:

R(β)
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⎡
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ω
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(β)
1 ω

(β)
2 ω
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3 · · · ω
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m

ω
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1 ω
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0 ω

(β)
1 ω

(β)
2 · · · ω

(β)
m−1

ω
(β)
2 ω

(β)
1 ω

(β)
0 ω

(β)
1 · · · ω

(β)
m−2

. . .
. . .

. . .
. . . · · · · · ·

ω
(β)
m−1

. . . ω
(β)
2 ω

(β)
1 ω

(β)
0 ω

(β)
1

ω
(β)
m ω

(β)
m−1

. . . ω
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2 ω

(β)
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0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(37)

ω
(β)
k =

(−1)k Γ(β + 1) cos(βπ/2)
Γ(β/2 − k + 1) Γ(β/2 + k + 1)

, k = 0, 1, . . . , m. (38)

Both these approximations of symmetric Riesz derivatives give practically the same numerical
results and in the case of numerical solution of partial fractional differential equations lead to
a well-posed matrix of the resulting algebraic system.
Similarly, if in addition to fractional-order time derivative we also consider symmetric
fractional-order spatial derivatives, then we have to use all nodes at the considered time layer
from the leftmost to the rightmost spatial discretization node.
Let us consider the nodes (ih, jτ), j = 0, 1, 2, . . . , n, corresponding to all time layers at i-th
spatial discretization node. It has been shown in Podlubny (2000) that all values of α-th
order time derivative of u(x, t) at these nodes are approximated using the discrete analogue
of differentiation of arbitrary order (Podlubny et al., 2009):

�
u(α)

i,n u(α)
i,n−1 . . . u(α)

i,2 u(α)
i,1 u(α)

i,0

�
= B(α)

n

�
ui,n ui,n−1 . . . ui,2 ui,1 ui,0

�T
. (39)

In order to obtain a simultaneous approximation of α-th order time derivative of u(x, t) in all
nodes, we need to arrange all function values uij at the discretization nodes to the form of
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a column vector (Podlubny et al., 2009):

unm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

um,n um−1,n . . . u1,n u0,n

um,n−1 um−1,n−1 . . . u1,n−1 u0,n−1

. . .
um,1 um−1,1 . . . u1,1 u0,1

um,0 um−1,0 . . . u1,0 u0,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

In visual terms, we first take the nodes of n-th time layer, then the nodes of (n − 1)-th time
layer, and so forth, and put them in this order in a vertical column stack.

The matrix that transforms the vector Unm to the vector U(α)
t of the partial fractional derivative

of order α with respect to time variable can be obtained as a Kronecker product of the matrix

B(α)
n , which corresponds to the fractional ordinary derivative of order α (recall that n is

the number of time steps), and the unit matrix Em (recall that m is the number of spatial
discretization nodes):

T(α)
mn = B(α)

n ⊗ Em. (40)

Similarly, the matrix that transforms the vector U to the vector U(β)
x of the partial fractional

derivative of order β with respect to spatial variable can be obtained as a Kronecker product of
the unit matrix En (recall that n is the number of spatial discretization nodes), and the matrix

R(β)
m , which corresponds to a symmetric Riesz ordinary derivative of order β (Ortigueira,

2006), (recall that m is the number of time steps):

S(α)
mn = En ⊗ R(β)

n . (41)

Having these approximations for partial fractional derivatives with respect to both variables,
we can immediately discretize the general form of the fractional diffusion equation by simply
replacing the derivatives with their discrete analogs. Namely, the equation (Podlubny et al.,
2009):

C
0 Dα

t u − χ
∂βu

∂|x|β = f (x, t) (42)

is discretized as �
B(α)

n ⊗ Em − χ En ⊗ R(β)
m

�
unm = fnm. (43)

The initial and boundary conditions must be equal to zero. If it is not so, then an
auxiliary unknown function must be introduced, which satisfies the zero initial and boundary
conditions. In this way, the non-zero initial and boundary conditions moves to the right-hand
side of the equation for the new unknown function.

3. Ordinary fractional differential equations

A general fractional-order system can be described by a fractional differential equation of the
form

anDαn
t y(t) + an−1Dαn−1

t y(t) + . . . + a0Dα0
t y(t) =

= bmDβm
t u(t) + bm−1Dβm−1

t u(t) + . . . + b0Dβ0
t u(t), (44)
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where Dγ
t ≡ 0Dγ

t denotes the Grünwald-Letnikov, the Riemann-Liouville or Caputo
fractional derivative (Podlubny, 1999). The corresponding transfer function of incommensurate
real orders has the following form (Podlubny, 1999):

G(s) =
bmsβm + . . . + b1sβ1 + b0sβ0

ansαn + . . . + a1sα1 + a0sα0
=

Q(sβk )

P(sαk)
, (45)

where ak (k = 0, . . . n), bk (k = 0, . . . m) are constant, and αk (k = 0, . . . n), βk (k = 0, . . . m)
are arbitrary real or rational numbers and without loss of generality they can be arranged as
αn > αn−1 > . . . > α0, and βm > βm−1 > . . . > β0.
In the particular case of commensurate order systems, it holds that, αk = αk, βk = αk, (0 < α <
1), ∀k ∈ Z, and the transfer function has the following form:

G(s) = K0
∑M

k=0 bk(sα)k

∑N
k=0 ak(sα)k

= K0
Q(sα)

P(sα)
. (46)

With N > M, the function G(s) becomes a proper rational function in the complex variable sα

which can be expanded in partial fractions of the following form:

G(s) = K0

[
N

∑
i=1

Ai
sα + λi

]
, (47)

where λi (i = 1, 2, . . . , N) are the roots of the pseudo-polynomial P(sα) or the system poles
which are assumed to be simple without loss of generality. The analytical solution of the
system (47) can be expressed as

y(t) = L−1

{
K0

[
N

∑
i=1

Ai
sα + λi

]}
= K0

N

∑
i=1

Ait
αEα,α(−λit

α), (48)

where Eμ,ν(z) is the Mittag-Leffler function defined as (3).
A fractional-order plant to be controlled can be described by a typical n-term linear
homogeneous fractional-order differential equation (FODE) in the time domain

an Dαn
t y(t) + · · ·+ a1 Dα1

t y(t) + a0 Dα0
t y(t) = 0 (49)

where ak (k = 0, 1, · · · , n) are constant coefficients of the FODE; αk (k = 0, 1, 2, · · · , n) are real
numbers. Without loss of generality, assume that αn > αn−1 > . . . > α0 ≥ 0.
The analytical solution of the FODE (49) is given by general formula in the form (Podlubny,
1999):

y(t) =
1
an

∞

∑
m=0

(−1)m

m! ∑
k0+k1+...+kn−2=m

k0≥0;... ,kn−2≥0

(m; k0, k1, . . . , kn−2) (50)

×
n−2

∏
i=0

(
ai
an

)ki

Em(t,− an−1
an

; αn − αn−1, αn +
n−2

∑
j=0

(αn−1 − αj)kj + 1),

where (m; k0, k1, . . . , kn−2) are the multinomial coefficients.
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Consider a control function which acts on the FODE system (49) as follows:

an Dαn
t y(t) + · · ·+ a1 Dα1

t y(t) + a0 Dα0
t y(t) = u(t). (51)

By the Laplace transform, we can get a fractional transfer function:

G(s) =
Y(s)
U(s)

=
1

ansαn + · · ·+ a1sα1 + a0sα0
. (52)

The fractional-order linear time-invariant (LTI) system can also be represented by the
following state-space model:

0Dq
t x(t) = Ax(t) + Bu(t)

y(t) = Cx(t), (53)

where x ∈ Rn, u ∈ Rr and y ∈ Rp are the state, input and output vectors of the system
and A ∈ Rn×n, B ∈ Rn×r, C ∈ Rp×n, and q = [q1, q2, . . . , qn]

T are the fractional orders. If
q1 = q2 = . . . qn ≡ α, system (53) is called a commensurate-order system, otherwise it is an
incommensurate-order system.

EXAMPLE 3.1. Let us consider a simple two-term fractional differential equation with zero
initial condition in general form:

aDα
t y(t) + by(t) = 1 (54)

Solution can be obtained by using the Laplace transform method. In the Laplace domain we
can express the solution as

Y(s) =
1/a

s(sα + b/a)
(55)

and by using the useful relations (6) and (12), in the time domain we can write a general
solution

y(t) =
1
a
E0(t,− b

a
; α, α + 1) ≡ 1

a
tαEα,α+1

(
− b

a
tα

)
. (56)

For obtaining the solution in Matlab we can use the following sequence of commands:

clear all; close all;
a=2; b=1; alpha=1.5;
t=0:0.001:20; % for time step 0.001 and computational time 20 sec
y=(1/a)*t.^(alpha).*mlf(alpha,alpha+1,((-b/a)*t.^(alpha)));
plot(t,y);
xlabel(’Time [sec]’);
ylabel(’y(t)’);

EXAMPLE 3.2. Let us consider a three-term fractional differential equation in the form

a2Dα2
t y(t) + a1Dα1

t y(t) + a0y(t) = u(t). (57)
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where Dγ
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where Eμ,ν(z) is the Mittag-Leffler function defined as (3).
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homogeneous fractional-order differential equation (FODE) in the time domain

an Dαn
t y(t) + · · ·+ a1 Dα1

t y(t) + a0 Dα0
t y(t) = 0 (49)

where ak (k = 0, 1, · · · , n) are constant coefficients of the FODE; αk (k = 0, 1, 2, · · · , n) are real
numbers. Without loss of generality, assume that αn > αn−1 > . . . > α0 ≥ 0.
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Consider a control function which acts on the FODE system (49) as follows:

an Dαn
t y(t) + · · ·+ a1 Dα1

t y(t) + a0 Dα0
t y(t) = u(t). (51)

By the Laplace transform, we can get a fractional transfer function:

G(s) =
Y(s)
U(s)

=
1

ansαn + · · ·+ a1sα1 + a0sα0
. (52)

The fractional-order linear time-invariant (LTI) system can also be represented by the
following state-space model:

0Dq
t x(t) = Ax(t) + Bu(t)

y(t) = Cx(t), (53)

where x ∈ Rn, u ∈ Rr and y ∈ Rp are the state, input and output vectors of the system
and A ∈ Rn×n, B ∈ Rn×r, C ∈ Rp×n, and q = [q1, q2, . . . , qn]

T are the fractional orders. If
q1 = q2 = . . . qn ≡ α, system (53) is called a commensurate-order system, otherwise it is an
incommensurate-order system.

EXAMPLE 3.1. Let us consider a simple two-term fractional differential equation with zero
initial condition in general form:

aDα
t y(t) + by(t) = 1 (54)

Solution can be obtained by using the Laplace transform method. In the Laplace domain we
can express the solution as

Y(s) =
1/a

s(sα + b/a)
(55)

and by using the useful relations (6) and (12), in the time domain we can write a general
solution

y(t) =
1
a
E0(t,− b

a
; α, α + 1) ≡ 1

a
tαEα,α+1

(
− b

a
tα

)
. (56)

For obtaining the solution in Matlab we can use the following sequence of commands:

clear all; close all;
a=2; b=1; alpha=1.5;
t=0:0.001:20; % for time step 0.001 and computational time 20 sec
y=(1/a)*t.^(alpha).*mlf(alpha,alpha+1,((-b/a)*t.^(alpha)));
plot(t,y);
xlabel(’Time [sec]’);
ylabel(’y(t)’);

EXAMPLE 3.2. Let us consider a three-term fractional differential equation in the form

a2Dα2
t y(t) + a1Dα1

t y(t) + a0y(t) = u(t). (57)
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Fig. 6. Solution of the equation (55) for parameters: α = 1.5, a = 2, and b = 1, under zero
initial conditions, time step 0.001 and computation time 20 sec

Substituting (13) into the equation (57), one can write

a2

hα2

k

∑
j=0

q(α2)
j y(tk − j) +

a1
hα1

k

∑
j=0

q(α1)
j y(tk − j) + a0y(tk) = u(tk), (58)

where tk = kh (k = 1, 2, . . . , N) and q(α)
j are binomial coefficients calculated according to (14).

After some rearrangement of the terms in relation (58) we can obtain the numerical solution
of the fractional differential equation (57) in the following form:

y(tk) =
u(tk)− a2

hα2 ∑k
j=1 q(α2)

j y(tk − j)− a1
hα1 ∑k

j=1 q(α1)
j y(tk − j)

a2
hα2 + a1

hα1 + a0
, (59)

where k = 1, 2, . . . , N for N = Tsim/h and where Tsim is the total time of the calculation. The
above approach is general and can be used for n-term fractional differential equation (44).

clear all; close all;
a2=0.8; a1=0.5; a0=1.0; alpha2=2.2; alpha1=0.9;
h=0.05; TSim=35;
n=round(TSim/h);
cp1=1; cp2=1; Y0=0; u=1.0;
for j=1:n

c1(j)=(1-(1+alpha1)/j)*cp1;
c2(j)=(1-(1+alpha2)/j)*cp2;
cp1=c1(j); cp2=c2(j);

end
Y(1)=Y0;
for i=2:n

Y(i)=(u - (a2)*h^(-alpha2)*memo(Y,c2,i)- ...
(a1)*h^(-alpha1)*memo(Y,c1,i))/(a2/(h^alpha2)+a1/(h^alpha1)+a0);

end
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T=0:h:TSim;
plot(T,Y);
xlabel(’Time [sec]’); ylabel(’y(t)’);

function [yo] = memo(r, c, k)
%
temp = 0;
for j=1:k-1

temp = temp + c(j)*r(k-j);
end
yo = temp;
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0
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1

1.5

2

Time [sec]

y(
t)

Fig. 7. Solution of the equation (57) for parameters: a2 = 0.8, a1 = 0.5, a0 = 1, α2 = 2.2,
α1 = 0.9 for u(t) = 1, under zero initial conditions, time step h = 0.05 and computation time
Tsim = 35 sec

EXAMPLE 3.3. Let us consider the following three-term fractional differential equations, also
called the Bagley-Torvik equation, in the form (Podlubny, 1999):

Ay
��
(t) + BDα

t y(t) + Cy(t) = F(t), (60)

where F(t) = 8 for 0 ≤ t ≤ 1 and F(t) = 8 for t > 1, and with zero initial conditions
y(0) = y

�
(0) = 0.

In this case we will use a matrix approach and the following syntax of the Matlab functions
(Podlubny et al., 2008):

clear all; close all;
alpha = 1.5; A = 1; B = 0.5; C = 1;
h=0.05;
TSim=40;
T=0:h:TSim;
N=TSim/h + 1;
M=zeros(N,N);
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function [yo] = memo(r, c, k)
%
temp = 0;
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Fig. 7. Solution of the equation (57) for parameters: a2 = 0.8, a1 = 0.5, a0 = 1, α2 = 2.2,
α1 = 0.9 for u(t) = 1, under zero initial conditions, time step h = 0.05 and computation time
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EXAMPLE 3.3. Let us consider the following three-term fractional differential equations, also
called the Bagley-Torvik equation, in the form (Podlubny, 1999):

Ay
��
(t) + BDα

t y(t) + Cy(t) = F(t), (60)

where F(t) = 8 for 0 ≤ t ≤ 1 and F(t) = 8 for t > 1, and with zero initial conditions
y(0) = y

�
(0) = 0.

In this case we will use a matrix approach and the following syntax of the Matlab functions
(Podlubny et al., 2008):

clear all; close all;
alpha = 1.5; A = 1; B = 0.5; C = 1;
h=0.05;
TSim=40;
T=0:h:TSim;
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Dalpha = ban(alpha,N,h);
D2 = ban(2,N,h);
M=A*D2 + B*Dalpha + C*eye(size(Dalpha));
F=8*(T<=1)’;
M = eliminator(N,[1 2])*M*eliminator(N, [1 2])’;
F= eliminator(N,[1 2])*F;
Y=M\F;
Y0 = [0; 0; Y];
figure(1)
plot(T,Y0’)
xlabel(’Time [sec]’);
ylabel(’y(t)’);

0 10 20 30 40
−4

−2

0

2

4

6

Time [sec]

y(
t)

Fig. 8. Solution of the equation (60) for parameters: A = 1, B = 0.5, C = 1, and α = 1.5 under
zero initial conditions, time step h = 0.05 and computation time 40 sec

EXAMPLE 3.4. The transfer function of the closed feedback control loop with the DC motor
(DCM) and the fractional-order controller designed for desired value of phase margin Φm =
45o and gain margin equal to infinity, has the following form (Petráš, 2009):

Gc(s) =
Y(s)
W(s)

=
Go(s)

1 + Go(s)
=

GDCM(s)C(s)
1 + GDCM(s)C(s)

=
0.05s + 1

0.05s2.5 + s1.5 + 0.05s + 1
, (61)

where Go(s) is the transfer function of the open control loop. Transfer function (61)
corresponds to the fractional differential equation:

0.05D2.5
t y(t) + D1.5

t y(t) + 0.05y
�
(t) + y(t) = 0.05w

�
(t) + w(t) (62)

The feedback control loop described above can be simulated in Matlab environment by using
the approximation technique described in previous section, namely Oustaloup’s recursive
approximation function ora_foc() for desired frequency range ωb = 10−2, ωh = 102, and
N = 6.
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close all; clear all;
Gs_DCM=tf([0.08],[0.05 1 0]);
Cs=(0.625*ora_foc(0.5,6,0.01,100))+(12.5*ora_foc(-0.5,6,0.01,100));
Gs_close=(Gs_DCM*Cs)/(1+(Gs_DCM*Cs));
step(Gs_close,15);
Gs_open=(Gs_DCM*Cs);
figure; bode(Gs_open);
[Gm,Pm] = margin(Gs_open);

The results obtained via described Matlab scripts are depicted in Fig. 9. The continuous model
is shown with solid line. Phase margin is Φm ≈ 44.9o and gain margin is infinity.
The discrete version of the continuous fractional-order transfer function can be obtained
by using the digital operator (21) and Matlab function for approximation of digital
fractional-order derivative/integral dfod1() for sampling time T = 1 sec, ratio a = 1/3,
and n = 5.

close all; clear all;
T=0.1; a=1/3;
z=tf(’z’,T,’variable’,’z^-1’)
Hz=((1+a)/T)*((1-z^-1)/(1+a*z^-1));
Gz_DCM=0.08/(Hz*(0.05*Hz+1));
Cz=0.625*dfod1(5,T,a,0.5)+12.5*dfod1(5,T,a,-0.5);
Gz_close=(Gz_DCM*Cz)/(1+(Gz_DCM*Cz));
step(Gz_close,15);
Gz_open=(Gz_DCM*Cz);
figure; bode(Gz_open);
[Gm,Pm] = margin(Gz_open);

The results obtained via described Matlab scripts are depicted in Fig. 9. The discrete model is
shown with dashed line. Phase margin is Φm ≈ 45.1o and gain margin is infinity.
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4. Partial fractional differential equations

For the solution of partial differential equations with derivatives of any order (integer and
non-integer), with time and space fractional derivatives, we can use a matrix approach.

EXAMPLE 4.1. Let us consider the following one-dimensional fractional diffusion equation
with fractional derivatives with respect both to time and to the spatial variable:

C
0 Dα

t y(x, t)− a2 ∂βy(x, t)
∂|x|β = f (x, t) (63)

with the initial condition y(x, 0) = h(x) and the boundary conditions y(0, t) = y(L, t) =
K. Note that ∂βy(x, t)/∂|x|β is symmetric Riesz derivative. Let us consider the following
parameters: α = 1.2, β = 2.1, a2 = 1, f (x, t) = 5, L = 2, Tsim = 3 sec and K = 0. The Matlab
code is (for more details see also (Podlubny et al., 2008; 2009)):

clear all; close all;
% set the input parameters:
alpha =1.2; beta=2.1; a2=1; f_x=5; L=2; TSim=3; K=0;
% set the calculation parameters:
m = 21; n =148; h = L/(m-1); tau = TSim/n;
% alpha-th order derivative with respect to time:
B1 = ban(alpha,n-1,tau)’;
% time derivative matrix:
TD = kron(B1, eye(m));
% beta-th order derivative with respect to x:
B2 = ransym(beta,m,h);
% spatial derivative matrix:
SD = kron(eye(n-1), B2);
% matrix corresponding to discretization in space and time:
SystemMatrix = TD - a2*SD;
S = eliminator (m, [1 m]);
SK = kron(eye(n-1), S);
SystemMatrix_without_columns_1_m = SystemMatrix * SK’;

% remove rows with ’1’ and ’m’ from SystemMatrix_without_columns_1_m
S = eliminator (m, [1 m]);
SK = kron(eye(n-1), S);
SystemMatrix_without_rows_columns_1_m = ...
SK * SystemMatrix_without_columns_1_m;

% initial conditions:
U0=zeros(1,m);

% right hand side:
F = f_x*ones(size(SystemMatrix_without_rows_columns_1_m,1),1);

% solution of the system:
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Y = SystemMatrix_without_rows_columns_1_m\F;

% reshape solution array --
% values for k-th time step are in the k-th column of YS:
YS = reshape(Y,m-2,n-1);
YS = fliplr(YS);

% final solution (take into account the initial condition):
for k = 1:(n-1)

U (:,k) = (YS(:,k)+U0(2:(m-1))’);
end

% plot graph
[rows, columns] = size(U);
U = [ zeros(1, columns)+K; U; zeros(1, columns)+K];
U = [U0’ U];
[XX,YY]=meshgrid(tau*(0:n-1),h*(0:m-1));
mesh(XX,YY,U)
xlabel(’t’); ylabel(’x’); zlabel(’y(x,t)’);
title([’\alpha =’, num2str(alpha), ’, \beta = ’, num2str(beta)])

When we consider non-zero initial condition, e.g. in the form of auxiliary function y(x, 0) =
h(x) = x(x − 1) and non-zero boundary conditions in the form of the constant K, where
y(0, t) = y(L, t) = K, we have to modify the following lines in above Matlab code:

K=2;
...
% initial conditions:
k = 1:m;
U0 = (k-1).*((m-1) - k + 1)*h^2 + K;

In Fig. 10(a) and Fig. 10(b) are depicted the solutions of the fractional partial differential
equation (63) for zero and non-zero initial and boundary conditions, respectively.

5. Nonlinear fractional differential equations

A general numerical solution of the nonlinear fractional differential equation in the form

aDq
t y(t) = f (y(t), t),

can be expressed by using the relations (13) and (14) as:

y(tk) = f (y(tk), tk) hq −
k

∑
j=v

c(q)
j y(tk−j). (64)

For the memory term expressed by the sum, a “short memory" principle can be used. Then the
lower index of the sums in relations (64) will be v = 1 for k < (Lm/h) and v = k − (Lm/h) for
k > (Lm/h), or without using the “short memory" principle, we put v = 1 for all k.
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(b) For non-zero initial and boundary conditions:
y(x, 0) = x(x− 1) and y(0, t) = y(L, t) = 2

Fig. 10. Solution of the equation (63) for parameters: α = 1.2, β = 2.1, a = 1, and f (x, t)=5 for
L = 2 and Tsim = 3 sec

EXAMPLE 5.1. In this section, we will demonstrate the proposed numerical solution on
the set of three nonlinear fractional differential equations, which are used for describing an
economical system. The fractional-order financial system is described as follows (Chen, 2008):

0Dq1
t x(t) = z(t) + (y(t)− a)x(t),

0Dq2
t y(t) = 1 − by(t)− x(t)2, (65)

0Dq3
t z(t) = −x(t)− cz(t),

where the total order of the system is denoted by q̄ = (q1, q2, q3), a is the saving amount, b is
the cost per investment, and c is the elasticity of demand of commercial market. The state
variables are: x(t) is the interest rate, y(t) is the investment demand, and z(t) is the price
index.
The numerical solution of the fractional-order financial system (65) has the following form
(Petráš, 2011):

x(tk) = (z(tk−1)− (y(tk−1)− a)x(tk−1)) hq1 −
k

∑
j=v

c(q1)
j x(tk−j),

y(tk) =
(

1 − by(tk)− x2(tk)
)

hq2 −
k

∑
j=v

c(q2)
j y(tk−j), (66)

z(tk) = (−x(tk)− cz(tk−1)) hq3 −
k

∑
j=v

c(q3)
j z(tk−j),

where Tsim is the simulation time, k = 1, 2, 3 . . . , N, for N = [Tsim/h], and (x(0), y(0), z(0)) is

the start point (initial conditions). The binomial coefficients c(qi)
j , ∀i, are calculated according

to relation (14).
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Let us consider the following parameters of the system (65): a = 1.0, b = 0.1, c = 1.0, orders
q1 = 1.1, q2 = 0.9, q3 = 0.8, computational time Tsim = 200 days, for time step h = 0.04166,
and initial conditions (x(0), y(0), z(0)) = (1,−1, 1). We will use v = 1 in (66) for all k.
The Matlab code for the solution of system (65) follows:

close all; clear all;
[t, y]=FOFinanc([1 0.1 1],[1.1 0.9 0.8],200, [1 -1 1]);
plot3(y(:,1), y(:,2), y(:,3),’k’); % in 3D state space
xlabel(’x(t)’); ylabel(’y(t)’); zlabel(’z(t)’); grid;
figure; plot(y(:,1), y(:,2),’k’); % projection onto x-y plane
xlabel(’x(t)’); ylabel(’y(t)’); grid;

where routine FOFinanc() consists of the following code (Petráš, 2010):

function [T, Y]=FOFinanc(parameters, orders, TSim, Y0)
h=0.04166;
% number of calculated mesh points:
n=round(TSim/h);
%orders of derivatives, respectively:
q1=orders(1); q2=orders(2); q3=orders(3);
% constants of financial system:
a=parameters(1); b=parameters(2); c=parameters(3);
% binomial coefficients calculation:
cp1=1; cp2=1; cp3=1;
for j=1:n

c1(j)=(1-(1+q1)/j)*cp1;
c2(j)=(1-(1+q2)/j)*cp2;
c3(j)=(1-(1+q3)/j)*cp3;
cp1=c1(j); cp2=c2(j); cp3=c3(j);

end
% initial conditions setting:
x(1)=Y0(1); y(1)=Y0(2); z(1)=Y0(3);
% calculation of phase portraits /numerical solution/:
for i=2:n

x(i)=(z(i-1)+(y(i-1)-a)*x(i-1))*h^q1 - memo(x, c1, i);
y(i)=(1-b*y(i-1)-x(i)^2)*h^q2 - memo(y, c2, i);
z(i)=(-x(i)-c*z(i-1))*h^q3 - memo(z, c3, i);

end
for j=1:n

Y(j,1)=x(j); Y(j,2)=y(j); Y(j,3)=z(j);
end
T=0:h:TSim;

Supporting function memo() was already introduced in previous section of this chapter.
In Fig. 11 are depicted the simulation results of the financial system (65) for the following
parameters: a = 1, b = 0.1, and c = 1.0, orders q1 = 1.1, q2 = 0.9, q3 = 0.8, computational
time 200 days, and for time step h = 0.04166 (i.e. approximately one hour sampling).
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plot3(y(:,1), y(:,2), y(:,3),’k’); % in 3D state space
xlabel(’x(t)’); ylabel(’y(t)’); zlabel(’z(t)’); grid;
figure; plot(y(:,1), y(:,2),’k’); % projection onto x-y plane
xlabel(’x(t)’); ylabel(’y(t)’); grid;

where routine FOFinanc() consists of the following code (Petráš, 2010):

function [T, Y]=FOFinanc(parameters, orders, TSim, Y0)
h=0.04166;
% number of calculated mesh points:
n=round(TSim/h);
%orders of derivatives, respectively:
q1=orders(1); q2=orders(2); q3=orders(3);
% constants of financial system:
a=parameters(1); b=parameters(2); c=parameters(3);
% binomial coefficients calculation:
cp1=1; cp2=1; cp3=1;
for j=1:n

c1(j)=(1-(1+q1)/j)*cp1;
c2(j)=(1-(1+q2)/j)*cp2;
c3(j)=(1-(1+q3)/j)*cp3;
cp1=c1(j); cp2=c2(j); cp3=c3(j);

end
% initial conditions setting:
x(1)=Y0(1); y(1)=Y0(2); z(1)=Y0(3);
% calculation of phase portraits /numerical solution/:
for i=2:n

x(i)=(z(i-1)+(y(i-1)-a)*x(i-1))*h^q1 - memo(x, c1, i);
y(i)=(1-b*y(i-1)-x(i)^2)*h^q2 - memo(y, c2, i);
z(i)=(-x(i)-c*z(i-1))*h^q3 - memo(z, c3, i);

end
for j=1:n

Y(j,1)=x(j); Y(j,2)=y(j); Y(j,3)=z(j);
end
T=0:h:TSim;

Supporting function memo() was already introduced in previous section of this chapter.
In Fig. 11 are depicted the simulation results of the financial system (65) for the following
parameters: a = 1, b = 0.1, and c = 1.0, orders q1 = 1.1, q2 = 0.9, q3 = 0.8, computational
time 200 days, and for time step h = 0.04166 (i.e. approximately one hour sampling).

261Fractional Derivatives, Fractional Integrals, and Fractional Differential Equations in Matlab



24 Will-be-set-by-IN-TECH

−5

0

5 −2
0

2
4

−2

−1

0

1

2

y(t)x(t)

z(
t)

(a) State trajectory in 3D state space

−3 −2 −1 0 1 2 3
−1

0

1

2

3

4

x(t)

y(
t)

(b) State trajectory projected onto x-y plane

Fig. 11. Simulation result of the fractional-order financial system (65) in state space for the
initial conditions (x(0), y(0), z(0)) = (1,−1, 1)

6. Conclusion

In this chapter are presented the methods for calculation of the fractional derivative and
fractional integral together with methods for solution of the fractional differential equations
in Matlab. Those methods are based on the numerical approximation of the fractional
derivatives and integral in the continuos time, discrete time and frequency domains. For
each mentioned methods are presented illustrative examples with a Matlab code. Moreover,
all described problems can be solved also in Simulink environment but such approach was
omitted in this chapter. Obviously the described problems could be solved via other methods
and also by different Matlab functions but we shown the way how one can create its own
Fractional Calculus Toolbox for Matlab from functions, which are freely downloadable from the
MathWorks, Inc. Matlab Central File Exchange. It depends on the problem which should
be solved in Matlab. Except above-mentioned open source routines, there are very useful
and effective Matlab functions for solution and analysis of the fractional calculus problems,
which are described in (Monje et al., 2010). Especially helpful is the linear fractional-order
differential equations solver fode_sol() and also the set of functions already published in
paper (Chen et al., 2009).
It is worth mentioning that there are many additional useful functions at the Matlab
Central File Exchange web site, which are not used in this chapter. For instance
variable-order, distributed-order, and random-order fractional equations, predictor corrector
numerical method, impulse and step responses invariant discretization of fractional-order
differentiators/integrators as well as various fractional-order digital filters.
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1. Introduction 
The dynamic systems analysis, very common in engineering studies, is relatively simple 
when the steady state behaviour is analyzed, or when the system has few degrees of 
freedom. However, for complex systems, the problem can be highly complicated and the 
classic way to establish the behaviour equations becomes inadequate.  
In most of the cases, the main concern of engineering students is to establish the 
mathematical model that represents the dynamic behaviour of the system and how the 
different parameters influence the system behaviour, because the equations that represent 
the dynamic of the system are usually partial differential equations, whose solutions require 
deep mathematical knowledge that in most cases is not available for the students.  
The Bond Graph technique (Blundell, 1982) is extraordinarily useful to overcome these 
difficulties. Bond Graph is a simple and effective method to set out the differential equations 
of any dynamic system independently of the physical field analyzed. Bond Graph provides a 
common model for a wide range of systems ranging from the usual Electric, Mechanics, 
Hydraulic, Thermals, etc., or combinations of them. 
Depcik et al. (2004) compare different software and language options, which are available to 
build models of dynamic systems. They establish that MATLABTM and SimulinkTM might be 
the best choice if the teacher wishes to collaborate with students because engineering 
students are typically familiar with MATLAB.  
Some commercial software allow working directly with Bond Graph concepts as CAMP-G, 
TUTSIM, BONDLAB, which allow drawing the flow lines of the Bond Graph method. 
However, in order to the students understand the physical and mathematical concepts 
involved on the dynamic system, the block diagram used in Simulink allows a better 
compression of physical behaviour of the system. 
Simulink forms the core environment for Model-Based Design for creating accurate, 
mathematical models of physical system behaviour. The graphical block-diagram lets the 
user drag-and-drop predefined modelling elements, connect them together and create 
models of dynamic systems. These dynamic systems can be continuous-time, multi-rate, 
discrete-time, or virtually any combination of the three. 
In this chapter, we present an application, developed in Simulink library, which allows the 
engineering students to learn easily and quickly about dynamic systems behaviour through 
Bond Graph method.  
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After a brief introduction to the Bond Graph method, it will be explained how Simulink can 
be applied to improve the method, transforming the Bond Graph graphical diagram to a 
Simulink block diagram. Next, some mechanical examples of the application will be 
presented, increasing complexity, to demonstrate the benefits of the method for building 
complex models from simpler ones. Finally, the results of the dynamic response to different 
excitations will be analyzed using the various tools provided by Simulink.  

2. Bond Graph method 
This paper does not aim to develop the Bond Graph method. There are many literatures 
about Bond Graph method and its applications to analyze dynamic systems, such as Vera et 
al. (1993), Thoma (1975), Margolis (1985) and Karnopp (1979) in which the method is 
explained adequately. However, we believe that it is appropriate to make a brief 
introduction for encourage uninitiated readers to extending the method. 
In this paper, the fundamental bases of the Bond Graph theory will be presented, in order to 
understand how to implement a model in Simulink, but is not the focus of the present work 
to explain the Bond Graph method.  

2.1 Bond Graph basis 
Energy is a basic commodity in a system. It flows in from one or more sources, is 
temporarily stored in system components or partially dissipated in resistances as heat, and 
finally arrives at “sinks” or “loads” where it produces some desired effects. Power is the rate 
of flow energy and is a scalar with no direction. 
Bond Graph represents this power flow between two systems. This flow is symbolized 
through an arrow (Bond) as figure 1 illustrated. Unfortunately, power is not easy to measure 
directly, and engineers prefer to work with two temporary variables called “flow” and 
“effort”. Depending on the physical environment, these variables have different value. For 
example in electrical networks, flow represents the “current” and effort the “voltage”, in 
mechanical linkages, flow represents the “velocity” and effort the “force”. The product  
of both temporary variables is power as equation (1) shows in the case of a mechanical 
system: 

 ( ) ( ) ( ) ( )Power f t e t v t F t= ⋅ = ⋅  (1) 

On each Bond, one of the variables must be the cause and the other the effect. This can be 
deduced by the relationship indicated by the arrow direction. Effort and flow causalities 
always act in opposite directions in a Bond. 
 

BOND

SYSTEM 1 SYSTEM 2
Effort       e(t) 

Flow       f(t) 

 
Fig. 1. Power flow in Bond Graph 
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Power bonds may join at one of two kinds of junctions: a “0” junction and a “1” junction. In 
a “0” junction, the flow and the efforts satisfy the expressions (2): 

 
_ _

_ 1 _ 2 _ _ 1 _.... ...

input n output m
n m

input input input n output output m

Flow Flow

Effort Effort Effort Effort Effort

=

= = = = = =

∑ ∑
 (2) 

This corresponds to a node in an electrical circuit (where Kirchhoff's current law applies). 
In a “1” junction, the flow and the efforts satisfy the expressions (3): 

 
_ _

_ 1 _ 2 _ _ 1 _.... ...

input n output m
n m

input input input n output output m

Effort Effort

Flow Flow Flow Flow Flow

=

= = = = = =

∑ ∑
 (3) 

This corresponds to force balance at a mass in a mechanical system. An example of a “1” 
junction is a resistor in series. In junction, the premise of energy conservation is assumed, no 
lost is allowed. 
There are two additional variables, important in the description of dynamic systems. These 
variables, often called energy or dynamic variables are: Momentum [p(t)] and displacement 
[q(t)].  
The variable "Momentum" is defined as the time integral of the effort as equation (4) shows. 

 ( ) dpp(t) = e t  dt         = e(t)
dt

⇒∫  (4) 

Likewise, the variable "displacement" is defined as the time integral of flow as equation (5) 
shows. 

 ( ) dqq(t) = f t  dt           = f(t)
dt

⇒∫  (5) 

In this way the energy of the system will be: 

 ( )E = e q  dq∫  (6) 

The method makes possible the simulation of multiple physical domains, such as 
mechanical, electrical, thermal, hydraulic, etc., including combinations of these with each 
other, which can be treated as a unified set of elements. Flows [f(t)] and efforts [e(t)] should be 
identified with a particular variable for each specific physical domain which is working. 
Table 1 shows the physical meanings of the variables considered in the general notation and 
their particular representation for different domains. 
Once the system is represented in the form of Bond-graph, the state equations that govern its 
behaviour can be obtained directly as a first order differential equations in terms of 
generalized variables defined above, using simple and standardized procedures, regardless 
of the physical domain to which it belongs, even when interrelated across domains. 
Bond Graph used a set of elements to model the real system such as: 
• Resistor: This element represents situations where a lost of energy appears. (Electrical 

resistor, mechanical damper, Coulomb frictions, etc.). In these sorts of elements there is 
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After a brief introduction to the Bond Graph method, it will be explained how Simulink can 
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 ( ) ( ) ( ) ( )Power f t e t v t F t= ⋅ = ⋅  (1) 
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Fig. 1. Power flow in Bond Graph 
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Power bonds may join at one of two kinds of junctions: a “0” junction and a “1” junction. In 
a “0” junction, the flow and the efforts satisfy the expressions (2): 
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This corresponds to a node in an electrical circuit (where Kirchhoff's current law applies). 
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This corresponds to force balance at a mass in a mechanical system. An example of a “1” 
junction is a resistor in series. In junction, the premise of energy conservation is assumed, no 
lost is allowed. 
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The method makes possible the simulation of multiple physical domains, such as 
mechanical, electrical, thermal, hydraulic, etc., including combinations of these with each 
other, which can be treated as a unified set of elements. Flows [f(t)] and efforts [e(t)] should be 
identified with a particular variable for each specific physical domain which is working. 
Table 1 shows the physical meanings of the variables considered in the general notation and 
their particular representation for different domains. 
Once the system is represented in the form of Bond-graph, the state equations that govern its 
behaviour can be obtained directly as a first order differential equations in terms of 
generalized variables defined above, using simple and standardized procedures, regardless 
of the physical domain to which it belongs, even when interrelated across domains. 
Bond Graph used a set of elements to model the real system such as: 
• Resistor: This element represents situations where a lost of energy appears. (Electrical 
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a relationship between flow and effort as the equation (7) shows. The value of “R” can 
be constant or function of any system parameter including time. 

 ( ) ( )e t R f t= ⋅  (7) 

• Compliance: This element represents the situations where a store of energy appears 
(electrical capacitors, mechanical springs, etc.). In these sorts of elements there is a 
relationship between effort and displacement variable as the equation (8) shows. The 
value of “K” can be constant or function of any system parameter including time. 

 ( ) ( )e t K q t= ⋅  (8) 

• Inertia: This element represents the relationship between the “flow” and Momentum 
(electrical coil, mass, moment of inertia, etc.) as the equation (9) shows. The value of “I” 
tends to be constant. 

 ( ) ( )p t I f t= ⋅  (9) 

• Sources: This element represents the energy sources. There are two kinds of sources: 
Flow source and Effort source. 

• Transformer: A transformer adds no power but transforms it, such as an electrical 
transformer or a lever. Transformers represent those physical phenomena that are 
variation of the values of output flow and effort on the values of input flow and effort. 
If the transformation ratio is given by the “Tr” value, then the relationship between 
input and output is shown in Equation 10. 

 1( ) ( ) ( ) ( )output r input output input
r

e t T e t f t f t
T

= ⋅ = ⋅  (10) 

 
Physical 
System 

Effort Variable 
e(t) 

Flow Variable 
f(t) 

Momentum 
Variable p(t) 

Displacement 
Variable q(t) 

Mechanical 
Translation 

Force 
F (N) 

Speed 
V (m/s) 

Momentum 
P (N s) 

Displacement 
X (m) 

Mechanical 
Rotation 

Torque 
M (Nm) 

Rotational speed 
w (Rad/s) 

Angular 
Momentum 
H (N m s) 

Angle 
q (Rad) 

Electrical 
Systems 

Voltage 
V (V) 

Intensity 
I (A) 

Current Flow 
F (V s) 

Electrical Charge 
q (C) 

Hydraulic 
Systems 

Pressure 
P (N/m2) 

Flow 
Q (m3/s) 

Momentum 
R (N s/m2) 

Volume 
V (m3) 

Table 1. Generalized variables for different physical domains and units 

Figure 2 shows the Bond Graph representation of the different basic elements available to 
model a system. 
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Fig. 2. Bond Graph basic elements 

There are more elements in the Bond Graph method, but those showed above are enough for 
the following examples. 

2.2 Mechanical example 
In order to understand the Bond Graph method, a simple mechanical model will be used. 
Figure 3 illustrates a single degree of freedom (DOF) system composed by a rigid body that 
can only move up and down. This model is represented by a mass “m1”, a spring (K1) and a 
damper (R1). The source of energy is a known velocity of the ground v0(t). The output 
variable is the mass velocity v1(t). 
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Fig. 3. One degree of Freedom System 
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There are more elements in the Bond Graph method, but those showed above are enough for 
the following examples. 

2.2 Mechanical example 
In order to understand the Bond Graph method, a simple mechanical model will be used. 
Figure 3 illustrates a single degree of freedom (DOF) system composed by a rigid body that 
can only move up and down. This model is represented by a mass “m1”, a spring (K1) and a 
damper (R1). The source of energy is a known velocity of the ground v0(t). The output 
variable is the mass velocity v1(t). 
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Fig. 3. One degree of Freedom System 
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Usually, the starting point to represent a real system as a Bond Graph diagram are the 
sources, in this case a flow source (ground velocity). The next step is to think about the 
power flows through the system components, power flows produced by the effort and flow 
variables. As figure 3 illustrates the spring and the damper are moved at a velocity that 
must be the difference between the mass velocity v1(t) and ground velocity v0(t). This means 
that a “0” junction must be used as figure 4 illustrates. 
The spring is represented as a compliance bond and the damper as a resistance bond. Both 
components move at the same velocity, but each one needs different forces to move at this 
velocity. This means that a “1” junction must be used as figure 4 illustrates. Finally, the mass 
is represented as an inertia bond that moved at v1(t) velocity. Due to the fact that the system 
is under gravity of earth, an effort source must be used. 
Bond Graph method calculates the flow and effort on each Bond, and uses as system variables 
the displacement associated to compliance (K1) bond [x(t)] and momentum associated to 
inertia (m1) bond [P(t)].  
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Fig. 4. Bond Graph of the one DOF system 

According to the Bond Graph showed in figure 4, the flows in each bond are presented in the 
equations shown in (11): 
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The efforts in each bond are presented in the equations shown in (12). 

 
Analysis of Dynamic Systems Using Bond Graph Method Through SIMULINK 

 

271 

 

1 2 3

2 6 7 1 1 0
1

7 1

6 1 0
1

5 2

4 5 3 1 1 0 1
1

( )

( )

( )

e e e

Pe e e K X R V t
m

e K X

Pe R V t
m

e m g

Pe e e K X R V t m g
m

= =

⎛ ⎞
= + = ⋅ + ⋅ −⎜ ⎟

⎝ ⎠
= ⋅

⎛ ⎞
= ⋅ −⎜ ⎟

⎝ ⎠
= − ⋅

⎛ ⎞
= + = ⋅ + ⋅ − − ⋅⎜ ⎟

⎝ ⎠

 (12) 

 

That system dynamic behaviour is represented by the following two equations shown in 13 
and 14:  

 7 0
1

( ) ( )( )dX t P tf V t
dt m

= = −  (13) 

 4 1 0 1 1
1

( ) ( )( ) ( )dP t P te K X t V t R m g
dt m

⎛ ⎞
= = ⋅ + − ⋅ − ⋅⎜ ⎟

⎝ ⎠
 (14) 

These equations are achieved taking into account that the variation of the momentum is 
equal to the effort on the inertia bond, and the variation of the displacement is the flow in 
the compliance bond. These are two first order differential equations coupled as a function 
of the momentum [P(t)] associated to the inertia and displacement [X(t)] associated to the 
spring. These systems can be solved without major problems by using differential calculus. 

3. Introduction to Simulink 
Simulink is an environment for multidomain simulation and Model-Based Design for 
dynamic and embedded systems. It provides an interactive graphical environment and a 
customizable set of block libraries that allow to design, simulate, implement, and test a 
variety of time-varying systems, including communications, controls, signal processing, 
video processing, and image processing. 
Simulink is integrated with MATLAB, providing immediate access to an extensive range of 
tools that make possible to develop algorithms, analyze and visualize simulations, create 
batch processing scripts, customize the modelling environment and define signal, 
parameters and test data. 
With Simulink, a detailed block diagram of a system can be quickly created, modelled and 
maintained using a comprehensive set of predefined blocks. Simulink provides tools for 
hierarchical modelling, data management, and subsystem customization, making it easy to 
create concise, accurate representations, regardless of your system's complexity. Simulink 
software includes an extensive library of functions commonly used in modelling as: 
• Continuous and discrete dynamics blocks, such as Integration and Unit Delay 
• Algorithmic blocks, such as Sum, Product, and Lookup Table 
• Structural blocks, such as Mux, Switch, and Bus Selector 
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Usually, the starting point to represent a real system as a Bond Graph diagram are the 
sources, in this case a flow source (ground velocity). The next step is to think about the 
power flows through the system components, power flows produced by the effort and flow 
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Fig. 4. Bond Graph of the one DOF system 

According to the Bond Graph showed in figure 4, the flows in each bond are presented in the 
equations shown in (11): 
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the compliance bond. These are two first order differential equations coupled as a function 
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Simulink is an environment for multidomain simulation and Model-Based Design for 
dynamic and embedded systems. It provides an interactive graphical environment and a 
customizable set of block libraries that allow to design, simulate, implement, and test a 
variety of time-varying systems, including communications, controls, signal processing, 
video processing, and image processing. 
Simulink is integrated with MATLAB, providing immediate access to an extensive range of 
tools that make possible to develop algorithms, analyze and visualize simulations, create 
batch processing scripts, customize the modelling environment and define signal, 
parameters and test data. 
With Simulink, a detailed block diagram of a system can be quickly created, modelled and 
maintained using a comprehensive set of predefined blocks. Simulink provides tools for 
hierarchical modelling, data management, and subsystem customization, making it easy to 
create concise, accurate representations, regardless of your system's complexity. Simulink 
software includes an extensive library of functions commonly used in modelling as: 
• Continuous and discrete dynamics blocks, such as Integration and Unit Delay 
• Algorithmic blocks, such as Sum, Product, and Lookup Table 
• Structural blocks, such as Mux, Switch, and Bus Selector 
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Working directly in Simulink, these built-in blocks can be modified and new ones can be 
created and placed into customized libraries. 
After building a model in Simulink, its dynamic behaviour can be simulated, and live results 
can be viewed. Simulink software provides several features and tools to ensure the speed 
and accuracy of the simulation, including fixed-step and variable-step solvers, a graphical 
debugger, and a model profiler. 
All these features of the program allow generating a block model suitable to represent the 
Bond Graph model. The Simulink block model will solve the equations and allows the user to 
analyze the dynamic behaviour of the system. 

4. Simulink application 
After previous discussions about Bond Graph method and Simulink, this section explains 
how to use the benefits of Simulink to set up and solve the equations that manage system 
behaviour. 
The procedure consist in convert the real model into a Bond Graph model and then translate 
it to the Simulink block diagrams, as can be seen in Figure 5.  
 
    Real System     Bond Graph Model        Simulink Model           Dynamic Solution 

 
Fig. 5. Procedure to Analyze the Dynamic Behaviour of a System 

Simulink provides a block-diagram that allows users to represent the equations involved on 
the Bond Graph model. These blocks of Simulink will be used to represent the action that 
occurs in each element of the Bond Graph model. 
The different Simulink blocks that will be used to build the Bond Graph model are being 
described following. 
It is assumed that readers know the basic operation of MATLAB and Simulink, so no details 
will be given regarding how to open the program, select Simulink blocks and build models 
from these Simulink blocks. 
Figure 6 shows the main window of Simulink to build a new model, and the available blocks 
that have been selected. As it can be seen, very few blocks are needed to generate models. 
From the working window of MATLAB, Simulink is accessed by clicking the icon at the top 
of the screen. Then, the user has to select open a new model and a new workspace appears. 
From the Simulink library, the necessary blocks are selected and dragged to the working 
window. The blocks used for simple models are as follows: 
• Sources library: Time, Constant and Signal Generator. These blocks provide an interface 

that allows the user to input energy into the system through a known flow or effort. 
Simulink provides different kinds of sources such as constant value, sinusoidal source, 
chirp signal, ramp, etc. 
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• Continuous library: Derivate and Integrator. These blocks provide an interface that 
allows to derive or integrate time-dependent variables of the dynamic system. 

• Math Operation library: Add, Divide, Product. These blocks provide an interface that 
allows to add, subtract, multiply, divide, etc., time-dependent variables of the dynamic 
system. 

• Sinks library: XY Graph and To Workspace. These blocks provide an interface that allows 
to display and store the variables of the dynamic system in order to analyze them. 

 

 
Fig. 6. Simulink working model window 

Although there are many more blocks that the user can select and use to generate models, 
only those previously described are used in this work. 
Taking into account the effect of each Bond Graph element on the flow and effort variables, 
the idea is to generate Simulink elements that perform the same actions. 
Bond Graph and Simulink allows to work with discrete time dynamic systems, for instance, 
it is possible to simulate a variable damping shock absorber with two damping states (hard 
and soft). These two states could change as a function of other variable of the system. 
On the other hand, as the equations and variables used for all physical systems are the same, 
it is possible to combine, in one model,  mechanical and electrical systems or mechanical and 
hydraulic, etc. No changes are necessary in Simulink, just selecting the adequate block. 
The first step is to select the necessary blocks to simulate the Bond Graph element behaviour. 
Then, it is possible to generate a new Simulink block through the “sub-system create” feature, 
that groups blocks to generate a user-defined one. Figure 7 illustrates how to create a 
subsystem: select the group of blocks to generate the subsystem and with the right button of 
the mouse, select the option "create subsystem". Then a new “Subsystem” block appears. 
In order to facilitate the user to enter parameter values, another Simulink feature called "mask 
subsystem" can be used.  



 
Engineering Education and Research Using MATLAB 

 

272 

Working directly in Simulink, these built-in blocks can be modified and new ones can be 
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system. 

• Sinks library: XY Graph and To Workspace. These blocks provide an interface that allows 
to display and store the variables of the dynamic system in order to analyze them. 

 

 
Fig. 6. Simulink working model window 
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it is possible to simulate a variable damping shock absorber with two damping states (hard 
and soft). These two states could change as a function of other variable of the system. 
On the other hand, as the equations and variables used for all physical systems are the same, 
it is possible to combine, in one model,  mechanical and electrical systems or mechanical and 
hydraulic, etc. No changes are necessary in Simulink, just selecting the adequate block. 
The first step is to select the necessary blocks to simulate the Bond Graph element behaviour. 
Then, it is possible to generate a new Simulink block through the “sub-system create” feature, 
that groups blocks to generate a user-defined one. Figure 7 illustrates how to create a 
subsystem: select the group of blocks to generate the subsystem and with the right button of 
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The path to enter this feature is to click the right button of the mouse on the Subsystem block 
and select the option "edit mask". The window shown in Figure 8 will appear and the user 
has to select the tab "parameters". By clicking on the first icon on the left, a new line is added.  
This line allows entering the name of the variable and its abbreviation. It must be matched 
with what it was entered in the original block. It is necessary to define as many variables as 
defined in the Subsystem and variable names must be kept. Variable name must be 
introduced in the label called “Variable”, and the label “Prompt” allows to introduce a 
variable description. 
 

 
Fig. 7. Subsystem generation 

 

 
Fig. 8. Mask editor 
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Thus, when the user clicks on a Subsystem block, a new window appears to enter the 
parameter value as shown in Figure 9. 
 

 
Fig. 9. Editor window for parameters 

With exposed blocks, it is possible to generate the different elements to create a Bond Graph 
model following the next rules: 

Source bond 
This element, as has been already indicated, provides energy to the system, as a known flow 
or a known effort. So, the Simulink source blocks can be used directly. 

Resistor bond 
It provides an interface that allows the user to simulate a component that dissipates energy 
from the system. The input block is a known flow that is multiplied by the resistance value 
in order to obtain the output, which is a known effort as Figure 10 illustrates. The R value 
could be constant or variable. In each case, the necessary block is different (For instance a 
“Lookup Table”). 
 

 
Fig. 10. Resistor bond 
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Compliance bond 
It provides an interface that allows the user to simulate a component that stores energy from 
the system. The input block is a known flow that is integrated in order to obtain the 
displacement and multiplied by the compliance value to return a known effort as Figure 11 
illustrates. To establish the initial position of the inertia at the beginning of the simulation, it 
is possible to preload the compliance by adding the initial displacement. 
 

 
Fig. 11. Compliance bond 

Inertia bond 
 It provides an interface that allows the user to simulate the system inertias. The input block 
is a known effort that is divided by the inertia value to obtain the flow derivate as equation 
(15) shows. 

 ( ) 1( ) ( ) ( )df te t I f t e t dt
dt I

= ⋅ ⇒ = ⋅ ∫  (15) 

Then, the value is integrated to return to a known flow as illustrated in Figure 12.  
Junction “1” and “0” 
They provide an interface that allows the user to simulate the junctions to sum flows or 
efforts. Both blocks are simple Simulink’s “add” blocks. It is possible to add more input 
connections. 
Transformer bond 
It provides an interface that allows the user to simulate elements that modify the value of 
the flow and the effort. The input blocks are a known flow and effort, multiplied by the 
transformer ratio. Its inverse is calculated to obtain the flow and effort at the output. Figure 
13 illustrates the block diagram. 

 
Analysis of Dynamic Systems Using Bond Graph Method Through SIMULINK 

 

277 

 
Fig. 12. Inertia bond 

Display block 
It provides a block that allows the user to store the system’s variables in order to analyze 
and visualize results once the simulations are completed. 
Finally, the working window with the blocks needed to create a model is presented in 
Figure 14. Three new blocks has been added, one of them (XY Graph) to display the variables 
of the model during the simulation at real time, the second one (Simout) to store the results 
in computer memory to be viewed later and the third one is a clock to manage the 
simulation time. 
 

 
Fig. 13. Transformer bond 

Finally, through Simulink interface, it is possible to select the method to integrate the 
equations, the simulation time and the integration step in order to adapt them to the user 
needs. 
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Fig. 14. Simulink Blocks built from Bond Graph Elements 

5. Application example 
This section illustrates how Bond Graph and Simulink were used by mechanical engineering 
students to analyze, in an easy way, the dynamic behaviour of some typical systems.  
The analysis begins with the example of a one degree of freedom system, like the one used 
to introduce the Bond Graph method in the previous section (Figure 3). Table 2 shows the 
model parameters used as inputs. 
Units are expressed in international unit system. It is assumed that the positive 
displacement of the mass is upward. Because of that, the weight force is negative. 
 

Parameter Value Unit 
Mass (m1) 1 kg 
Spring ratio (K1) 9.8 N/m 
Spring initial position (X0) 1 m 
Damper ratio (R1) 1.88 N s/m 
Weight (Se) -9.8 N 
Power Source System (Sf) Variable m/s 

Table 2. Parameters for a One Degree of Freedom System  

Figure 15 illustrates the Simulink block diagram of the one degree of freedom system based 
on Bond Graph method developed in Figure 4.  
The Flow source (ground velocity) is connected to a sum block (1 junction) that calculates the 
difference of velocities between the ground (V0) and the mass (V1). This velocity is the input 
(known flow) for the spring (Compliance Bond) and the damper (Resistor Bond), that move at 
the same speed. They return to the system the spring force (Fk) and the damper force (Fr) 
that are connected to a sum block (0 junction) to calculate, by adding gravity force (Effort 
Source), the equilibrium force. This force will be the input to the Inertia block in order to 
calculate the velocity of the mass (V1) that is used as an iterative loop to calculate the 
difference in velocity between the ground and the mass. 
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Fig. 15. One Degree of Freedom Model 

The analysis parameters are the following: 
• Fk Spring Force. 
• Fr Damping Force 
• Xm Mass Displacement 
• Vm Mass Speed 
• am Mass Acceleration 
• X0 Ground Displacement 
• V0 Ground Speed 
• t Time 
All of them have been stored in variables with their own names in order to analyze them 
and compare results by plotting graphs. 
Due to the fact that the input to the system must be a flow (ground speed) it is necessary to 
derivate the ground displacement in order to obtain a flow source. 
To decide the kind of solver that will be used to integrate the equations, it is necessary to 
select the simulation menu and then select the option configuration parameters. A new window 
will open as figure 16 shows. Simulation time, solver options and the sample time can be 
introduced in this window. For instance, the Runge-kutta integration method has been 
selected in this case, with a fixed step of 0.01 second. This method has been selected because 
it works with first-order differential equations and the convergence of this method is good 
without excessive computer time consumption, but any other method available in Simulink 
can be chosen since it will not influence the quality of the result. A step of 0.01 s allows to 
analyze the result with enough resolution to apply, for instance, a Fast Fourier Transform 
(FFT) without loss of information; but the user can try to adjust the best in each case. 
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Fig. 16. Solver selection 

Four different situations of the example model will be analyzed to show the advantages of 
using Simulink to generate, solve and analyze the results. 

5.1 Free vibration 
Firstly, the ground is stopped (vo= 0 m/s) and the spring is not preloaded (Xo = 0 m), this 
means that the mass will fall on top of the spring and therefore the system moves (this is 
known as free vibration). Under the damper effect, the system will stop after a few cycles 
due to the lost of energy in each cycle.  
The powerful tool of MATLAB to plot the results, the MATLAB Graphics Editor, will be 
used. Every variable has been stored in MATLAB workspace and is available to be 
represented. To access the graphics editor, the workspace flange must be selected in the 
MATLAB window, as figure 17 shows. Every available variable is showed in this window. 
The desired variable is selected with the button of the mouse. By clicking in the plot icon, a 
new window with the variable plotted will open. Then, it is possible to modify the chart by 
adding new variables, changing the scale or including legends. 
 

 
Fig. 17. Matlab graphics editor 
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Figure 18 illustrates the system behaviour. Different values have been analyzed, such as: 
ground displacement and velocity, mass displacement and acceleration and the force in the 
spring and the damper.  
 

 

 
Fig. 18. Results for the One Degree of Freedom Model with no Ground Displacement 

By looking the different graphs of the variables that have been plotted, it is possible to 
analyze what is happening to the model when the mass can move freely. 
Initially, the mass falls and compresses the spring. Then, when the inertia and gravity forces 
achieve a value equal to the spring force, the mass returns to the steady state position. This 
movement is repeated but, as consequence of the damper, the system loses energy and 
finally stops after few cycles. When the system stops, the spring is loaded with a force equal 
to the mass weight (9.8 N) so the mass stabilizes at minus one meter from the initial 
position. 

5.2 Forced vibration below natural frequency 
In the second simulation, the system starts with the spring preloaded (Xo = 1m), and the 
ground has a sinusoidal movement with amplitude of 0.1 meter and a frequency of 0.1 Hz 
(This is known as forced vibrations) The natural frequency of the system, according to the 
equation 16, is under the frequency of the excitation 

 1

1

1( ) 0.498
2

KF Hz Hz
mπ

= =  (16) 
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To change the model parameters, the user has to click on the block and put the new values. 
Taking into account that the system excitation is under the natural frequency, the mass 
movement will be similar to the ground movement as figure 19 illustrates.  
As figure 19 shows, the system movement has a transitional state before stabilizing and 
oscillating around the initial position. Since the difference between the mass velocity and the 
ground velocity is very small, the energy dissipated by the damper is small too. 
 

 

 

 
Fig. 19. Results for the One Degree of Freedom Model with Ground Displacement below the 
Natural Frequency 

5.3 Forced vibration at natural frequency 
In the third simulation, the sinusoidal movement of the ground is the natural frequency of 
the system. In this case, the movement of the mass is seven times higher than the ground 
movement due to the resonance phenomenon, as figure 20 illustrates. Again, after a little 
transitional period, the system achieves the steady state. Now, the energy dissipated on the 
damper is high as well as the force at the spring 

5.4 Forced vibration up to natural frequency 
In this simulation, the ground moves at a frequency (2 Hz) that is higher than the natural 
frequency of the system. Figure 21 illustrates the variable analysis. 
In this case, the mass movement is lower than the ground movement, but as both of them 
are out of phase, the damper has to dissipate more energy than in the case analyzed in 5.2. 
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Fig. 20. Results for the One Degree of Freedom Model with Ground Displacement at Natural 
Frequency 
 

 

 

 
Fig. 21. Results for the One Degree of Freedom Model with Ground Displacement greater 
that the Natural Frequency 
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6. Two Degrees of Freedom Model 
Finally, a more complex model will be simulated to demonstrate one of the advantages  
of the Bond Graph method and Simulink application. From the one degree of freedom  
model, the complexity of the system will be increased by adding an additional degree of 
freedom.  
Figure 22 illustrates the physical model for a two degrees of freedom system created by 
adding two single degree of freedom systems. 
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Fig. 22. Two Degrees of Freedom System 

Figure 23 illustrates the Bond Graph model for the two degrees of freedom system. The 
system has been developed from the original one of one degree of freedom. The new part 
has been drawn in red: 
As illustrated in figure 24, Simulink model it is relatively easy to built since the user only has 
to copy and paste the original model to obtain a system with two degrees of freedom.  
The new part of the model is drawn in red. Only few lines, drawn in blue, are necessary to 
connect both parts of the model. The new blue lines transmit the effort from the spring (K2) 
and the damper (R2) to the “zero junction” that feed the inertia 1(m1). The inertia 1 block 
returns a known flow to a “one junction” in order to calculate the velocity difference between 
the two masses that feed the spring K2 and damper R2. 
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Fig. 23. Bond Graph chart of the Two Degree of Freedom System 

 

 
Fig. 24. Simulink blocks of a Two Degrees of Freedom System 
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Fig. 22. Two Degrees of Freedom System 
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Fig. 25. Two Degrees of Freedom Results 

 

 
Fig. 26. How to add more plots 
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It will be necessary to rename the variables of the second part of the model. This requires 
accessing the “mask editor” by clicking with the right button of the mouse in each block, and 
changing the variable name (m2, K2, R2 …). 
The model will be analyzed assuming that initially the ground is stopped, the spring 1 is 
preloaded, the spring 2 unloaded and mass m2 falls over it. Figure 25 illustrates the results, 
analysing the mass displacement and the forces on the springs and the dampers. 
In order to obtain the new graphics, the user has to open the plot window and add as many 
graphics as needed by clicking on the icon "created titled subplots" as figure 26 shows. 
After that, the desired variable must be clicked and dragged to the blank plot window in 
which it is going to be represented. 
Likewise, by changing model parameters, different inputs can be simulated and the results 
can be comfortably analyzed. 
On the other hand, more complex models can be generated by adding more degrees of 
freedom following the procedure shown in this example. 

7. Conclusion 
This work presents a method to apply the Bond Graph technique to implement and solve the 
dynamic equations of a dynamic system by taking advantage of MATLAB and Simulink.  
This method allows engineering students to quickly and easily gain experience and 
knowledge in systems dynamics and to learn which are the forces, accelerations, velocities 
and displacements of each component and each degree of freedom of the system.  
It is very easy for the students to test the changes in the system and analyze how the results 
change. 
The proposed method is designed with a user-friendly Windows interface in MATLAB’s 
Simulink. The most important benefits of using the proposed method are the following: 
• MATLAB toolboxes and functions can be used, allowing the program to simulate 

complex systems.  
• It is easy to work with differential equations, matrixes and vectors. 
• Students do not have to determine the dynamic equations, since the Bond Graph method 

allows to transfer from the graphics model to the block model the equations involved in 
the dynamic problem. 

• MATLAB tools are easy to use when analyzing and comparing the model’s results by 
numerical or graphics outputs. 

It is noticeable the facility to generate complex models from simples ones and the facility to 
change the model parameters in order to obtain different results. 
The user does not need to have a deep knowledge of differential equations to develop the 
expressions that represent the behaviour of the system and to solve them. 
On the other hand, the MATLAB tools allow to generate models with complex behaviour, 
for instance, dampers with non-linear behaviour. 
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1. Introduction

MATLAB (short for Matrix Laboratory) was created by Cleve Moler and Jack Little in the
1970’s. It is a programming language for technical computing. Its environment is easy to work
with, the syntax is very simple and intuitive, it has powerful toolboxes to treat many different
problems in engineering, and it allows us to produce fantastic graphics as the programme
runs. It also allows us to create a graphical interface (via graphical user interfaces - GUIs) that
gives our programme a look that is very close to professional software.
Because of many of the mentioned features, a MATLAB code can be very compact, allowing
anyone to have "the big picture" of any code without have to look at all its details. Another
great advantage of Matlab is that, if the code is written in a vectorized form, the code can
run much faster than if it was written in the traditional form (’a la C/fortran’). The fact that
MATLAB allows us to use a powerful toolbox for sparse matrices, is also a great advantage
since, many traditional linear algebra operations can be highly improved, allowing the codes
to run much faster than it would run with the traditional linear algebra functions.
In our work we have made extensive use of MATLAB to do ’proof of concept’ studies,
especially when developing new algorithms and techniques for solving systems of coupled
nonlinear partial differential equations, such as those which arise in fluid dynamics. This
includes, for instance, codes for investigating instabilities in lid-driven cavities, Boppana and
Gajjar (2010), instabilities in flow past circular cylinders, Boppana and Gajjar (2011), and
transonic flow past aerofoils Pereira and Gajjar (2010). In some cases MATLAB is used in
its own right for solving small problems, but the fact that MATLAB is an interpreted language
means that for increasing problem sizes, the MATLAB version of the code can be much slower
than equivalent versions in other languages especially when one is dealing with very large
sparse matrices. On the other hand the beauty of MATLAB is that much of the hard work
is buried in the simple syntax and hidden from the user. An example of this is the use of
the backslash operator for solving linear systems. Whether the system is sparse or full, the
manner in which the equations are solved is hidden from the user and this greatly facilitates
code development. In the equivalent fortran versions of the code the replacement for the ’\’
operation requires considerable work and the code translation process is no longer a trivial
exercise.
In this chapter we will discuss the use of hybrid spectral methods to solve two and
three-dimensional problems using MATLAB. There is an excellent book by Trefethen (2000)
which discusses the application of spectral methods using MATLAB to solve ordinary and
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which discusses the application of spectral methods using MATLAB to solve ordinary and
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partial differential equations, and which provides the foundation for the techniques described
below.
To motivate the ideas we first consider the solution of a model elliptic equation of the form

a(x, y)ψxx + b(x, y)ψyy + c(x, y)ψx + e(x, y)ψy + f (x, y)ψ = g(x, y),

say with Dirichlet boundary conditions in a rectangular domain. To obtain a numerical
solution to this problem the first step is to choose an appropriate method and discretization.
In our work we have used a combination of spectral methods in one or two dimensions and
high order finite difference methods in another dimension. The main reasons for this choice
are that a hybrid approach combines the accuracy of spectral methods together with flexibility
in comparison to using spectral methods on their own. One restriction with the use of spectral
methods is that one needs to use somewhat simplified geometries. A hybrid approach gives
more flexibility in this respect. Another important reason stems from consideration of the
type of matrix patterns which arise. With finite differences in say the x direction and spectral
collocation in the y direction, the coefficient matrix with the unknowns ordered in terms of
increasing y values for a fixed x value, has a particular sparsity pattern dependent on the order
of the finite-differencing used. Second order finite-differencing leads to a a block tridiagonal
matrix whilst with fourth-order finite differences, the matrix is block-pentadiagonal of the
form:

AqΨq−2 + BqΨq−1 + CqΨq + DqΨq+1 + EqΨq+2 = Rq, q = 0, 1, ..., M. (1)

Here Ψq is the vector of unknowns at location x = xq, M + 1 is typically the number of points
in the x direction and the block matrices are of size N + 1 by N + 1 where N + 1 spectral points
are used.
Using MATLAB it is not too difficult to generate a short code to solve the above discrete system
and the book by Trefethen (2000) gives plenty of such examples. The problem becomes more
challenging when N and M become large, as for example in some fluid flow applications
where large N, M values are needed to resolve regions of the flow where the solution changes
very rapidly. When using a large number of points the sparse matrix facilities of MATLAB
come into their own. The whole coefficient matrix does not need to be stored and by declaring
this as a sparse matrix, only the non-zero entries of the block matrices are calculated. This
avoids having to store a very large and sparse matrix which can quickly lead to memory
problems.
Increasing the order of the scheme leads to increased bandwidths. This sparsity pattern can
be exploited for 2nd, 4th or even 6th finite-differencing with a direct solver. However, with
spectral methods in two directions, unless the differential operator involved has a special
form, it is not immediately possible to utilize the sparse nature of the matrix. Whilst this
does not pose any intrinsic difficulties if one is coding in MATLAB, with increased number of
points the solution phase can become very memory intensive and requires a lot of processor
time. The use of the hybrid approach in our work is motivated in part by the observation that
the sparse matrix structure can be exploited to write efficient solvers, which not only work
well with MATLAB, but can be coded directly in other languages. MATLAB provides for an
excellent environment in which one can test and develop solvers of this type.
The above techniques have been successfully applied to investigate a whole range of different
flow problems governed by the Navier-Stokes and related equations. In the first example we
consider the onset of instability in the lid-driven cavity flow. MATLAB was used to generate
results on coarse grids and do preliminary eigenvalue computations. For very fine grids, the
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computations were performed in Fortran 95. The problem is described in detail in Boppana
and Gajjar (2010).
The second problem concerns the onset of instability in the flow past a row of circular
cylinders. Again the same technqiues have been used but for a more complicated geometry.
This problem is described in detail in Boppana and Gajjar (2011).
The third problem we discuss concerns the inviscid transonic flows past thin airfoils. Here
the governing equations are nonlinear and of mixed type and the flow can contain shock
wave discontinuities for certain parameter values. The full details are given in Pereira and
Gajjar (2010). The same methods as described above are used except now type differencing
needs to be incorporated to allow for the different flow behaviours in regions of subsonic
and supersonic flow. The method is fast and very robust and we are able to compute steady
flows with strong shocks. The code was written in MATLAB, using vectorization when
possible, and, in order to produce a good interface with the user, we used GUIs (graphical
user interfaces) from MATLAB. The result was a fast and accurate code, with the extra bonus
of a very good interface with the user, without a lot of effort in terms of programming. The fact
that graphical results can be shown immediately, saves us a lot of work, both on the analysis
of the results and on its presentation.

To motivate the techniques used in our work we first consider a model elliptic equation of the
form

a(x, y)ψxx + b(x, y)ψyy + c(x, y)ψx + e(x, y)ψy + f (x, y)ψ = g(x, y) (2)

with say Dirichlet boundary conditions in a square domain 0 ≤ x, y ≤ 1. It is assumed that
the functions a, b, c, e, f , g are smooth functions of x and y.
The discrete solution to the equations will be obtained at a set of grid points on an (M +
1) × (N + 1) grid say with the nodes, x = xj, j = 0, . . . , M with x1 = 0, xM = 1, and
y = yk, 0 ≤ k ≤ N with y0 = 0, yN = 1, and at these points we set ψj,k = ψ(xj, yk).
We will assume that derivatives in the x− and y− directions may be approximated as

∂ψ

∂x
(xj, yk) =

M

∑
q=0

(Dx)j,qψq,k,
∂2ψ

∂x2 (xj, yk) =
M

∑
q=0

(Dxx)j,qψq,k,

∂ψ

∂y
(xj, yk) =

M

∑
q=0

(Dy)k,qψj,q,
∂2ψ

∂y2 (xj, yk) =
M

∑
q=0

(Dyy)k,qψj,q. (3)

Given the type and order of discretisation, the elements of the matrices Dx, Dxx, Dy, Dyy are
known. For example with second-order central finite differences, at an interior point of a
uniform grid in x with Δx = xj − xj−1, we have

(Dx)j,j−1 = − 1
2Δx

, (Dx)j,j+1 =
1

2Δx
,

(Dxx)j,j−1 =
1

Δ2
x

, (Dxx)j,j+1 =
1

Δ2
x

, (Dxx)j,j = − 2
Δ2

x
, 1 ≤ j ≤ M − 1,

and zero otherwise. If we take Chebychev collocation in the y−direction, the Dy, Dyy are
the Chebychev differentiation matrices and are given in a number of places, see for example
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computations were performed in Fortran 95. The problem is described in detail in Boppana
and Gajjar (2010).
The second problem concerns the onset of instability in the flow past a row of circular
cylinders. Again the same technqiues have been used but for a more complicated geometry.
This problem is described in detail in Boppana and Gajjar (2011).
The third problem we discuss concerns the inviscid transonic flows past thin airfoils. Here
the governing equations are nonlinear and of mixed type and the flow can contain shock
wave discontinuities for certain parameter values. The full details are given in Pereira and
Gajjar (2010). The same methods as described above are used except now type differencing
needs to be incorporated to allow for the different flow behaviours in regions of subsonic
and supersonic flow. The method is fast and very robust and we are able to compute steady
flows with strong shocks. The code was written in MATLAB, using vectorization when
possible, and, in order to produce a good interface with the user, we used GUIs (graphical
user interfaces) from MATLAB. The result was a fast and accurate code, with the extra bonus
of a very good interface with the user, without a lot of effort in terms of programming. The fact
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1) × (N + 1) grid say with the nodes, x = xj, j = 0, . . . , M with x1 = 0, xM = 1, and
y = yk, 0 ≤ k ≤ N with y0 = 0, yN = 1, and at these points we set ψj,k = ψ(xj, yk).
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the Chebychev differentiation matrices and are given in a number of places, see for example
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Weideman and Reddy (2003) or Trefethen (2000), where MATLAB code to generate the
matrices is given.
Discretization of the equation 2 leads to the set of equations

aj,k

M

∑
q=0

(Dxx)j,qψq,k + bj,k

M

∑
q=0

(Dyy)k,qψj,q + cj,k

M

∑
q=0

(Dx)j,qψq,k + ej,k

M

∑
q=0

(Dy)k,qψj,q + f j,kψj,k = gj,k,

(4)
at the interior points 1 ≤ j ≤ M − 1, 1 ≤ k ≤ N − 1. At the boundaries we have ψ = 0.
The discrete set (4) can be combined into a compact form as

[DIAG(a)(IN+1 ⊕ Dxx) + DIAG(c)(IN+1 ⊕ Dx)]Ψ+[
DIAG(b)(Dyy ⊕ IM+1) + DIAG(e)(Dy ⊕ IM+1)

]
Ψ + DIAG(f)Ψ = g , (5)

where Ψ denotes the vector of unknowns, A ⊕ B is the kronecker tensor product of two
matrices A, B (which in MATLAB is represented by the kron(A,B) operator), and DIAG(v)
is as in MATLAB the diagonal matrix with entries given by the vector v, and IM+1 is the
identity matrix of order M + 1. Certain rows of the matrix operator in (5) are also modified
when the boundary conditions are incorporated.
The linear sytem may be represented as

SΨ = R. (6)

Once the coefficient matrix S and the right hand sides have been computed, the solution just
involves the use of the \ operator with Ψ = S\R. From the user perspective other than
declaring that the matrices involved are sparse matrices, no additional special treatment is
required to obtain the solution of the linear systems.
Given the discretization matrices, the above system is easy to code in MATLAB. For certain
discretizations however, the linear systems outlined above can be huge and highly sparse.
The bandwidth of the coefficient matrix increases with increasing order of differences used,
and with spectral methods in two directions, the coefficient matrix has the sparsity pattern
similar to that in figure 1(c), obtained using the spy function in MATLAB. On the other hand
by taking second-order finite differences in the x−direction and spectral collocation in the
y−direction, with a particular ordering of grid points, the matrices can be written in block
tridiagonal form as shown in figure 1(a),1(b), or with fourth order finite-differencing in x the
linear system is block pentadiagonal. With 2nd, 4th or even 6th finite-differencing the linear
systems can be solved with a direct solver but with spectral methods in two directions, unless
the differential operator involved has a special form, it is not immediately possible to utilize
the sparse nature of the matrix. Whilst this does not pose any intrinsic difficulties if one is
coding in MATLAB, with increased number of points the solution phase can become very
memory intensive and requires a lot of processor time. The use of the hybrid approach in our
work is motivated in part by the observation that the sparse matrix structure can be exploited
to write efficient solvers, which not only work well with MATLAB, but can be coded directly
in other languages. MATLAB provides for an excellent environment in which one can test and
develop solvers of this type. In our work we have written our own direct block solvers as well
as making direct use of the \ operator with a sparse matrix.
In the MATLAB codes when constructing the coefficient matrices, we use the functions speye
or spalloc for initially creating the sparse matrices. After this only the non-zero elements of
the matrices are assigned.
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Fig. 1. Sparsity patterns for model problem with (a) second order finite-differences in both x
and y with N = 10, M = 11, (b) second-order finite-difference in y and chebychev collocation
in x with N = 10, M = 11, (b) chebychev collocation in both x and y with N = 10, M = 11.

2.1 Lid-driven cavity flow.
In this section we discuss the steps needed to go from the continuous model described by the
set of coupled nonlinear partial differential equations, the Navier-Stokes equations, to solution
using MATLAB. To focus attention we will consider the classic problem of flow in a lid-driven
cavity which has been extensively studied in the literature. The governing equations for the
problem are

∇2ψ = ω,
and ψyωx − ψxωy = 1

Re∇2ω.

�
(7)

Here Re is the Reynolds number defined as Uw
ν , where U is the velocity of the lid, ν

is the kinematic viscosity of the fluid, and w is the width of the cavity that are used
to non-dimensionalize the velocity and length-scale variables respectively. The boundary
conditions (see figure 2(a)) are given by

ψ = 0 & ψx = 0 for x = 0, 0 ≤ y ≤ A,
ψ = 0 & ψx = 0 for x = 1, 0 ≤ y ≤ A,
ψ = 0 & ψy = 0 for y = 0, 0 ≤ x ≤ 1,
ψ = 0 & ψy = 1 for y = A, 0 ≤ x ≤ 1,

⎫⎪⎪⎬
⎪⎪⎭

(8)

where A is the aspect ratio of the cavity. The discrete solution to the equations will be obtained
at a set of grid points on an (M + 1)× (N + 1) grid say with the nodes, x = xj, j = 0, . . . , M
with x1 = 0, xM = 1, and y = yk, 0 ≤ k ≤ N with y0 = 1, yN = 1, and at these points we set
ψj,k = ψ(xj, yk), ωj,k = ω(xj, yk).
We will assume that derivatives in the x− and y− directions may be approximated as in (3).
The discretization leads to a set of nonlinear algebraic equations for the unknowns ψj,k, ωj,k,
0 ≤ j ≤ M, 0 ≤ k ≤ N. To solve these we use Newton linearization and this will lead to
linear system of equations which are solved using MATLAB. Linearization of the nonlinear
equations is performed by setting ψj,k = ψ̄j,k + Gj,k, ωj,k = ω̄j,k + Hj,k, the barred quantities
representing a current iterate and Gj,k, Hj,k begin small corrections, and substituting into the
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Weideman and Reddy (2003) or Trefethen (2000), where MATLAB code to generate the
matrices is given.
Discretization of the equation 2 leads to the set of equations

aj,k

M

∑
q=0

(Dxx)j,qψq,k + bj,k

M

∑
q=0

(Dyy)k,qψj,q + cj,k

M

∑
q=0

(Dx)j,qψq,k + ej,k

M

∑
q=0

(Dy)k,qψj,q + f j,kψj,k = gj,k,

(4)
at the interior points 1 ≤ j ≤ M − 1, 1 ≤ k ≤ N − 1. At the boundaries we have ψ = 0.
The discrete set (4) can be combined into a compact form as

[DIAG(a)(IN+1 ⊕ Dxx) + DIAG(c)(IN+1 ⊕ Dx)]Ψ+[
DIAG(b)(Dyy ⊕ IM+1) + DIAG(e)(Dy ⊕ IM+1)

]
Ψ + DIAG(f)Ψ = g , (5)

where Ψ denotes the vector of unknowns, A ⊕ B is the kronecker tensor product of two
matrices A, B (which in MATLAB is represented by the kron(A,B) operator), and DIAG(v)
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The linear sytem may be represented as

SΨ = R. (6)

Once the coefficient matrix S and the right hand sides have been computed, the solution just
involves the use of the \ operator with Ψ = S\R. From the user perspective other than
declaring that the matrices involved are sparse matrices, no additional special treatment is
required to obtain the solution of the linear systems.
Given the discretization matrices, the above system is easy to code in MATLAB. For certain
discretizations however, the linear systems outlined above can be huge and highly sparse.
The bandwidth of the coefficient matrix increases with increasing order of differences used,
and with spectral methods in two directions, the coefficient matrix has the sparsity pattern
similar to that in figure 1(c), obtained using the spy function in MATLAB. On the other hand
by taking second-order finite differences in the x−direction and spectral collocation in the
y−direction, with a particular ordering of grid points, the matrices can be written in block
tridiagonal form as shown in figure 1(a),1(b), or with fourth order finite-differencing in x the
linear system is block pentadiagonal. With 2nd, 4th or even 6th finite-differencing the linear
systems can be solved with a direct solver but with spectral methods in two directions, unless
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develop solvers of this type. In our work we have written our own direct block solvers as well
as making direct use of the \ operator with a sparse matrix.
In the MATLAB codes when constructing the coefficient matrices, we use the functions speye
or spalloc for initially creating the sparse matrices. After this only the non-zero elements of
the matrices are assigned.
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Fig. 1. Sparsity patterns for model problem with (a) second order finite-differences in both x
and y with N = 10, M = 11, (b) second-order finite-difference in y and chebychev collocation
in x with N = 10, M = 11, (b) chebychev collocation in both x and y with N = 10, M = 11.

2.1 Lid-driven cavity flow.
In this section we discuss the steps needed to go from the continuous model described by the
set of coupled nonlinear partial differential equations, the Navier-Stokes equations, to solution
using MATLAB. To focus attention we will consider the classic problem of flow in a lid-driven
cavity which has been extensively studied in the literature. The governing equations for the
problem are

∇2ψ = ω,
and ψyωx − ψxωy = 1

Re∇2ω.
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Here Re is the Reynolds number defined as Uw
ν , where U is the velocity of the lid, ν

is the kinematic viscosity of the fluid, and w is the width of the cavity that are used
to non-dimensionalize the velocity and length-scale variables respectively. The boundary
conditions (see figure 2(a)) are given by

ψ = 0 & ψx = 0 for x = 0, 0 ≤ y ≤ A,
ψ = 0 & ψx = 0 for x = 1, 0 ≤ y ≤ A,
ψ = 0 & ψy = 0 for y = 0, 0 ≤ x ≤ 1,
ψ = 0 & ψy = 1 for y = A, 0 ≤ x ≤ 1,

⎫⎪⎪⎬
⎪⎪⎭

(8)

where A is the aspect ratio of the cavity. The discrete solution to the equations will be obtained
at a set of grid points on an (M + 1)× (N + 1) grid say with the nodes, x = xj, j = 0, . . . , M
with x1 = 0, xM = 1, and y = yk, 0 ≤ k ≤ N with y0 = 1, yN = 1, and at these points we set
ψj,k = ψ(xj, yk), ωj,k = ω(xj, yk).
We will assume that derivatives in the x− and y− directions may be approximated as in (3).
The discretization leads to a set of nonlinear algebraic equations for the unknowns ψj,k, ωj,k,
0 ≤ j ≤ M, 0 ≤ k ≤ N. To solve these we use Newton linearization and this will lead to
linear system of equations which are solved using MATLAB. Linearization of the nonlinear
equations is performed by setting ψj,k = ψ̄j,k + Gj,k, ωj,k = ω̄j,k + Hj,k, the barred quantities
representing a current iterate and Gj,k, Hj,k begin small corrections, and substituting into the
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Fig. 2. Sketch of (a) the lid–driven cavity with boundary conditions, and (b) flow past a row
of circular cylinders.

nonlinear equations and neglecting second order small terms. This leads to

(IN+1 ⊕ Dxx)G + (Dyy ⊕ IM+1)G − DIAG(H) =

−(IN+1 ⊕ Dxx)ψ̄ − (Dyy ⊕ IM+1)ψ̄ + DIAG(ω̄),

DIAG(ψ̄y)(IN+1 ⊕ Dx)H + DIAG(ω̄x)(Dy ⊕ IM+1)G

− DIAG(ψ̄x)(Dy ⊕ IM+1)H − DIAG(ω̄y)(IN+1 ⊕ Dx)G

− 1
Re

[
(IN+1 ⊕ Dxx)H + (Dyy ⊕ IM+1)H

]
= −DIAG(ψ̄y)(IN+1 ⊕ Dx)ω̄

+ DIAG(ψ̄x)(Dy ⊕ IM+1)ω̄ +
1

Re
[
(IN+1 ⊕ Dxx)ω̄ + (Dyy ⊕ IM+1)ω̄)

]
.

Here G, H are the vector of unknown corrections.
Depending on the discretization, the above can be coded directly in MATLAB by constructing
the coefficient matrix multiplying the vector of unknowns (G, H)T . Note that the size of the
coefficient matrix is 2(N + 1)(M + 1)× 2(N + 1)(M + 1) and even for modest N, M the above
procedure leads to very large matrices and is not efficient. The approach we have adopted is
to make use of the sparsity patterns for particular types of discretizations.

2.2 Use of Matlab for the solution of the discrete system
For the case when we use second order finite-differeces in the x−direction and chebychev
collocation in the y−direction, the linear system may be written as

SΦ = (S0, S1, . . . , SM)T = r,

where
Sp = ApΦp−1 + BpΦp + CpΦp+1, 0 ≤ p ≤ M (9)
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Φp = (Gp0, Gp1, . . . , GpN , Hp0, Hp1, . . . HpN)T , Φ = (Φ0, Φ1, . . . , ΦM)T ,

with A0 = CM = 0. This represents a particular ordering of unknowns and gives rise to the
block tridiagonal system in (9). With 4th order finite-differencing in x the linear system is
block pentadiagonal.
The coefficient matrices Ap, BP, Cp can be extracted from the discrete equations above and

Ap =

� 1
Δ2

x
IN+1 O

1
2Δx

DIAG(Dyω̄p) − 1
2Δx

DIAG(Up)− 1
ReΔ2

x
IN+1

�
,

Bp =

⎛
⎝ Dyy − 2

Δ2
x
IN+1 −IN+1

DIAG(Ωx p)Dy DIAG(Vp)Dy +
1

Re

�
2

Δ2
x
IN+1 − Dyy

�
⎞
⎠ ,

Cp =

� 1
Δ2

x
IN+1 O

1
2Δx

DIAG(Dyω̄p)
1

2Δx
DIAG(Up)− 1

ReΔ2
x
IN+1

�
,

with

Up = Dyψ̄p, Ωx p =
ω̄p+1 − ω̄p−1

2Δx
, Vp = − ψ̄p+1 − ψ̄p−1

2Δx
.

The above excludes the boundary conditions, but these just alter certain rows of the matrices.
In MATLAB the individual entries of the block matrices are easily computed and the S matrix
is updated via

S(1 + 2p(N + 1) : 2(p + 1)(N + 1), 1 + 2(p − 1)(N + 1) : 2p(N + 1)) = Ap,

S(1 + 2p(N + 1) : 2(p + 1)(N + 1), 1 + 2p(N + 1) : 2(p + 1)(N + 1)) = Bp,

S(1 + 2p(N + 1) : 2(p + 1)(N + 1), 1 + 2(p + 1)(N + 1) : 2(p + 2)(N + 1)) = CP,

for 1 ≤ p ≤ M − 1.

2.3 Results for lid-driven cavity
The method described above was used to compute the flow in a lid-driven cavity. The same
techniques used were adapted to firstly compute the steady flow, and then to investigate
the instability of the flow via simulations as well as solving the linear eigenvalue problem
assuming normal mode disturbances proportional to eλt. Further details of the techniques
may be found in Boppana and Gajjar (2010). MATLAB was also used in the eigenvalue
analysis. In fact the eigenvalue problem required to be solved takes the form

SΦ = λT,

which is a generalised eigenvalue problem. The matrix S is the same as the Jacobian matrix
of the linear system after Newton linearization, and T is a singular diagonal matrix. The
eigenvalue problem is solved in MATLAB using the eig function. In other related problems
the routine sptarn available in the PDE toolbox was used for the solution of the generalised
eigenvalue problem.
In figures 3, 4 we have shown the real and imaginary parts of eigenfunctions for the
disturbance streamfunction ψ for aspect ratios of A = 1 and A = 2 at the onset of instability,
obtained from a solution of the eigenvalue problem. The advantage of working with MATLAB
is that such plots can be generated at the same time as the computation is in progress.
More extensive results and details are documented in Boppana and Gajjar (2010).
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Fig. 2. Sketch of (a) the lid–driven cavity with boundary conditions, and (b) flow past a row
of circular cylinders.

nonlinear equations and neglecting second order small terms. This leads to

(IN+1 ⊕ Dxx)G + (Dyy ⊕ IM+1)G − DIAG(H) =

−(IN+1 ⊕ Dxx)ψ̄ − (Dyy ⊕ IM+1)ψ̄ + DIAG(ω̄),

DIAG(ψ̄y)(IN+1 ⊕ Dx)H + DIAG(ω̄x)(Dy ⊕ IM+1)G

− DIAG(ψ̄x)(Dy ⊕ IM+1)H − DIAG(ω̄y)(IN+1 ⊕ Dx)G

− 1
Re

[
(IN+1 ⊕ Dxx)H + (Dyy ⊕ IM+1)H

]
= −DIAG(ψ̄y)(IN+1 ⊕ Dx)ω̄

+ DIAG(ψ̄x)(Dy ⊕ IM+1)ω̄ +
1

Re
[
(IN+1 ⊕ Dxx)ω̄ + (Dyy ⊕ IM+1)ω̄)

]
.

Here G, H are the vector of unknown corrections.
Depending on the discretization, the above can be coded directly in MATLAB by constructing
the coefficient matrix multiplying the vector of unknowns (G, H)T . Note that the size of the
coefficient matrix is 2(N + 1)(M + 1)× 2(N + 1)(M + 1) and even for modest N, M the above
procedure leads to very large matrices and is not efficient. The approach we have adopted is
to make use of the sparsity patterns for particular types of discretizations.

2.2 Use of Matlab for the solution of the discrete system
For the case when we use second order finite-differeces in the x−direction and chebychev
collocation in the y−direction, the linear system may be written as

SΦ = (S0, S1, . . . , SM)T = r,

where
Sp = ApΦp−1 + BpΦp + CpΦp+1, 0 ≤ p ≤ M (9)
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with A0 = CM = 0. This represents a particular ordering of unknowns and gives rise to the
block tridiagonal system in (9). With 4th order finite-differencing in x the linear system is
block pentadiagonal.
The coefficient matrices Ap, BP, Cp can be extracted from the discrete equations above and
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� 1
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with
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.

The above excludes the boundary conditions, but these just alter certain rows of the matrices.
In MATLAB the individual entries of the block matrices are easily computed and the S matrix
is updated via

S(1 + 2p(N + 1) : 2(p + 1)(N + 1), 1 + 2(p − 1)(N + 1) : 2p(N + 1)) = Ap,

S(1 + 2p(N + 1) : 2(p + 1)(N + 1), 1 + 2p(N + 1) : 2(p + 1)(N + 1)) = Bp,

S(1 + 2p(N + 1) : 2(p + 1)(N + 1), 1 + 2(p + 1)(N + 1) : 2(p + 2)(N + 1)) = CP,

for 1 ≤ p ≤ M − 1.

2.3 Results for lid-driven cavity
The method described above was used to compute the flow in a lid-driven cavity. The same
techniques used were adapted to firstly compute the steady flow, and then to investigate
the instability of the flow via simulations as well as solving the linear eigenvalue problem
assuming normal mode disturbances proportional to eλt. Further details of the techniques
may be found in Boppana and Gajjar (2010). MATLAB was also used in the eigenvalue
analysis. In fact the eigenvalue problem required to be solved takes the form

SΦ = λT,

which is a generalised eigenvalue problem. The matrix S is the same as the Jacobian matrix
of the linear system after Newton linearization, and T is a singular diagonal matrix. The
eigenvalue problem is solved in MATLAB using the eig function. In other related problems
the routine sptarn available in the PDE toolbox was used for the solution of the generalised
eigenvalue problem.
In figures 3, 4 we have shown the real and imaginary parts of eigenfunctions for the
disturbance streamfunction ψ for aspect ratios of A = 1 and A = 2 at the onset of instability,
obtained from a solution of the eigenvalue problem. The advantage of working with MATLAB
is that such plots can be generated at the same time as the computation is in progress.
More extensive results and details are documented in Boppana and Gajjar (2010).
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Fig. 3. Eigenfunctions of the streamfunction for lid-driven cavity at a critical Reynolds
number of Re = 8026.7 and aspect ratio A = 1.
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Fig. 4. Eigenfunctions of the streamfunction for lid-driven cavity at a critical Reynolds
number of Re = 5861 and aspect ratio A = 2.
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3. Flow past circular cylinders

The techniques described above have also been used to solve for the uniform flow past a
row of circular cylinders, see figure 2(b). Here the Navier-Stokes equations are solved with
boundary conditions of no slip on the cylinder surfaces and uniform flow far upstream. The
two important parameters are the gap-width between the cylinder centres W (normalised
with respect to cylinder radius) and the Reynolds number Re. Of particular interest is to
ascertain when the flow first becomes unstable and the mode of instability. Experiments, see
for example Mizushima & Ino (2008), for the flow past two such cylinders show a complicated
dynamics as the parameters are varied. For large Reynolds numbers, and for large gap widths
the flow is like that past an isolated cylinder and the observed shedding frequencies also
similar. For Re >> 1 and intermediate gap widths (of 0.5 to 1 cylinder diameters), the flow
can become deflected to one side and becomes asymmetric. For small gap widths, the flow is
similar to that past a single bluff body. At low Reynolds numbers the flow dynamics is also
complicated and with conflicting results.
In our work, MATLAB was used to first compute the base flows, and then for studies of
the onset of instability, by solving the generalised eigenvalue problem. Full details of the
numerical methods and results can be found in Boppana and Gajjar (2011). In figures 5, 6 we
have shown the results for the streamfunction eigenfunctions. Modes which are symmetric
and asymmetric with respect to the cylinder centreline, can be observed and it found that
the critical Reynolds numbers for the onset of instabilties are very similar for both modes.
However the symmetric modes as shown in figures 5(b), 6(b) for instance, have much lower
critical Strohal frequencies as compared to asymmetric mode. The latter is the one which tends
to that for the flow past an isolated cylinder as the gap width increases.

(a) (b)

Fig. 5. Perturbation eigenfunctions the flow past a circular cylinder for a gap width W = 5
with (a) anti-phase oscillatory mode, (b) in phase oscillatory mode.

The study of transonic flows is motivated in part by the observation that many modern
airplane carriers operate most efficiently when cruising at speeds which fall in the transonic
range, that is close to the speed of sound. Mathematically the study of transonic flows is
fascinating because the governing equations are nonlinear and of mixed type. The methods
described above work have been applied to partial differential equations of mixed type
containing shocks.
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3. Flow past circular cylinders

The techniques described above have also been used to solve for the uniform flow past a
row of circular cylinders, see figure 2(b). Here the Navier-Stokes equations are solved with
boundary conditions of no slip on the cylinder surfaces and uniform flow far upstream. The
two important parameters are the gap-width between the cylinder centres W (normalised
with respect to cylinder radius) and the Reynolds number Re. Of particular interest is to
ascertain when the flow first becomes unstable and the mode of instability. Experiments, see
for example Mizushima & Ino (2008), for the flow past two such cylinders show a complicated
dynamics as the parameters are varied. For large Reynolds numbers, and for large gap widths
the flow is like that past an isolated cylinder and the observed shedding frequencies also
similar. For Re >> 1 and intermediate gap widths (of 0.5 to 1 cylinder diameters), the flow
can become deflected to one side and becomes asymmetric. For small gap widths, the flow is
similar to that past a single bluff body. At low Reynolds numbers the flow dynamics is also
complicated and with conflicting results.
In our work, MATLAB was used to first compute the base flows, and then for studies of
the onset of instability, by solving the generalised eigenvalue problem. Full details of the
numerical methods and results can be found in Boppana and Gajjar (2011). In figures 5, 6 we
have shown the results for the streamfunction eigenfunctions. Modes which are symmetric
and asymmetric with respect to the cylinder centreline, can be observed and it found that
the critical Reynolds numbers for the onset of instabilties are very similar for both modes.
However the symmetric modes as shown in figures 5(b), 6(b) for instance, have much lower
critical Strohal frequencies as compared to asymmetric mode. The latter is the one which tends
to that for the flow past an isolated cylinder as the gap width increases.

(a) (b)

Fig. 5. Perturbation eigenfunctions the flow past a circular cylinder for a gap width W = 5
with (a) anti-phase oscillatory mode, (b) in phase oscillatory mode.

The study of transonic flows is motivated in part by the observation that many modern
airplane carriers operate most efficiently when cruising at speeds which fall in the transonic
range, that is close to the speed of sound. Mathematically the study of transonic flows is
fascinating because the governing equations are nonlinear and of mixed type. The methods
described above work have been applied to partial differential equations of mixed type
containing shocks.
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(a) (b)

Fig. 6. Perturbation eigenfunctions the flow past a circular cylinder for a gap width W = 50
with (a) anti-phase oscillatory mode, (b) in phase oscillatory mode.

4.1 The mathematical model
In this subsection we describe briefly a numerical method to deal with transonic flows past
thin airfoils, based on the Kárman-Guderley equations. This method is discussed in detail
in Pereira and Gajjar (2010). However the aim of this section in not to repeat once again the
same work, but rather to focus on the use of the graphical interface which is extremely easy
to program in MATLAB. First we will give an overview of how the mathematical model was
built, and then we will explain how to use MATLAB graphics user interfaces (GUIs) in the
context of our problem.
The governing equation may be obtained using asymptotic methods as described in Cole and
Cook (1986). The starting point to our model was the full potential equation:

(a2 − U2)Φxx − 2UVΦxy + (a2 − V2)Φyy = 0, (10)

1
2
(Φ2

x + Φ2
y) +

a2

γ − 1
=

U∞

2
+

a2
∞

γ − 1
, (11)

where Φ represents the velocity potential, a is the local speed of sound, U∞ is the velocity in
the far field, a∞ is the speed of sound in the far field, and M∞ = U∞/a∞ is the free-stream
Mach number. The velocity components (U, V) are defined as follows,

U = Φx, V = Φy.

The density ρ and pressure p can be determined via the relationships,

ργ−1 = M2
∞a2; p =

ργ

γM2
∞

,

where γ is the ratio of specific heats.
In order to define the boundary conditions we assume that the flow is uniform in the far field
and that the flow is tangent to the airfoil on its surface. To construct this theory we also assume
that we have a thin aerofoil with width (δ → 0) and that the air flow speed is close to sonic so
M2

∞ = 1 − kμ(δ), μ(δ) → 0 where k is the transonic similarity parameter and μ is a function
of the airfoil width (δ). The oncoming flow is assumed to be aligned with the x-direction.
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of the airfoil width (δ). The oncoming flow is assumed to be aligned with the x-direction. The
airfoil is defined by,

y = δF(x).

Introducing non dimensional variables,

U = uU∞, V = vU∞,

then the full potential equation becomes,

(
a2

U2
∞

− u2)Φxx − 2uvΦxy + (
a2

U2
∞

− v2)Φyy = 0.

The expansion for Φ is described in Cole and Cook (1986) and is given by,

Φ(x, y, M∞, δ) = U∞(x + �(δ)φ(x, y, k) + ...).

It is well known that as M∞ → 1, the perturbations extend in the y direction significantly.
Because of this, stretched coordinates were used and the governing equations and boundary
conditions reduce to,

φxx(k − φx(γ + 1)) + φYY = 0, (12)

φx = φY = 0, x2 + Y2 → ∞, (13)

φY(Y = 0) = F�(x), (14)

where (12) is the so called Kárman-Guderley equation. Equation (12) in conservative form is
written as follows,

∂

∂x
(kφx − γ + 1

2
φ2

x) + φYY = 0, (15)

and, if we denote,
ψ = kx − (γ + 1)φ (16)

then, we may rewrite (15) as,

(
ψ2

x
2
)x + ψYY = 0. (17)

The boundary conditions become,

ψx(x2 + Y2 → ∞) = k, ψY(Y = 0) = −(γ + 1)F�(x). (18)

When considering the non symmetric case, one has to introduce a new boundary condition -
the Kutta condition. The Kutta condition is used at the trailing edge to ensure that the jump
obtained in the integration of ψx along the lower and upper surfaces at the tail is zero.
Next we give a brief overview of the numerical method used to solve the above problem.
Ee used finite differences for the derivatives in the x direction and a Chebyshev collocation
method to describe the derivatives in the Y direction. As described in Cole and Cook (1986)
each point of the domain may be either subsonic, sonic, supersonic or a shock point. Let,

P = (
ψ2

x
2
),
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Fig. 6. Perturbation eigenfunctions the flow past a circular cylinder for a gap width W = 50
with (a) anti-phase oscillatory mode, (b) in phase oscillatory mode.
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=

U∞

2
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, (11)
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the Kutta condition. The Kutta condition is used at the trailing edge to ensure that the jump
obtained in the integration of ψx along the lower and upper surfaces at the tail is zero.
Next we give a brief overview of the numerical method used to solve the above problem.
Ee used finite differences for the derivatives in the x direction and a Chebyshev collocation
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then equation (17) becomes,
Px + ψYY = 0. (19)

Let (ψx)i+1/2,j represent the derivative with respect to x of ψ at the point (xi+1/2, Yj), and let
hi = xi − xi−1. Using central differences for the x derivatives we may write (19) as,

(ψx)2
i+1/2,j − (ψx)2

i−1/2,j

hi + hi+1
+ (ψYY)i,j = 0,

or,

1
hi + hi+1

((ψx)i+1/2,j − (ψx)i−1/2,j)((ψx)i+1/2,j + (ψx)i−1/2,j) + (ψYY)i,j = 0. (20)

As discussed in Cole and Cook (1986) if we have a subsonic point, the equation is elliptic and
central differences should be used to calculate both (ψx)i+1/2,j and (ψx)i−1/2,j. If we have a
supersonic point, then equation (20) becomes hyperbolic and backwards differences should
be used to calculate both (ψx)i+1/2,j and (ψx)i−1/2,j. In the first case we can rewrite (20) as,

pi,j + (ψYY)i,j = 0. (21)

In the second case, we can rewrite (20) as,

pi−1,j + (ψYY)i,j = 0. (22)

where,

pi,j =
Ai,j

hi + hi+1
ψc

x,

Ai,j =
ψi+1,j − ψi,j

hi+1
− ψi,j − ψi−1,j

hi
. (23)

and,

ψc
x =

ψi+1,j − ψi,j

hi+1
+

ψi,j − ψi−1,j

hi
. (24)

Two other cases are considered, the case when the flow accelerates from subsonic to
supersonic in which case we define a sonic point, and the opposite, when the flow decelerates
form supersonic to subsonic in which case we call it a shock point. To deal with these cases
we use artificial viscosity (μi,j) Murman and Cole (1971), and equations (21) and (22) can be
condensed as,

pi,j(1 − μi,j) + pi−1,jμi−1,j + ψYY = 0

where the values of μi,j and μi−1,j are taken from the following table:

TYPE OF POINT ψcentral
x ψbackWs

x μi−1,j μi,j
ELLIPTIC > 0 > 0 0 0
HYPERBOLIC < 0 < 0 1 1
SONIC < 0 > 0 0 1
SHOCK > 0 < 0 1 0
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Note that a shock point can be seen as an addition of both elliptic and hyperbolic x difference
operators.
In the Y direction, the physical domain was first truncated to y∞ and mapped into the
Chebyshev space, as in Canuto et. all (1998),

Y ∈ [0, y∞] → z ∈ [−1, 1]

where,

zj = cos(
jπ
N

), j = 0, 1, ..., N

and,

Yj = y∞(
zj + 1

2
).

First and second derivatives in the Y directions were calculated as described earlier.
After applying the above discretizations we obtain a set of coupled nonlinear algebraic
equations. These are linearized using Newton-Raphson linearization by setting

ψi,j = ψi,j + Gi,j,

where ψi,j represents the value of ψi,j in a previous iteration and Gi,j represents the update for
ψi,j. This results in a linear system of equations for the Gi,j of the form

Ai,jGi−2,j + Bi,jGi−1,j + Ci,jGi,j + Hi,jGi+1,j + Ei,jGi+2,j = Fi,j. (25)

Details on how to calculate the coefficients Ai,j, Bi,j..., Fi,j can be found in Pereira and Gajjar
(2010). The block pentadiagonal system of equations was solved directly using routines
described in Korolev et all. (2002).

4.2 The use of GUIs
In this subsection we will focus on how to generate a good graphics interface using MATLAB
GUIs in the context of the problem described in the previous subsection. In order to obtain
a graphics interface to our programme, the first thing we have to do is to type guide in
MATLAB’s command window. The result is that MATLAB opens a window that has a
graphics interface working environment(GIWE). The next thing to do, is to save it as name.fig.
This action has as a result not only of saving the work done so far, but also to generate a file
name.m, that has the MATLAB corresponding instructions.
Suppose next that we want to introduce a title on top of the graphics interface window. We
select the "Static text" button in the GIWE. With the mouse one selects the location and the
size of the text to input. Then after double clicking on it a new window appears, where one
can choose options for the static text we want to introduce.

Another important feature on the design of an interface, is how to read data from this interface.
To do so, one option is to select the "Edit text" button in the GIWE. With the mouse one selects
the location and the size of the text to be read. Then, after a double click a new window
appears where one can chose options for the text to be read from the keyboard. It is possible
to choose a default text that can be attributed to a certain variable in the MATLAB code. If we
fill in the field "Tag" with a name, that can be used to attribute the edited text to a variable.
Suppose we fill the field "Tag" with A1. By doing this and saving it, one automatically obtains
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then equation (17) becomes,
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condensed as,

pi,j(1 − μi,j) + pi−1,jμi−1,j + ψYY = 0

where the values of μi,j and μi−1,j are taken from the following table:

TYPE OF POINT ψcentral
x ψbackWs

x μi−1,j μi,j
ELLIPTIC > 0 > 0 0 0
HYPERBOLIC < 0 < 0 1 1
SONIC < 0 > 0 0 1
SHOCK > 0 < 0 1 0

300 Engineering Education and Research Using MATLAB Solving Fluid Dynamics Problems with Matlab 13

Note that a shock point can be seen as an addition of both elliptic and hyperbolic x difference
operators.
In the Y direction, the physical domain was first truncated to y∞ and mapped into the
Chebyshev space, as in Canuto et. all (1998),

Y ∈ [0, y∞] → z ∈ [−1, 1]

where,

zj = cos(
jπ
N

), j = 0, 1, ..., N

and,

Yj = y∞(
zj + 1

2
).

First and second derivatives in the Y directions were calculated as described earlier.
After applying the above discretizations we obtain a set of coupled nonlinear algebraic
equations. These are linearized using Newton-Raphson linearization by setting

ψi,j = ψi,j + Gi,j,

where ψi,j represents the value of ψi,j in a previous iteration and Gi,j represents the update for
ψi,j. This results in a linear system of equations for the Gi,j of the form

Ai,jGi−2,j + Bi,jGi−1,j + Ci,jGi,j + Hi,jGi+1,j + Ei,jGi+2,j = Fi,j. (25)
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4.2 The use of GUIs
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GUIs in the context of the problem described in the previous subsection. In order to obtain
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MATLAB’s command window. The result is that MATLAB opens a window that has a
graphics interface working environment(GIWE). The next thing to do, is to save it as name.fig.
This action has as a result not only of saving the work done so far, but also to generate a file
name.m, that has the MATLAB corresponding instructions.
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size of the text to input. Then after double clicking on it a new window appears, where one
can choose options for the static text we want to introduce.

Another important feature on the design of an interface, is how to read data from this interface.
To do so, one option is to select the "Edit text" button in the GIWE. With the mouse one selects
the location and the size of the text to be read. Then, after a double click a new window
appears where one can chose options for the text to be read from the keyboard. It is possible
to choose a default text that can be attributed to a certain variable in the MATLAB code. If we
fill in the field "Tag" with a name, that can be used to attribute the edited text to a variable.
Suppose we fill the field "Tag" with A1. By doing this and saving it, one automatically obtains
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in the .m file two new functions A1CreateFcn and A1Callback. The first function executes
during object creation, after setting all properties. The second function allows for the edited
text to be attributed to a variable when the enter key is pressed. Say we want to attribute the
edited text to the variable "x", all you have to do is to write in the A1Callback function the
following instruction:

x=str2double(get(handles.A1,’String’));

Here, the text read via the keyboard, once the enter key is pressed, is converted to double and
attributed to a variable "x". This feature is very important for the user to be able to set the
values of any variables to be used in the program.

In many codes, it is also very important to define a push button. This can be used to set
up certain actions once it is pushed. An example is when one wants to read data from the
keyboard, before starting a simulation. To implement this idea, we click the push button in
the GIWE. Then one selects the size and place where to put it in the GIWE. Next, if one double
clicks in it, a new window opens and the options for this push button are defined. Once this
is done and it is saved, a new function is created in the .m file called pushbuttonCallback.
All the actions that are to happen once the button is pushed are to appear in this function.
For instance, one can attribute a set of values to a set of variables. This is done exactly in the
same way as before. The difference is that this can be done to a set of many variables at once.
The next instructions we put in this function are the ones that compose the main code of our
programme.

Suppose that in the course of the simulation, we want to show a graphic object. This is done
by choosing the Axes button in the GIWE. Then one selects the size and place where to put
the graphic in the GIWE. Next, a double click on it and a new window opens and the options
for this Axes button are defined. If we fill in the field "Tag" with a name, say "graphics1", in
order to plot a graphic (x, f (x)) in that window, we would write:

axes(handles.graphics1);
plot(x,f)

Using these features, we were able to define a useful graphics interface for the program
to solve the transonic flow past an airfoil using the mathematical model presented in the
previous section. The interface was built for the NACA0012 airfoil and is shown in figure
7.
The parameters considered were: Angle of attack (α), Mach number(M∞), number of points
in the x direction over the wing (nx), number of points in the Y direction (ny), maximum value
for Y (Ymax), and relaxation factor (w).
In the figures 8, 9, we present the results obtained by our code for two classic examples
extensively studied in the literature. The first example is for M∞ = 0.75, α = 2.0, nx = 40,
ny = 40, Ymax = 1.25, w = 0.5.
The second example is for M∞ = 0.8, α = 1.25, nx = 40, ny = 40, Ymax = 1.25, w = 0.6.
The results of both examples agree with the literature, see for example Cole and Cook (1986)
and Camilo (2003). As we can see, by using GUIs, we obtained a user friendly professional
looking graphics interface, which allowed any other user to perform simulations and input
their parameters for the run. The other users of the software did not need to be familiar with
the underlying code and equations.
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Fig. 7. The ".fig" file built for the example considered.
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Fig. 8. Example of results for KG code for Transonic flows where
Min f = 0.75; α = 2.0; Nx = 40, Ny = 40, relaxation = 0.5.
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Fig. 9. Example of results for KG code for Transonic flows where
Min f = 0.8; α = 1.25; Nx = 40, Ny = 40, relaxation = 0.6.
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Fig. 9. Example of results for KG code for Transonic flows where
Min f = 0.8; α = 1.25; Nx = 40, Ny = 40, relaxation = 0.6.

305Solving Fluid Dynamics Problems with Matlab



18 Will-be-set-by-IN-TECH

5. Conclusions

- The environment of MATLAB is easy to work, the syntax is very simple and intuitive, it
has powerful toolboxes to treat many different problems in engineering, and it allows us to
produce fantastic graphics as the program runs.
- A MATLAB code can be very compact, allowing anyone to have "the big picture" of any code
without having to look at all its details.
- Another great advantage of Matlab is that, if the code is written in a vectorized form, the
code can run much faster than if it was written in the traditional form (’a la C/fortran’).
- The fact that MATLAB allows us to use a powerful toolbox for sparse matrices, is also a great
advantage since, many traditional linear algebra operations can be highly improved, allowing
the codes to run much faster than it would run with the traditional linear algebra functions.
- The main drawback with the use of MATLAB is that when the number of points used in
the discretization grows, which is necessary for finely resolved computations, the execution
time and memory requirements can grow substantially. On multicore machines, the use of the
parallel toolbox is recommended and this is supposed to provide superior performance making
use of parallel linear algebra routines with minimal code changes. However we have not been
able to test this with our codes.
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1. Introduction 
The glassy state of matter is common to all types of materials, be they metallic, inorganic or 
polymeric, for example. The transformation from an equilibrium liquid state to a non-
equilibrium glassy state is usually achieved by cooling at a rate sufficiently rapid for 
crystallization to be inhibited. For metals, this generally requires cooling rates of the order of 
millions of degrees per second, whereas, for polymers that can crystallize, a glassy state can 
be achieved with cooling rates of only hundreds of degrees per second. Furthermore, for 
atactic polymers the irregularity of the chemical structure prevents crystallization and 
results naturally in an amorphous glassy state. Cooling is not the only way in which a glassy 
state can be achieved, though. The application of high pressure is another method, though it 
is rather rarely used for reasons of experimental difficulty and danger. On the other hand, 
an alternative method that is very commonly used is by means of a chemical reaction, and in 
particular the curing reaction of a thermosetting polymer. In the present paper we 
concentrate on the glass transformation process by these two commonly applied methods, 
namely cooling from the equilibrium liquid-like state and vitrification during the cross-
linking reaction of a thermosetting polymer. 
The glassy state is characterized by a lack of long range order, and is also referred to as an 
amorphous state. This does not, however, mean that there is no discernible structure of the 
glass; on the contrary, there is a structure to the glass, which can be quantified in respect of 
its short range order, and this structure is dependent on the way in which the glass was 
formed. A good example of this is the preparation of densified glasses by cooling from the 
melt state to the glassy state under high pressure and then releasing the pressure; the 
density, and other properties, of the glass formed under pressure in this way is greater than, 
and remains greater than, that of the glass formed from the same melt by cooling at 
atmospheric pressure. The fact that the structure of the glassy state depends on the way in 
which the glass was formed is important, because the properties of the glass are, in their 
turn, dependent on the structure. 
A further important characteristic of the glassy state is that it is a non-equilibrium state. This 
was first recognized by Simon (Simon, 1931) the best part of a century ago, who proposed 
that, on cooling the equilibrium liquid at constant pressure, a transformation to a glass takes 
place at a temperature, known as the glass transition temperature, Tg, when the timescale for 
molecular rearrangements, which increases as the temperature decreases, becomes longer 
than that available corresponding to the imposed cooling rate. An immediate consequence 
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5. Conclusions

- The environment of MATLAB is easy to work, the syntax is very simple and intuitive, it
has powerful toolboxes to treat many different problems in engineering, and it allows us to
produce fantastic graphics as the program runs.
- A MATLAB code can be very compact, allowing anyone to have "the big picture" of any code
without having to look at all its details.
- Another great advantage of Matlab is that, if the code is written in a vectorized form, the
code can run much faster than if it was written in the traditional form (’a la C/fortran’).
- The fact that MATLAB allows us to use a powerful toolbox for sparse matrices, is also a great
advantage since, many traditional linear algebra operations can be highly improved, allowing
the codes to run much faster than it would run with the traditional linear algebra functions.
- The main drawback with the use of MATLAB is that when the number of points used in
the discretization grows, which is necessary for finely resolved computations, the execution
time and memory requirements can grow substantially. On multicore machines, the use of the
parallel toolbox is recommended and this is supposed to provide superior performance making
use of parallel linear algebra routines with minimal code changes. However we have not been
able to test this with our codes.

6. References

Boppana, V.B.L. and Gajjar, J.S.B. (2010). Global flow instability in a lid-driven cavity. Int J. for
Num Methods in Fluids, 62, 827-853.

Boppana, V.B.L. and Gajjar, J.S.B. (2011). Onset of instability in the flow past a circular cylinder
cascade. J. Fluid Mech. 668, 303-334.

Camilo E. (2003). Solução numérica das equações de Euler para representação do escoamento
transónico de aerofólios.M.Sc thesis, University of São Paulo, Brazil.

Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zhang, T.A., (1998). Spectral Methods in Fluid
Mechanics. Springer series in Comp. Phys., Springer Verlag.

Cole, J. D. and Cook, L. P., (1986). Transonic Aerodynamics, Elsevier Science Publishers B.V. .
Korolev G.L, Gajjar J.S.B., and Ruban A.I., (2002). Once again on the supersonic flow separation

near a corner. J. Fluid Mech., 463, 173-199.
Mizushima, J. and Ino, Y., (2008). Stability of flows past a pair of circular cylinders in a side-by-side

arrangement. J. Fluid Mech., 595, 491-507.
Murman, E. M. and Cole, J. D.,(1971). Calculation of plane steady transonic flows. Boeing Scientific

Research Laboratories.
Pereira, R. M. S. and Gajjar, J. S. B. (2010). Transonic Inviscid Flows Past Thin Airfoils: A New

Numerical Method and Global Stability Analysis using MatLab. International Journal of
Mathematical Models and Methods in Applied Sciences, ISSN 1998-0140.

Trefethen L.N., (2000). Spectral Methods in Matlab. SIAM.
Weideman, J.A.C and Reddy, S.C (2003). http://dip.sun.ac.za/∼weideman/research/differ.html .

306 Engineering Education and Research Using MATLAB

13 

The Use of Matlab in the Study of the  
Glass Transition and Vitrification in Polymers 

John M. Hutchinson and Iria Fraga 
Universitat Politècnica de Catalunya 

Spain 

1. Introduction 
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be achieved with cooling rates of only hundreds of degrees per second. Furthermore, for 
atactic polymers the irregularity of the chemical structure prevents crystallization and 
results naturally in an amorphous glassy state. Cooling is not the only way in which a glassy 
state can be achieved, though. The application of high pressure is another method, though it 
is rather rarely used for reasons of experimental difficulty and danger. On the other hand, 
an alternative method that is very commonly used is by means of a chemical reaction, and in 
particular the curing reaction of a thermosetting polymer. In the present paper we 
concentrate on the glass transformation process by these two commonly applied methods, 
namely cooling from the equilibrium liquid-like state and vitrification during the cross-
linking reaction of a thermosetting polymer. 
The glassy state is characterized by a lack of long range order, and is also referred to as an 
amorphous state. This does not, however, mean that there is no discernible structure of the 
glass; on the contrary, there is a structure to the glass, which can be quantified in respect of 
its short range order, and this structure is dependent on the way in which the glass was 
formed. A good example of this is the preparation of densified glasses by cooling from the 
melt state to the glassy state under high pressure and then releasing the pressure; the 
density, and other properties, of the glass formed under pressure in this way is greater than, 
and remains greater than, that of the glass formed from the same melt by cooling at 
atmospheric pressure. The fact that the structure of the glassy state depends on the way in 
which the glass was formed is important, because the properties of the glass are, in their 
turn, dependent on the structure. 
A further important characteristic of the glassy state is that it is a non-equilibrium state. This 
was first recognized by Simon (Simon, 1931) the best part of a century ago, who proposed 
that, on cooling the equilibrium liquid at constant pressure, a transformation to a glass takes 
place at a temperature, known as the glass transition temperature, Tg, when the timescale for 
molecular rearrangements, which increases as the temperature decreases, becomes longer 
than that available corresponding to the imposed cooling rate. An immediate consequence 
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of this is that the glass transition is a kinetic phenomenon, and that Tg depends on the 
cooling rate. Another consequence is that, if the temperature is held constant in the glassy 
state, the non-equilibrium glass will tend towards an equilibrium state at the same 
temperature. Thus, for example, the volume and the enthalpy of the glass will decrease as a 
function of time, in a process known as physical aging (Hutchinson, 1995), with consequent 
effects on other physical and mechanical properties. It is clearly of interest, therefore, not 
only from a fundamental scientific point of view but also with respect to the engineering 
applications of polymers, to be able to describe quantitatively the kinetic nature of the glass 
transition and the time dependence of the property changes that take place during physical 
aging. 
The basic equations describing these kinetic aspects derive from the early experimental 
studies conducted by Tool in the 1930’s and 1940’s on silicate glasses (Tool, 1946, 1948; Tool 
& Eichlin, 1931), and later by Kovacs on polymer glasses (Kovacs, 1963), both making use of 
dilatometry. From these studies, two key features of structural relaxation of glasses were 
identified. First, Tool established that the relaxation time for structural relaxation of glass 
was dependent not only on the temperature but also on the instantaneous structure of the 
glass, and he proposed that the structure be characterized by the fictive temperature, Tf, to 
be defined below. Second, Kovacs showed that the relaxation process involved a 
distribution of relaxation times. Although nowadays such experiments are almost invariably 
made by Differential Scanning Calorimetry (DSC), the phenomenology is the same, and 
these two key features are necessary for any realistic description of the kinetics of structural 
relaxation. For reasons that will become clear later, they are now commonly referred to as 
non-linearity and non-exponentiality, respectively. In this paper, we apply a relatively 
simple theory for structural relaxation, in which these two aspects are intrinsic, to explore a 
number of different situations of practical importance involving the kinetic response of 
polymers in the glassy state, including the effect of cooling rate on the glass transformation 
process for polymers of different types, the relationship between cooling rate and frequency 
derived from Temperature Modulated DSC (TMDSC), and the identification of vitrification 
during the cure of thermosetting polymers. For all of these simulations we make use of 
Matlab and demonstrate the usefulness and ease of application of several of its basic 
attributes. 

2. Theoretical aspects 
The basic kinetic equation assumes that the rate of approach to equilibrium is proportional 
to the departure from equilibrium. For DSC, the departure from equilibrium is the 
difference between the instantaneous enthalpy, H, which is a function of both temperature T 
and time t, and the value of the enthalpy in equilibrium at the same temperature, H∞, and is 
denoted as δ = H− H∞, and hence: 

 
f

dδ δ=
d τ( , )t T T

−  (1) 

In this equation τ is the relaxation time, which depends on both temperature and fictive 
temperature according to the original suggestion of Tool. The fictive temperature is defined 
as that temperature at which the glass would have an equilibrium value of enthalpy if it 
were immediately removed to that temperature. This is illustrated in the simulated cooling 
curve shown as an enthalpy-temperature diagram in Figure 1.  
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Fig. 1. Simulation of a DSC cooling curve, enthalpy versus temperature, showing the 
definitions of Tg and Tf. Parameter values: cooling rate −10 K/min, β=0.4, x=0.4, Δh*/R=85 
kK, τ=100 s at Tr=370 K. The full red line is the asymptote to the equilibrium liquid region; 
the dashed red line is the asymptote to the glassy region 

In this simulation, the glass is formed by cooling at −10 K/min from 390 K to 345 K (state A), 
and from this cooling curve the glass transition temperature, Tg, is defined as the 
intersection of the equilibrium liquid and glassy asymptotes, as shown. If the cooling is 
arrested at A and the glass allowed to approach equilibrium isothermally by physical aging 
at the temperature Ta, a state B will be reached after some time. The state of the glass at B is 
defined conveniently by the fictive temperature, Tf, which is found as the intersection with 
the equilibrium asymptote of a line (dash-dotted) with the slope of the glassy asymptote and 
passing through state B. Various important aspects of the fictive temperature can be 
identified from this diagram: first, the fictive temperature of the glass in state A, 
immediately after cooling and forming the glass and without any physical aging, is identical 
to the glass transition temperature; second, as the glass is aged at the temperature Ta, below 
Tg, the fictive temperature decreases and in the limit is equal to the aging temperature; and 
third, Tf is related to δ by: 

 ( )f apδ = ΔC T T−  (2) 

where ΔCp is the heat capacity difference between that of the liquid, Cpl, and that of the 
glass, Cpg. 
Equation 1 introduces in a general way the dependence of the relaxation time on both the 
temperature and the fictive temperature of the glass, and is known as the single relaxation 
time model (Hutchinson & Kovacs, 1976). The specific dependence of τ on T and Tf is 
usually written in one of two ways. In the TNM equation (Moynihan et al, 1976; 
Narayanaswamy, 1971; Tool, 1946), the dependence is written in the form: 
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of this is that the glass transition is a kinetic phenomenon, and that Tg depends on the 
cooling rate. Another consequence is that, if the temperature is held constant in the glassy 
state, the non-equilibrium glass will tend towards an equilibrium state at the same 
temperature. Thus, for example, the volume and the enthalpy of the glass will decrease as a 
function of time, in a process known as physical aging (Hutchinson, 1995), with consequent 
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transition and the time dependence of the property changes that take place during physical 
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dilatometry. From these studies, two key features of structural relaxation of glasses were 
identified. First, Tool established that the relaxation time for structural relaxation of glass 
was dependent not only on the temperature but also on the instantaneous structure of the 
glass, and he proposed that the structure be characterized by the fictive temperature, Tf, to 
be defined below. Second, Kovacs showed that the relaxation process involved a 
distribution of relaxation times. Although nowadays such experiments are almost invariably 
made by Differential Scanning Calorimetry (DSC), the phenomenology is the same, and 
these two key features are necessary for any realistic description of the kinetics of structural 
relaxation. For reasons that will become clear later, they are now commonly referred to as 
non-linearity and non-exponentiality, respectively. In this paper, we apply a relatively 
simple theory for structural relaxation, in which these two aspects are intrinsic, to explore a 
number of different situations of practical importance involving the kinetic response of 
polymers in the glassy state, including the effect of cooling rate on the glass transformation 
process for polymers of different types, the relationship between cooling rate and frequency 
derived from Temperature Modulated DSC (TMDSC), and the identification of vitrification 
during the cure of thermosetting polymers. For all of these simulations we make use of 
Matlab and demonstrate the usefulness and ease of application of several of its basic 
attributes. 
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The basic kinetic equation assumes that the rate of approach to equilibrium is proportional 
to the departure from equilibrium. For DSC, the departure from equilibrium is the 
difference between the instantaneous enthalpy, H, which is a function of both temperature T 
and time t, and the value of the enthalpy in equilibrium at the same temperature, H∞, and is 
denoted as δ = H− H∞, and hence: 
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temperature according to the original suggestion of Tool. The fictive temperature is defined 
as that temperature at which the glass would have an equilibrium value of enthalpy if it 
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Fig. 1. Simulation of a DSC cooling curve, enthalpy versus temperature, showing the 
definitions of Tg and Tf. Parameter values: cooling rate −10 K/min, β=0.4, x=0.4, Δh*/R=85 
kK, τ=100 s at Tr=370 K. The full red line is the asymptote to the equilibrium liquid region; 
the dashed red line is the asymptote to the glassy region 

In this simulation, the glass is formed by cooling at −10 K/min from 390 K to 345 K (state A), 
and from this cooling curve the glass transition temperature, Tg, is defined as the 
intersection of the equilibrium liquid and glassy asymptotes, as shown. If the cooling is 
arrested at A and the glass allowed to approach equilibrium isothermally by physical aging 
at the temperature Ta, a state B will be reached after some time. The state of the glass at B is 
defined conveniently by the fictive temperature, Tf, which is found as the intersection with 
the equilibrium asymptote of a line (dash-dotted) with the slope of the glassy asymptote and 
passing through state B. Various important aspects of the fictive temperature can be 
identified from this diagram: first, the fictive temperature of the glass in state A, 
immediately after cooling and forming the glass and without any physical aging, is identical 
to the glass transition temperature; second, as the glass is aged at the temperature Ta, below 
Tg, the fictive temperature decreases and in the limit is equal to the aging temperature; and 
third, Tf is related to δ by: 

 ( )f apδ = ΔC T T−  (2) 

where ΔCp is the heat capacity difference between that of the liquid, Cpl, and that of the 
glass, Cpg. 
Equation 1 introduces in a general way the dependence of the relaxation time on both the 
temperature and the fictive temperature of the glass, and is known as the single relaxation 
time model (Hutchinson & Kovacs, 1976). The specific dependence of τ on T and Tf is 
usually written in one of two ways. In the TNM equation (Moynihan et al, 1976; 
Narayanaswamy, 1971; Tool, 1946), the dependence is written in the form: 
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 ( )f g
f g

Δ * (1- )Δ * Δ *τ , = τ exp x h x h hT T
RT RT RT

⎡ ⎤
+ −⎢ ⎥
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 (3) 

where τg is the average relaxation time in equilibrium at Tg, x (0 ≤ x ≤ 1) is the non-linearity 
parameter, Δh* is the apparent activation energy at Tg, and R is the universal gas constant. 
An alternative expression derives from the concept of configurational entropy (Gibbs & 
DiMarzio, 1958) and is known as the Adam-Gibbs (AG) equation (Adam & Gibbs, 1965): 

 A c

c

*Δμτ =  exp N sA
kTS

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (4) 

where NA is Avogadro’s number, sc* is the configurational entropy of the smallest 
cooperatively rearranging region that permits the transition of a molecular segment from 
one state to another, Δμ is the elementary activation energy per segment, k is Boltzmann’s 
constant and Sc is the macroscopic configurational entropy of the sample. 
To introduce a distribution of relaxation times, two approaches are possible: by means of a 
discrete distribution, as in the so-called KAHR model (Kovacs et al, 1979), or, much more 
commonly and mathematically more conveniently, by means of an empirical distribution 
function, namely the stretched exponential or Kohlrausch-Williams-Watts (KWW) function 
(Kohlrausch, 1866; Williams & Watts, 1970): 

 
β

φ( ) = exp
τ
tt

⎡ ⎤⎛ ⎞⎢ ⎥−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (5) 

where the exponent β is inversely related to the width of the distribution of relaxation times. 
The set of equations 1, 2, 3 and 5 (or 1, 2, 4 and 5) is sufficient to simulate the response of a 
glass forming system to any prescribed thermal history. Matlab provides a very convenient 
environment in which to do this, and the results of such simulations in a variety of practical 
situations form the basis of this paper. In the first instance, the simple “three step cycles” 
thermal history is analysed, involving cooling at constant rate through the glass transition 
region to form the glass, isothermal annealing for various times to age the glass, and then 
reheating at constant rate through the transition region to simulate a typical DSC experiment, 
and in particular to examine the effects of the length of aging time at Ta on this reheating 
stage. Following this basic analysis of conventional DSC, the same procedure will be used to 
investigate the technique of TMDSC, in which a (usually) sinusoidally periodic modulation 
of the temperature is superimposed on the underlying cooling or heating rate (or isotherm). 

3. Three step cycles 
In this section, we outline first how the theoretical model can describe all the 
phenomenological aspects of the glass transition, and then show how the material 
parameters may be derived from experimental data by appropriate methods. 

3.1 Phenomenology 
A typical simulated cooling curve has been shown in Figure 1, together with an unspecified 
annealing period at temperature Ta. The three step thermal cycles consist of these two steps 
followed by heating at constant rate, which is the step that is obtained experimentally by 
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DSC in the study of the physical aging or enthalpy relaxation of polymer glasses (Hodge, 
1994; Hutchinson, 1995). These cycles are therefore defined by several experimental variables: 
the cooling rate, q1, the temperature Ta, the aging time, ta, at Ta (or the enthalpy reduction 
during this time, δ ), and the heating rate, q2. In addition, there are several material 
parameters, the most important of which are: x, β, Δh*, τg and ΔCp. The heating step of these 
cycles is dependent on all of these variables, and the purpose of these simulations is, first, to 
describe and explain the experimentally observed behaviour, and subsequently to show 
how to obtain the material parameters from the experimental data. Figure 2 (full lines) shows 
two typical heating curves, for glasses aged for about one month (blue line) and four months 
(red line) at a temperature 20ºC below Tg, in which large endothermic peaks appear. This is 
the most important characteristic of such experiments, and the magnitude and position of 
these peaks reflects the amount of aging that has taken place at Ta. To determine the amount 
of enthalpy lost during aging, it is necessary to do a second cycle, cooling at the same rate as 
for the first cycle, and then immediately reheating at the same rate as for the first cycle, 
without any aging time at Ta. This second heating stage is sometimes called the reference 
scan, and is shown in Figure 2 by the dashed line (green). Although hardly visible on the 
scale of this figure, there is in fact a small endothermic peak, referred to as an upper peak 
(Hutchinson & Ruddy, 1990) and here centred at about 65ºC, even though there has been no 
aging; it can be shown that such a peak must always be present in these heating scans 
(Ramos et al., 1984) unless it is hidden under the main endothermic peak. The difference in 
areas under the first and reference scans is equal to the enthalpy lost during aging at Ta. 
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Fig. 2. Simulation of a DSC heating curve, normalised heat capacity versus temperature, for 
a glass formed by cooling at −40 K/min and then aged at Ta=36ºC for 104 s (black dash-
dotted line), 3×106 s (blue full line) or 107 s (red full line). Material parameter values: β=0.35, 
x=0.4, Δh*/R=85 kK, τ=100 s at Tr=56ºC. The horizontal dotted black line is the asymptote to 
the equilibrium liquid region, and the vertical dotted black line indicates the fictive 
temperature, Tf, after aging at Ta for 3×106 s 
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parameter, Δh* is the apparent activation energy at Tg, and R is the universal gas constant. 
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where the exponent β is inversely related to the width of the distribution of relaxation times. 
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environment in which to do this, and the results of such simulations in a variety of practical 
situations form the basis of this paper. In the first instance, the simple “three step cycles” 
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region to form the glass, isothermal annealing for various times to age the glass, and then 
reheating at constant rate through the transition region to simulate a typical DSC experiment, 
and in particular to examine the effects of the length of aging time at Ta on this reheating 
stage. Following this basic analysis of conventional DSC, the same procedure will be used to 
investigate the technique of TMDSC, in which a (usually) sinusoidally periodic modulation 
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the cooling rate, q1, the temperature Ta, the aging time, ta, at Ta (or the enthalpy reduction 
during this time, δ ), and the heating rate, q2. In addition, there are several material 
parameters, the most important of which are: x, β, Δh*, τg and ΔCp. The heating step of these 
cycles is dependent on all of these variables, and the purpose of these simulations is, first, to 
describe and explain the experimentally observed behaviour, and subsequently to show 
how to obtain the material parameters from the experimental data. Figure 2 (full lines) shows 
two typical heating curves, for glasses aged for about one month (blue line) and four months 
(red line) at a temperature 20ºC below Tg, in which large endothermic peaks appear. This is 
the most important characteristic of such experiments, and the magnitude and position of 
these peaks reflects the amount of aging that has taken place at Ta. To determine the amount 
of enthalpy lost during aging, it is necessary to do a second cycle, cooling at the same rate as 
for the first cycle, and then immediately reheating at the same rate as for the first cycle, 
without any aging time at Ta. This second heating stage is sometimes called the reference 
scan, and is shown in Figure 2 by the dashed line (green). Although hardly visible on the 
scale of this figure, there is in fact a small endothermic peak, referred to as an upper peak 
(Hutchinson & Ruddy, 1990) and here centred at about 65ºC, even though there has been no 
aging; it can be shown that such a peak must always be present in these heating scans 
(Ramos et al., 1984) unless it is hidden under the main endothermic peak. The difference in 
areas under the first and reference scans is equal to the enthalpy lost during aging at Ta. 
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Fig. 2. Simulation of a DSC heating curve, normalised heat capacity versus temperature, for 
a glass formed by cooling at −40 K/min and then aged at Ta=36ºC for 104 s (black dash-
dotted line), 3×106 s (blue full line) or 107 s (red full line). Material parameter values: β=0.35, 
x=0.4, Δh*/R=85 kK, τ=100 s at Tr=56ºC. The horizontal dotted black line is the asymptote to 
the equilibrium liquid region, and the vertical dotted black line indicates the fictive 
temperature, Tf, after aging at Ta for 3×106 s 
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The fictive temperature of the glass in the aged state, for example in Figure 2 after about one 
month at Ta, can be found by the so-called equal areas method (Moynihan et al., 1976; 
Richardson & Savill, 1975). In this method, illustrated in Figure 2, the total area under the 
endothermic peak for the aged glass is equal to the area under the asymptote to the liquid-
like region (dotted black line) and above the fictive temperature, Tf. Clearly, with increased 
aging, as the endothermic peak increases in magnitude, the fictive temperature moves to 
lower values, and in the limit will asymptotically approach the aging temperature, Ta. 
The same Figure 2 also shows another characteristic feature of the heating scan of glasses 
which occurs under certain conditions. The dash-dotted black line is the heating scan 
following only about 3 hours aging at Ta, and shows the existence of what is often called a 
sub-Tg peak, here at about 52.5ºC. When first observed by DSC, the appearance of double 
peaks in the glass transition region was considered something of a mystery (Illers, 1969; 
Neki & Geil, 1973; Retting, 1969), though they in fact arise quite naturally as a consequence 
of the distribution of relaxation times, and under certain quite well defined experimental 
conditions: a fast cooling rate in comparison with the subsequent heating rate, and little or 
no aging at the lower temperature of the cycle, the lower this temperature relative to the 
glass transition temperature the more likely being the appearance of a sub-Tg peak. In 
addition, although sub-Tg peaks are often observed for glasses with low values of β, in other 
words when the relaxation time distribution is broad (Ruddy & Hutchinson, 1988), such as 
is the case for poly(vinyl chloride) (Berens & Hodge, 1982), a broad distribution of relaxation 
times is not a pre-requisite for their appearance, as was demonstrated by the behaviour of 
some carefully prepared inorganic glasses (Pappin et al., 1994). 
This phenomenology of the response of glasses to heating through the transition region, in 
which characteristic features such as the endothermic peak and its dependence on the aging 
time and heating rate are observed, the existence of the upper peak and its relative 
invariance with the experimental variables (Hutchinson & Ruddy, 1990), and the 
appearance of sub-Tg peaks and the conditions under which they are most likely to be 
observed, can be well described by the theoretical development outlined above. Simulations 
can be made very simply in the Matlab environment, and in particular, the ease of obtaining 
maximum values of a vector is of particular benefit. In the next section, these same 
simulations are used to show how the important material parameters may be derived from 
the experimental data. 

3.2 The peak shift method 
The theoretical development above includes one parameter in particular, the non-linearity 
parameter x, which, although defining the relative importance of temperature and structure 
(fictive temperature) to the relaxation time, does not have any obvious physical significance. 
Nevertheless, the excellent description of all the phenomenological aspects outline above 
suggests that there should be some physical significance, and considerable effort has been 
made by numerous workers to investigate this. The basic idea has been to evaluate x for 
different glass-forming systems in order to relate its value to the nature of the glass-former, 
and the review by Hodge (Hodge, 1994) gives an excellent summary. Fundamental to this 
approach is the need to have a reliable method for the evaluation of this parameter x. The 
majority of workers make use of what is termed the curve-fitting method, whereby a least-
squares minimisation routine is used to fit the set of theoretical equations to the 
experimental DSC heating curve. While mathematically convenient, this approach suffers 
from some drawbacks: for example, it assumes a certain specific form for the distribution 
function, namely the stretched exponential. More importantly, though, it is often applied to 
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fit heating curves for glasses aged only for short times, which consequently have little non-
linearity; it is not appropriate to determine the non-linearity parameter by fitting curves 
which have no significant dependence on this parameter. 
An alternative approach, which does not suffer from these drawbacks, was proposed some 
time ago. It is based upon the dependence of the endothermic peak temperature, Tp, on the 
experimental conditions defining the three step thermal cycles (Kovacs & Hutchinson, 1979; 
Ramos et al., 1984). This has become known as the peak shift method. From an extensive 
analysis of the response of glasses to such cycles, the dependence of Tp on each experimental 
variable (q1, Ta, δ , q2) while maintaining the others constant was found, in the limiting case 
of long aging times, to be linear. Thus one can define a set of shifts ( ) ( ) ( ) ( )1 a 2ˆ ˆ ˆ ˆ, , ,s q s T s s qδ⎡ ⎤

⎣ ⎦ , 
the most useful in respect of the experimental determination of x being: 
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p

1 1 2

ˆ δ =  
δ , ,

T
s C

q T q

∂⎛ ⎞
Δ ⎜ ⎟

∂⎝ ⎠
 (6) 

The interesting aspect of this approach is that these shifts are all inter-dependent, and are all 
functions of x: 

 ( ) ( ) ( )1 2ˆ ˆ ˆ( ) 1F x s s q s qδ= = − = −  (7) 

where the function F(x), in limiting conditions, asymptotically approaches the simple 
hyperbolic function F(x)=x−1−1, shown in Figure 3 and known as the master curve. Even 
more interestingly, this limiting function is essentially independent of the choice of 
distribution function used, be it a discrete distribution as in the multi-parameter KAHR 
model or the stretched exponential KWW function.  
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Fig. 3. Master curve for the peak shift method 
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The fictive temperature of the glass in the aged state, for example in Figure 2 after about one 
month at Ta, can be found by the so-called equal areas method (Moynihan et al., 1976; 
Richardson & Savill, 1975). In this method, illustrated in Figure 2, the total area under the 
endothermic peak for the aged glass is equal to the area under the asymptote to the liquid-
like region (dotted black line) and above the fictive temperature, Tf. Clearly, with increased 
aging, as the endothermic peak increases in magnitude, the fictive temperature moves to 
lower values, and in the limit will asymptotically approach the aging temperature, Ta. 
The same Figure 2 also shows another characteristic feature of the heating scan of glasses 
which occurs under certain conditions. The dash-dotted black line is the heating scan 
following only about 3 hours aging at Ta, and shows the existence of what is often called a 
sub-Tg peak, here at about 52.5ºC. When first observed by DSC, the appearance of double 
peaks in the glass transition region was considered something of a mystery (Illers, 1969; 
Neki & Geil, 1973; Retting, 1969), though they in fact arise quite naturally as a consequence 
of the distribution of relaxation times, and under certain quite well defined experimental 
conditions: a fast cooling rate in comparison with the subsequent heating rate, and little or 
no aging at the lower temperature of the cycle, the lower this temperature relative to the 
glass transition temperature the more likely being the appearance of a sub-Tg peak. In 
addition, although sub-Tg peaks are often observed for glasses with low values of β, in other 
words when the relaxation time distribution is broad (Ruddy & Hutchinson, 1988), such as 
is the case for poly(vinyl chloride) (Berens & Hodge, 1982), a broad distribution of relaxation 
times is not a pre-requisite for their appearance, as was demonstrated by the behaviour of 
some carefully prepared inorganic glasses (Pappin et al., 1994). 
This phenomenology of the response of glasses to heating through the transition region, in 
which characteristic features such as the endothermic peak and its dependence on the aging 
time and heating rate are observed, the existence of the upper peak and its relative 
invariance with the experimental variables (Hutchinson & Ruddy, 1990), and the 
appearance of sub-Tg peaks and the conditions under which they are most likely to be 
observed, can be well described by the theoretical development outlined above. Simulations 
can be made very simply in the Matlab environment, and in particular, the ease of obtaining 
maximum values of a vector is of particular benefit. In the next section, these same 
simulations are used to show how the important material parameters may be derived from 
the experimental data. 

3.2 The peak shift method 
The theoretical development above includes one parameter in particular, the non-linearity 
parameter x, which, although defining the relative importance of temperature and structure 
(fictive temperature) to the relaxation time, does not have any obvious physical significance. 
Nevertheless, the excellent description of all the phenomenological aspects outline above 
suggests that there should be some physical significance, and considerable effort has been 
made by numerous workers to investigate this. The basic idea has been to evaluate x for 
different glass-forming systems in order to relate its value to the nature of the glass-former, 
and the review by Hodge (Hodge, 1994) gives an excellent summary. Fundamental to this 
approach is the need to have a reliable method for the evaluation of this parameter x. The 
majority of workers make use of what is termed the curve-fitting method, whereby a least-
squares minimisation routine is used to fit the set of theoretical equations to the 
experimental DSC heating curve. While mathematically convenient, this approach suffers 
from some drawbacks: for example, it assumes a certain specific form for the distribution 
function, namely the stretched exponential. More importantly, though, it is often applied to 
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fit heating curves for glasses aged only for short times, which consequently have little non-
linearity; it is not appropriate to determine the non-linearity parameter by fitting curves 
which have no significant dependence on this parameter. 
An alternative approach, which does not suffer from these drawbacks, was proposed some 
time ago. It is based upon the dependence of the endothermic peak temperature, Tp, on the 
experimental conditions defining the three step thermal cycles (Kovacs & Hutchinson, 1979; 
Ramos et al., 1984). This has become known as the peak shift method. From an extensive 
analysis of the response of glasses to such cycles, the dependence of Tp on each experimental 
variable (q1, Ta, δ , q2) while maintaining the others constant was found, in the limiting case 
of long aging times, to be linear. Thus one can define a set of shifts ( ) ( ) ( ) ( )1 a 2ˆ ˆ ˆ ˆ, , ,s q s T s s qδ⎡ ⎤
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functions of x: 
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where the function F(x), in limiting conditions, asymptotically approaches the simple 
hyperbolic function F(x)=x−1−1, shown in Figure 3 and known as the master curve. Even 
more interestingly, this limiting function is essentially independent of the choice of 
distribution function used, be it a discrete distribution as in the multi-parameter KAHR 
model or the stretched exponential KWW function.  
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Fig. 3. Master curve for the peak shift method 
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The procedure (Hutchinson, 1987) is to determine, by a series of experiments, the peak 
endotherm temperatures, Tp, obtained on heating at constant rate, typically 10 K/min, for 
glasses which have been formed initially by cooling at the same rate, and then aged at a 
temperature, Ta, usually 10 to 20ºC below Tg, for a range of times, which should extend 
ideally to periods as long as is convenient in order to approach the limiting conditions 
necessary. These lengths of time can be as much as several months, much longer than the 
timescales usually used in the curve-fitting method. For each endotherm, the associated 
enthalpy lost, δ , during the immediately previous aging can be determined from the area 
difference under this endothermic peak and under a reference scan made, for the same 
sample, under identical cycle conditions, but without any aging at Ta. 
A plot of Tp as a function of δ  or as a function of the logarithm of the aging time, ta, appears 
linear for values of δ  or ta large enough for limiting conditions to be achieved, and from 
this linear region the slope is obtained which permits the evaluation of ( )ˆ δs  from Equation 
6, and hence of F(x) from Equation 7. The experimental value of x is then found from the 
master curve in Figure 3. The limiting dependence of Tp on δ  is essentially independent of 
all the other experimental variables (q1, q2, Ta) defining the thermal cycle, and of the 
distribution function for the relaxation times, and thus the peak shift method provides a 
rational means of evaluating experimentally the non-linearity parameter x (Hutchinson & 
Ruddy, 1988).   

4. Temperature modulated DSC (TMDSC) 
In the early 1990s, the idea of modulating the constant heating rate of conventional DSC was 
conceived by Reading and co-workers (Gill et al., 1993; Reading et al., 1993a). It was 
patented in the US in 1993 (Reading et al., 1993b), and commercialised by TA Instruments as 
Modulated DSC. Subsequently, other instrument manufacturers commercialised their own 
versions, including Alternating DSC (ADSC) from Mettler Toledo. Generically, such 
techniques are now referred to as Temperature Modulated DSC (TMDSC). The basic 
principle in all cases is to superimpose on the constant heating rate (or cooling rate, or 
isotherm) of conventional DSC a periodically (and in practice sinusoidally) varying 
modulation. The idea is that, in addition to the same information as is available from 
conventional DSC, TMDSC also provides, at any time during a scan, information about the 
instantaneous state of the sample. 
The periodically modulated heating rate and heat flow signals can be analysed by Fourier 
Transformation, to give the amplitudes of the periodically varying heat flow and heating 
rate signals, and an average heat flow signal. The average signal is essentially the same 
signal as would be obtained by conventional DSC at the same rate as the underlying rate of 
TMDSC; the ratio of the amplitudes of the heat flow and heating rate is sometimes referred 
to as the “reversing” component; and the difference between the underlying signal and the 
reversing component is known as the “non-reversing” component. An alternative approach 
is to treat the reversing component as a complex heat capacity, Cp*, and use the phase angle 
which results from the Fourier Transformation to separate Cp* into its in-phase, Cp′, and out-
of-phase, Cp″, components (Schawe, 1995). With respect to the glass transition, the response 
of glasses in TMDSC during the heating stage of the three step thermal cycles shows some 
characteristic features: the average signal shows the usual endotherm associated with 
enthalpy relaxation which is seen by conventional DSC; the reversing component and Cp′ 
show a sigmoidal change at an apparent glass transition temperature, Tg(dynamic), different 
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from that found by conventional DSC, and without any endothermic peak; the non-reversing 
component and Cp″, as well as the phase angle, show a peak in the region of Tg(dynamic). 
Although this technique of TMDSC appeared from the outset to offer several advantages 
over conventional DSC, the initial interpretation of some of these features of the response in 
the glass transition region was rather confusing. For example, the observation that 
Tg(dynamic) is independent of the heating or cooling rate prompted the idea that this 
represented a rate independent Tg, in contradiction to the basic idea of the glass transition as 
a kinetic phenomenon, while the peak in the non-reversing heat flow was associated with 
enthalpy relaxation, since no peak appeared in the reversing component; this last, however, 
represents an interpretation difficult to reconcile with the fact that such a peak also appears 
in the non-reversing component during cooling, where enthalpy relaxation plays no part. 
There was clearly a need for a sound theoretical treatment of TMDSC in the glass transition 
region in order to interpret correctly the various signals. This could be based on the same 
formalism as had been adopted for the simulation of three step thermal cycles in 
conventional DSC, but now with a modulated temperature programme. These simulations 
were very conveniently made using Matlab, for which standard procedures exist for Fast 
Fourier Transformation (fft), for integrating the fundamental differential equation, Equation 
1, for the kinetics of the relaxation process using the 4th-5th order Runge-Kutta routine 
(ode23), and for convolution integrals of the type required when the stretched exponential 
distribution is incorporated with the fictive temperature formulation (conv). Such 
simulations were able to describe quantitatively all the experimentally observed phenomena 
and thus permitted the interpretation of the signals in a logical way, as well as providing a 
means of investigating the effects of both the experimental and material parameters on the 
response. The most important aspects of these results are presented here. 
The TMDSC experiment in the glass transition region is defined by a set of experimental 
parameters, which are: the underlying or average rate, either on cooling or heating (qav), the 
period of the modulations (p), and the amplitude of the temperature modulations (AT). The 
material parameters are the same as those for the simulation of conventional DSC. As an 
illustration of these simulations, Figure 4 shows the result for a modulated cooling curve, in 
the form of modulated heat flow (HF) as a function of time. It is clear that the amplitude of 
the modulations decreases markedly during cooling, corresponding to the sigmoidal change 
in the reversing or complex heat capacity. What is not so obvious is that the average value of 
the heat flow also decreases, though in a different way and over a different temperature (or 
time) range. In order to identify this effect, it is necessary to do a Fourier Transform (fft) of 
single cycles of these heat flow and heating rate modulations, using a window which is slid 
along the time scale to cover the whole cooling curve. From these Fourier Transformations, 
amplitudes and average values and the phase angle between heat flow and heating rate are 
obtained, from which the complex heat capacity and its in-phase and out-of-phase 
components, as well as the average heat capacity, are calculated: 
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temperature, Ta, usually 10 to 20ºC below Tg, for a range of times, which should extend 
ideally to periods as long as is convenient in order to approach the limiting conditions 
necessary. These lengths of time can be as much as several months, much longer than the 
timescales usually used in the curve-fitting method. For each endotherm, the associated 
enthalpy lost, δ , during the immediately previous aging can be determined from the area 
difference under this endothermic peak and under a reference scan made, for the same 
sample, under identical cycle conditions, but without any aging at Ta. 
A plot of Tp as a function of δ  or as a function of the logarithm of the aging time, ta, appears 
linear for values of δ  or ta large enough for limiting conditions to be achieved, and from 
this linear region the slope is obtained which permits the evaluation of ( )ˆ δs  from Equation 
6, and hence of F(x) from Equation 7. The experimental value of x is then found from the 
master curve in Figure 3. The limiting dependence of Tp on δ  is essentially independent of 
all the other experimental variables (q1, q2, Ta) defining the thermal cycle, and of the 
distribution function for the relaxation times, and thus the peak shift method provides a 
rational means of evaluating experimentally the non-linearity parameter x (Hutchinson & 
Ruddy, 1988).   
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In the early 1990s, the idea of modulating the constant heating rate of conventional DSC was 
conceived by Reading and co-workers (Gill et al., 1993; Reading et al., 1993a). It was 
patented in the US in 1993 (Reading et al., 1993b), and commercialised by TA Instruments as 
Modulated DSC. Subsequently, other instrument manufacturers commercialised their own 
versions, including Alternating DSC (ADSC) from Mettler Toledo. Generically, such 
techniques are now referred to as Temperature Modulated DSC (TMDSC). The basic 
principle in all cases is to superimpose on the constant heating rate (or cooling rate, or 
isotherm) of conventional DSC a periodically (and in practice sinusoidally) varying 
modulation. The idea is that, in addition to the same information as is available from 
conventional DSC, TMDSC also provides, at any time during a scan, information about the 
instantaneous state of the sample. 
The periodically modulated heating rate and heat flow signals can be analysed by Fourier 
Transformation, to give the amplitudes of the periodically varying heat flow and heating 
rate signals, and an average heat flow signal. The average signal is essentially the same 
signal as would be obtained by conventional DSC at the same rate as the underlying rate of 
TMDSC; the ratio of the amplitudes of the heat flow and heating rate is sometimes referred 
to as the “reversing” component; and the difference between the underlying signal and the 
reversing component is known as the “non-reversing” component. An alternative approach 
is to treat the reversing component as a complex heat capacity, Cp*, and use the phase angle 
which results from the Fourier Transformation to separate Cp* into its in-phase, Cp′, and out-
of-phase, Cp″, components (Schawe, 1995). With respect to the glass transition, the response 
of glasses in TMDSC during the heating stage of the three step thermal cycles shows some 
characteristic features: the average signal shows the usual endotherm associated with 
enthalpy relaxation which is seen by conventional DSC; the reversing component and Cp′ 
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from that found by conventional DSC, and without any endothermic peak; the non-reversing 
component and Cp″, as well as the phase angle, show a peak in the region of Tg(dynamic). 
Although this technique of TMDSC appeared from the outset to offer several advantages 
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the glass transition region was rather confusing. For example, the observation that 
Tg(dynamic) is independent of the heating or cooling rate prompted the idea that this 
represented a rate independent Tg, in contradiction to the basic idea of the glass transition as 
a kinetic phenomenon, while the peak in the non-reversing heat flow was associated with 
enthalpy relaxation, since no peak appeared in the reversing component; this last, however, 
represents an interpretation difficult to reconcile with the fact that such a peak also appears 
in the non-reversing component during cooling, where enthalpy relaxation plays no part. 
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region in order to interpret correctly the various signals. This could be based on the same 
formalism as had been adopted for the simulation of three step thermal cycles in 
conventional DSC, but now with a modulated temperature programme. These simulations 
were very conveniently made using Matlab, for which standard procedures exist for Fast 
Fourier Transformation (fft), for integrating the fundamental differential equation, Equation 
1, for the kinetics of the relaxation process using the 4th-5th order Runge-Kutta routine 
(ode23), and for convolution integrals of the type required when the stretched exponential 
distribution is incorporated with the fictive temperature formulation (conv). Such 
simulations were able to describe quantitatively all the experimentally observed phenomena 
and thus permitted the interpretation of the signals in a logical way, as well as providing a 
means of investigating the effects of both the experimental and material parameters on the 
response. The most important aspects of these results are presented here. 
The TMDSC experiment in the glass transition region is defined by a set of experimental 
parameters, which are: the underlying or average rate, either on cooling or heating (qav), the 
period of the modulations (p), and the amplitude of the temperature modulations (AT). The 
material parameters are the same as those for the simulation of conventional DSC. As an 
illustration of these simulations, Figure 4 shows the result for a modulated cooling curve, in 
the form of modulated heat flow (HF) as a function of time. It is clear that the amplitude of 
the modulations decreases markedly during cooling, corresponding to the sigmoidal change 
in the reversing or complex heat capacity. What is not so obvious is that the average value of 
the heat flow also decreases, though in a different way and over a different temperature (or 
time) range. In order to identify this effect, it is necessary to do a Fourier Transform (fft) of 
single cycles of these heat flow and heating rate modulations, using a window which is slid 
along the time scale to cover the whole cooling curve. From these Fourier Transformations, 
amplitudes and average values and the phase angle between heat flow and heating rate are 
obtained, from which the complex heat capacity and its in-phase and out-of-phase 
components, as well as the average heat capacity, are calculated: 
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In these equations, AHF is the amplitude of the heat flow modulations, Aβ is the amplitude of 
the heating rate modulations, φ is the phase angle between the heating rate and heat flow 
modulations, and <HF> and <β> are the average values of the heat flow and heating rate, 
respectively. Because the phase angle is very small in the glass transition region, the in-
phase heat capacity is approximately equal to the magnitude of the complex heat capacity. 
The variations of the in-phase and out-of-phase heat capacities and of the phase angle, 
obtained by Fourier Transformation of the modulations in Figure 4, are shown in Figure 5. 
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Fig. 4. Modulated cooling curve obtained by Matlab simulation with experimental and 
material parameters as follows: qav = −1 K/min, p = 12 s, AT = 0.5 K, β = 0.4, x = 0.4,  
Δh*/R = 85 kK, ΔcP = 0.3 J/gK, cPl = 1.6 J/gK, cPg = 1.3 J/gK 
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Fig. 5. Fourier transformed signals (red curves) for modulated cooling curve of Figure 4: (a) 
in-phase heat capacity; (b) out-of-phase heat capacity; (c) phase angle; (d) average heat 
capacity. In Figure 5a, modulation periods [s] are: 120 (black), 60 (green), 30 (blue), 12 (red), 
6 (lilac). In Figure 5d, the cooling rates [K/min] are: −0.5 (green), −1 (red), −2 (blue), −5 (black), 
−10 (magenta) 
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 P,ave β
HF

C =  (8d) 

In these equations, AHF is the amplitude of the heat flow modulations, Aβ is the amplitude of 
the heating rate modulations, φ is the phase angle between the heating rate and heat flow 
modulations, and <HF> and <β> are the average values of the heat flow and heating rate, 
respectively. Because the phase angle is very small in the glass transition region, the in-
phase heat capacity is approximately equal to the magnitude of the complex heat capacity. 
The variations of the in-phase and out-of-phase heat capacities and of the phase angle, 
obtained by Fourier Transformation of the modulations in Figure 4, are shown in Figure 5. 
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Fig. 4. Modulated cooling curve obtained by Matlab simulation with experimental and 
material parameters as follows: qav = −1 K/min, p = 12 s, AT = 0.5 K, β = 0.4, x = 0.4,  
Δh*/R = 85 kK, ΔcP = 0.3 J/gK, cPl = 1.6 J/gK, cPg = 1.3 J/gK 
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Fig. 5. Fourier transformed signals (red curves) for modulated cooling curve of Figure 4: (a) 
in-phase heat capacity; (b) out-of-phase heat capacity; (c) phase angle; (d) average heat 
capacity. In Figure 5a, modulation periods [s] are: 120 (black), 60 (green), 30 (blue), 12 (red), 
6 (lilac). In Figure 5d, the cooling rates [K/min] are: −0.5 (green), −1 (red), −2 (blue), −5 (black), 
−10 (magenta) 
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The simulations of Figure 5 describe, both qualitatively and quantitatively, all the 
characteristic features of TMDSC experiments in the glass transition region. A number of 
comments may be made about these results in general, and also in respect of their 
dependence on both the experimental and material parameters. In the first place, it is 
evident that the dynamic glass transition (from cP′, Figure 5a) is quite different from the 
conventional glass transition (from cP,ave, Figure 5d). Not only is the former considerably 
sharper, but also the glass transition temperature, obtained for example from the mid-point 
(in these simulations, for the red curves where cP = 1.45 J/gK), is higher for the dynamic 
glass transition. These differences represent an important distinction between what are 
sometimes referred to as the thermal glass transition, from the average heat capacity of 
Figure 5d and equivalent to that obtained by conventional DSC, and the dynamic glass 
transition, from the complex or in-phase heat capacity of Figure 5a. In the former case, for 
the thermal glass transition, as the glass is cooled it departs from equilibrium (cf. Figure 1) at 
some temperature which depends on the cooling rate, and therefore the non-equilibrium 
state and the parameters describing non-equilibrium, in particular the non-linearity 
parameter x, play an important role in the kinetics of the transition. On the other hand, in 
the latter case, for the dynamic glass transition, the state is close to an equilibrium liquid in 
principle; the response of the sample is therefore glassy if the period of modulation is short, 
is liquid-like if the period is sufficiently long, and displays a transition region if the period is 
between these limits. The question of whether any given period is short or long has to be 
answered by comparing it with the instantaneous average relaxation time of the material. 
This average relaxation time increases as the temperature decreases, thus giving rise to the 
approximately Debye-type relaxation seen in Figure 5b for the out-of-phase component. 
This situation is, however, complicated by the overlapping of the thermal and dynamic 
transitions, which can be demonstrated quite clearly by these Matlab simulations. It is a 
simple matter to run simulations for different values of period of modulation and of cooling 
rate to establish their separate effects, which are shown in Figures 5a and 5d, respectively. In 
Figure 5a, as the period of modulation increases, the dynamic glass transition temperature 
decreases, an effect which would, in principle, allow the determination of the apparent 
activation energy for the relaxation (Jiang et al, 1998). However, this determination of the 
activation energy supposes that the dynamic transition occurs entirely in equilibrium, 
analogous to the situation for dynamic mechanical analysis or dielectric analysis. However, 
it can be seen here from a comparison of Figures 5a and 5d that, even for the shortest 
modulation period of 6 seconds, the thermal transition begins before the dynamic transition 
has passed completely from a liquid to a glassy response. 
There are two important conclusions that can be drawn from this observation. First, for the 
correct study of the dynamic glass transition, it is necessary to separate it from the thermal 
transition, which requires either a very slow cooling rate or a very short modulation period. 
The latter is limited by problems of heat transfer into the sample, and it is usually 
considered that the minimum period experimentally accessible is approximately 12 seconds. 
The former is limited only by available time, though it must be borne in mind that these 
experimental times can be very long; for example, the simulated experiment in Figure 5d for 
a cooling rate of −0.5 K/min takes almost 2 hours, and it would require a further reduction 
in the cooling rate by at least an order of magnitude for the complete separation of the 
dynamic and thermal transitions. 
These considerations lead to the second important conclusion, which is that there must be 
some equivalence between the cooling rate and the frequency of modulation, and that this 
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equivalence must be related to the material parameters, β and x. For example, it is almost 
always observed that, within what might be called typical ranges of values of the 
experimental variables (cooling rate and modulation frequency), these two types of 
transition overlap, with the dynamic glass transition usually being a few degrees higher 
than Tg (Donth et al, 1997; Hensel & Schick, 1998; Hutchinson, 1998; Montserrat, 2000; 
Weyer et al, 1997). A theoretical expression for the relationship between cooling rate and 
frequency can be derived from the fluctuation dissipation theorem for the glass transition 
(Donth et al, 1997), and can be written in the following form relating the angular frequency 
of modulation, ω (rad/s) in TMDSC and the cooling rate |q| (K/s) in conventional DSC: 

 ω = 
δ
q

a T
 (9) 

where a is a constant and δT is the mean temperature fluctuation of the cooperatively 
rearranging regions. By means of Matlab simulations in which the cooling rate in 
conventional DSC was determined such that it gave the same value of Tg as that for TMDSC 
with a period of 120 s (and an average cooling rate of −0.3 K/min), it has been shown 
(Hutchinson & Montserrat, 2001; Montserrat et al, 2005) that the magnitude of the 
temperature fluctuations increases the wider is the distribution of relaxation times (small β) 
and the greater is the non-linearity of the relaxation kinetics (small x), with interesting 
implications regarding the physical phenomena underlying the glass transition. 
The effects of these material parameters, β and x, on the appearance of the TMDSC signals, 
such as those shown in Figure 5, are very different, as can be demonstrated rather simply by 
these Matlab simulations. In Figure 6 are shown the effects of changing x and β on the 
average heat capacity (Figures 6a and 6b, respectively) and on the complex heat capacity 
(Figures 6c and 6d, respectively). 
With respect to the average heat capacity signals in Figures 6a and 6b, the effects of 
increasing x and of increasing β are very similar: in both cases the transition broadens as the 
parameter value decreases towards zero. In respect of x, this is explained by the response 
becoming more non-linear as x decreases, giving rise to a greater relative dependence on the 
fictive temperature (cf. Equation 3), which means that the relaxation time shortens and the 
transition occurs at ever lower temperatures, observed in Figure 6a as a shift, for example, of 
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The simulations of Figure 5 describe, both qualitatively and quantitatively, all the 
characteristic features of TMDSC experiments in the glass transition region. A number of 
comments may be made about these results in general, and also in respect of their 
dependence on both the experimental and material parameters. In the first place, it is 
evident that the dynamic glass transition (from cP′, Figure 5a) is quite different from the 
conventional glass transition (from cP,ave, Figure 5d). Not only is the former considerably 
sharper, but also the glass transition temperature, obtained for example from the mid-point 
(in these simulations, for the red curves where cP = 1.45 J/gK), is higher for the dynamic 
glass transition. These differences represent an important distinction between what are 
sometimes referred to as the thermal glass transition, from the average heat capacity of 
Figure 5d and equivalent to that obtained by conventional DSC, and the dynamic glass 
transition, from the complex or in-phase heat capacity of Figure 5a. In the former case, for 
the thermal glass transition, as the glass is cooled it departs from equilibrium (cf. Figure 1) at 
some temperature which depends on the cooling rate, and therefore the non-equilibrium 
state and the parameters describing non-equilibrium, in particular the non-linearity 
parameter x, play an important role in the kinetics of the transition. On the other hand, in 
the latter case, for the dynamic glass transition, the state is close to an equilibrium liquid in 
principle; the response of the sample is therefore glassy if the period of modulation is short, 
is liquid-like if the period is sufficiently long, and displays a transition region if the period is 
between these limits. The question of whether any given period is short or long has to be 
answered by comparing it with the instantaneous average relaxation time of the material. 
This average relaxation time increases as the temperature decreases, thus giving rise to the 
approximately Debye-type relaxation seen in Figure 5b for the out-of-phase component. 
This situation is, however, complicated by the overlapping of the thermal and dynamic 
transitions, which can be demonstrated quite clearly by these Matlab simulations. It is a 
simple matter to run simulations for different values of period of modulation and of cooling 
rate to establish their separate effects, which are shown in Figures 5a and 5d, respectively. In 
Figure 5a, as the period of modulation increases, the dynamic glass transition temperature 
decreases, an effect which would, in principle, allow the determination of the apparent 
activation energy for the relaxation (Jiang et al, 1998). However, this determination of the 
activation energy supposes that the dynamic transition occurs entirely in equilibrium, 
analogous to the situation for dynamic mechanical analysis or dielectric analysis. However, 
it can be seen here from a comparison of Figures 5a and 5d that, even for the shortest 
modulation period of 6 seconds, the thermal transition begins before the dynamic transition 
has passed completely from a liquid to a glassy response. 
There are two important conclusions that can be drawn from this observation. First, for the 
correct study of the dynamic glass transition, it is necessary to separate it from the thermal 
transition, which requires either a very slow cooling rate or a very short modulation period. 
The latter is limited by problems of heat transfer into the sample, and it is usually 
considered that the minimum period experimentally accessible is approximately 12 seconds. 
The former is limited only by available time, though it must be borne in mind that these 
experimental times can be very long; for example, the simulated experiment in Figure 5d for 
a cooling rate of −0.5 K/min takes almost 2 hours, and it would require a further reduction 
in the cooling rate by at least an order of magnitude for the complete separation of the 
dynamic and thermal transitions. 
These considerations lead to the second important conclusion, which is that there must be 
some equivalence between the cooling rate and the frequency of modulation, and that this 
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equivalence must be related to the material parameters, β and x. For example, it is almost 
always observed that, within what might be called typical ranges of values of the 
experimental variables (cooling rate and modulation frequency), these two types of 
transition overlap, with the dynamic glass transition usually being a few degrees higher 
than Tg (Donth et al, 1997; Hensel & Schick, 1998; Hutchinson, 1998; Montserrat, 2000; 
Weyer et al, 1997). A theoretical expression for the relationship between cooling rate and 
frequency can be derived from the fluctuation dissipation theorem for the glass transition 
(Donth et al, 1997), and can be written in the following form relating the angular frequency 
of modulation, ω (rad/s) in TMDSC and the cooling rate |q| (K/s) in conventional DSC: 

 ω = 
δ
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 (9) 

where a is a constant and δT is the mean temperature fluctuation of the cooperatively 
rearranging regions. By means of Matlab simulations in which the cooling rate in 
conventional DSC was determined such that it gave the same value of Tg as that for TMDSC 
with a period of 120 s (and an average cooling rate of −0.3 K/min), it has been shown 
(Hutchinson & Montserrat, 2001; Montserrat et al, 2005) that the magnitude of the 
temperature fluctuations increases the wider is the distribution of relaxation times (small β) 
and the greater is the non-linearity of the relaxation kinetics (small x), with interesting 
implications regarding the physical phenomena underlying the glass transition. 
The effects of these material parameters, β and x, on the appearance of the TMDSC signals, 
such as those shown in Figure 5, are very different, as can be demonstrated rather simply by 
these Matlab simulations. In Figure 6 are shown the effects of changing x and β on the 
average heat capacity (Figures 6a and 6b, respectively) and on the complex heat capacity 
(Figures 6c and 6d, respectively). 
With respect to the average heat capacity signals in Figures 6a and 6b, the effects of 
increasing x and of increasing β are very similar: in both cases the transition broadens as the 
parameter value decreases towards zero. In respect of x, this is explained by the response 
becoming more non-linear as x decreases, giving rise to a greater relative dependence on the 
fictive temperature (cf. Equation 3), which means that the relaxation time shortens and the 
transition occurs at ever lower temperatures, observed in Figure 6a as a shift, for example, of 
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Fig. 6. Effects of x and β on the average and complex heat capacities in TMDSC on cooling 
through the glass transition region: (a) and (c) x=0.2, 0.3, 0.4, 0.6, 0.8, 1.0, with β=0.6; (b) and 
(d) β=0.2, 0.3, 0.4, 0.6, 0.8, 1.0, with x=0.4. Other parameters: qav=−3 K/min, p=24 s, AT=0.5 K, 
Δh*/R=85 kK 
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the mid-point temperature. In respect of β, reducing its value leads to a broadening of the 
distribution function (cf. Equation 5), with a consequent broadening of the response on 
cooling. In contrast, with respect to the complex heat capacity signals in Figures 6c and 6d, 
the effects of increasing x and of increasing β are very different: in one case (effect of x) the 
transition remains essentially unaffected, whereas in the other case (effect of β) the transition 
broadens as the parameter value decreases. In respect of x, this is explained by the fact that, 
in principle and as explained earlier, the dynamic transition occurs in equilibrium, where 
there is no effect of non-linearity since Tf=T (cf. Equation 3). The small amount of deviation 
observed in Figure 6c from a unique curve for all values of x may be explained by the 
overlapping of the dynamic and thermal transitions, which results in the system’s not 
remaining truly in equilibrium in the latter part of the relaxation. In respect of β, on the 
other hand, even in equilibrium the effect of the width of the distribution will be evident. 
Indeed, the breadth of the relaxation in the complex heat capacity is a function only of β, 
since it is essentially independent of x, which means that such curves can be used for the 
independent experimental determination of the parameter β (Montserrat & Hutchinson, 2002). 
It is interesting also to note another characteristic feature of these curves, namely the 
appearance of ripples. These arise from the way in which the Fourier Transformation is 
made, in a window of a single cycle of the modulations, sliding this window along the time 
scale to cover the whole of the transition. In Figure 5, the window is slid by one whole cycle 
between Fourier Transformations, and hence the ripples do not appear. In Figure 6, the 
window is slid by the time step of the calculations, and hence the ripples do appear 
(Hutchinson & Montserrat, 1997). In the transition interval, the frequency of these ripples is 
twice the frequency of the heating rate modulations. In the experimental data these ripples 
should also appear, and indeed do so in the output signals from ADSC from Mettler Toledo, 
and their frequency is in agreement with the model predictions. These ripples do not appear 
in the output data from TMDSC equipment from other manufacturers, either because the 
data have been smoothed or because the Fourier Transformation window is slid along the 
time scale by integral cycles. 
As a final comment on the use of TMDSC for the study of the glass transition in polymers, it 
is worth pointing out the relatively recent development of a multi-frequency technique, 
named TOPEM®, from Mettler Toledo. In this technique, instead of a periodic modulation of 
the temperature or of the heating rate as in TMDSC, the sample is subjected to a stochastic 
series of small temperature pulses, alternately positive and negative, with a user-defined 
range for the interval of time between these pulses, known as the switching time range. The 
combination of these two features, the stochastic nature and the use of pulses rather than 
modulations, allows an analysis of the frequency dependence to be made in a single scan, 
thus offering a significant advantage over TMDSC techniques which use only a single 
frequency in any one experiment. This advantage will become particularly apparent in the 
next section of this paper where the crosslinking reactions of thermosetting polymers are 
investigated. The method of analysis in TOPEM® is also different, using Laplace 
Transformation rather than Fourier Transformation, and is made in a Matlab environment 
using a Parameter Estimation Method (PEM). Amongst other output quantities, TOPEM® 
calculates what is called the quasi-static heat capacity, Cp0, which is the equivalent of the 
complex heat capacity of TMDSC, but for the limiting case of zero frequency. It is this quasi-
static heat capacity which is first obtained from the experimental stochastic data, and is then 
separated into its frequency components. In a study of this technique applied to the glass 
transition of polymers (Fraga et al, 2007), the effects of a number of experimental parameters 
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Fig. 6. Effects of x and β on the average and complex heat capacities in TMDSC on cooling 
through the glass transition region: (a) and (c) x=0.2, 0.3, 0.4, 0.6, 0.8, 1.0, with β=0.6; (b) and 
(d) β=0.2, 0.3, 0.4, 0.6, 0.8, 1.0, with x=0.4. Other parameters: qav=−3 K/min, p=24 s, AT=0.5 K, 
Δh*/R=85 kK 
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the mid-point temperature. In respect of β, reducing its value leads to a broadening of the 
distribution function (cf. Equation 5), with a consequent broadening of the response on 
cooling. In contrast, with respect to the complex heat capacity signals in Figures 6c and 6d, 
the effects of increasing x and of increasing β are very different: in one case (effect of x) the 
transition remains essentially unaffected, whereas in the other case (effect of β) the transition 
broadens as the parameter value decreases. In respect of x, this is explained by the fact that, 
in principle and as explained earlier, the dynamic transition occurs in equilibrium, where 
there is no effect of non-linearity since Tf=T (cf. Equation 3). The small amount of deviation 
observed in Figure 6c from a unique curve for all values of x may be explained by the 
overlapping of the dynamic and thermal transitions, which results in the system’s not 
remaining truly in equilibrium in the latter part of the relaxation. In respect of β, on the 
other hand, even in equilibrium the effect of the width of the distribution will be evident. 
Indeed, the breadth of the relaxation in the complex heat capacity is a function only of β, 
since it is essentially independent of x, which means that such curves can be used for the 
independent experimental determination of the parameter β (Montserrat & Hutchinson, 2002). 
It is interesting also to note another characteristic feature of these curves, namely the 
appearance of ripples. These arise from the way in which the Fourier Transformation is 
made, in a window of a single cycle of the modulations, sliding this window along the time 
scale to cover the whole of the transition. In Figure 5, the window is slid by one whole cycle 
between Fourier Transformations, and hence the ripples do not appear. In Figure 6, the 
window is slid by the time step of the calculations, and hence the ripples do appear 
(Hutchinson & Montserrat, 1997). In the transition interval, the frequency of these ripples is 
twice the frequency of the heating rate modulations. In the experimental data these ripples 
should also appear, and indeed do so in the output signals from ADSC from Mettler Toledo, 
and their frequency is in agreement with the model predictions. These ripples do not appear 
in the output data from TMDSC equipment from other manufacturers, either because the 
data have been smoothed or because the Fourier Transformation window is slid along the 
time scale by integral cycles. 
As a final comment on the use of TMDSC for the study of the glass transition in polymers, it 
is worth pointing out the relatively recent development of a multi-frequency technique, 
named TOPEM®, from Mettler Toledo. In this technique, instead of a periodic modulation of 
the temperature or of the heating rate as in TMDSC, the sample is subjected to a stochastic 
series of small temperature pulses, alternately positive and negative, with a user-defined 
range for the interval of time between these pulses, known as the switching time range. The 
combination of these two features, the stochastic nature and the use of pulses rather than 
modulations, allows an analysis of the frequency dependence to be made in a single scan, 
thus offering a significant advantage over TMDSC techniques which use only a single 
frequency in any one experiment. This advantage will become particularly apparent in the 
next section of this paper where the crosslinking reactions of thermosetting polymers are 
investigated. The method of analysis in TOPEM® is also different, using Laplace 
Transformation rather than Fourier Transformation, and is made in a Matlab environment 
using a Parameter Estimation Method (PEM). Amongst other output quantities, TOPEM® 
calculates what is called the quasi-static heat capacity, Cp0, which is the equivalent of the 
complex heat capacity of TMDSC, but for the limiting case of zero frequency. It is this quasi-
static heat capacity which is first obtained from the experimental stochastic data, and is then 
separated into its frequency components. In a study of this technique applied to the glass 
transition of polymers (Fraga et al, 2007), the effects of a number of experimental parameters 
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were investigated, including the range of frequencies over which the technique could 
usefully be applied. 

5. Crosslinking reaction in thermosetting polymers 
In the crosslinking (or cure) process for thermosetting polymers, a chemical reaction takes 
place between the resin and the crosslinking agent (hardener) such that the monomers of the 
un-reacted resin are incorporated into a three-dimensional rigid network structure. In this 
process, the viscous liquid resin, which has a very low Tg, usually sub-ambient, is 
transformed into a stiff and hard material, with a high Tg and with numerous industrial 
applications, from surface coatings to the matrix material for high performance fibre 
reinforced composites. Usually, a stoichiometric ratio of resin to hardener will be used, as 
this gives the optimum properties of the cured material, including a maximum value of the 
glass transition temperature. In addition, though, the conditions under which the cure 
reaction is conducted can also be important: for example, the cure may be isothermal, and 
the isothermal cure temperature may be selected within quite a wide range, or the cure may 
be non-isothermal, at a constant heating rate over a temperature range, with various 
possibilities for the heating rate. The selection of cure conditions can be important. For 
instance, in isothermal cure at low temperatures, the increase in Tg of the system that results 
from the crosslinking reaction can be such that it becomes higher than the isothermal cure 
temperature. Under these conditions, vitrification will occur, since the partially cured 
material will then be at a temperature below its Tg. Vitrification, followed by devitrification, 
can also occur under some circumstance during non-isothermal cure. When a crosslinking 
system vitrifies, the reaction rate changes dramatically, from a relatively rapid rate, 
controlled by the chemical rate constants of the reaction, to a much slower rate, which is 
controlled by the rate of diffusion of the reacting species. The ability to predict whether or 
not vitrification will occur under any given cure conditions is of some importance, and 
hence it is necessary to describe the kinetics of the reaction. 
A particularly good illustration of the importance of understanding the cure kinetics is 
afforded by the cure reaction that takes place during the fabrication of epoxy-clay 
nanocomposites. These materials consist of a small proportion, typically less than 5 wt%, of 
organically modified clay in an epoxy resin matrix. The structure of the clay is laminar, and 
the fundamental idea is that the clay layers should separate completely (exfoliate) and be 
distributed uniformly throughout the epoxy matrix in the final cured nanocomposite: in this 
way, the nanoclay provides a very efficient reinforcement because of its large surface area, 
and thus can strengthen and stiffen the epoxy without significantly increasing its density, of 
particular importance for aeronautical applications, for example. However, to obtain an 
exfoliated structure is difficult, because it depends on the relative rates of cure of the resin in 
the intra-gallery and extra-gallery regions of the clay. Control of these rates, i.e. of the 
kinetics of the reaction, is therefore of crucial importance in obtaining an optimised 
nanostructure of these materials (Montserrat et al, 2008; Pustkova et al, 2009). The following 
sections discuss how the cure kinetics can be simulated using Matlab, to model both 
conventional and Temperature Modulated DSC experiments. 

5.1 Theoretical aspects of cure kinetics 
In the absence of vitrification, the cure reaction is chemically controlled and the time 
dependence of the degree of cure, which is denoted by α and which increases from 0 
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initially to 1 for the fully cured material, can be described by various different kinetic 
equations. One of the most widely used equations is that of Kamal (Kamal, 1974), which 
describes an autocatalytic reaction: 
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where k1 and k2 are temperature dependent rate constants and the exponents m and n are the 
reaction orders. The rate constants depend on temperature according to the Arrhenius 
equation: 
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where A1 and A2 are pre-exponential constants, E is the activation energy, and R is the 
universal gas constant. In this equation, a subscript c has been added for k and E to indicate 
that that these are values for the chemically controlled reaction. 
These Equations 10 and 11 are sufficient to describe the kinetics of the cure reaction when it 
is chemically controlled, in other words in the absence of vitrification (to be discussed in 
detail below), and the predictions of this model can be compared with experimental DSC 
data in the form of heat flow as a function of time (for isothermal cure) or as a function of 
temperature (for non-isothermal cure). The specific heat flow, HF [W/g] is given by: 
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where ΔH∞ is the total heat of reaction per unit mass [J/g] for a fully cured system. Typical 
results which emerge from this model are shown in Figures 7a and 7b for isothermal and 
non-isothermal cure, respectively, where the effects of some of the experimental parameters 
are included: in Figure 7a, four different isothermal cure temperatures (50ºC, 60ºC, 70ºC and 
80ºC) are used, with the reaction occurring at shorter times as the cure temperature 
increases; in Figure 7b, four different heating rates are used (1, 2, 5 and 10 K/min), with the 
reaction shifting to higher temperatures with increasing heating rate. 
By fitting these kinetic equations to the experimental data, it is possible to evaluate the 
various kinetic parameters, in particular the activation energies, the pre-exponential 
parameters, and the reaction exponents, m and n. In principle, the same parameter values 
will be obtained from both isothermal and non-isothermal experimental data. In practice, 
however, the kinetic equations are only an approximation to the real situation, which is 
generally much more complex, involving not just one reaction, for example the reaction of 
the primary amine of the cross-linking agent with the epoxy monomers, but also other 
reactions such as the reaction of secondary amines which result from the first reaction, and a 
homopolymerization reaction (etherification) which can be catalyzed by the tertiary amines 
resulting from the second reaction (Fernández-Francos et al, 2007; Kubisa & Penczek, 1999; 
Montserrat et al, 2008; Pascault et al, 2002; Tanaka & Bauer, 1988). The result of this added 
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were investigated, including the range of frequencies over which the technique could 
usefully be applied. 
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In the crosslinking (or cure) process for thermosetting polymers, a chemical reaction takes 
place between the resin and the crosslinking agent (hardener) such that the monomers of the 
un-reacted resin are incorporated into a three-dimensional rigid network structure. In this 
process, the viscous liquid resin, which has a very low Tg, usually sub-ambient, is 
transformed into a stiff and hard material, with a high Tg and with numerous industrial 
applications, from surface coatings to the matrix material for high performance fibre 
reinforced composites. Usually, a stoichiometric ratio of resin to hardener will be used, as 
this gives the optimum properties of the cured material, including a maximum value of the 
glass transition temperature. In addition, though, the conditions under which the cure 
reaction is conducted can also be important: for example, the cure may be isothermal, and 
the isothermal cure temperature may be selected within quite a wide range, or the cure may 
be non-isothermal, at a constant heating rate over a temperature range, with various 
possibilities for the heating rate. The selection of cure conditions can be important. For 
instance, in isothermal cure at low temperatures, the increase in Tg of the system that results 
from the crosslinking reaction can be such that it becomes higher than the isothermal cure 
temperature. Under these conditions, vitrification will occur, since the partially cured 
material will then be at a temperature below its Tg. Vitrification, followed by devitrification, 
can also occur under some circumstance during non-isothermal cure. When a crosslinking 
system vitrifies, the reaction rate changes dramatically, from a relatively rapid rate, 
controlled by the chemical rate constants of the reaction, to a much slower rate, which is 
controlled by the rate of diffusion of the reacting species. The ability to predict whether or 
not vitrification will occur under any given cure conditions is of some importance, and 
hence it is necessary to describe the kinetics of the reaction. 
A particularly good illustration of the importance of understanding the cure kinetics is 
afforded by the cure reaction that takes place during the fabrication of epoxy-clay 
nanocomposites. These materials consist of a small proportion, typically less than 5 wt%, of 
organically modified clay in an epoxy resin matrix. The structure of the clay is laminar, and 
the fundamental idea is that the clay layers should separate completely (exfoliate) and be 
distributed uniformly throughout the epoxy matrix in the final cured nanocomposite: in this 
way, the nanoclay provides a very efficient reinforcement because of its large surface area, 
and thus can strengthen and stiffen the epoxy without significantly increasing its density, of 
particular importance for aeronautical applications, for example. However, to obtain an 
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the intra-gallery and extra-gallery regions of the clay. Control of these rates, i.e. of the 
kinetics of the reaction, is therefore of crucial importance in obtaining an optimised 
nanostructure of these materials (Montserrat et al, 2008; Pustkova et al, 2009). The following 
sections discuss how the cure kinetics can be simulated using Matlab, to model both 
conventional and Temperature Modulated DSC experiments. 

5.1 Theoretical aspects of cure kinetics 
In the absence of vitrification, the cure reaction is chemically controlled and the time 
dependence of the degree of cure, which is denoted by α and which increases from 0 
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initially to 1 for the fully cured material, can be described by various different kinetic 
equations. One of the most widely used equations is that of Kamal (Kamal, 1974), which 
describes an autocatalytic reaction: 
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where A1 and A2 are pre-exponential constants, E is the activation energy, and R is the 
universal gas constant. In this equation, a subscript c has been added for k and E to indicate 
that that these are values for the chemically controlled reaction. 
These Equations 10 and 11 are sufficient to describe the kinetics of the cure reaction when it 
is chemically controlled, in other words in the absence of vitrification (to be discussed in 
detail below), and the predictions of this model can be compared with experimental DSC 
data in the form of heat flow as a function of time (for isothermal cure) or as a function of 
temperature (for non-isothermal cure). The specific heat flow, HF [W/g] is given by: 
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where ΔH∞ is the total heat of reaction per unit mass [J/g] for a fully cured system. Typical 
results which emerge from this model are shown in Figures 7a and 7b for isothermal and 
non-isothermal cure, respectively, where the effects of some of the experimental parameters 
are included: in Figure 7a, four different isothermal cure temperatures (50ºC, 60ºC, 70ºC and 
80ºC) are used, with the reaction occurring at shorter times as the cure temperature 
increases; in Figure 7b, four different heating rates are used (1, 2, 5 and 10 K/min), with the 
reaction shifting to higher temperatures with increasing heating rate. 
By fitting these kinetic equations to the experimental data, it is possible to evaluate the 
various kinetic parameters, in particular the activation energies, the pre-exponential 
parameters, and the reaction exponents, m and n. In principle, the same parameter values 
will be obtained from both isothermal and non-isothermal experimental data. In practice, 
however, the kinetic equations are only an approximation to the real situation, which is 
generally much more complex, involving not just one reaction, for example the reaction of 
the primary amine of the cross-linking agent with the epoxy monomers, but also other 
reactions such as the reaction of secondary amines which result from the first reaction, and a 
homopolymerization reaction (etherification) which can be catalyzed by the tertiary amines 
resulting from the second reaction (Fernández-Francos et al, 2007; Kubisa & Penczek, 1999; 
Montserrat et al, 2008; Pascault et al, 2002; Tanaka & Bauer, 1988). The result of this added 
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complexity is that a best fit to non-isothermal data does not always result in a best fit for the 
isothermal data. Nevertheless, in most instances a satisfactory fit can be obtained to all the 
experimental data, and the evaluation of the parameter values then provides useful 
information about the reaction kinetics. 
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Fig. 7. Cure simulations under isothermal [(a): at 50ºC, 60ºC, 70ºC and 80ºC] and non-
isothermal [(b): at 1, 2, 5 and 10 K/min] conditions. Parameters: m=0.5, n=1.5, A1=103.6 s, 
A2=103.4 s, Ec,1=51.8 kJ/mol, Ec,2=41.5 kJ/mol, ΔH∞=520 J/g 

The usual procedure for evaluating the parameter values from the experimental data is first 
to determine the total heat of reaction, per unit mass of sample, from the non-isothermal 
cure curves. This is calculated as the area under the cure curve of heat flow per unit mass of 
sample as a function of temperature, normalized by the heating rate. For a stoichiometric 
ratio of diglycidyl ether of bisphenol-A (DGEBA) epoxy resin and a diamine curing agent, 
for example, this is approximately 400 J/g. The reason for using the non-isothermal cure 
rather than the isothermal cure is that in isothermal cure it is possible that vitrification might 
occur. If this happens, then the cure does not proceed to completion, but the cure rate 
decreases to zero before the reaction is complete, and it is not possible to identify, by 
conventional DSC, whether or not this occurs. An analysis of the isothermal cure curve 
under these circumstances, using the kinetic Equations 10-12 above, would lead to 
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erroneous results. In fact, it is also possible for vitrification to occur during non-isothermal 
cure, though the experimental circumstances for this (essentially, a very slow heating rate) 
are generally not those that are used in practice. The way in which the problem of 
vitrification during cure can be addressed by means of TMDSC is discussed in the 
following sections, first in a general way and then, separately, with respect to isothermal 
cure and non-isothermal cure. In these latter cases it will be shown how Matlab simulations 
of the cure under TMDSC conditions provide a rational way of interpreting the 
experimental results, and allow a comparison with other dynamic techniques operating over 
a quite different frequency range. The graphical representation aspects are particularly 
helpful. 

5.2 Cure reaction with vitrification 
Vitrification occurs, either in isothermal cure or in non-isothermal cure, when the glass 
transition temperature of the cross-linking system, which is continuously increasing as the 
degree of cross-linking increases, reaches and then exceeds the cure temperature. In 
isothermal cure, vitrification results in a rather rapid decrease in the rate of cure, as the rate 
of reaction changes from being controlled by the chemical rate constants, kc,1 and kc,2, to 
being controlled by the diffusion of the reacting species, with a much slower rate 
determined by a diffusion rate constant, kd. As a consequence, the reaction effectively stops, 
and the system remains only partially cured. Likewise, in non-isothermal cure, it is possible 
for the glass transition of the curing system to increase beyond the instantaneous value of 
the (continually increasing) cure temperature, generally provided that the rate of heating is 
sufficiently slow. The system therefore vitrifies, but, in contrast to isothermal cure, the cure 
temperature continues to increase at the imposed rate, and so the system will eventually 
devitrify when the cure temperature again exceeds the glass transition temperature of the 
system. In the simulation of cure with vitrification, therefore, there are two important 
aspects to consider: first, the dependence of the glass transition temperature of the curing 
system on the degree of cure, and second, the expression for the diffusion rate constant, and 
its dependence on temperature. 
The relationship between the degree of cure, α, and the glass transition temperature, Tg, of 
the curing system can be described by the DiBenedetto equation (DiBenedetto, 1987; 
Pascault & Williams, 1990): 

 g g0

g g0

λ
1 (1 λ)

T T
T T

α
α∞

−
=

− − −
 (13) 

in which Tg0 and Tg∞ are the glass transition temperatures of the uncured (α=0) and of the 
fully cured (α=1) system, respectively, and λ is a fitting parameter related to the ratio of the 
heat capacities of the fully cured and of the uncured system. 
There have been a number of different expressions proposed for the diffusion rate constant 
and its dependence on temperature, and a summary of these has been presented earlier 
(Fraga et al, 2008). The expression that is perhaps most widely used, and the one that is used 
here, assumes a WLF temperature dependence (Williams et al, 1955; Wise et al, 1997): 
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complexity is that a best fit to non-isothermal data does not always result in a best fit for the 
isothermal data. Nevertheless, in most instances a satisfactory fit can be obtained to all the 
experimental data, and the evaluation of the parameter values then provides useful 
information about the reaction kinetics. 
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Fig. 7. Cure simulations under isothermal [(a): at 50ºC, 60ºC, 70ºC and 80ºC] and non-
isothermal [(b): at 1, 2, 5 and 10 K/min] conditions. Parameters: m=0.5, n=1.5, A1=103.6 s, 
A2=103.4 s, Ec,1=51.8 kJ/mol, Ec,2=41.5 kJ/mol, ΔH∞=520 J/g 

The usual procedure for evaluating the parameter values from the experimental data is first 
to determine the total heat of reaction, per unit mass of sample, from the non-isothermal 
cure curves. This is calculated as the area under the cure curve of heat flow per unit mass of 
sample as a function of temperature, normalized by the heating rate. For a stoichiometric 
ratio of diglycidyl ether of bisphenol-A (DGEBA) epoxy resin and a diamine curing agent, 
for example, this is approximately 400 J/g. The reason for using the non-isothermal cure 
rather than the isothermal cure is that in isothermal cure it is possible that vitrification might 
occur. If this happens, then the cure does not proceed to completion, but the cure rate 
decreases to zero before the reaction is complete, and it is not possible to identify, by 
conventional DSC, whether or not this occurs. An analysis of the isothermal cure curve 
under these circumstances, using the kinetic Equations 10-12 above, would lead to 
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erroneous results. In fact, it is also possible for vitrification to occur during non-isothermal 
cure, though the experimental circumstances for this (essentially, a very slow heating rate) 
are generally not those that are used in practice. The way in which the problem of 
vitrification during cure can be addressed by means of TMDSC is discussed in the 
following sections, first in a general way and then, separately, with respect to isothermal 
cure and non-isothermal cure. In these latter cases it will be shown how Matlab simulations 
of the cure under TMDSC conditions provide a rational way of interpreting the 
experimental results, and allow a comparison with other dynamic techniques operating over 
a quite different frequency range. The graphical representation aspects are particularly 
helpful. 

5.2 Cure reaction with vitrification 
Vitrification occurs, either in isothermal cure or in non-isothermal cure, when the glass 
transition temperature of the cross-linking system, which is continuously increasing as the 
degree of cross-linking increases, reaches and then exceeds the cure temperature. In 
isothermal cure, vitrification results in a rather rapid decrease in the rate of cure, as the rate 
of reaction changes from being controlled by the chemical rate constants, kc,1 and kc,2, to 
being controlled by the diffusion of the reacting species, with a much slower rate 
determined by a diffusion rate constant, kd. As a consequence, the reaction effectively stops, 
and the system remains only partially cured. Likewise, in non-isothermal cure, it is possible 
for the glass transition of the curing system to increase beyond the instantaneous value of 
the (continually increasing) cure temperature, generally provided that the rate of heating is 
sufficiently slow. The system therefore vitrifies, but, in contrast to isothermal cure, the cure 
temperature continues to increase at the imposed rate, and so the system will eventually 
devitrify when the cure temperature again exceeds the glass transition temperature of the 
system. In the simulation of cure with vitrification, therefore, there are two important 
aspects to consider: first, the dependence of the glass transition temperature of the curing 
system on the degree of cure, and second, the expression for the diffusion rate constant, and 
its dependence on temperature. 
The relationship between the degree of cure, α, and the glass transition temperature, Tg, of 
the curing system can be described by the DiBenedetto equation (DiBenedetto, 1987; 
Pascault & Williams, 1990): 
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heat capacities of the fully cured and of the uncured system. 
There have been a number of different expressions proposed for the diffusion rate constant 
and its dependence on temperature, and a summary of these has been presented earlier 
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where kdg is the value of kd when Tg is equal to the cure temperature, in other words at 
vitrification, and C1 and C2 are constants of the WLF equation, and are here taken to have 
their “universal” values of 40.2 and 51.6 K, respectively. As regards the value of kdg for these 
simulations, there is a surprisingly large variation of values that are used in the literature; 
here we adopt the value of 0.0051 s−1 used in earlier work (Fraga et al, 2008). 
The chemical rate constants, kc1 and kc2, can be combined with the diffusion rate constant, kd, 
to give overall rate constants, ktot,1 and ktot,2, for the reaction, according to the Rabinowitch 
equation (Rabinowitch, 1937): 

 
tot,1 d c,1

1 1 1 
k k k

= +  (15a) 
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These overall rate constants are used in place of the rate constants k1 and k2 of the Kamal 
equation, Equation 10, in order to describe the cure rate during either isothermal or non-
isothermal cure, including that part in which vitrification occurs. This set of Equations 10-15 
is solved using Matlab in order to simulate the cure of these reacting systems under 
isothermal and non-isothermal conditions, which are considered separately in the following 
sections. In particular, the vitrification time is determined as a function of the experimental 
conditions, being defined as the time at which the glass transition temperature of the 
reacting system becomes equal to the cure temperature. 

5.2.1 Isothermal cure with vitrification 
As mentioned above, it is not possible by conventional DSC to identify, directly from the 
cure curve, when vitrification occurs for a given isothermal cure temperature, Tc. To 
determine the vitrification time, it is necessary to repeat the isothermal cure for a series of 
different cure times, with a second (non-isothermal) scan after each isotherm in order to 
determine the glass transition temperature corresponding to each isothermal cure time. A 
plot of Tg as a function of cure time then allows the vitrification time, tv, to be found as the 
cure time for which Tg = Tc. This procedure has been used in the past (Montserrat, 1992), but 
it is impractical on account of the length of time involved in making numerous repeated 
isothermal cure experiments. It is in this respect that TMDSC offers an important advantage: 
the reversing or complex heat capacity signal is responsive to the changes that take place 
when the system vitrifies, in just the same way as these signals respond to a glass transition 
on cooling, and hence at the time of vitrification in isothermal cure the complex heat 
capacity shows a sigmoidal change from a liquid-like to a glassy value. By TMDSC, 
therefore, it is possible to identify the vitrification time directly from the isothermal cure 
curve, and it is conventionally taken to be at the mid-point of the sigmoid. 
This approach has been adopted successfully by a number of workers (Alig et al, 1999; 
Lange et al, 2000; Montserrat & Cima, 1999; Montserrat & Martin, 2002; Van Assche et al, 
1998). Nevertheless, it raises the question of how this measurement of the vitrification time, 
which depends on the frequency of modulation, can be reconciled with that obtained by the 
lengthy conventional DSC procedure, which does not depend on the frequency. Clearly this 
leads again to the relationship between the frequency dependence and the rate dependence 
of Tg, which has been discussed above. In the present instance, the effect of frequency can be 
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demonstrated very clearly by means of Matlab simulations, and this approach transpires to 
be illuminating also about the study of vitrification by other techniques, such as Dielectric 
Analysis (DEA), which operate at much higher frequencies. The starting point for these 
simulations is that vitrification occurs when the glass transition temperature of the curing 
system, which increases with increasing frequency, reaches the cure temperature. However, 
rather than use this as the criterion for defining vitrification, we adopt here instead an 
alternative and simpler procedure, which is to assign a frequency dependence to the cure 
temperature, such that it decreases with increasing frequency according to the following 
equation (Fraga et al, 2008a): 

  f
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In this equation, Ef is the activation energy controlling the frequency dependence of Tc 
(equivalent to the activation energy for Tg), and fr is a reference frequency for which the 
dynamic cure temperature, Tc(f), is considered to be equal to the cure temperature, Tc. Since 
the vitrification time determined by conventional DSC makes use of a glass transition 
temperature determined on heating after cooling freely, the correspondence between 
cooling rate and frequency (Donth et al, 1997; Hensel & Schick, 1998; Hutchinson, 1998; 
Montserrat, 2000; Weyer et al, 1997) allows us to assign a value of 1/60 s−1 for the reference 
frequency. The results of such a simulation are shown in Figure 8, which shows the increase 
of Tg of the curing system as a function of isothermal cure time. 
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Fig. 8. Simulation of isothermal cure: chemical reaction without vitrification (full line, red 
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where kdg is the value of kd when Tg is equal to the cure temperature, in other words at 
vitrification, and C1 and C2 are constants of the WLF equation, and are here taken to have 
their “universal” values of 40.2 and 51.6 K, respectively. As regards the value of kdg for these 
simulations, there is a surprisingly large variation of values that are used in the literature; 
here we adopt the value of 0.0051 s−1 used in earlier work (Fraga et al, 2008). 
The chemical rate constants, kc1 and kc2, can be combined with the diffusion rate constant, kd, 
to give overall rate constants, ktot,1 and ktot,2, for the reaction, according to the Rabinowitch 
equation (Rabinowitch, 1937): 
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These overall rate constants are used in place of the rate constants k1 and k2 of the Kamal 
equation, Equation 10, in order to describe the cure rate during either isothermal or non-
isothermal cure, including that part in which vitrification occurs. This set of Equations 10-15 
is solved using Matlab in order to simulate the cure of these reacting systems under 
isothermal and non-isothermal conditions, which are considered separately in the following 
sections. In particular, the vitrification time is determined as a function of the experimental 
conditions, being defined as the time at which the glass transition temperature of the 
reacting system becomes equal to the cure temperature. 

5.2.1 Isothermal cure with vitrification 
As mentioned above, it is not possible by conventional DSC to identify, directly from the 
cure curve, when vitrification occurs for a given isothermal cure temperature, Tc. To 
determine the vitrification time, it is necessary to repeat the isothermal cure for a series of 
different cure times, with a second (non-isothermal) scan after each isotherm in order to 
determine the glass transition temperature corresponding to each isothermal cure time. A 
plot of Tg as a function of cure time then allows the vitrification time, tv, to be found as the 
cure time for which Tg = Tc. This procedure has been used in the past (Montserrat, 1992), but 
it is impractical on account of the length of time involved in making numerous repeated 
isothermal cure experiments. It is in this respect that TMDSC offers an important advantage: 
the reversing or complex heat capacity signal is responsive to the changes that take place 
when the system vitrifies, in just the same way as these signals respond to a glass transition 
on cooling, and hence at the time of vitrification in isothermal cure the complex heat 
capacity shows a sigmoidal change from a liquid-like to a glassy value. By TMDSC, 
therefore, it is possible to identify the vitrification time directly from the isothermal cure 
curve, and it is conventionally taken to be at the mid-point of the sigmoid. 
This approach has been adopted successfully by a number of workers (Alig et al, 1999; 
Lange et al, 2000; Montserrat & Cima, 1999; Montserrat & Martin, 2002; Van Assche et al, 
1998). Nevertheless, it raises the question of how this measurement of the vitrification time, 
which depends on the frequency of modulation, can be reconciled with that obtained by the 
lengthy conventional DSC procedure, which does not depend on the frequency. Clearly this 
leads again to the relationship between the frequency dependence and the rate dependence 
of Tg, which has been discussed above. In the present instance, the effect of frequency can be 

 
The Use of Matlab in the Study of the Glass Transition and Vitrification in Polymers   

 

327 

demonstrated very clearly by means of Matlab simulations, and this approach transpires to 
be illuminating also about the study of vitrification by other techniques, such as Dielectric 
Analysis (DEA), which operate at much higher frequencies. The starting point for these 
simulations is that vitrification occurs when the glass transition temperature of the curing 
system, which increases with increasing frequency, reaches the cure temperature. However, 
rather than use this as the criterion for defining vitrification, we adopt here instead an 
alternative and simpler procedure, which is to assign a frequency dependence to the cure 
temperature, such that it decreases with increasing frequency according to the following 
equation (Fraga et al, 2008a): 

  f
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In this equation, Ef is the activation energy controlling the frequency dependence of Tc 
(equivalent to the activation energy for Tg), and fr is a reference frequency for which the 
dynamic cure temperature, Tc(f), is considered to be equal to the cure temperature, Tc. Since 
the vitrification time determined by conventional DSC makes use of a glass transition 
temperature determined on heating after cooling freely, the correspondence between 
cooling rate and frequency (Donth et al, 1997; Hensel & Schick, 1998; Hutchinson, 1998; 
Montserrat, 2000; Weyer et al, 1997) allows us to assign a value of 1/60 s−1 for the reference 
frequency. The results of such a simulation are shown in Figure 8, which shows the increase 
of Tg of the curing system as a function of isothermal cure time. 
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Fig. 8. Simulation of isothermal cure: chemical reaction without vitrification (full line, red 
curve); with vitrification (dashed line, green curve). Horizontal blue lines indicate frequency 
dependent isothermal cure temperature: 2 mHz (upper); 20 mHz (middle); 200 mHz (lower). 
Parameter values: m=1, n=2, λ=0.5, Ef/R=100 kK, Tg0=−15ºC, Tg∞=85ºC, Tc=50ºC 
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In the absence of vitrification, the Tg of the curing system increases from its value, Tg0, for 
the un-reacted resin monomer to a final value, Tg∞, for the fully reacted system, as shown by 
the full line in Figure 8, though this final value is not reached within the time scale shown. 
On the other hand, if vitrification intervenes then the rate of cure will reduce dramatically 
and the system will not reach a full cure, as shown by the dashed line. The vitrification time, 
tv, is determined as the time at which the Tg of the curing system becomes equal to the cure 
temperature, Tc. Since the cure temperature has been assigned a frequency dependence, this 
means that tv will also depend on the frequency, and in a way this is clearly non-linear. It is 
a straightforward matter to evaluate tv for a range of frequencies from such simulations, for 
a given isothermal cure temperature, and a typical result is shown in Figure 9. 
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Fig. 9. Vitrification time as a function of frequency (on a logarithmic scale) for isothermal 
cure at 70ºC with the following parameter values: m=0.23, n=1.43, λ=0.66, Ef/R=50 kK 

As has been shown elsewhere (Fraga et al, 2008a), in a more extensive simulation covering a 
range of isothermal curing temperatures and examining the effects of various parameter 
values, such results are in excellent agreement with experimental data. In particular, the 
important feature of Figure 9 is that, at low frequencies, in the typical range available by 
TMDSC, there is a marked upward curvature, whereas at high frequencies, typical of those 
available in DEA, there is a good linear relationship between tv and the logarithm of the 
frequency. The data obtained by TMDSC experiments are subject to a significant experimental 
error in view of the fact that this technique operates at only a single frequency; this means 
that a new sample must be prepared for each different frequency, which inevitably 
introduces some small variation in the resin to hardener ratio, which has a consequent effect 
on the cure kinetics. Nevertheless, it is possible to identify the upward curvature in the 
dependence of tv on log(f) at low frequency from a close observation of some light-heating 
TMDSC experiments (Fraga et al, 2008a; Van Assche et al, 2001). In addition, the more recent 
technique of TOPEM®, a TMDSC technique which allows a range of frequencies to be 
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studied in a single scan, shows this upward curvature even more clearly (Fraga et al, 2008b). 
On the other hand, at high frequencies the linear dependence of tv on log(f) has been known 
for some time (Alig et al, 1999; Fournier et al, 1996; Mangion & Johari, 1990; Montserrat et al, 
2003). Not only do these Matlab simulations describe very well the data at both low and 
high frequencies, but they also resolve the observation made by Montserrat et al (Montserrat 
et al, 2003) that the extrapolation of the tv data from the high frequencies corresponding to 
DEA results did not coincide with the data at low frequencies corresponding to TMDSC 
data: it is clear from Figure 9 that this is simply because of the upward curvature in this 
representation. In fact, in DEA experiments it is not really the vitrification time, in the sense 
of a change from a chemical controlled to a diffusion controlled kinetics, that is being 
determined; rather it is the dynamic α-relaxation, for which the temperature of the 
relaxation peak is equal to the cure temperature at what might be called a dynamic 
vitrification time. This is clear from Figure 8, where at high frequencies the location of the 
dynamic vitrification time occurs well before the bifurcation which represents the change in 
kinetics of the reaction. 

5.2.2 Non-isothermal cure with vitrification and devitrification 
For the simulation of non-isothermal cure with vitrification (and devitrification), the same 
set of Equations 10 to 15 is solved using Matlab, and the same procedure is adopted of 
assigning a frequency dependence to the cure temperature according to Equation 16. If the 
heating rate is sufficiently slow, then the Tg of the reacting system can surpass the cure 
temperature, and vitrification will occur. This dramatically reduces the rate of reaction, and 
hence Tg increases only little while the cure temperature continuously increases according to 
the imposed rate of heating. Consequently, a point is reached where the cure temperature 
again exceeds the glass transition temperature, and the sample devitrifies and proceeds to a 
full cure. By conventional DSC these subtle changes in the rate of cure cannot be identified. 
On the other hand, by TMDSC the changes in the complex heat capacity allow both 
vitrification and devitrification to be identified, as a sigmoidal decrease and increase, 
respectively, in Cp*, with their separation being greater the slower is the heating rate (Fraga 
et al, 2010a, 2010b). Generally, the heating rates need to be very slow in order to observe 
these phenomena: with an epoxy-amine system, for example, these rates are from 0.05 to 
0.015 K/min. Furthermore, with TOPEM® the frequency dependence of vitrification and 
devitrification can be found experimentally, and Matlab simulations provide excellent 
agreement with the experimental observations.  
Figure 10 shows an illustration of non-isothermal cure and the effect of a frequency 
dependent cure temperature. Here it can be seen that vitrification occurs at a temperature of 
about 310 K, depending on the frequency of modulation, and that shortly thereafter the cure 
rate decreases significantly. The rapidity with which the cure rate decreases and the extent 
to which the cure continues after the glass transition temperature reaches the cure 
temperature are dictated by the magnitude of the diffusion rate constant kdg in Equation 14. 
As mentioned earlier, there is a surprisingly large variation in values assigned to this 
parameter in the literature, when one might have expected it to have approximately the 
same value for any vitrifying system, given that the glass transition is a universal 
phenomenon with a timescale that is conventionally taken to be around 100 seconds. 
Nevertheless, values for kdg as different as 4 × 10−5 s−1 and 100 s−1 can be found in the 
literature (Fraga et al, 2008a). This remains an area for further investigation. 
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In the absence of vitrification, the Tg of the curing system increases from its value, Tg0, for 
the un-reacted resin monomer to a final value, Tg∞, for the fully reacted system, as shown by 
the full line in Figure 8, though this final value is not reached within the time scale shown. 
On the other hand, if vitrification intervenes then the rate of cure will reduce dramatically 
and the system will not reach a full cure, as shown by the dashed line. The vitrification time, 
tv, is determined as the time at which the Tg of the curing system becomes equal to the cure 
temperature, Tc. Since the cure temperature has been assigned a frequency dependence, this 
means that tv will also depend on the frequency, and in a way this is clearly non-linear. It is 
a straightforward matter to evaluate tv for a range of frequencies from such simulations, for 
a given isothermal cure temperature, and a typical result is shown in Figure 9. 
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Fig. 9. Vitrification time as a function of frequency (on a logarithmic scale) for isothermal 
cure at 70ºC with the following parameter values: m=0.23, n=1.43, λ=0.66, Ef/R=50 kK 

As has been shown elsewhere (Fraga et al, 2008a), in a more extensive simulation covering a 
range of isothermal curing temperatures and examining the effects of various parameter 
values, such results are in excellent agreement with experimental data. In particular, the 
important feature of Figure 9 is that, at low frequencies, in the typical range available by 
TMDSC, there is a marked upward curvature, whereas at high frequencies, typical of those 
available in DEA, there is a good linear relationship between tv and the logarithm of the 
frequency. The data obtained by TMDSC experiments are subject to a significant experimental 
error in view of the fact that this technique operates at only a single frequency; this means 
that a new sample must be prepared for each different frequency, which inevitably 
introduces some small variation in the resin to hardener ratio, which has a consequent effect 
on the cure kinetics. Nevertheless, it is possible to identify the upward curvature in the 
dependence of tv on log(f) at low frequency from a close observation of some light-heating 
TMDSC experiments (Fraga et al, 2008a; Van Assche et al, 2001). In addition, the more recent 
technique of TOPEM®, a TMDSC technique which allows a range of frequencies to be 
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studied in a single scan, shows this upward curvature even more clearly (Fraga et al, 2008b). 
On the other hand, at high frequencies the linear dependence of tv on log(f) has been known 
for some time (Alig et al, 1999; Fournier et al, 1996; Mangion & Johari, 1990; Montserrat et al, 
2003). Not only do these Matlab simulations describe very well the data at both low and 
high frequencies, but they also resolve the observation made by Montserrat et al (Montserrat 
et al, 2003) that the extrapolation of the tv data from the high frequencies corresponding to 
DEA results did not coincide with the data at low frequencies corresponding to TMDSC 
data: it is clear from Figure 9 that this is simply because of the upward curvature in this 
representation. In fact, in DEA experiments it is not really the vitrification time, in the sense 
of a change from a chemical controlled to a diffusion controlled kinetics, that is being 
determined; rather it is the dynamic α-relaxation, for which the temperature of the 
relaxation peak is equal to the cure temperature at what might be called a dynamic 
vitrification time. This is clear from Figure 8, where at high frequencies the location of the 
dynamic vitrification time occurs well before the bifurcation which represents the change in 
kinetics of the reaction. 

5.2.2 Non-isothermal cure with vitrification and devitrification 
For the simulation of non-isothermal cure with vitrification (and devitrification), the same 
set of Equations 10 to 15 is solved using Matlab, and the same procedure is adopted of 
assigning a frequency dependence to the cure temperature according to Equation 16. If the 
heating rate is sufficiently slow, then the Tg of the reacting system can surpass the cure 
temperature, and vitrification will occur. This dramatically reduces the rate of reaction, and 
hence Tg increases only little while the cure temperature continuously increases according to 
the imposed rate of heating. Consequently, a point is reached where the cure temperature 
again exceeds the glass transition temperature, and the sample devitrifies and proceeds to a 
full cure. By conventional DSC these subtle changes in the rate of cure cannot be identified. 
On the other hand, by TMDSC the changes in the complex heat capacity allow both 
vitrification and devitrification to be identified, as a sigmoidal decrease and increase, 
respectively, in Cp*, with their separation being greater the slower is the heating rate (Fraga 
et al, 2010a, 2010b). Generally, the heating rates need to be very slow in order to observe 
these phenomena: with an epoxy-amine system, for example, these rates are from 0.05 to 
0.015 K/min. Furthermore, with TOPEM® the frequency dependence of vitrification and 
devitrification can be found experimentally, and Matlab simulations provide excellent 
agreement with the experimental observations.  
Figure 10 shows an illustration of non-isothermal cure and the effect of a frequency 
dependent cure temperature. Here it can be seen that vitrification occurs at a temperature of 
about 310 K, depending on the frequency of modulation, and that shortly thereafter the cure 
rate decreases significantly. The rapidity with which the cure rate decreases and the extent 
to which the cure continues after the glass transition temperature reaches the cure 
temperature are dictated by the magnitude of the diffusion rate constant kdg in Equation 14. 
As mentioned earlier, there is a surprisingly large variation in values assigned to this 
parameter in the literature, when one might have expected it to have approximately the 
same value for any vitrifying system, given that the glass transition is a universal 
phenomenon with a timescale that is conventionally taken to be around 100 seconds. 
Nevertheless, values for kdg as different as 4 × 10−5 s−1 and 100 s−1 can be found in the 
literature (Fraga et al, 2008a). This remains an area for further investigation. 
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Fig. 10. Simulation of non-isothermal cure, showing variation of Tg during cure without 
vitrification (red full curve) and with vitrification and devitrification (green dashed curve). 
As there is now space available, following the format change, this caption could include the 
experimental conditions, which are: heating rate=0.02 K/min, m=1, n=2, λ=0.5, Ef/R=100 kK, 
Tg0=−15ºC, Tg∞=85ºC 

Following vitrification, the cure temperature continues to increase at the experimentally 
imposed rate, and consequently the system will devitrify when the cure temperature again 
exceeds the glass transition temperature. This generally occurs when the glass transition 
temperature is approaching its value for the fully cured system, Tg∞. In Figure 10 this is seen 
as the crossing point of the cure curve and the heating rate curve, which is located in the 
region of the cure curve which is almost horizontal. The temperature at which 
devitrification occurs is therefore a good approximation to that of the fully cured system, 
and is almost independent of frequency (Fraga et al, 2010a; Fraga et al, 2010b). This is an 
important observation, as can be illustrated by a good example. The tri-functional epoxy 
resin, tri-glycidyl para-amino phenol (TGAP), when cured with diamino diphenyl sulphone 
(DDS), results in a very highly cross-linked network structure. In fact, the cross-link density 
is so high that the glass transition cannot be identified by DSC or TMDSC for this system, 
and it is common practice to determine the Tg instead by other techniques, for example by 
dynamic mechanical analysis (DMA) (Frigione & Calò, 2008). This is clearly not an ideal 
situation for studying the kinetics of cure and its effects on the structure and properties of 
the cured system: for instance, DMA does not measure the same Tg as for DSC or TMDSC, 
and operates at a higher frequency than does TMDSC (Hutchinson, 2010).  However, by 
curing non-isothermally at a very slow rate, it is possible to identify both vitrification and 
devitrification in this system, with the temperature at which devitrification occurs being 
clearly defined, thus allowing the calorimetric determination of Tg∞. 

6. Conclusions 
This paper summarises some aspects of the glass transition of polymers that have been 
investigated by means of simulations made in the Matlab environment. These aspects have 
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included the following. First, the basic glass transformation process, involving cooling from 
an equilibrium melt to a non-equilibrium glass state, has been simulated by Matlab to show, 
in particular, the cooling rate dependence of the glass transition temperature and the 
endothermic peak that occurs in the heat flow, as measured by DSC, on reheating after 
annealing at a temperature within the glassy state. These simulations required the solution 
of a system of differential equations using the “ode” routines. The use of such simulations in 
which the effects of both experimental and material parameters were investigated led to a 
method (the peak shift method) for the determination of one of the material parameters, the 
non-linearity parameter, x. 
Second, the technique of Temperature Modulated DSC was simulated by Matlab in order to 
better interpret the various new signals that this technique gives in addition to those 
available by conventional DSC. These simulations made use of “fft” routines in order to 
evaluate the average values and amplitudes of the periodically varying heating rate and 
heat flow signals. Again, these simulations were made so as to investigate the effects of both 
the experimental and the material parameters, and the results led to a clear interpretation of 
the complex heat capacity and its dependence on these parameters. Among other results, 
this approach allowed the clear distinction to be made between the thermal and dynamic 
glass transition temperatures, and led to an interpretation of the relationship between them 
in respect of the correspondence between cooling rate and frequency. Such simulations also 
led to a new method for the experimental determination of the other material parameter, the 
non-exponentiality parameter β. 
Third, the processes of vitrification and devitrification that occur in thermosetting systems 
have been investigated by using Matlab to simulate the cure reaction in both isothermal and 
non-isothermal conditions. In particular, as regards isothermal cure, the effects of frequency 
have been simulated, and have allowed some hitherto apparently anomalous aspects of the 
frequency dependence of the vitrification time over a wide range of frequencies to be 
explained. With respect to non-isothermal cure, it has been shown that the devitrification 
process occurs at a temperature very close to the glass transition temperature of the fully 
cured system, and therefore provides a means of determining Tg∞ calorimetrically for 
systems in which this is otherwise not possible. In the analysis and simulation of these 
processes, the graphical representation capabilities of Matlab were particularly useful. 
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Following vitrification, the cure temperature continues to increase at the experimentally 
imposed rate, and consequently the system will devitrify when the cure temperature again 
exceeds the glass transition temperature. This generally occurs when the glass transition 
temperature is approaching its value for the fully cured system, Tg∞. In Figure 10 this is seen 
as the crossing point of the cure curve and the heating rate curve, which is located in the 
region of the cure curve which is almost horizontal. The temperature at which 
devitrification occurs is therefore a good approximation to that of the fully cured system, 
and is almost independent of frequency (Fraga et al, 2010a; Fraga et al, 2010b). This is an 
important observation, as can be illustrated by a good example. The tri-functional epoxy 
resin, tri-glycidyl para-amino phenol (TGAP), when cured with diamino diphenyl sulphone 
(DDS), results in a very highly cross-linked network structure. In fact, the cross-link density 
is so high that the glass transition cannot be identified by DSC or TMDSC for this system, 
and it is common practice to determine the Tg instead by other techniques, for example by 
dynamic mechanical analysis (DMA) (Frigione & Calò, 2008). This is clearly not an ideal 
situation for studying the kinetics of cure and its effects on the structure and properties of 
the cured system: for instance, DMA does not measure the same Tg as for DSC or TMDSC, 
and operates at a higher frequency than does TMDSC (Hutchinson, 2010).  However, by 
curing non-isothermally at a very slow rate, it is possible to identify both vitrification and 
devitrification in this system, with the temperature at which devitrification occurs being 
clearly defined, thus allowing the calorimetric determination of Tg∞. 

6. Conclusions 
This paper summarises some aspects of the glass transition of polymers that have been 
investigated by means of simulations made in the Matlab environment. These aspects have 
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included the following. First, the basic glass transformation process, involving cooling from 
an equilibrium melt to a non-equilibrium glass state, has been simulated by Matlab to show, 
in particular, the cooling rate dependence of the glass transition temperature and the 
endothermic peak that occurs in the heat flow, as measured by DSC, on reheating after 
annealing at a temperature within the glassy state. These simulations required the solution 
of a system of differential equations using the “ode” routines. The use of such simulations in 
which the effects of both experimental and material parameters were investigated led to a 
method (the peak shift method) for the determination of one of the material parameters, the 
non-linearity parameter, x. 
Second, the technique of Temperature Modulated DSC was simulated by Matlab in order to 
better interpret the various new signals that this technique gives in addition to those 
available by conventional DSC. These simulations made use of “fft” routines in order to 
evaluate the average values and amplitudes of the periodically varying heating rate and 
heat flow signals. Again, these simulations were made so as to investigate the effects of both 
the experimental and the material parameters, and the results led to a clear interpretation of 
the complex heat capacity and its dependence on these parameters. Among other results, 
this approach allowed the clear distinction to be made between the thermal and dynamic 
glass transition temperatures, and led to an interpretation of the relationship between them 
in respect of the correspondence between cooling rate and frequency. Such simulations also 
led to a new method for the experimental determination of the other material parameter, the 
non-exponentiality parameter β. 
Third, the processes of vitrification and devitrification that occur in thermosetting systems 
have been investigated by using Matlab to simulate the cure reaction in both isothermal and 
non-isothermal conditions. In particular, as regards isothermal cure, the effects of frequency 
have been simulated, and have allowed some hitherto apparently anomalous aspects of the 
frequency dependence of the vitrification time over a wide range of frequencies to be 
explained. With respect to non-isothermal cure, it has been shown that the devitrification 
process occurs at a temperature very close to the glass transition temperature of the fully 
cured system, and therefore provides a means of determining Tg∞ calorimetrically for 
systems in which this is otherwise not possible. In the analysis and simulation of these 
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1. Introduction 
The advent of computer graphics and simulation software has strongly influenced the 
industrial design. Nowadays, when facing out the design of a new product or the re-design 
of an existing one, it is of interest evaluating different design scenarios, by comparing 
physical and functional behaviors and product performances. Engineers are aimed to 
explore many and many "what-if" design scenarios for design optimization. 
MatLAB® scientific computing software offers powerful tools and mathematical utilities 
which can aid engineers in modeling and simulating their own applications, by using 
friendly graphical user interface (GUI) toolboxes. 
Generally speaking, when developing software, toolbox or standalone applications, one may 
adopt specific programming languages, such as Visual C++®, Visual Basic®, or Java®. For a 
computer science or information technology engineer it is easy and natural to program in 
these environments but for other science and engineering researchers all this may be an 
obstacle since they are not so familiar with those languages and it is usually required a high 
programming expertise (Perutka, 2010). 
In this contest, MatLAB® is a valid solution to develop powerful toolboxes and software by 
using its high programming language and its utilities (see linear algebra library collections 
and visualization toolkits, among others). 
While most applications can work by just giving inputs and analyzing results in text or 
graphic format, the use of graphical interface offers many advantages for users who wish to 
solve complex problems interactively and obtain visual feedbacks. 
There are several reasons for using MatLAB® as a GUI development tool (Holland & 
Marchand, 2002; Scott, 2006). First of all (I), MatLAB® offers a high-level scripting language. 
This allows researchers to focus on the problem they are trying to solve rather than 
spending time in developing a GUI architecture based on a low-level language. Second, (II) 
MatLAB®'s GUI applications can be fully integrated with the wide collection of 
computational routines. Moreover, (III) GUI applications are not dependent on OS 
architecture. Since MatLAB®'s code is not compiled, it may be run on any OS supported by 
MatLAB®. Finally, (IV) Graphic libraries allow to develop friendly GUI applications with 
powerful user interaction.  
The high-level GUI development tool embedded in MatLAB® is called GUIDE (Graphical 
User Interface Development Environment) and it allows to automatically design the GUI 
layout and to handle control and object properties. 
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The scientific literature offers hundreds of valid GUI tools developed to easily solve 
practical engineering problems. For example, on the MathWorks website, under "file 
exchange" section, one can find several contributions covering data acquisition and 
monitoring, data analysis, image processing, mesh/surface visualization, 3D image 
rendering, FEM applications and so on. 
This chapter focuses on two MatLAB®’s GUI applications, developed at University of 
Molise in collaboration with University of Naples (Italy): SVA-FEA (Statistical Variational 
Analysis & Finite Element Analysis) and PROMesh (PROcessing Mesh). 
The aim is to show how to provide advanced user interaction in several common tasks such 
as importing data, editing data, controlling FEA runs, visualizing results, and exporting 
results. 

SVA-FEA 
SVA-FEA is a graphical tool able to statistically analyze variations occurring into assembly 
processes of compliant parts. Variations at part level propagate through the assembly due to 
both assembly sequence and process variability. One key issue to be faced-out when 
designing a new product is to reduce such a variation. Depending on the complexity of the 
process (number of assembly phases/stations) or on the physical laws governing the 
assembly process (see for example, plastic deformation or residual stresses occurring when 
joining two flanged-parts) manual approaches are often inadequate to give valuable results. 
In this contest, only a computer tool may help engineers in finding-out the best design 
setting. The implementation of SVA-FEA was motivated to quickly predict variation 
occurring into compliant assembly. Many efforts were done to develop a friendly GUI 
allowing to interactively define input data, assembly process and visualize final results. 
SVA-FEA is linked, in background mode, to MSC NASTRAN® solver, used to calculate 
elastic displacements and generalized forces. More details about the SVA-FEA methodology 
can be found in (Gerbino et al., 2008). 
PROMesh 
The implementation of PROMesh was originally made within the PUODARSI (Product 
User-Oriented Development based on Augmented Reality and Interactive Simulation) 
Italian research project (http://www.kaemart.it/puodarsi), aiming to implement a tool to 
quickly perform stress-strain analyses and aerodynamic simulations, visualize results and 
keep them up-to-date while the shape of the object is modified interactively (Bordegoni et 
al., 2010; Di Gironimo et al., 2009). Starting from this general idea, we developed the 
PROMesh tool allowing to interactively modify any tessellated model by applying a 
morphing mesh procedure and to create a 3D closed domain starting from an open shell 
model. The so-edited geometry can be automatically converted into a suitable FE model, 
ready to be used for solving a steady fluid dynamic simulation. Comsol Multiphysics® is 
adopted as solver, working into background mode. 
Both SVA-FEA and PROMesh were designed to be friendly as much as possible. Among 
other things, in order to provide high interaction tools, mouse events (mouse button- down, 
-up, -move) were programmed to allow fast selection tasks. In particular, mesh data 
information (see, for example, node coordinates) can be directly accessed just by mouse 
picking or dragging-dropping within the graphic area. 
Some interesting features implemented in those MatLAB®-based applications are related to 
the possibility to select objects in a graphic window based on the current viewing 
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orientation. MatLAB®, which partially adopts an OpenGL® graphic engine, provides 
functionality, similar to that of a camera with zoom lens, which enables to control the 
viewing of the scene. By properly combining the camera orientation and the cursor-mouse 
position, mouse selection capabilities can be programmed. 
This Chapter is arranged as follows: Section 2 provides an overview of SVA-FEA 
capabilities, highlighting its data structure and the main user-interaction features. PROMesh 
is discussed in Section 3. Finally, Section 4 draws final remarks and conclusions.   

2. SVA-FEA overview 
SVA-FEA provides functionalities to analyze variations occurring into assembly processes of 
compliant parts. Car body sheet-metal parts, aircraft structural components and plastic 
injected molded parts are typical elements with some compliance which makes no more 
applicable the assumption of rigid body when studying 3D tolerance stack-ups. 
 

                
              a. nominal geometry                                                  b. variational geometry 

Fig. 1. Assembly of compliant parts 

Following the classical PCFR cycle (Chang, 1996), with respect to the specific assembly 
station, parts are firstly positioned onto the fixture frame, then clamped and fastened and, 
finally, released, reaching the final sub-assembly configuration (Camelio et al., 2004a). When 
analyzing variations of flexible assembly many factors should be accounted. First of all, the 
compliance of parts being assembled must be considered. Then, how parts interact each-
other need to be investigated. Often, in real industrial applications, assembly processes are 
made of many sub-stations (Ceglarek et al., 2009). When a part/sub-assembly moves from 
one station to another one, one should also consider that rigid location errors may add to 
elastic spring-back deviations. Looking at Fig. 1 one may observe that clamp and fasten tools 
may deform parts being assembled due to both part errors and clamp/fasten deviations. 
Understanding how deviations propagate through the assembly process it is of interest 
especially during the early design stages, when different design scenarios are aimed to be 
investigated and analyzed. In this contest, simulation environments are welcome as they 
allow to give valuable results into a reasonable time with no need to made very expensive 
and time-consuming real prototypes. 
Mainly based on these needs, the implementation of SVA-FEA's GUI was motivated in order 
to analyze many different assembly configurations by varying few input parameters and to 
quickly view the simulation results. 

Fasten tools Clamp tools Fasten tools Clamp tools
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Assembly Process 
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Fixture Points Fasten Points

Contact Points Inspection Points Inspection Frame

Fixture Frame Fasten Sequence 

Solution 
MSC NASTRAN® 

Input Data: SVA-FEA GUI 

Output Data 
SVA-FEA GUI 

 
Fig. 2. SVA-FEA architecture (Franciosa, 2010a) 

SVA-FEA allows to model both single- and, more in general, multi-station processes. Part 
deformation is calculated by adopting a FEM approach: forces and elastic displacements are 
calculated by solving a linear static FE model. The general SVA-FEA architecture (Franciosa, 
2010a) is depicted in Fig. 2. Starting from the nominal assembly geometry, imported from a 
CAD system, the FE model is created and imported, accordingly, into MSC NASTRAN® 
format. For each sub-station, assembly operations have to be defined. In particular, four sets 
of Key Points (KPs) are identified: fixture points to model fixture tools; fasten points to 
model fasten operations; contact points to model the contact between parts to avoid part-to-
part penetrations; and, inspection points related to points we want to check-out on the 
assembly at final stage. For each sub-station, these points must be assigned, accordingly. 
Moreover, statistical input data are provided in terms of mean and standard deviation. Once 
input data are correctly assigned, output data, in terms of statistical displacements, are 
given by solving two consecutive FEA runs. 
The whole software architecture is based on MatLAB® environment which drives, in 
background mode, the MSC NASTRAN® solver. Fig. 3 depicts the SVA-FEA GUI and its 
main menus. 
SVA-FEA's user interface was designed to easily allow: (I) importing mesh data; (II) 
selecting KPs; (III) defining assembly process; (IV) running FEA analysis; (V) and, viewing 
simulation results. The GUI layout was developed by using the GUIDE environment.  

2.1 SVA-FEA data structure 
This Section shows the general structure used to manage input data in SVA-FEA. Input data 
are managed by using structure arrays. The main data structure is depicted into Fig. 4. 
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Fig. 3. SVA-FEA user interface 

For each part (“part i”), six fields are available: 
• MAT: material properties (Young's Modulus and Poisson's ratio) and shell thickness; 
• NODE: coordinates of mesh nodes;  
• ELEMENT: mesh elements; and, 
• FIXTURE/FASTEN/CONTACT: input assignment for fixture, fasten and contact 

points. 
With respect to the latter fields, the following sub-fields are available: 
• DoF: list of constrained degrees of freedom (DoF); 
• UCS: local coordinate frame definition; 
• NodeIDf: node identification for fixture point assignment; 
• NodeIDsrc / NodeIDdst: source and destination node identification; 
• T: statistical input value in terms of mean and standard deviation. 

2.2 SVA-FEA software: handling MSC NASTRAN® input files 
The input information needed to do the numerical analysis in MSC NASTRAN® is 
contained into the ASCII .bdf (Bulk Data Format) file. This file is made of three sub-sections: 
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• executive control statement: includes solver options and diagnosis operations; 
• case control section: includes sub-case entries and output queries; and,  
• bulk data section: includes the FE model (nodes, elements and boundary conditions).  
The general structure of a .bdf file (SVA-FEA supports the free field format, where data are 
separated by blanks) is listed below. 
 

 
Fig. 4. SVA-FEA data structure (Franciosa, 2010a) 

When the number of nodes or elements increases (in real industrial applications, meshes are 
made of many thousands of nodes) the .bdf file may become very huge and its reading, by 
using MatLAB® built-in functions, is often not efficient. To overcome this issue we 
implemented a MEX function (see Annex A.1 on how writing a MEX function) allowing to 
quickly read and import mesh elements (for example CQUAD4 and CTRIA3 elements by 
MSC NASTRAN®) and node coordinates. Material properties, geometry constants and node 
constraint settings will be defined through the SVA-FEA's GUI. 
 

I 

III 
IX 

VI 

V 

II VII

VIII IV 

             

VI III

I

IX

V

VII

II

VIII 

IV

 
                  (a) mesh data                                                  (b) graph representation 

Fig. 5. Graph representation of mesh data (two domains) 
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$- executive control statement 
SOL 101 $- solver type. "101" corresponds to the linear static solver 
CEND 
 
$- case control section 
SUBCASE 1 $- sub-case entries 
 
$- beginning bulk data section 
BEGIN BULK 
… 
CQUAD4 104 1 122 123 134 133 
$- element quad id=104, material id=1, connected nodes: 122,123,134,133 
CTRIA3 105 1 150 151 152 
$- element tria id=105, material id=1, connected nodes: 150,151,152 
… 
GRID 150  0.0 0.0 1.0 5 
$- node id=150, coordinates [0.0, 0.0, 1.0], local UCS id=5 
… 
SPC 1 176 1 0.00 
$- define single point constraint 
… 
PWELD 1 3 5.00 
… 
CWELD 1 1  ALIGN 125 9 
$- cweld element to define fasten elements 
…. 
FORCE 1 9 2 10.54 0.00 0.00 1.00 
$- define load conditions 
… 
CORD2R 5  80.00 0.00 4.00 80.00 0.00 5.00 79.00 0.00 4.00 
$- define local coordinate UCS 
… 
ENDDATA 
$- ending bulk data file 

 
When importing mesh data from .bdf formatted files, no geometric information is available 
about connected domains. We implemented an automatic procedure allowing to select and 
store connected domain. Every connected domain corresponds to a part, which can be 
introduced into the assembly process being simulated. 
The general idea to extract connected domains is to consider the imported mesh as a graph 
in which mesh elements correspond to graph-vertices, while each edge represents an 
element-to-element connection (see Annex A.2 for a general overview on the main concepts 
of the Graph Theory used in the application). Looking at Fig. 5, 9 elements (five CQUAD4 
and four CTRIA3) define two connected domains: (I, III, V, VI, IX) and (II, IV, VII, VIII). The 
graph representation depicted into Fig. 5b was obtained considering that two elements are 
connected if they share one edge or one node. For example, element I is connected to 
element IX, through one edge, and to elements III and VI, with one node. 
Starting from the definition provided into equation (A.2), the adjacency matrix, "A", of the 
mesh-graph can be easily calculated. Knowing the adjacency matrix (Nquad+Ntria x 
Nquad+Ntria square matrix, where Nquad and Ntria are, respectively, the number of imported 
CQUAD4 and CTRIA3 elements), a growing procedure can be applied to detect all 
connected domains.  Below the MatLAB®'s pseudo-code. 
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• executive control statement: includes solver options and diagnosis operations; 
• case control section: includes sub-case entries and output queries; and,  
• bulk data section: includes the FE model (nodes, elements and boundary conditions).  
The general structure of a .bdf file (SVA-FEA supports the free field format, where data are 
separated by blanks) is listed below. 
 

 
Fig. 4. SVA-FEA data structure (Franciosa, 2010a) 

When the number of nodes or elements increases (in real industrial applications, meshes are 
made of many thousands of nodes) the .bdf file may become very huge and its reading, by 
using MatLAB® built-in functions, is often not efficient. To overcome this issue we 
implemented a MEX function (see Annex A.1 on how writing a MEX function) allowing to 
quickly read and import mesh elements (for example CQUAD4 and CTRIA3 elements by 
MSC NASTRAN®) and node coordinates. Material properties, geometry constants and node 
constraint settings will be defined through the SVA-FEA's GUI. 
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Fig. 5. Graph representation of mesh data (two domains) 
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$- executive control statement 
SOL 101 $- solver type. "101" corresponds to the linear static solver 
CEND 
 
$- case control section 
SUBCASE 1 $- sub-case entries 
 
$- beginning bulk data section 
BEGIN BULK 
… 
CQUAD4 104 1 122 123 134 133 
$- element quad id=104, material id=1, connected nodes: 122,123,134,133 
CTRIA3 105 1 150 151 152 
$- element tria id=105, material id=1, connected nodes: 150,151,152 
… 
GRID 150  0.0 0.0 1.0 5 
$- node id=150, coordinates [0.0, 0.0, 1.0], local UCS id=5 
… 
SPC 1 176 1 0.00 
$- define single point constraint 
… 
PWELD 1 3 5.00 
… 
CWELD 1 1  ALIGN 125 9 
$- cweld element to define fasten elements 
…. 
FORCE 1 9 2 10.54 0.00 0.00 1.00 
$- define load conditions 
… 
CORD2R 5  80.00 0.00 4.00 80.00 0.00 5.00 79.00 0.00 4.00 
$- define local coordinate UCS 
… 
ENDDATA 
$- ending bulk data file 

 
When importing mesh data from .bdf formatted files, no geometric information is available 
about connected domains. We implemented an automatic procedure allowing to select and 
store connected domain. Every connected domain corresponds to a part, which can be 
introduced into the assembly process being simulated. 
The general idea to extract connected domains is to consider the imported mesh as a graph 
in which mesh elements correspond to graph-vertices, while each edge represents an 
element-to-element connection (see Annex A.2 for a general overview on the main concepts 
of the Graph Theory used in the application). Looking at Fig. 5, 9 elements (five CQUAD4 
and four CTRIA3) define two connected domains: (I, III, V, VI, IX) and (II, IV, VII, VIII). The 
graph representation depicted into Fig. 5b was obtained considering that two elements are 
connected if they share one edge or one node. For example, element I is connected to 
element IX, through one edge, and to elements III and VI, with one node. 
Starting from the definition provided into equation (A.2), the adjacency matrix, "A", of the 
mesh-graph can be easily calculated. Knowing the adjacency matrix (Nquad+Ntria x 
Nquad+Ntria square matrix, where Nquad and Ntria are, respectively, the number of imported 
CQUAD4 and CTRIA3 elements), a growing procedure can be applied to detect all 
connected domains.  Below the MatLAB®'s pseudo-code. 
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%- find-out connected domains 
function domain=connectedDomain(A) 
 
seed=1; 
while true 
    idConnect=[]; 
    visited(seed)=true; %- seed has been already visited 
     
    for i=1:length(seed) %- loop over seed elements 
        %- get connected elements by using "A" matrix 
        [temp,visited]=getConnected(seed(i),A,visited); 
        idConnect=[idConnect,temp]; 
    end 
     
    %- "local domain"     
    tempDomain=[tempDomain,idConnect]; 
     
    if ~isempty(idConnect) 
        %- update seed counter 
        seed=idConnect; 
    else 
        %- if no connected element is found then save "local domain" 
        count=count+1; 
        domain{count}=tempDomain; %- new domain counted 
         
        %- look for a new seed (not yet visited) 
        seed=getNotVisited(visited); 
        tempDomain=seed; 
    end 
     
    %- break loop when there is no new seed (all elements were allocated) 
    if isempty(seed) 
        break 
    end       
end %- end loop 

 
The procedure looks for those elements connected to the initial "seed element". Thus, 
iteratively, the seed counter is update with the so-connected elements ("idConnect"). When 
no other connected element is counted, then a connected domain has been selected and it is 
saved. These connected elements are classified as "visited". The iterative procedure stops 
when all elements have been marked as visited. Once connected domains are calculated, 
SVA-FEA updates its data structure: "ELEMENT.Quad", "ELEMENT.Tria" and "NODE" 
fields are filled, accordingly, with respect to the i-th connected domain (see Fig. 4). The 
"patch" MatLAB® built-in function is used to draw and visualize mesh data.  

2.3 SVA-FEA software: selecting mesh nodes 
Many efforts were done to make the SVA-FEA's GUI friendly as much as possible. In 
particular, when fixture or fasten points have to be assigned, the easiest way is just to select, 
by mouse picking, mesh node from the graphic area.  
This task can be accomplished by using MatLAB® graphic tools. Fig. 6 reports the general 
scheme adopted in MatLAB® for defining a scene (MatLAB® supports both parallel and 
perspective projections; however, the actual implementation of SVA-FEA supports only the 
parallel projection). 
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Fig. 6. Camera representation and mouse selection from graphic area 

In Fig. 6 "Pt" is the position, in the coordinate frame (Ω0), of the point the camera points to 
(camera target). "Pc" is the position of the camera frame (Ωc) with respect to Ω0 (camera 
position). "Vup" defines the rotation (camera up-vector) around the camera view axis, "Zc". "Pmi" 
are the mouse picked points, defined with respect to Ω0. "Pmi" correspond to the intersection 
between the camera view axis and the front plane (which is parallel to the camera plane Xc-
Yc). By using MatLAB® camera properties, "Pt", "Pc", "Vup" and "Pmi" can be obtained by: 
 

Pc=get(gca,'CameraPosition'); %- camera position 
Pt=get(gca,'CameraTarget');  %- camera target 
Vup=get(gca,'CameraUpVector'); %- camera up-vector 
Pmi=get(gca,'CurrentPoint'); %- picked point 

 
The aim is to find-out the mesh node nearest to the picked point. To do this, the mesh node 
and the picked point have to be projected onto the front plane. After calculating the rotation 
matrix from the frame Ω0 to Ωc as into equation (1): 
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one can obtain the index ("idSelected") of the nearest mesh node with respect to the picked 
point. Below the MatLAB® pseudo-code. 
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%- find-out connected domains 
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    if isempty(seed) 
        break 
    end       
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SVA-FEA updates its data structure: "ELEMENT.Quad", "ELEMENT.Tria" and "NODE" 
fields are filled, accordingly, with respect to the i-th connected domain (see Fig. 4). The 
"patch" MatLAB® built-in function is used to draw and visualize mesh data.  

2.3 SVA-FEA software: selecting mesh nodes 
Many efforts were done to make the SVA-FEA's GUI friendly as much as possible. In 
particular, when fixture or fasten points have to be assigned, the easiest way is just to select, 
by mouse picking, mesh node from the graphic area.  
This task can be accomplished by using MatLAB® graphic tools. Fig. 6 reports the general 
scheme adopted in MatLAB® for defining a scene (MatLAB® supports both parallel and 
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one can obtain the index ("idSelected") of the nearest mesh node with respect to the picked 
point. Below the MatLAB® pseudo-code. 
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%- transform mesh-nodes, "Ncoord" 
Ncoord=R*Ncoord'; 
Pmi=R*Pmi'; 
 
%- take just (x-y) components 
Ncoord= Ncoord(1:2,:); 
Pmi=Pmi(1:2); 
 
%- calculate distances 
diff=[Ncoord(1,:)-Pmi(1); Ncoord(2,:)-Pmi(2)];  
dist=sqrt(sum(diff.^2,1));    
 
%- finally, find-out the index related to the minimum distance 
[~,idSelected]=min(dist); %- discard (~) first output 

 

                        
(a) drawing rectangle by mouse picking/moving            (b) selecting mesh-nodes 

Fig. 7. Application of the rectangle-area selection algorithm 

The algorithm just described can be extended to allow rectangle-area selection from the 
graphic area by defining three sub-routines running when picking mouse buttons or moving 
mouse into the current MatLAB® figure. The procedure can be summarized as follows (see 
also Fig. 6): 
• calculating "Pm1" point and "R" matrix when picking down the mouse button 

("WindowButtondownFcn" callack);  
• calculating "Pm4" point and draw rectangle-area selection when moving the mouse 

("WindowButtonMotionFcn" callack); and, 
• calculating mesh-nodes inside the rectangle-area selection ("WindowButtonUpFcn" 

callack). 
"Pm1" is calculated once picking down the mouse button. "Pm4" corresponds to the actual 
position of the mouse cursor. The MatLAB® pseudo-code is reported below. 
The "patch" and "line" MatLAB® built-in functions are used to draw, respectively, the 
rectangle-area selection and the selected mesh nodes. Furthermore, the "inpolygon" 
MatLAB®'s command is here adopted to check which nodes are inside the rectangle-area. 
As example, in Fig. 7 a mouse selection is drawn into the upper side of figure (Fig. 7a). Then, 
the selected mesh nodes are marked as blue dots (Fig. 7b). 
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%- inizialize selection phase: 
set(fig,'WindowButtondownFcn',{@sClick,Ncoord}); 
                                
function sClick(Ncoord) 
  
%- built frame 
R=[Xc;Yc;Zc]; 
 
%- start selection 
P1=get(gca,'CurrentPoint'); %- picked point 
 
%- start mouse motion 
set(gcf,'WindowButtonMotionFcn',{@moveMouse,P1,R,Ncoord}) 
  
function moveMouse(P1,R,Ncoord) 
  
%- actual mouse position 
P4 = get(gca,'CurrentPoint'); 
 
%- transform into the local frame 
P1=R*P1'; 
P4=R*P4'; 
 
%- built rectangle selection 
P2=[P1(1) P4(2) 0]; 
P3=[P4(1) P1(2) 0]; 
  
%- go-back into global frame 
Vertext=R'*[P1;P2;P4;P3];'; 
  
%- draw rectangle 
patch('Faces',[1 2 3 4],... 
      'Vertices',Vertext'); 
  
%-call mouse button-up 
set(fig,'WindowButtonUpFcn',{@endClick,R,Ncoord,Vertex}); 
  
function endClick(R,Ncoord,Vertex) 
  
inPol=inpolygon(Ncoord(1,:),Ncoord(2,:),Vertex(:,1),Vertex(:,2)); 
  
Psel=Ncoord(inPol,:); 
  
line('xdata',Psel(:,1),... 
     'ydata',Psel(:,2),... 
     'zdata',Psel(:,3)) 

  
In  SVA-FEA, when defining fasten or contact points, mesh-nodes are directly selected from 
the graphic area (see Fig. 8) by using the rectangle-area selection tool. Once master and slave 
parts are picked, matched nodes are automatically assigned among parts. After selecting 
master node, the related matched node is calculated as the nearest one on the slave part. In 
Fig. 8, matched nodes are marked as circle dots. 

2.4 SVA-FEA software: Tree view implementation 
Imported connected domains and KPs can be edited and managed thought the MODEL 
TREE, serving as tree viewer (see Fig. 9). Specific programming languages, such as 
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%- transform mesh-nodes, "Ncoord" 
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position of the mouse cursor. The MatLAB® pseudo-code is reported below. 
The "patch" and "line" MatLAB® built-in functions are used to draw, respectively, the 
rectangle-area selection and the selected mesh nodes. Furthermore, the "inpolygon" 
MatLAB®'s command is here adopted to check which nodes are inside the rectangle-area. 
As example, in Fig. 7 a mouse selection is drawn into the upper side of figure (Fig. 7a). Then, 
the selected mesh nodes are marked as blue dots (Fig. 7b). 
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%- inizialize selection phase: 
set(fig,'WindowButtondownFcn',{@sClick,Ncoord}); 
                                
function sClick(Ncoord) 
  
%- built frame 
R=[Xc;Yc;Zc]; 
 
%- start selection 
P1=get(gca,'CurrentPoint'); %- picked point 
 
%- start mouse motion 
set(gcf,'WindowButtonMotionFcn',{@moveMouse,P1,R,Ncoord}) 
  
function moveMouse(P1,R,Ncoord) 
  
%- actual mouse position 
P4 = get(gca,'CurrentPoint'); 
 
%- transform into the local frame 
P1=R*P1'; 
P4=R*P4'; 
 
%- built rectangle selection 
P2=[P1(1) P4(2) 0]; 
P3=[P4(1) P1(2) 0]; 
  
%- go-back into global frame 
Vertext=R'*[P1;P2;P4;P3];'; 
  
%- draw rectangle 
patch('Faces',[1 2 3 4],... 
      'Vertices',Vertext'); 
  
%-call mouse button-up 
set(fig,'WindowButtonUpFcn',{@endClick,R,Ncoord,Vertex}); 
  
function endClick(R,Ncoord,Vertex) 
  
inPol=inpolygon(Ncoord(1,:),Ncoord(2,:),Vertex(:,1),Vertex(:,2)); 
  
Psel=Ncoord(inPol,:); 
  
line('xdata',Psel(:,1),... 
     'ydata',Psel(:,2),... 
     'zdata',Psel(:,3)) 

  
In  SVA-FEA, when defining fasten or contact points, mesh-nodes are directly selected from 
the graphic area (see Fig. 8) by using the rectangle-area selection tool. Once master and slave 
parts are picked, matched nodes are automatically assigned among parts. After selecting 
master node, the related matched node is calculated as the nearest one on the slave part. In 
Fig. 8, matched nodes are marked as circle dots. 

2.4 SVA-FEA software: Tree view implementation 
Imported connected domains and KPs can be edited and managed thought the MODEL 
TREE, serving as tree viewer (see Fig. 9). Specific programming languages, such as 
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Microsoft® Visual Basic or Visual C++, offer dedicated tools to develop tree viewers. In 
SVA-FEA we implemented the MODEL TREE based on a "listbox" control. 
 

matched nodes master part slave part 
 

Fig. 8. Defining matched nodes among master and slave parts ("CONTACT" menu) 

The "listbox" control differentiates its event call-backs depending on the "SelectionType" 
property. For example, if a single mouse click occurs, then the "SelectionType" property is 
automatically set to "normal". In presence of a double mouse click, "SelectionType" property 
becomes equal to "open". 
The example below defines a new figure and a "listbox" control. The call-back function 
named "listCall" is associated to the "listbox". Every time clicking on that control, depending 
on the "SelectionType" property, "OPEN" or "NORMAL" strings are written.  
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                (a) collapsed MODEL TREE                             (b) expanded MODEL TREE 

Fig. 9. MODEL TREE visualization 

 
function testListbox 
 
%- define a new figure 
fig=figure('unit','characters','position',[20 5 160 45]); 
 
%- define a listbox 
hList=uicontrol('unit','characters','Style','listbox',... 
                'position',[0 0 35 45],... 
                'parent',fig,'enable','on'); 
 
%- set call-back function     
set(hList,'callback',@listCall) 
 
%- call-back function handling 
function listCall(src,event) 
 
%- differentiate depending on "SelectionType" property 
if strcmp(get(gcf, 'SelectionType'), 'open') %- double-click 
     set(src,'string','OPEN','value',1) 
elseif strcmp(get(gcf, 'SelectionType'), 'normal') %- single-click 
     set(src,'string','NORMAL','value',1) 
end 

   
Based on this key feature, the MODEL TREE was implemented in SVA-FEA to manage and 
visualize the modeling history. When importing new part or defining new KPs, the MODEL 
TREE is automatically updated. As example, Fig. 9 shows the MODEL TREE in which one 
can browse among part options (PART) and KPs (UCS, CONSTRAINT, CONTACT, 
FASTEN, MEASURE). Right-mouse-clicking was also programmed to allow a fast editing of 
the selected item. 

2.5 SVA-FEA software: Assembly tree implementation 
A crucial aspect to be achieved when performing the variation analysis of compliant parts is 
the assembly sequence, that is the sequence through which parts or sub-assemblies are put 
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                (a) collapsed MODEL TREE                             (b) expanded MODEL TREE 

Fig. 9. MODEL TREE visualization 

 
function testListbox 
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Based on this key feature, the MODEL TREE was implemented in SVA-FEA to manage and 
visualize the modeling history. When importing new part or defining new KPs, the MODEL 
TREE is automatically updated. As example, Fig. 9 shows the MODEL TREE in which one 
can browse among part options (PART) and KPs (UCS, CONSTRAINT, CONTACT, 
FASTEN, MEASURE). Right-mouse-clicking was also programmed to allow a fast editing of 
the selected item. 

2.5 SVA-FEA software: Assembly tree implementation 
A crucial aspect to be achieved when performing the variation analysis of compliant parts is 
the assembly sequence, that is the sequence through which parts or sub-assemblies are put 
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together. In (Ceglarek, 2009; Camelio et al., 2004b) was reported that the assembly sequence 
may influence about 60% the final assembly variation. As stated before in this Chapter, for 
each assembly sub-station, a fixture frame and a fasten tool should be defined, simulating 
the classical PCFR cycle. As detailed in (Gerbino et al., 2008; Franciosa, 2010a), SVA-FEA 
calculates the influence that previous sub-stations have on the actual assembly station. Such 
dependencies can be accounted considering the assembly process as an oriented graph, in 
which each vertex corresponds to a station, while every edge represents a station-to-station 
relationship.  
Fig. 10 shows two assembly sequences and the related Laplace matrices (see Annex A.2). 
Knowing those matrices, dependencies among stations are univocally determined. For 
example, looking at the third column of the "Lb" matrix one can state that "Station 3" depends 
on "Station 1" and "Station 2". In SVA-FEA we developed the "Assembly OPERATION" tool 
able to interactively define parts to be assembled and the related station level. Moreover, for 
each assembly station the related fixture and fasten frame can be defined. 
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Fig. 10. Two assembly sequences 

 

           
Fig. 11. Assembly OPERATION tool: two different assembly sequences 
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The "text" and "line" MatLAB® built-in functions were used to draw, respectively, part and 
station vertices and the edge links of the assembly graph. Fig. 11 reports the two assembly 
sequences as seen in SVA-FEA, related to ones depicted into Fig. 10. 

2.6 SVA-FEA software: handling MSC NASTRAN output files 
Once the assembly sequence is defined and the related KPs are set, accordingly, two 
consecutive FEA runs are solved, by running MSC NASTRAN®. Input files (in .bdf format) 
are automatically generated by SVA-FEA, and parsed to the MSC NASTRAN® solver. The 
following command lines are required to run MSC NASTRAN® from SVA-FEA: 
 

 
%- MSC NASTRAN® path 
pathsolve=sprintf('%s %s',cdNastran,filename); 
 
%- run solver 
dos(pathsolve);  
 

 
where "cdNastran" is the MSC NASTRAN® installation path, whereas "filename" is the .bdf 
file to be solved. 
FEA results coming from MSC NASTRAN® are stored in two main files: .op2 and .f06. The 
.op2 file contains post-processing data (see, for example, displacement fields), interpolated 
by using shape functions. However, the .op2 file has an owner format, not directly accessible 
or readable by users. On the contrary, the .f06 file is a text file containing node 
displacements and generalized forces. The general structure of the .f06 file is listed below. 
"Ti" and "Ri" are the translational and rotational degrees of freedom of the analyzed node, 
both related to displacements ("DISPLACEMENT VECTOR") and generalized forces 
("FORCE OF SINGLE-POINT CONSTRAINT"). 
 
 
POINT-ID=241 // node id=241 
                     DISPLACEMENT   VECTOR 
 
SUBCASE   TYPE   T1        T2        T3        R1        R2        R3 
1          G   -1.36E-05  4.81E-05 -1.38E-02  8.82E-03 -2.04E-03 -1.73E-06 
2          G    1.36E-05 -4.81E-05  1.38E-02 -8.82E-03  2.04E-03  1.73E-06 
// two sub-cases analyzed 
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As described above for the MSC NASTRAN® input file, in order to speed-up the reading 
phase of the .f06 file, a compiled MEX functions was also here implemented.  
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together. In (Ceglarek, 2009; Camelio et al., 2004b) was reported that the assembly sequence 
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Fig. 10. Two assembly sequences 

 

           
Fig. 11. Assembly OPERATION tool: two different assembly sequences 
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The "text" and "line" MatLAB® built-in functions were used to draw, respectively, part and 
station vertices and the edge links of the assembly graph. Fig. 11 reports the two assembly 
sequences as seen in SVA-FEA, related to ones depicted into Fig. 10. 
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Engineering Education and Research Using MATLAB 

 

352 

2.7 SVA-FEA software: Post-processing simulation results 
Simulation results can be easily analyzed and visualized from the POST-PROCESS main 
GUI (see Fig. 12): deformed or undeformed assembly (or sub-assembly) can be visualized; 
contour plots of mean or standard deviation values are available. Final results can be 
exported in Microsoft® EXCEL file, to quickly create graphs and diagrams. The interested 
reader is referred to (Franciosa et al., 2009, 2010b) where more specific case studies are 
described and analyzed. 
 

 
Fig. 12. POST-PROCESS tool 

Contour plot utilities were implemented by using the MatLAB®'s "patch" function. This 
graphic object allows to visualize mesh data and to specify a color for each mesh-element or 
mesh-node. MatLAB® supports three shaders: flat, Gourand and Phong. The flat shader 
produces a uniform lighting across faces (that is, mesh-elements) of the object. Gourand and 
Phong algorithms, instead, calculate the mesh-node normals and interpolates linearly across 
the faces (Lengyel, 2003). 
The code below can be adopted to generate a contour plot visualization (the related 
results are depicted into Fig. 13). "ELEMENT" contains the mesh-element connections 
(CQUAD4 and CTRIA3 elements imported from the input .bdf file). "cData" is a matrix 
containing contour data to be plotted (for example, the displacement field along the Z axis 
direction). 
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%- define a contour plot visualization (mesh edge shown) 
patch('Faces',ELEMENT,'Vertices',Ncoord,... %- define mesh plotting 
     'LineStyle','-','EdgeColor','k',... %- show "black" edge 
     'FaceVertexCData',cData,'FaceColor','inter',... %- define contour data 
     'FaceLighting','phong','EdgeLighting','phong') %- define shader 
 
%- define a contour plot visualization (mesh edge hidden) 
patch('Faces',ELEMENT,'Vertices',Ncoord,... %- define mesh plotting 
     'LineStyle','none',... %- hide edge 
     'FaceVertexCData',cData,'FaceColor','inter',... %- define contour 
data 
     'FaceLighting','phong','EdgeLighting','phong') %- define shader 

 

       
                (a) mesh-edge shown                                             (b) mesh-edge hidden 

Fig. 13. Contour plot visualization 

3. PROMesh overview 
Re-designing real parts or, more generally, industrial products, involves different tasks. First 
of all, geometry shape must be digitalized in order to get a first geometrical model, which 
can be handled and edited. This model typically comes out as 3D tessellated model usually 
made of several thousands of nodes and triangles. Then, it needs to be processed in a CAE 
environment to simulate and understand its performances (in terms, for example, of 
structural or aerodynamic behavior). If the preliminary CAE results do not match design 
intents, the initial geometry has to be modified. The re-design loop is iterated until reaching 
a good balance among functional and esthetic requirements. Obviously, all this may become 
very time consuming and tedious when many geometry configurations need to be 
investigated. In this contest, interactive and automatic tools are welcome, since they may 
drive the designers to quickly test different design scenarios.  
Within the PUODARSI Italian research project, PROMesh tool was implemented to quickly 
perform a fluid-dynamic simulation on any tessellated geometry object, after modifying  
it interactively (for example, by mouse drag-and-drop). PROMesh adopts Comsol 
Multiphysics® to solve Navier-Stokes equations, governing the fluid-dynamic phenomenon. 
Comsol Multiphysics® offers a powerful API interface allowing, among other things, to 
save and manipulate its data structure within the MatLAB® workspace and to extract and 
visualize simulation data.  
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Re-designing real parts or, more generally, industrial products, involves different tasks. First 
of all, geometry shape must be digitalized in order to get a first geometrical model, which 
can be handled and edited. This model typically comes out as 3D tessellated model usually 
made of several thousands of nodes and triangles. Then, it needs to be processed in a CAE 
environment to simulate and understand its performances (in terms, for example, of 
structural or aerodynamic behavior). If the preliminary CAE results do not match design 
intents, the initial geometry has to be modified. The re-design loop is iterated until reaching 
a good balance among functional and esthetic requirements. Obviously, all this may become 
very time consuming and tedious when many geometry configurations need to be 
investigated. In this contest, interactive and automatic tools are welcome, since they may 
drive the designers to quickly test different design scenarios.  
Within the PUODARSI Italian research project, PROMesh tool was implemented to quickly 
perform a fluid-dynamic simulation on any tessellated geometry object, after modifying  
it interactively (for example, by mouse drag-and-drop). PROMesh adopts Comsol 
Multiphysics® to solve Navier-Stokes equations, governing the fluid-dynamic phenomenon. 
Comsol Multiphysics® offers a powerful API interface allowing, among other things, to 
save and manipulate its data structure within the MatLAB® workspace and to extract and 
visualize simulation data.  
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Generally speaking, PROMesh allows: (I) loading any tessellated model, made of triangle or 
quadrilateral elements; (II) editing the imported geometry; (III) exporting that geometry to 
Comsol Multiphysics®; and solving a steady fluid dynamic simulation in automatic way. In 
particular, external flows around free shape objects are simulated. Further details about 
numerical algorithms can be found in (Di Gironimo et al., 2009).  
The PROMesh's software architecture borrowed several algorithms from SVA-FEA, for 
example, the mesh-node selection algorithm - Section 2.3. A new feature was implemented 
to allow user to interactively modify the geometry shape by the mouse control. To do this, a 
Morphing Mesh Procedure (MMP) was implemented. 
 

       
                     (a) initial geometry                                                (b) 1st Bezier-weight 

 

    
                          c. 2nd Bezier-weight                                            d. 3rd Bezier-weight 

Fig. 14. Generation of three different morphed geometries based on Bezier-weight functions 

3.1 PROMesh software: MMP and user interaction 
Morphing mesh is a well known technique used in computer graphic applications as a 
powerful tool for free-shape modeling and designing. The numerical procedure 
implemented in PROMesh may be summarized as follows (see (Franciosa & Gerbino, 2009) 
for more details). User defines a set of control points on the model, by picking them on the 
graphical interface. Then, the relative influence hull is assigned for each point. Control 
points directly influence final shape of the deformed object, and this shape can be fine-tuned 
by adjusting the influence hull's radius and/or the position of each control point. The 
influence hull defines the 3D region within which any mesh-node is influenced by the 
related control point. Based on this general idea, one can write: 
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where "ΔNj" is the displacement of the j-th mesh-node, calculated once the morphing matrix, 
"M", and the weight function, "f(dj)", are known. "r" is the number of control points. As 
demonstrated in (Franciosa & Gerbino, 2009), "M" matrix can be easily calculated from the 
control point coordinates. Moreover, the weight function is equal to 1 when the mesh-node 
"Nj" is coincident with the i-th control point and tends toward zero for points "Nj" whose 
distance from the i-th control point is greater than zero. 
 

 
Fig. 15. PROMesh user interface: morphing mesh module 

In PROMesh the weight functions was assumed as a piecewise Bezier curve, which can be 
modified by acting on its control polygon. As example, Fig. 14 shows the application of the 
MMP on an initial flat geometry. Once defined one control point and its influence hull 
(PROMesh supports only ellipsoid domains), three different geometries were generated, by 
varying the Bezier's shape. Since the morphing matrix depends on the control point 
coordinates, the geometry can be morphed with a mouse control in the graphical area. 
Partially based on the mouse selection algorithm (see Section 2.3), the interactive morphing 
procedure can be summarized as follows: 
• calculate the selected control point "Pci" and the camera rotation matrix, "R", when 

picking down the mouse button ("WindowButtondownFcn" callack);  
• calculate the actual position of the control point "Pci,act" point and apply the MMP, when 

moving the mouse ("WindowButtonMotionFcn" callack); and, 
• end the procedure when releasing the mouse button ("WindowButtonUpFcn" callack). 
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where "ΔNj" is the displacement of the j-th mesh-node, calculated once the morphing matrix, 
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Fig. 15 depicts the morphing mesh tool embedded in PROMesh. After picking some control 
points, the related influence hulls can be manually tuned by varying their sizes and their 
orientations ("slider" controls). Then, the weigh function can be edited by moving the control 
polygon of the Bezier curve, and the geometry changes in real time. 
Figure 16 shows four morphed geometries obtained thought the high user-interaction 
offered by PROMesh.  
Source files of PROMesh are available on: 
http://www.mathworks.com/matlabcentral/fileexchange/authors/38957. 
 

          
                 (a) 1st morphed geometry                                        (b) 2nd morphed geometry 

 

      
                   (c) 3rd morphed geometry                                     (d) 4th morphed geometry 

Fig. 16. Application of the morphing mesh procedure 

4. Conclusions and final remarks 
The Chapter focused on two MatLAB®'s GUI applications: SVA-FEA® and PROMesh®. 
SVA-FEA® is a graphical tool developed to do statistical tolerance analysis of compliant 
assembly. It allows to manage imported mesh data, define assembly key points and specify 
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the assembly sequence. On the other side, PROMesh® offers dedicated algorithms to handle 
tessellated data geometry. The implementation of such tools was characterized by the inner 
needs to have friendly GUIs, allowing an advanced user-interaction. In particular, the 
following goals were achieved: (I) selection of mesh nodes through mouse clicking or mouse 
area-selection; (II) tree view and assembly tree implementations, based on graphs; (III) 
implementation of compiled MEX functions to speed-up huge calculations, involving the 
reading and writing tasks of formatted ASCII files. Furthermore, PROMesh® was oriented 
to allow user to interactively select mesh nodes and "morph" the mesh geometry. 
The experiences made in developing these computer tools demonstrates that it is possible to 
provide advanced user-interaction without a specific skill in computer science. 

Annex A: Methods and tools 
A.1 Handling large data set in MatLAB® 
When large data sets are allocated and accessed within loops, MatLAB® is not too much 
efficient. This is especially true when managing formatted text files rather than binary files. 
One manner to optimize and speed-up MatLAB® accessing data is by using compiled 
source codes, written in FORTRAN or C++ language (Kernighan & Dennis, 1978). This 
Annex describes how to write and compile a MEX function, written in C++ language, for 
MatLAB®. 
Assume to create an array, A, whose entries are all integers from 1 to 108 (obviously, such as 
array may be easily defined as “A=1:1e8”; this example wants to show, instead, how loops 
are not so efficient into MatLAB®). From MatLAB® script one can write: 
 
%- define array size 
N=1e8; 
 
%- initialize array 
A=zeros(1,N);  
 
%- start loop 
for i=1:N 
    A(i)=i; %-allocate “integer” value 
end 
 
On a Win 7 64bit, 8GB RAM, 2 i7 quad-core processors machine the run-time is 0.9441 s. The 
same array will be now generated by using a MEX compiled function. 
The source code for a MEX file consists of two main distinct parts: 
• computational routine: it contains the code performing the needed computations; and,   
• gateway routine: it is the main function which links with MatLAB®. 
The general form of a source MEX file is shown below: 
 
// include mex header 
#include "mex.h" 
  
// COMPUTATIONAL ROUTINE SECTION 
void userfnc#1(…) 
{ 
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same array will be now generated by using a MEX compiled function. 
The source code for a MEX file consists of two main distinct parts: 
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   //… routine code… 
} 
 
double userfnc#2(…) 
{ 
//… routine code… 
} 
 
// GATEWAY ROUTINE SECTION 
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, 
                 const mxArray *prhs[]) 
// nlhs = number of output items 
// nrhs = number of input items 
// plhs = output pointers 
// prhs = input pointers 
             
{ 
// get pointer from MatLAB® input 
A = mxGetPr(plhs[…]);  
 
// create MatLAB® variable 
  plhs[…] = mxCreateDoubleMatrix(…);  
 
// allocate output variable 
userfnc(…); 
} 
 
The name of the gateway function is always “mexFunction”. This function parses all 
MatLAB® inputs into pointer variables (“mxGetPr”) and create the output MatLAB® 
variables (“mxCreateDoubleMatrix”). Assuming "testmex.c" is the source code file, the 
following line should be written to compile it from MatLAB® (for 64bit MatLAB® 
distributions the Microsoft® Visual C++ compiler is suggested by MathWorks; how to 
install the Microsoft® Visual C++ for MatLAB® can be found in (Baker, 2009)). 
 
%- link and compile mex source code 
mex testmex.c 
 
Therefore, one can now write a MEX file which creates the A array. The source C++ code of 
the "testmex.c" file is something like this: 
 
#include "mex.h" 
  
// computational routine 
void allocateArray(double A[], int nr) 
{ 
int i; // locale variable 
for (i=0; i<nr; i++){ 
          A[i]=i+1; // "fill" array 
                    } 
} 
// gateway routine 
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, 
                 const mxArray *prhs[])                
{    
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  double *A; // pointer to “int” type 
  int nr; // define “int” variable 
  
  // get “int” value from the input pointer 
  nr = (int)*mxGetPr(prhs0]);  
  
  // allocate MatLAB® double matrix     
  plhs[0] = mxCreateDoubleMatrix(nr,1, mxREAL); 
 
  // get the pointer to the output 
  A = mxGetPr(plhs[0]);  
 
   // allocate the output array by using the computational routine 
  allocateArray(A,nr);  
 } 
 
The compiled function may be easily called from MatLAB®, typing: 
 
%- use compiled function 
A=testmex(N); 
 
The elapsed run-time is now 0.2893 s, that is, about 70% faster than the previous MatLAB® 
script. This way is particularly useful when managing large data sets, or nested loops are 
required.  

A.2 Adjacency matrix and Laplace matrix 
A graph "G" is usually defined by means of the vector list of vertices, "V", and the edge 
matrix, "E" (Berge, 2001; Deo, 2004). 
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Fig. A.1. Graph representation 

"V" is a vector of integer ranging from 1 to Nv, where Nv is the total number of vertices. "E" 
is an Nex2 matrix, in which the i-th row has the indices of vertices connected by that edge 
(Ne is the number of edges). Let (i, j) be the couple of entries on the i-th row. For not-
oriented graphs (see Fig. A.1a) it is (i, j)=(j, i), whereas (i, j)≠(j, i) for oriented graphs (see Fig. 
A.1b). Moreover, the same couple of vertices may be connected with more than one edge (in 
Fig. A.1, vertices 1 and 3 are connected with 2 edges). 
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   //… routine code… 
} 
 
double userfnc#2(…) 
{ 
//… routine code… 
} 
 
// GATEWAY ROUTINE SECTION 
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, 
                 const mxArray *prhs[]) 
// nlhs = number of output items 
// nrhs = number of input items 
// plhs = output pointers 
// prhs = input pointers 
             
{ 
// get pointer from MatLAB® input 
A = mxGetPr(plhs[…]);  
 
// create MatLAB® variable 
  plhs[…] = mxCreateDoubleMatrix(…);  
 
// allocate output variable 
userfnc(…); 
} 
 
The name of the gateway function is always “mexFunction”. This function parses all 
MatLAB® inputs into pointer variables (“mxGetPr”) and create the output MatLAB® 
variables (“mxCreateDoubleMatrix”). Assuming "testmex.c" is the source code file, the 
following line should be written to compile it from MatLAB® (for 64bit MatLAB® 
distributions the Microsoft® Visual C++ compiler is suggested by MathWorks; how to 
install the Microsoft® Visual C++ for MatLAB® can be found in (Baker, 2009)). 
 
%- link and compile mex source code 
mex testmex.c 
 
Therefore, one can now write a MEX file which creates the A array. The source C++ code of 
the "testmex.c" file is something like this: 
 
#include "mex.h" 
  
// computational routine 
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{ 
int i; // locale variable 
for (i=0; i<nr; i++){ 
          A[i]=i+1; // "fill" array 
                    } 
} 
// gateway routine 
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, 
                 const mxArray *prhs[])                
{    
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Looking at Fig. A.1, edge matrices, ENO and EO, for not-oriented and oriented graphs, 
respectively, are stated into equation (A.1). A useful representation of graphs, based on the 
edge matrix, may be achieved with the adjacency matrix, "A". 
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It is a symmetric square NvxNv matrix and defined as in equation (A.2). The entry (i, j) in "A" 
counts all edges connecting the vertex Vi to Vj. For example, looking at Fig. A.1a, the 
adjacency matrix becomes as into equation (A.3). 
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For oriented graph it may be useful to preserve the sign of the edge. For this purpose, the 
Laplace or Kirchoff matrix, "L" can be introduced. It is a square NvxNv matrix and defined as 
in equation (A.4).  
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The entry (i, j) in "L" counts all edges directed from the vertex Vi to Vj. For example, looking 
at Fig. A.1b, it has: 
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1. Introduction

The imaging performance of a conventional far-field microscope is restricted by the so-called
diffraction limit Born & Wolf (1997). For an imaging wavelength of λ this corresponds to
a maximum attainable resolution of approximately λ/4 (laterally) and λ/2 (axially) when
using a high numerical aperture objective lens. With recent advances in molecular biology
some of the most interesting questions require a resolution beyond this. Higher resolution
has been typically achieved using lower wavelength probing/scanning fields, or resorting
to near-field scanning techniques (e.g. Scanning Near-field Optical Microscopy (SNOM)
Betzig et al. (1991)). Unfortunately these come with their limitations and undesirable side
effects, which prove to be limiting when it comes to studying molecular dynamics in their
native environment. Furthermore, the use of fluorescent labels for studying specific processes
and background suppression is desirable in many applications. Far-field optical microscopy
still remains the only practical non-invasive technique suitable for imaging fast dynamics over
extended periods and distances of interest with minimal perturbations to the system.
Fortunately, far-field optical microscopy capable of imaging beyond the conventional
diffraction limit for life science applications has seen many advances over the last few
decades. Our current arsenal of techniques include commercially well developed techniques
such as confocal laser scanning microscopy Cremer & Cremer (1978) and Total Internal
Reflection Fluorescence (TIRF) microscopy Axelrod (1981)1. The improved resolution with
these techniques is in itself however only by a factor ∼ 2 and often not sufficient in many cases.
More powerful techniques such as Fluorescence PhotoActivatable Localization Microscopy
(FPALM), Stimulated Emission Depletion (STED) Microscopy, Structured Illumination

1 Although this is in itself not practically speaking a superresolution technique as it only achieves
sub-diffraction limit axial localization over a single small axial region and can thus not be used to
distinguish two emitters separated by distances smaller than ∼ λ/2.

15



 
Engineering Education and Research Using MATLAB 

 

362 

Perutka, K. (2010). Tips and Tricks for Programming in Matlab, In: Matlab - Modeling 
Programming and Simulation, Edited by Emilson Pereira Leite, pp. 2-16, available 
online from http://www.intechopen.com/books 

Scott, T. Smith (2006). Matlab Advanced GUI Development, Dog Ear Publishing, ISBN-10: 
1598581813 

0

Using MATLAB to Achieve Nanoscale Optical
Sectioning in the Vicinity of Metamaterial

Substrates by Simulating Emitter-Substrate
Interactions

Kareem Elsayad1*, Marek Suplata1 and Katrin Heinze1,2

1Research Institute of Molecular Pathology (IMP) Dr. Bohr-Gasse 7, Vienna
2Rudolf Virchow Center,DFG Research Center for Experimental Biomedicine,

University of Wuerzburg, Versbacher Str. 9, Wuerzburg
1Austria

2Germany

1. Introduction

The imaging performance of a conventional far-field microscope is restricted by the so-called
diffraction limit Born & Wolf (1997). For an imaging wavelength of λ this corresponds to
a maximum attainable resolution of approximately λ/4 (laterally) and λ/2 (axially) when
using a high numerical aperture objective lens. With recent advances in molecular biology
some of the most interesting questions require a resolution beyond this. Higher resolution
has been typically achieved using lower wavelength probing/scanning fields, or resorting
to near-field scanning techniques (e.g. Scanning Near-field Optical Microscopy (SNOM)
Betzig et al. (1991)). Unfortunately these come with their limitations and undesirable side
effects, which prove to be limiting when it comes to studying molecular dynamics in their
native environment. Furthermore, the use of fluorescent labels for studying specific processes
and background suppression is desirable in many applications. Far-field optical microscopy
still remains the only practical non-invasive technique suitable for imaging fast dynamics over
extended periods and distances of interest with minimal perturbations to the system.
Fortunately, far-field optical microscopy capable of imaging beyond the conventional
diffraction limit for life science applications has seen many advances over the last few
decades. Our current arsenal of techniques include commercially well developed techniques
such as confocal laser scanning microscopy Cremer & Cremer (1978) and Total Internal
Reflection Fluorescence (TIRF) microscopy Axelrod (1981)1. The improved resolution with
these techniques is in itself however only by a factor ∼ 2 and often not sufficient in many cases.
More powerful techniques such as Fluorescence PhotoActivatable Localization Microscopy
(FPALM), Stimulated Emission Depletion (STED) Microscopy, Structured Illumination

1 Although this is in itself not practically speaking a superresolution technique as it only achieves
sub-diffraction limit axial localization over a single small axial region and can thus not be used to
distinguish two emitters separated by distances smaller than ∼ λ/2.

15



2 Will-be-set-by-IN-TECH

Microscopy (SIM), and variations thereof - see e.g. review Hell (2007) - have been developed
which can offer lateral resolution improvements by factors of up to ≈ 20. Despite the great
success of these techniques they struggle with achieving sufficient temporal resolution in
many cases. They also struggle with achieving axial super-resolution, which when achievable
usually requires elaborate modifications to the setup. Currently there exists to our knowledge
no far-field optical microscopy technique that is capable of studying axial dynamics with
< 20nm resolution in live cells without either significantly perturbing the sample or requiring
an elaborate and/or costly microscopy setup.
Here we outline the computational aspects associated with a technique - Metamaterial
Substrate Modified Fluorescence (MeSuMo) Microscopy - we have recently developed that
allows for dynamic imaging with axial superresolution which is compatible with standard
epifluorescence microscope setups. As with majority of optical imaging techniques currently
used in the lifesciences, MeSuMo is essentially a fluorescence microscopy technique, requiring
the objects of interest to be labelled with suitable fluorescent emitters. Compared to other
techniques capable of achieving comparable resolution (e.g. Kanchanawong (2010)), MeSuMo
microscopy is, once optimized, experimentally very simple to implement and suitable for
fast dynamic studies on live cells. It relies on using microscope slides coated with an
optimized metal-dielectric coatings (metamaterials) which modify the emission spectrum
of fluorophores in a manner that is dependent on their separation from the surface of the
substrate. A spectral analysis over a sampled area allows one to infer the average separation
of the emitters in the studied region. In this chapter we will not aim to provide an exhaustive
description of the underlying principles and details associated with the technique, but rather
emphasis how the data analysis can be performed in a MATLAB environment. We note that
there exists an extensive underlying theoretical body of work in the various areas of classical
and quantum physics for modeling the near-field electromagnetic interaction with plasmonic
structures and the photophysics of fluorophores, which the interested reader may learn more
about through the referenced literature. To maintain the focus of the chapter we will thus in
most cases only present qualitative interpretations of the effects when relevant and quote the
essential results (equations and integrals) in a form that can be readily entered and computed
using MATLAB.
The chapter is divided into five sections that include: (1) modeling the metamaterial coated
substrates, (2) fitting the experimental data to the model, (3) modifying the model to obtain
best fit results, and (4) an example of the technique being implemented. We conclude the
chapter in section (5) with a discussion of future additions to the technique we are actively
working on.

2. Modeling the metamaterial coated substrate

An optical metamaterial is an artificial material typically consisting of subwavelength
scale metal and dielectric components. In the most general context its key feature is, in
a nutshell, that it has a unique response to certain electromagnetic fields that can not
be found in naturally occurring materials. This typically consists of negative refractive
properties - namely that an incident field would refract in the opposite direction from
the normal-axis as compared to a conventional naturally occurring material. Numerous
interesting and potentially useful effects may result such as strong enhancements of the
Purcell factor for nearby emitters Jacob et al. (2010), which allow for the realizations of
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devices such as SPASERs Bergman and Stockman (2003) and lasing SPASERs Zheludev et al.
(2008). Here we focus on a relatively simple case of layered metallic-dielectric layers
each having a thickness much smaller than or comparable to the wavelength. Depending
on the precise thicknesses of the layers as well as their individual response properties
such structures may exhibit Fabry-Perot resonances, resonant photon tunneling and other
unusual transmission/reflection properties Belov and Hao (2006); Darmanyan and Zayats
(2003); Elsayad and Heinze (2010); Ramakrishna et al. (2003). It turns out that many of these
properties can quite intuitively be modeled analytically using MATLAB due to the matrix
formalism often used to describe them.
In the context of the technique we will discuss there are two properties of interest to us. Firstly,
there is the complex reflection coefficients of the structures. These determine the local field
at the site of the emitter and hence also the excitation and decay rates. Secondly there is the
dispersion relation of the supported modes of the structure which will give us physical insight
into the type of excitations the emitters couple to at different distances and frequencies, and
thereby allow us to tune our structures to obtain optimal results. Of particular relevance
for the latter will be a so-called “cut-off energy” which exists in asymmetric structures
at a given energy, where there is a transition from a bound to an unbound SPP mode
Burke and Stegeman (1986).
For the case of the transmission/reflection coefficients one simple way to model the structures
is to use transfer matrices which describe the propagation and attenuation in each layer
Born & Wolf (1997). As mentioned such calculations are particularly well suited for MATLAB
where, once the matrices are defined, the coefficients for arbitrary combinations of layers
and structures can readily be determined and compared. The transfer matrices are generally
defined in the Fourier domain parallel to the surface of the layers (kx ,ky) and the real domain
normal to the layers (z). This also allows for easy analysis of the contribution from different
evanescent field components which are dominant in the near-field (distances smaller than
about the wavelength). Once one has written matrices for the transmission through a given
interface (ti,j, where the superscripts i and j denote the regions on either side of the interface)
and the attenuation through a certain thickness of a given material (pi) in terms of the
transverse wavevector(s) and - for the latter case - the thickness of the layer, one can obtain
the total transmission function (or optical transfer function) of an n-layered structure tn by

tn = Πn−1
i pi ti,i+1 pn. (1)

Details on the implementation of transfer matrices can be found in most standard classical
optics texts Born & Wolf (1997) and will not be elaborated on here. We only mention
that the formalism will, for not too large transverse wavevectors, also be applicable for
subwavelength laterally structured layers (e.g. layers containing split-ring, horse-shoe
shaped, or fractal resonators). In such cases one would need to define suitable effective
anisotropic permittivity and permeability matrices for them, e.g. in a 2D system one may
have a permittivity epsilon(a,b) and permeability mu(a,b)where a and b are the x and z
components required to describe the effective response properties of the structure. The cases
of two polarizations (perpendicular magnetic and electric fields) can be treated separately
by choosing the suitable Fresnel coefficients for the matrix elements of ti,i+1. Alternatively
one can also use a “brute force” approach for not too complicated structures and include the
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Microscopy (SIM), and variations thereof - see e.g. review Hell (2007) - have been developed
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devices such as SPASERs Bergman and Stockman (2003) and lasing SPASERs Zheludev et al.
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defined in the Fourier domain parallel to the surface of the layers (kx ,ky) and the real domain
normal to the layers (z). This also allows for easy analysis of the contribution from different
evanescent field components which are dominant in the near-field (distances smaller than
about the wavelength). Once one has written matrices for the transmission through a given
interface (ti,j, where the superscripts i and j denote the regions on either side of the interface)
and the attenuation through a certain thickness of a given material (pi) in terms of the
transverse wavevector(s) and - for the latter case - the thickness of the layer, one can obtain
the total transmission function (or optical transfer function) of an n-layered structure tn by

tn = Πn−1
i pi ti,i+1 pn. (1)

Details on the implementation of transfer matrices can be found in most standard classical
optics texts Born & Wolf (1997) and will not be elaborated on here. We only mention
that the formalism will, for not too large transverse wavevectors, also be applicable for
subwavelength laterally structured layers (e.g. layers containing split-ring, horse-shoe
shaped, or fractal resonators). In such cases one would need to define suitable effective
anisotropic permittivity and permeability matrices for them, e.g. in a 2D system one may
have a permittivity epsilon(a,b) and permeability mu(a,b)where a and b are the x and z
components required to describe the effective response properties of the structure. The cases
of two polarizations (perpendicular magnetic and electric fields) can be treated separately
by choosing the suitable Fresnel coefficients for the matrix elements of ti,i+1. Alternatively
one can also use a “brute force” approach for not too complicated structures and include the
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complete equations (e.g. as a function) into MATLAB. For example, for the case of a four
layered structure (layers indexed by i, j, k, l) this would be:

rP(S)
ijkl =

rP(S)
ij + rP(S)

jkl exp[2i(ε jμj(ε iμi)
−1 − u2)

1
2 kidj]

1 + rP(S)
ij rP(S)

jkl exp[2i(ε jμj(ε iμi)−1 − u2)
1
2 kidj]

(2)

with

rP(S)
jkl =

rP(S)
jk + rP(S)

kl exp[2i(εkμk(ε iμi)
−1 − u2)

1
2 kidk]

1 + rP(S)
jk rP(S)

kl exp[2i(εkμk(ε iμi)−1 − u2)
1
2 kidk]

(3)

and

rS
ij =

μj(1 − u2)1/2 − μi[ε jμj(ε iμi)
−1 − u2]1/2

μj(1 − u2)1/2 + μi[ε jμj(ε iμi)−1 − u2]1/2 (4)

rP
ij =

ε j(1 − u2)1/2 − ε i[ε jμj(ε iμi)
−1 − u2]1/2

ε j(1 − u2)1/2 + ε i[ε jμj(ε iμi)−1 − u2]1/2 (5)

where ε i, μi and di are the permittivity, permeability and thickness of the ith layer. The
total wavevector in the ith layer is given by ki =

√
ε iμiω/c where ω is the frequency of

the electromagnetic field and c is the speed of light in vacuum. Also a normalized in plane
wavevector is defined as u = kx/k1, where kx is the in plane wavevector component which is
independent of the layer. The value of ε for the metal will in general be complex and frequency
dependent, and is most easily obtained by fitting a high order polynomial to experimentally
measured data (e.g. Drachev (2008) for silver). Alternatively for not to thin metal layers
one may to a good approximation use a Drude-Sommerfeld model (e.g. Kittel (1995)) where
the parameters can later be systematically varied to account for e.g. changes in temperature
Elsayad and Heinze (2010b).
To determine the dispersion relation and the cut-off energy of a given structure one may
also make use of the natural matrix calculation approaches of MATLAB. To do so one firstly
writes a general expression for the parallel electric fields in each layer. For a layer-i extending

from z = zmin to z = zmax this would be A(1)
i ekzi(z+zmin) + A(2)

i e−kzi(z+zmax), where kzi is the

out of plane wavevector in the layer and A(1)
i & A(2)

i are at this point arbitrary complex
coefficients. One may then write the corresponding magnetic induction fields for each layer
using Maxwell’s equations (i.e. by taking the normal derivative), so that for each layer one
has two equations with two unknowns. This is done for each layer i = 1, 2...N. Finally
one constructs a 2N × 2N with the coefficients for each layer constituting the entries in
each row. The determinant of this matrix will then give the dispersion relation ω(kx) - see
e.g. Dionne et al. (2008). Since kx is complex one can not simply assign a solver such as
fzero to the task. It is it turns out often necessary to evaluate this by brute force - i.e.
letting MATLAB evaluate the determinant for a given complex transverse wavevector and
checking how close it is to zero. In general it is important to provide a good starting guess
of Re(kx) and Im(kx) for each frequency. For the cases of interest, where the frequencies of
interest are close to the cut-off frequency, a good starting guess for the former is the light-line
Re(kx) = nω/c of the medium with refractive index n in which the mode becomes unbound,
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and then to progressively search further into the evanescent region, i.e. Re(kx) = nω/c + δ

with δ ∼ 0.01nω/c. For the imaginary part Im(kx) - which diverges at the cut-off - it is most
efficient to employ an algorithm which calculates the gradient of the determinant between
two nearby values of Im(kx) [i.e. taking the difference in the determinant value and dividing
by the difference in Im(kx)], and subsequently search for larger/smaller Im(kx) values if the
determinant is smaller/larger than zero. The stability of the solution should be checked
to assure Limδ→0{ω(kx + δ) − ω(kx − δ) → 0}. The above mentioned approach typically
requires that Im(kx) is well behaved and monotonous in the vicinity of the cut-off, which is
fortunately often the case. Since the equation has to be satisfied for both Re(kx) and Im(kx)
optimizations of both of these have to be performed simultaneously. For completeness an
analysis can also be performed for transverse electric (TE) as well as transverse magnetic
(TM) polarizations, although for the cases of the very thin non-magnetic plasmonic structures
only the latter are usually relevant. For the case of highly asymmetric structures of few
layers, coupling between the interfaces may be negligible and a single plasmonic mode at
one interface can to a good approximation be assumed solely responsible for the dispersion
of the cut-off mode Burke and Stegeman (1986). In this case the cut-off energy can for a
non-magnetic structure be estimated by Ec = h̄cε jεk[ε i(ε j + εk)]

−1, where ε i is the permittivity
of the medium where the cut-off occurs, and ε j and εk are the permittivities on either side of
the interface at which the mode is originally localized.
The principle of MeSuMo requires that the cut-off of the structure falls within the emission
spectrum of the emitter. Since many common fluorophores and dyes have a fairly broad
emission spectrum this criteria can usually be met quite easily and is generally quite robust.
To calculate the change in intensity at a given frequency one firstly defines the change in
the decay rate of a fluorophore as a function of distance and frequency. This may (at not
too small distances) be modeled quite well in the dipole approximation using the classical
Chance-Prock-Silbey (CPS) model Chance (Prock and Silbey). Under these conditions the
decay rate in the +ẑ and −ẑ direction (away from and towards the substrate respectively)
for perpendicular (⊥) and parallel (||) electric dipole like emitters can be obtained by:

Γ̂⊥
+ = q − 3q

4
Im

∫ 1

0
(I1 + I2) du

Γ̂⊥− =
3q
4

Im
(∫ 1

0
I1du −

∫ ∞

1
I2du

)
(6)

Γ̂||
+ = q − 3q

8
Im

∫ 1

0
(I3 − I4)du

Γ̂||
− =

3q
8

Im
(∫ 1

0
I3du +

∫ ∞

1
I4du

)
(7)

in which the integrands are

I1 = 2u3 1 − |rP|2
(u2 − 1)

1
2

I2 = u3 rP

(u2 − 1)
1
2

exp[2(u2 − 1)
1
2 k1z]

I3 = u
(1 − |rS|2) + (1 − u2)(1 − |rP|2)

(u2 − 1)
1
2

I4 = 2u
rS + (1 − u2)rP

(u2 − 1)
1
2

exp[2(u2 − 1)
1
2 k1z] (8)
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complete equations (e.g. as a function) into MATLAB. For example, for the case of a four
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where ε i, μi and di are the permittivity, permeability and thickness of the ith layer. The
total wavevector in the ith layer is given by ki =

√
ε iμiω/c where ω is the frequency of

the electromagnetic field and c is the speed of light in vacuum. Also a normalized in plane
wavevector is defined as u = kx/k1, where kx is the in plane wavevector component which is
independent of the layer. The value of ε for the metal will in general be complex and frequency
dependent, and is most easily obtained by fitting a high order polynomial to experimentally
measured data (e.g. Drachev (2008) for silver). Alternatively for not to thin metal layers
one may to a good approximation use a Drude-Sommerfeld model (e.g. Kittel (1995)) where
the parameters can later be systematically varied to account for e.g. changes in temperature
Elsayad and Heinze (2010b).
To determine the dispersion relation and the cut-off energy of a given structure one may
also make use of the natural matrix calculation approaches of MATLAB. To do so one firstly
writes a general expression for the parallel electric fields in each layer. For a layer-i extending

from z = zmin to z = zmax this would be A(1)
i ekzi(z+zmin) + A(2)
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i & A(2)

i are at this point arbitrary complex
coefficients. One may then write the corresponding magnetic induction fields for each layer
using Maxwell’s equations (i.e. by taking the normal derivative), so that for each layer one
has two equations with two unknowns. This is done for each layer i = 1, 2...N. Finally
one constructs a 2N × 2N with the coefficients for each layer constituting the entries in
each row. The determinant of this matrix will then give the dispersion relation ω(kx) - see
e.g. Dionne et al. (2008). Since kx is complex one can not simply assign a solver such as
fzero to the task. It is it turns out often necessary to evaluate this by brute force - i.e.
letting MATLAB evaluate the determinant for a given complex transverse wavevector and
checking how close it is to zero. In general it is important to provide a good starting guess
of Re(kx) and Im(kx) for each frequency. For the cases of interest, where the frequencies of
interest are close to the cut-off frequency, a good starting guess for the former is the light-line
Re(kx) = nω/c of the medium with refractive index n in which the mode becomes unbound,

366 Engineering Education and Research Using MATLAB Using MATLAB to Achieve Nanoscale Optical Sectioning in the Vicinity of Metamaterial Substrates by Simulating Emitter-Substrate Interactions 5

and then to progressively search further into the evanescent region, i.e. Re(kx) = nω/c + δ

with δ ∼ 0.01nω/c. For the imaginary part Im(kx) - which diverges at the cut-off - it is most
efficient to employ an algorithm which calculates the gradient of the determinant between
two nearby values of Im(kx) [i.e. taking the difference in the determinant value and dividing
by the difference in Im(kx)], and subsequently search for larger/smaller Im(kx) values if the
determinant is smaller/larger than zero. The stability of the solution should be checked
to assure Limδ→0{ω(kx + δ) − ω(kx − δ) → 0}. The above mentioned approach typically
requires that Im(kx) is well behaved and monotonous in the vicinity of the cut-off, which is
fortunately often the case. Since the equation has to be satisfied for both Re(kx) and Im(kx)
optimizations of both of these have to be performed simultaneously. For completeness an
analysis can also be performed for transverse electric (TE) as well as transverse magnetic
(TM) polarizations, although for the cases of the very thin non-magnetic plasmonic structures
only the latter are usually relevant. For the case of highly asymmetric structures of few
layers, coupling between the interfaces may be negligible and a single plasmonic mode at
one interface can to a good approximation be assumed solely responsible for the dispersion
of the cut-off mode Burke and Stegeman (1986). In this case the cut-off energy can for a
non-magnetic structure be estimated by Ec = h̄cε jεk[ε i(ε j + εk)]

−1, where ε i is the permittivity
of the medium where the cut-off occurs, and ε j and εk are the permittivities on either side of
the interface at which the mode is originally localized.
The principle of MeSuMo requires that the cut-off of the structure falls within the emission
spectrum of the emitter. Since many common fluorophores and dyes have a fairly broad
emission spectrum this criteria can usually be met quite easily and is generally quite robust.
To calculate the change in intensity at a given frequency one firstly defines the change in
the decay rate of a fluorophore as a function of distance and frequency. This may (at not
too small distances) be modeled quite well in the dipole approximation using the classical
Chance-Prock-Silbey (CPS) model Chance (Prock and Silbey). Under these conditions the
decay rate in the +ẑ and −ẑ direction (away from and towards the substrate respectively)
for perpendicular (⊥) and parallel (||) electric dipole like emitters can be obtained by:
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where q is the quantum yield of the emitter, the superscripts P(S) denote the transverse

electric(magnetic) cases, and the z and ω dependence of Γ̂⊥(||)
+(−)

is implied. The integrals can in
most cases quite easily be evaluated numerically (e.g. using quad). It may be the case that the
structures have resonances (as can be determined by plotting the integrands as a function of
u), in which case one may want to re-write the integrals to assure one integrates in a complex
plane around them and account for the pole(s) in the conventional fashion. Integration can in
almost all cases safely be cut-off at u ∼ 1000, with the contribution beyond u ≈ 100 becoming
negligibly small for z > 10nm. In what follows we will sometimes make use of the notation

Γij =
1
3 [(Γ

⊥
+ + Γ⊥−) + 2(Γ||

+ + Γ||
−)]ωij to signify the isotropic average total decay rate from state

i to j separated in energy by ωij = ωi − ωj. The energy dependence of Γij is understood to be
contained in rS,P = rS,P(ωij), u = u(ωij) and k1 = k1(ωij).
Besides the modification in the decay rate which has been described above, the measured
emission intensity of an emitter will also depend on it’s excitation rate. In particular the
measurable emission intensity for the transition from the excited state a to a lower state b,
which corresponds to a wavelength λab = 2πc/ωab will be given by:

I(ωab) ∝ |μ̂a · Eex(ωab)|2 fabΓR
abΓ−1

a (9)

where Eex(ωab) is the excitation field at the frequency ωab, and μ̂a is the dipole moment of the
excited state a. ΓR

ab and Γa are the radiative decay rate for the transition a → b and the total
decay rate of the state a. fab is the Franck Condon coefficient between a and b, which is related
to the rotational and vibrational configurations of the two energy states relative to each other,
and can be thought of as the intrinsic favourability of the transition. For a realistic emitter
there will in general be many other significant “down transitions” originating from the same
excited state. For the decay of the state a to any other state x, one may thus write:

I(ωax) =
fax

fab

ΓR
ax

ΓR
ab

I(ωab) (10)

Subsequent decay of all states x (and state b) to a common ground state is assumed to proceed
non-radiatively and at a rate several orders of magnitude larger than the radiative decay
rate. For the case of spontaneous emission we consider it can for all intense and purposes be
assumed to be instantaneous. If we neglect direct resonant energy transfer between emitters
(i.e. assume sufficient dilution), then the total excitation field with a frequency ωab at the
location of the fluorophore will be the sum of the external incident field E0(ωab), the reflection
of this field from the structure re−2(1−u2)1/2k1zE0(ωab) where r is the reflection coefficient, and
the field generated from excitations in the material by all the fluorophores Er(ωab, z), i.e.

Eex(ωab, u, z) = [1 + re−2(1−u2)1/2k1z]E0(ωab) + Er(ωab, u, z) (11)

The polarization for the reflected field can in most cases be taken as that of the incident
excitation field. For the case of a single fluorophore Er(ωab, z) is given by the integrands
of equations (6) and/or (7), which are identical to the reflected field for a given transverse
wavevector component u, and will henceforth be written as E0

r (ωab, u, z). To calculate the
reflected field from all of the fluorophores at various distances from the substrate one can
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proceed in several ways. It is of no practical relevance in our applications if one requires
information on the position and orientation of each and every contributing fluorophore. We
thus can proceed only via an effective medium approximation. We will assume a density ρ of
fluorophores which may only vary in the axial (z) direction. In the case for ρ(0 < z < zmax) =
ρ and ρ(z > zmax) = 0 one obtains by integrating over z ={0, ∞}:

Er(ωab, u, z) = (1 − e−(1−u2)1/2k1zmax)
ρ

(1 − u2)1/2k1

Γab(u, z)
Γa(z)

E0
r (ωab, u, z/2). (12)

Alternatively one may represent the contribution from a collection of fluorophores by
assigning a negative imaginary response function to the top layer (layer-1) in which they are
immersed - i.e. set Im(ε1)< 0 for non-magnetic structures. Whilst this may be computationally
simpler for constant densities, for the case of a non-trivial z dependence the calculations
become significantly more elaborate. We thus proceed with the former method.
For imaginary (1 − u2)1/2k1 the coupling fields are propagating and equation (12) can be
reduced to the result for e.g. the field in a large semi-transparent 1D box filled with emitters.
For real (1 − u2)1/2k1 the field will on the other hand decay rapidly with increasing z as one
would expect. The contribution to I(ωab) from equation (12) will in itself however only be
small even for large ρ (> 0.01nm−1).
There will be an additional second order contribution to the excitation field and hence the
emission intensity at ωab from excited surface modes of energy ωax where x �= b. This
contribution is only significant because the SPP modes have very short decay times - typically
Γ ∼ O(10-100fs), such that their uncertainty broadening is relatively large - O(1 − 10eV). For
ωax ∼ ωab, or more specifically |ωax − ωab| ∼ O(meV), they will contribute significantly
to ER(ωab, z). It follows that when the energy ωab corresponds to mainly real values of
(1 − u2)1/2k1 (evanescent fields) whereas ωax to mainly imaginary values of (1 − u2)1/2k1
(propagating fields) this contribution becomes large near the surface as fluorophores far away
from the substrate can effectively pump those nearby. To the lowest order the contribution
can be written as:

E0
r (ωax, u, z) =

∫
dωα

∫
dωβ faβ

Γaβ(u, z)

Γaβ
LaβEr(ωaβ, u, z)Lβαδ(ωα − ωax) (13)

where

Laβ =
1

2π

Γaβ(u, z)

(ωa − ωβ)2 + [Γaβ(u, z)/2]2
(14)

and Γab(u, z) and Er(ω, u, z) are the corresponding values of the total decay rate and reflected
field as a function of transverse wavevector [i.e. the integrands of equations (2) and (2) &/or
(3)]. We note that equation (13) accounts for the energy overlap between a state of energy
ωb and a continuum of states whose energy is given by the dummy variable ωβ. The ωα

integration is performed over a range of frequencies in the vicinity of the cut-off (typically
corresponding to a wavelength range of 30-80nm), over which the energy range coincides
with the emission spectrum of the fluorophore (i.e. are allowed transitions for the particular
fluorophore). The weighting (Franck Condon) factors fαβ are empirically determined from
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where q is the quantum yield of the emitter, the superscripts P(S) denote the transverse

electric(magnetic) cases, and the z and ω dependence of Γ̂⊥(||)
+(−)

is implied. The integrals can in
most cases quite easily be evaluated numerically (e.g. using quad). It may be the case that the
structures have resonances (as can be determined by plotting the integrands as a function of
u), in which case one may want to re-write the integrals to assure one integrates in a complex
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Γij =
1
3 [(Γ

⊥
+ + Γ⊥−) + 2(Γ||

+ + Γ||
−)]ωij to signify the isotropic average total decay rate from state
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I(ωab) ∝ |μ̂a · Eex(ωab)|2 fabΓR
abΓ−1

a (9)

where Eex(ωab) is the excitation field at the frequency ωab, and μ̂a is the dipole moment of the
excited state a. ΓR

ab and Γa are the radiative decay rate for the transition a → b and the total
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and can be thought of as the intrinsic favourability of the transition. For a realistic emitter
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I(ωax) =
fax

fab

ΓR
ax

ΓR
ab

I(ωab) (10)

Subsequent decay of all states x (and state b) to a common ground state is assumed to proceed
non-radiatively and at a rate several orders of magnitude larger than the radiative decay
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Eex(ωab, u, z) = [1 + re−2(1−u2)1/2k1z]E0(ωab) + Er(ωab, u, z) (11)

The polarization for the reflected field can in most cases be taken as that of the incident
excitation field. For the case of a single fluorophore Er(ωab, z) is given by the integrands
of equations (6) and/or (7), which are identical to the reflected field for a given transverse
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r (ωab, u, z). To calculate the
reflected field from all of the fluorophores at various distances from the substrate one can
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proceed in several ways. It is of no practical relevance in our applications if one requires
information on the position and orientation of each and every contributing fluorophore. We
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Er(ωab, u, z) = (1 − e−(1−u2)1/2k1zmax)
ρ

(1 − u2)1/2k1

Γab(u, z)
Γa(z)

E0
r (ωab, u, z/2). (12)
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(1 − u2)1/2k1 (evanescent fields) whereas ωax to mainly imaginary values of (1 − u2)1/2k1
(propagating fields) this contribution becomes large near the surface as fluorophores far away
from the substrate can effectively pump those nearby. To the lowest order the contribution
can be written as:
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where
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and Γab(u, z) and Er(ω, u, z) are the corresponding values of the total decay rate and reflected
field as a function of transverse wavevector [i.e. the integrands of equations (2) and (2) &/or
(3)]. We note that equation (13) accounts for the energy overlap between a state of energy
ωb and a continuum of states whose energy is given by the dummy variable ωβ. The ωα

integration is performed over a range of frequencies in the vicinity of the cut-off (typically
corresponding to a wavelength range of 30-80nm), over which the energy range coincides
with the emission spectrum of the fluorophore (i.e. are allowed transitions for the particular
fluorophore). The weighting (Franck Condon) factors fαβ are empirically determined from

369
Using MATLAB to Achieve Nanoscale Optical Sectioning 
in the Vicinity of Metamaterial Substrates by Simulating Emitter-Substrate Interactions



8 Will-be-set-by-IN-TECH

the emission spectrum of an isolated fluorophore scaled so that the value at ωab it is unity.
We note that it is usually practical or necessary to convert this integration into a discrete sum
with an energy spacing of Δω ∼ 1meV. Information particular to the type of fluorophore (e.g.
energy level positions/separations and corresponding Franck Condon coefficients) may be
implemented when constructing the summation.
Since we will not focus on single molecule studies we assume an isotropic average of dipole

orientations for all cases. This can most easily be done by setting Eiso
R = (1/3)E⊥

R + (2/3)E||
R

and/or Γiso = (1/3)Γ⊥ + (2/3)Γ|| as appropriate. We also note to calculate the final
measurable emission intensity the integral for ΓR which appears in equations 9 & 10 (and
is given by equations 6 & 7) should only be performed up to

√
ε i·NA, where NA is the

numerical aperture of the measuring objective. It is possible to now predict the change in the
measurable emission intensity for arbitrary z and fluorophores, near a metamaterial structure.
In figure 1 we outline the basic backbone of a program that calculates the matrix enhan(j,i)
which quantifies the measurable fluorescence enhancement at discrete distances (index j)
and wavelengths (index i). The order of computations (top to bottom) is such that several
independent calculations can depending on available resources be performed in parallel. The
calculation is performed over all transverse wavevectors up to at least |u| ∼ 10z−1 and
summed at the end (with the corresponding weighting factors to mimic integration).

z-range z(j)
j=1,2..100

normalize & fit

determine ω(ab)
and ω range

structure
(d1,epsilon1,

mu1, etc.)

calculate cut-off energy ω(c)

define Ω(i), i=1,2...10 in vicinity of ω(ab) and ω(c)

calculate reflection coefficients

calculate (12)-(14)

fluorophore 
density rho

calculate (11)

excitation field

calculate decay rates

calculate total enhancement for Ω(i) 

total enhancement matrix as function of z(j) and Ω(i)
enhan(i,j)  

define reflection coeff. & decay rates

i+1

j+1

fluorophore emission
& absorption spectrum metal

dispersion

Fig. 1. Structure of program for calculating a matrix that predicts fluorescence enhancement

We now show how to implement equations 6 &7 (with the integrands defined by equation 9)
in MATLAB, which are required for solving equation 10. To focus on the most relevant part
of the code, we expect the reader to have some familiarity with basic MATLAB programming
syntax (i.e. definition of functions and vector-based MATLAB notation). An example code for
calculating the reflection coefficients [2 - 5] and subsequently performing the integration may
look like:
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Listing 1. Numerical integration

1 function main()
2 % -- material permittivities
3 sio2 = 2.13; glass = 2.46;
4 water = 1.78; si3n4 = 4.15;
5 % -- ranges for frequency & wavevectors
6 w_vec = 0 : 0.01 : 4;
7 kx = 0 : 0.000001 : 0.02*pi;
8

9 % -- permittivities & permeabilities &
10 % -- thicknesses for each layer
11 mu = [1 1 1 1];
12 d = [1e6 15 15 1e6];
13 e = [ sio2 permitivity_silver(w,d(2)) si3n4 glass];
14

15 % -- integrate Integrand_1
16 lower = 0; % limits for integrals
17 upper = 1;
18 b_up_a = quad(@(u) integrand_I1(u),lower,upper) );
19

20 function [I1] = integrand_I1(u)
21 [r_S,r_P] = r_1234_vec = r_1234_PS(u,’P’);
22

23 A = 1 - abs(r_P).^2;
24 B = sqrt(u.^2 - 1);
25 I1 = 2.*u.^3.*A./B;
26 end
27

28 function r_1234 = r_1234_PS(u,polariz)
29 global d; global e; global k; global mu;
30

31 exp_term = exp(2i.*sqrt(e(2).*mu(2).*(e(1).*mu(1)).^(-1)-u.^2).*k(1).*d(2));
32 r_12_P = r_ij_PS(u,1,2,"P");
33 r_12_S = r_ij_PS(u,1,2,"S");
34 r_234_P = r_234_PS(u,"P");
35 r_234_S = r_234_PS(u,"S");
36

37 switch(polariz)
38 case {"P"}
39 num = r_12_P + r_234_P.*exp_term;
40 den = 1 + r_12_P .* r_234_P.*exp_term;
41 r_1234 = num ./ den;
42 case {"S"}
43 num = r_12_S + r_234_S.*exp_term;
44 den = 1 + r_12_S .* r_234_S.*exp_term;
45 r_1234 = num ./ den;
46 end
47 end
48

49 function r_234 = r_234_PS(u,polariz)
50 global d; global e; global k; global mu;
51
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the emission spectrum of an isolated fluorophore scaled so that the value at ωab it is unity.
We note that it is usually practical or necessary to convert this integration into a discrete sum
with an energy spacing of Δω ∼ 1meV. Information particular to the type of fluorophore (e.g.
energy level positions/separations and corresponding Franck Condon coefficients) may be
implemented when constructing the summation.
Since we will not focus on single molecule studies we assume an isotropic average of dipole

orientations for all cases. This can most easily be done by setting Eiso
R = (1/3)E⊥

R + (2/3)E||
R

and/or Γiso = (1/3)Γ⊥ + (2/3)Γ|| as appropriate. We also note to calculate the final
measurable emission intensity the integral for ΓR which appears in equations 9 & 10 (and
is given by equations 6 & 7) should only be performed up to

√
ε i·NA, where NA is the

numerical aperture of the measuring objective. It is possible to now predict the change in the
measurable emission intensity for arbitrary z and fluorophores, near a metamaterial structure.
In figure 1 we outline the basic backbone of a program that calculates the matrix enhan(j,i)
which quantifies the measurable fluorescence enhancement at discrete distances (index j)
and wavelengths (index i). The order of computations (top to bottom) is such that several
independent calculations can depending on available resources be performed in parallel. The
calculation is performed over all transverse wavevectors up to at least |u| ∼ 10z−1 and
summed at the end (with the corresponding weighting factors to mimic integration).
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Fig. 1. Structure of program for calculating a matrix that predicts fluorescence enhancement

We now show how to implement equations 6 &7 (with the integrands defined by equation 9)
in MATLAB, which are required for solving equation 10. To focus on the most relevant part
of the code, we expect the reader to have some familiarity with basic MATLAB programming
syntax (i.e. definition of functions and vector-based MATLAB notation). An example code for
calculating the reflection coefficients [2 - 5] and subsequently performing the integration may
look like:
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Listing 1. Numerical integration

1 function main()
2 % -- material permittivities
3 sio2 = 2.13; glass = 2.46;
4 water = 1.78; si3n4 = 4.15;
5 % -- ranges for frequency & wavevectors
6 w_vec = 0 : 0.01 : 4;
7 kx = 0 : 0.000001 : 0.02*pi;
8

9 % -- permittivities & permeabilities &
10 % -- thicknesses for each layer
11 mu = [1 1 1 1];
12 d = [1e6 15 15 1e6];
13 e = [ sio2 permitivity_silver(w,d(2)) si3n4 glass];
14

15 % -- integrate Integrand_1
16 lower = 0; % limits for integrals
17 upper = 1;
18 b_up_a = quad(@(u) integrand_I1(u),lower,upper) );
19

20 function [I1] = integrand_I1(u)
21 [r_S,r_P] = r_1234_vec = r_1234_PS(u,’P’);
22

23 A = 1 - abs(r_P).^2;
24 B = sqrt(u.^2 - 1);
25 I1 = 2.*u.^3.*A./B;
26 end
27

28 function r_1234 = r_1234_PS(u,polariz)
29 global d; global e; global k; global mu;
30

31 exp_term = exp(2i.*sqrt(e(2).*mu(2).*(e(1).*mu(1)).^(-1)-u.^2).*k(1).*d(2));
32 r_12_P = r_ij_PS(u,1,2,"P");
33 r_12_S = r_ij_PS(u,1,2,"S");
34 r_234_P = r_234_PS(u,"P");
35 r_234_S = r_234_PS(u,"S");
36

37 switch(polariz)
38 case {"P"}
39 num = r_12_P + r_234_P.*exp_term;
40 den = 1 + r_12_P .* r_234_P.*exp_term;
41 r_1234 = num ./ den;
42 case {"S"}
43 num = r_12_S + r_234_S.*exp_term;
44 den = 1 + r_12_S .* r_234_S.*exp_term;
45 r_1234 = num ./ den;
46 end
47 end
48

49 function r_234 = r_234_PS(u,polariz)
50 global d; global e; global k; global mu;
51
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52 exp_term = exp(2i.*k(1).*d(3).*sqrt(e(3).*mu(3).*(e(1).*mu(1)).^-1-u.^2));
53

54 switch(polariz)
55 case {"P"}
56 r_23_P = r_ij_PS(u,2,3,"P");
57 r_34_P = r_ij_PS(u,3,4,"P");
58 num = r_23_P + r_34_P.*exp_term;
59 den = 1 + r_23_P .* r_34_P.*exp_term;
60 r_234 = num ./ den;
61 case {"S"}
62 r_23_S = r_ij_PS(u,2,3,"S");
63 r_34_S = r_ij_PS(u,3,4,"S");
64 num = r_23_S + r_34_S.*exp_term;
65 den = 1 + r_23_S .* r_34_S.*exp_term;
66 r_234 = num ./ den;
67 end
68 end
69

70 function r_ij = r_ij_PS(u,i,j,polariz)
71 global e; global mu;
72

73 A = (1 - u.^2).^0.5;
74 B = ( e(j).*mu(j).* (e(i).*mu(i)).^-1 - u.^2).^0.5;
75

76 switch(polariz)
77 case {"S"}
78 num = mu(j).*A - mu(i).* B;
79 den = mu(j).*A + mu(i).* B;
80 r_ij = num ./ den;
81 case {"P"}
82 num = e(j).*A - e(i).* B;
83 den = e(j).*A + e(i).* B;
84 r_ij = num ./ den;
85 end
86 end

3. Fitting the experimental data to the model

Data can be acquired using a standard scanning epifluorescence microscope with a
spectrometer and photomultiplier tubes. It is generally most practical to save images as .lsm
files which can be directly read into MATLAB [In our setup each file contains a scanned image
of the sample at ten different wavelengths (e.g. bins centered at λ = 490nm, 500nm, 510nm,
etc.)]. For dynamic studies images at different time intervals can also be stored in a single
.lsm file. Many spectrometers come with MATLAB drivers which allow for acquisition
to also be controlled easily through MATLAB. Else for real time (video type) imaging it is
necessary to save the data incrementally into a directory accessible to MATLAB. The spectral
profile of the fluorophores of interest on an uncoated substrate immersed in a similar refractive
index medium as the actual samples should also be available. The area under this spectrum
should be normalized and extrapolated to a discrete matrix [e.g. fitted to a high order
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polynomial and evaluated at the discrete wavelengths indexed by i], and saved as a 1 × 10
matrix Ilambda0(i).
Data analysis is performed on a pixel by pixel basis. For each pixel the spectrum
area is normalized, fitted with a high order polynomial, evaluated at i discrete
wavelengths, and written into a 1 × 10 matrix data(i). The ratio enhanobserved(i)
= data(i)/Ilambda0(i) is then calculated. A 1 × j matrix zn(j) is defined which will
represent the fraction of the emitters in the studied area at a distance corresponding to the
index j from the interface. The task is now to solve enhan*zn-enhanobserved=0, which
is in principle straight forward using a function such as e.g. linsolve. The result is best
presented in a plot of zn as a function of z for each or a collection of pixels, which will show
the distribution of fluorophore distances from the substrate at this particular lateral position.
Depending on the sample studied and the information of interest this may be fitted with a
suitable distribution function to obtain an average and spread in distances of emitters from
the substrate within the analyzed region.

4. Optimizing the model and code

In many cases the initial fluorophore-concentration, metamaterial or coupling parameters
may not be the best or correct parameters for the fit. This is usually evident when the results
show an unexpected distribution for zn. Distances less than 10nm should be ignored as
the approximations of the models (dipole approximation and local dielectric functions) are
no longer valid at such small distances. The most significant source of uncertainty is the
predefined and assumed constant value of the fluorophore concentration rho. To account
for this one may redefine rho as being proportional to the integrated area of zn over z, and
repeat the calculation of zn. Also to account for an axial variation in rho - as would be relevant
for samples where the fluorophore density varies strongly with distance z - one may define
rho(j) = rho*(a + zn(j)/norm(zn)), where a is normalization constant chosen so
that on summation over the distances (i) one recovers the total intensity. In this case all
subsequent calculations have to explicitly account for the additional distance dependence in
rho (j), which significantly increases the computational time. This may be efficiently achieved
by defining rho(j) in a smaller parameter space indexed by n that corresponds to dividing
rho into components where rho(j) is constant and non-zero only over a specified region.
Once zn is calculated in this manner the optimization may be repeated for the new rho until
the the calculation of the distribution of zn is stable and smooth or varies on the expected
scale.

5. Example

Whilst elaborate custom substrates may be designed with effective parameters which yield the
desired cut-off energy and dispersion relation, it is often possible to use combinations of no
more than 3-4 layers with no lateral structuring to achieve satisfactory results. Here we give
an example where we use a sample consisting of a thin silver film2 (15nm) deposited on a thick
quartz substrate (ε = 2.13), which is subsequently coated with a high permittivity dielectric
film (ε = 4.15). The sample is immersed in a medium with a refractive index larger than that of

2 Smoothness of the silver is guaranteed by using a Germanium wetting layer and is less than 0.4nm
RMS as measured by Atomic Force Microscopy.
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52 exp_term = exp(2i.*k(1).*d(3).*sqrt(e(3).*mu(3).*(e(1).*mu(1)).^-1-u.^2));
53

54 switch(polariz)
55 case {"P"}
56 r_23_P = r_ij_PS(u,2,3,"P");
57 r_34_P = r_ij_PS(u,3,4,"P");
58 num = r_23_P + r_34_P.*exp_term;
59 den = 1 + r_23_P .* r_34_P.*exp_term;
60 r_234 = num ./ den;
61 case {"S"}
62 r_23_S = r_ij_PS(u,2,3,"S");
63 r_34_S = r_ij_PS(u,3,4,"S");
64 num = r_23_S + r_34_S.*exp_term;
65 den = 1 + r_23_S .* r_34_S.*exp_term;
66 r_234 = num ./ den;
67 end
68 end
69

70 function r_ij = r_ij_PS(u,i,j,polariz)
71 global e; global mu;
72

73 A = (1 - u.^2).^0.5;
74 B = ( e(j).*mu(j).* (e(i).*mu(i)).^-1 - u.^2).^0.5;
75

76 switch(polariz)
77 case {"S"}
78 num = mu(j).*A - mu(i).* B;
79 den = mu(j).*A + mu(i).* B;
80 r_ij = num ./ den;
81 case {"P"}
82 num = e(j).*A - e(i).* B;
83 den = e(j).*A + e(i).* B;
84 r_ij = num ./ den;
85 end
86 end

3. Fitting the experimental data to the model

Data can be acquired using a standard scanning epifluorescence microscope with a
spectrometer and photomultiplier tubes. It is generally most practical to save images as .lsm
files which can be directly read into MATLAB [In our setup each file contains a scanned image
of the sample at ten different wavelengths (e.g. bins centered at λ = 490nm, 500nm, 510nm,
etc.)]. For dynamic studies images at different time intervals can also be stored in a single
.lsm file. Many spectrometers come with MATLAB drivers which allow for acquisition
to also be controlled easily through MATLAB. Else for real time (video type) imaging it is
necessary to save the data incrementally into a directory accessible to MATLAB. The spectral
profile of the fluorophores of interest on an uncoated substrate immersed in a similar refractive
index medium as the actual samples should also be available. The area under this spectrum
should be normalized and extrapolated to a discrete matrix [e.g. fitted to a high order
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polynomial and evaluated at the discrete wavelengths indexed by i], and saved as a 1 × 10
matrix Ilambda0(i).
Data analysis is performed on a pixel by pixel basis. For each pixel the spectrum
area is normalized, fitted with a high order polynomial, evaluated at i discrete
wavelengths, and written into a 1 × 10 matrix data(i). The ratio enhanobserved(i)
= data(i)/Ilambda0(i) is then calculated. A 1 × j matrix zn(j) is defined which will
represent the fraction of the emitters in the studied area at a distance corresponding to the
index j from the interface. The task is now to solve enhan*zn-enhanobserved=0, which
is in principle straight forward using a function such as e.g. linsolve. The result is best
presented in a plot of zn as a function of z for each or a collection of pixels, which will show
the distribution of fluorophore distances from the substrate at this particular lateral position.
Depending on the sample studied and the information of interest this may be fitted with a
suitable distribution function to obtain an average and spread in distances of emitters from
the substrate within the analyzed region.

4. Optimizing the model and code
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2 Smoothness of the silver is guaranteed by using a Germanium wetting layer and is less than 0.4nm
RMS as measured by Atomic Force Microscopy.
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the quartz (ε = 2.4). The cut-off energy can be shown to occur within the emission spectrum of
Alexa488 - a standard fluorescent marker with an emission spectrum peaking at a wavelength
of around 528nm and extending all the way up to >550nm. To demonstrate the accuracy
of the technique, fibroblast cells were grown on the laminin (thickness < 2nm, ε ≈ 2.15)
coated substrate and a particular protein found at adhesion sites close to the substrate called
Paxillin Schaller (2001) was stained with Alexa488. The protein Paxillin has recently been
shown to be separated from the substrate matrix by a distance of around 20-40nm using a
3D version of a technique based on Fluorescence Photoactivatable Localization Microscopy
(FPALM) - known as interference-PALM or iPALM Kanchanawong (2010). In our study
similar cells were used and the separation from the substrate surface can be expected to be
comparable. In figure 2 we show a confocal fluorescence image of the cell we subsequently
analyze (excitation wavelength = 488nm, emission filter ≈500-550nm). We focus on a region
marked by the red box. A spectral analysis of the signal in this region shows an enhancement
at longer wavelengths as expected. Using the procedure outlined in the previous sections
we are able to calculate zn for the pixels in this box over the range z = 1...130. The
fluorophore concentration (rho) was initially taken to be constant up to 2.4μm and the
presented histogram in figure 2 is the result following four iterations of redefining rho
according to the calculated zn in a n=5 parameter space (see previous section). The size
of the bin width for the spectral analysis was 9.7nm. As can be seen in figure 2 where
the distance distribution (zn is plotted as a function of z), the fluorophores and hence the
Paxillin are indeed localized at around the expected distance from the substrate (20-40nm).
We note that compared to the iPALM setup used for these studies our technique is, once
optimized, very simple and straight forward to implement. The analysis is sufficiently fast
to allow for fast real-time studies (which is often impossible with e.g. iPALM) and also
more versatile since there is no requirement for special photoactivatable fluorophorescent
markers. We are currently using it to study the dynamics of other labeled proteins found in
the vicinity of cell-substrate adhesion sites including the zinc-binding phosphoprotein Zyxin
and the microfilament associated protein VASP.

Fig. 2. Left: Axial distance profile of the protein paxillin (zn versus z) as inferred from
Δλ =9.7nm resolution spectrum (λ =480→800nm) of pixels at adhesion site. Right: image of
cell. Red square shows pixels over which the spectrum was analyzed to obtain image on the
left. [NIH 3T3 fibroblast with Alexa488 stained paxillin, scanning confocal microscope image
at λ =519(±9.7nm), with 1.4 NA objective and λ =465nm excitation. Scale-bar = 10μm].
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6. Modifications & extensions

A natural extension to the presented nano-sectioning method would be to combine it with
a different technique which allows for lateral (xy) superresolution. One such technique that
is relatively straight forward to implement is FPALM which was already alluded to above.
In FPALM photoactivatable fluorophores are stochastically turned on by a weak activations
source so that individual molecules separated by distances larger than the diffraction limit can
consecutively be localized provided one has knowledge of their point spread function and
the instrument and detector response. Numerous algorithms exist for such 2D localization
purposes most of which rely on fitting a normal 2D (Gaussian) intensity distribution to a
region of interest surrounding each molecule. Several such routines have been made available
in the form of MATLAB codes. For densely labelled samples it is often desirable to be able to
fit multiple overlapping Gaussians so that the isolated single-molecule activation/excitation
condition can be slightly relaxed. This is particularly useful where even a very weak activation
signal is sufficient to activate a significant portion of fluorophores - which we have found to be
the case for photoactivatable fluorophores near the metallic structures of interest. A MATLAB
code capable of fitting “overlapping intensity distributions” may be written employing a
Levenberg-Marquardt based multi Gaussian least squares optimization algorithm. The result
of a multiple Gaussian fit is demonstrated in figure 3 for the distribution from two nearby
molecules. We note that such algorithms are also conducive to parallel processing and
thus in principle fast dynamic studies. Considering the fact that typical amount of data
needed to be processed for each microscopy experiment is in the order of several hundreds of
megabytes; the possibility to use acceleration power of modern GPUs to enable near real-time
observation of reconstruction is welcomed. At this moment MATLAB allows us to develop
our implementations for several image processing and optimization routines and possibly
validate the results from our experimental parallel implementations. In following text we will
focus on the use of Image processing and Optimization toolboxes to outline our framework
for detection regions of interest around sparsely activated fluorophores. We expect that reader
is familiar with basics of image processing and numerical optimization methods and so we
only propose possible solution for stated problem. For further details about mathematical
background regarding image analysis we suggest Sonka et al. (2001).
Current work is underway in our laboratory on combining this with the optical
nanosectioning technique outlined above. A current obstacle appears to be the difficulty
in rapidly photo-bleaching of the emitters - which is an essential feature of performing fast
FPALM - near the substrates. This is a well known feature of fluorophores near metallic
substrates and is understood to be due to the relative suppression of the triplet decay path,
which is associated with the majority of the photobleaching. FPALM based nanosectioning
as mentioned above is however still possible but at the price of lowered signal to noise
ratio, and with properly designed image segmentation we are able extract regions aimed
for further processing. The code shown below represents the necessary steps of the image
processing required for detection of relevant fluorophores. This is based on dilation functions
from the mathematical morphology toolset and subsequent segmentation with experimentally
adjusted thresholding values.
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observation of reconstruction is welcomed. At this moment MATLAB allows us to develop
our implementations for several image processing and optimization routines and possibly
validate the results from our experimental parallel implementations. In following text we will
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is familiar with basics of image processing and numerical optimization methods and so we
only propose possible solution for stated problem. For further details about mathematical
background regarding image analysis we suggest Sonka et al. (2001).
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in rapidly photo-bleaching of the emitters - which is an essential feature of performing fast
FPALM - near the substrates. This is a well known feature of fluorophores near metallic
substrates and is understood to be due to the relative suppression of the triplet decay path,
which is associated with the majority of the photobleaching. FPALM based nanosectioning
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Listing 2. Fluorophore segmentation based on thresholding and morphology

1 img = lsm_read(fileName);
2 img_dbl = im2double(img);
3 se = strel("disk" , 5);
4 img_dil = imdilate(img_dbl,se);
5 img_dil_bw = im2bw(img_dil,threshold);

Depending on the sample studied, one may observe an uneven background signal which
systematically introduce errors into the model fitting which may prove detrimental. For
these reasons we estimate the background intensity map based on uniform filtering over large
region, e.g.:

Listing 3. Fluorophore segmentation with background correction

1 corrected_bg = img_dbl - imfilter(img_dbl,fspecial("average",50));
2 img_corr_bg_closed_bw = im2bw(corrected_bg,0.60);
3 img_corr_bg_closed_bw_dil = imdilate(img_corr_bg_closed_bw,strel("disk",2));

Fig. 3. a. sample of activated fluorophores with noisy background b. segmented fluorophores
after background correction c. overlay of fluorophores positions and corrected background

The main algorithm framework for detection and precise position localization of activated
fluorophores consists of two parts. Lines (1)-(9) set the size of the region of interest around
the detected fluorophore candidates, upscale f actor determine up to a certain level precision
for the fitting (with higher values at the expense of increased computational resources). The
following lines are for loading of the acquired data-stack and the rescaling to the MATLAB
native double format (images with scales from 0 to 1). The subsequent section is based on the
code presented in listings 4 or 3 to detect local maxima and translate them to (x,y) coordinates.
Here the for loop iterates over the range of all (x,y) fluorophore coordinates, and the code
is built from 2 parts, extraction of the image region of interest around the position of the
fluorophore and fitting to the image data model (a Gaussian function based on a nonlinear
iterative least-squares fitting). For the main algorithm of Levenberg-Marquard, interested
readers are referred to Marquardt (1963)
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Listing 4. Fluorophore segmentation based on thresholding and morphology

1 win_W = 8; % -- moving window size
2 win_H = 8;
3 upscale_factor = 5;
4 abs_dif_fit_values = [];
5

6 stack = lsm_read("1.lsm"); % -- load LSM stack
7 img = stack(1).data;
8 img = im2double(img); % -- change to 0-1 scale
9 [M,N] = size(img);

10

11 % -- find relevant positions of fluorophores
12 [pos] = find_local_maxima(img, 0.7);% -- detect fluorophore positions
13 [y,x] = find(pos == 1); % -- get their coordinates
14 [x,y] = remove_bound(x,y,win_W,win_H,M,N);% -- remove spots near the boundary
15

16 % -- preallocated upscaled ROI
17 upscaled_window = zeros(M*upscale_factor,N*upscale_factor);
18

19 for k = 1 : 1 : length(x) % -- iterate over all fluorophore positions
20 % -- get corners of the window from low-res image
21 % -- where molecule was detected
22 [win,corner_x,corner_y] = getROI(img,[y(k),x(k)],win_width,win_height);
23

24 % -- rescale the window with nearest neighborhood interpolation
25 % & prepare the meshgrid of the same size for Gaussian 2d fitting
26 [Mw,Nw] = size(win);
27 ups_win = imresize(win,[upscale_factor*Mw,upscale_factor*Nw],"nearest");
28 [ny,nx] = size(ups_win);
29 [px,py] = meshgrid(1:nx,1:ny);
30

31 % -- prepare guess estimates for Gaussian fitting
32 A = 10; z0 = 0;
33 x0 = ny / 2; y0 = nx / 2;
34 sx = 0.2 * upscale_factor;
35 sy = 0.2 * upscale_factor;
36 param0 = [A, x0, sx, y0, sy, z0];
37

38 % -- optimize parameters based on image data and gaussian model
39 % params_fit = lsqnonlin(@(x) gaussian_fit_fun(x, px, py,window),param0);
40 params_fit = lev_marq_gaussian2d(ups_win,px,py,[A,x0,sx,y0,sy 0]’, ...
41 1500,0.01,1e-6,0.01);
42 % -- calculate goodness of fit for possible discarding of
43 % -- incorrect values
44 [F,Yfit, D] = gaussian_fit_fun(params_fit, px, py, ups_win);
45

46 % -- calculate distance measure of model and image data
47 abs_dif_fit_values = [abs_dif_fit_values; sum(abs(D(:))];
48 fprintf("Absolute Difference of Fit : %.3f \n", sum(abs(D(:)) );
49 end
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Fig. 4. a. Extracted ROI from raw microscopy data b. Initial shape of Gaussian model c.
Fitted model

Fig. 5. Fitting two overlapping Gaussians to data using a Levenberg-Marquardt based
routine. Left: raw data. Center: Gaussian Fits. Right: Wellness of fit as a function of number
of iterations.

7. Concluding remarks

In summary we have outlined the data analysis protocol for a novel fluorescent imaging
technique capable of performing sub-wavelength scale optical sectioning in the vicinity
of metamaterial coated substrates - MeSuMo fluorescence microscopy. An outline of the
approach one would take for analyzing the response properties of particular materials and
how to go about fitting data to the model is explained from a perspective that may be
readily implemented into MATLAB routines. Whilst the calculation can be performed by
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most software and self written codes, the intuitive matrix approach of MATLAB makes it well
suited for the required tasks. Certain toolboxes may prove useful,3 however no toolboxes
are essential or required. The presented technique is likely to find a range of applications in
the lifesciences related to studying membrane traffic or indeed any events that can be made
to occur near a coated substrate and nanoscale axial dynamics are of interest. In practice a
fundamental limitations of the technique is the rate and accuracy with which the spectral
information over a give region can be acquired. Whilst the use of multiple photodetectors
combined with fast scanning of the sample may be the most accurate and best suited for not
so bright samples, one can in principle perform the spectral separation optically using dichroic
mirrors & filters and an array of sensitive CCD cameras (or several with split chips). The latter
would remove the need for scanning, with the imaging rate now limited primarily by photon
statistics.

8. References

D. Axelrod (1981). Cell-substrate contacts illuminated by total internal reflection fluorescence.
Journ Cell Biol, Vol.89, pp.141-145.

P.A. Belov and Y. Hao (2006). Subwavelength imaging at optical frequencies using a
transmission device formed by a periodic layered metal-dielectric structure operating
in the canalization regime. Phys. Rev. B, Vol.73, pp.113110-113113.

D.J. Bergman and M.I. Stockman (2003). Surface Plasmon Amplification by Stimulated
Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in
Nanosystems. Phys. Rev. Lett., Vol.90, pp.027402-027405.

Betzig, E. et al. (1991). Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric
Scale. Science, Vol.251, No.5000, pp.1468-1470.

M. Born and E. Wolf (1997). Principles of Optics: Electromagnetic Theory of Propagation,
Interference and Diffraction of Light, Cambridge University Press, Cambridge, UK.

J.J. Burke and G.I. Stegeman (1986). Surface-polariton-like waves guided by thin, lossy metal
films. Phys. Rev. B, Vol.33, pp.5186ï£¡5201.

R.R. Chance, A. Prock and R. Silbey (1978). Molecular fluorescence and energy transfer near
interfaces. Adv. Chem. Phys., Vol.37, pp.1ï£¡65.

C. Cremer and T. Cremer (1978). Considerations on a laser-scanning-microscope with high
resolution and depth of field. Microscopica Acta, Vol.81, No.1, pp.31-44.

S.A. Darmanyan and A.V. Zayats (2003). Light tunneling via resonant surface plasmon
polariton states and the enhanced transmission of periodically nanostructured metal
films: An analytical study. Phys. Rev. B, Vol.67, pp.035424-035430.

J.A. Dionne et al. (2008). Are negative index materials achievable with surface plasmon
waveguides? A case study of three plasmonic geometries. Opt. Exp., Vol.16, No.23,
pp.19001-19016.

V.P. Drachev (2008). The Ag dielectric function in plasmonic metamaterials. Opt. Exp., Vol.16,
No.2, pp.1186- 1195.

3 In particular the Symbolic Math and Curve-fitting toolboxes for modeling the structures and fitting
the spectrums, and the Instrument Control and Image Acquisition toolboxes for controlling optical
components & shutters and data acquisition in MATLAB.

379
Using MATLAB to Achieve Nanoscale Optical Sectioning 
in the Vicinity of Metamaterial Substrates by Simulating Emitter-Substrate Interactions



16 Will-be-set-by-IN-TECH

Fig. 4. a. Extracted ROI from raw microscopy data b. Initial shape of Gaussian model c.
Fitted model

Fig. 5. Fitting two overlapping Gaussians to data using a Levenberg-Marquardt based
routine. Left: raw data. Center: Gaussian Fits. Right: Wellness of fit as a function of number
of iterations.
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1. Introduction 
Nowadays, due to the increasing complexity of circuits and systems incorporating mixed-
signal components, many designers recognise the advantages of, and in some cases the 
necessity for, mixed-signal modelling and simulation of the circuits and systems as a whole 
prior to, during and post production of the circuit or system. This is particularly so within 
the microelectronics (semiconductor) arena. This, coupled with the emergence of a range of 
description languages that find use in the modelling and analysis via simulation of 
microelectronic circuit designs, means the ability now exists to design complex signal 
processing functions in both the digital and analogue domains. Modelling and simulation 
has increased the designer efficiency and ability to develop increasingly complex and useful 
electronic circuits, particularly at the integrated circuit (IC) level. Each type of circuit 
considered has its own particular requirements in terms of design performance 
(specifications), design methodologies required to realise a design, modelling and simulation 
toolsets utilised, designer experience and skills set. 
This chapter will consider design aspects relating specifically to data converters, in 
particular the digital-to-analogue converter (DAC). In many electronic systems, the data 
converter (both the analogue-to-digital [A/D] and digital-to-analogue [D/A] converter) 
provides an important electronic function. The developed converter design will be provided 
to the end-user as either a discrete integrated circuit or as a macro cell within a larger 
design, see Fig. 1. 
The data converter provides the primary interface block between the analogue ‘real’ world 
and the digital signal processing circuitry typically found in many control, instrumentation 
and, generically, ’mechatronic’ systems. The converter design performance is continually 
increasing to meet the changing needs of the end-user applications, in particular: an increase 
in resolution (number of bits); an increase in speed of operation - driven primarily by the 
communications applications; the operation of the circuit on lower power supply voltages 
and with lower power consumption - driven primarily by the need for portable electronic 
circuit applications. 



18 Will-be-set-by-IN-TECH

K. Elsayad and K.G. Heinze (2010). Temperature dependence of the near-field superlensing
effect for single metal layers and stacked metal-dielectric films, Proceedings of SPIE,
77573L, San Diego, USA, Aug. 2010.

K. Elsayad and K.G. Heinze (2010). Multifrequency parallelized near-field optical imaging
with anistropic metal-dielectric stacks. Phys. Rev. A, Vol.81, pp.053840-053845.

S.W. Hell (2007). Far-Field Optical Nanoscopy. Science, Vol.316, No.5828, pp.1153-1158.
Z. Jacob et al. (2010). Engineering photonic density of states using metamaterials. App. Phys.

B, Vol.100, No.1, pp.215-218.
P. Kanchanawong et al. (2010). Nanoscale architecture of integrin-based cell adhesions. Nat.,

Vol.468, pp.580-584.
C.Kittel (1995). Introduction to Solid State Physics, Wiley, ISBN 0471111813.
D. Marquardt (1963). An Algorithm for Least Squares Estimation on Nonlinear Parameters.

SIAMJ. J. APPL. MATH.11, pp. 431-441.
S.A. Ramakrishna et al. (2003). Imaging the near field. Journ. Mod. Opt., Vol.50, No.9,

pp.1419-1430.
M.D. Schaller (2001). Paxillin: a focal adhesion-associated adaptor protein. Oncogene, Vol.20,

No.44 pp.6459-6472.
M. Sonka et al. (2001). Image Processing: Analysis and Machine Vision, ISBN: 049508252X.
N.I. Zheludev et al. (2008). Lasing spaser. Nat. Phot., Vol.2, pp.351-354.

380 Engineering Education and Research Using MATLAB

16 

A Methodology and Tool to  
Translate MATLAB®/Simulink® Models of  

Mixed-Signal Circuits to VHDL-AMS 
Alexandre César Rodrigues da Silva1 and Ian Andrew Grout2 

1Univ Estadual Paulista, UNESP; 
2University of Limerick, UL; 

1Brazil 
2Ireland 

 

1. Introduction 
Nowadays, due to the increasing complexity of circuits and systems incorporating mixed-
signal components, many designers recognise the advantages of, and in some cases the 
necessity for, mixed-signal modelling and simulation of the circuits and systems as a whole 
prior to, during and post production of the circuit or system. This is particularly so within 
the microelectronics (semiconductor) arena. This, coupled with the emergence of a range of 
description languages that find use in the modelling and analysis via simulation of 
microelectronic circuit designs, means the ability now exists to design complex signal 
processing functions in both the digital and analogue domains. Modelling and simulation 
has increased the designer efficiency and ability to develop increasingly complex and useful 
electronic circuits, particularly at the integrated circuit (IC) level. Each type of circuit 
considered has its own particular requirements in terms of design performance 
(specifications), design methodologies required to realise a design, modelling and simulation 
toolsets utilised, designer experience and skills set. 
This chapter will consider design aspects relating specifically to data converters, in 
particular the digital-to-analogue converter (DAC). In many electronic systems, the data 
converter (both the analogue-to-digital [A/D] and digital-to-analogue [D/A] converter) 
provides an important electronic function. The developed converter design will be provided 
to the end-user as either a discrete integrated circuit or as a macro cell within a larger 
design, see Fig. 1. 
The data converter provides the primary interface block between the analogue ‘real’ world 
and the digital signal processing circuitry typically found in many control, instrumentation 
and, generically, ’mechatronic’ systems. The converter design performance is continually 
increasing to meet the changing needs of the end-user applications, in particular: an increase 
in resolution (number of bits); an increase in speed of operation - driven primarily by the 
communications applications; the operation of the circuit on lower power supply voltages 
and with lower power consumption - driven primarily by the need for portable electronic 
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The focus area of this work was in the area of device modelling and simulation during the 
circuit design process, in particular, the conversion (translation) of model design descriptions 
between the different languages typically used by the design community, along with design 
synthesis requirements. The design and modelling of data converter algorithms was 
investigated using MATLAB®/Simulink® (The MathWorks Inc.) and then the conversion of 
the MATLAB®/Simulink® circuit model (of the data converter design) into a VHDL-AMS 
description was considered. 
 

Processor: digital signal processing 
and data converter control 

Control 

Data Data 

Analogue 
input 

Analogue 
output 

ADC DAC

 
Fig. 1. Data converter designs embedded within a digital processor 

A number of authors have already undertaken work in this area. In the next section, a 
summary of some of the prior work undertaken that have influenced the present work is 
presented. 

1.1 Summary of related work 
Electronic devices become more complex each day. To deal with this increasing complexity, 
design synthesis methodologies, assisted by suitable software tools, have been developed in 
order to allow designers to initially model their circuit or system at different design 
abstraction levels during the various design cycles and then ultimately synthesis of some or 
the whole design into an electronic circuit implementation within a particular design 
project. 
In the work of Edenfeld (Edenfeld D. et al., 2004), the future trend of semiconductor 
technology is presented, with the advent of systems with mixing signals (mixed-signal). He 
noted that even in highly abstract projects, it is possible to discover potential problems in 
the initial stage of development, therefore reducing the project time and decreasing the cost. 
In MacMillen’s work (MacMillen D. et al., 2000), a complete overview of the technologies, 
algorithms and methodologies that are used in the EDA tools (electronic design automation) 
and the economic impact of these technologies is undertaken. They consider the different 
steps of the project: simulation, verification, synthesis and test. Also discussed are the types 
of necessary toolsets to support a project environment. 
The necessity of behavioural modelling within mixed technology systems, that is systems 
with electronic, electric and non-electric (mechanical, pneumatic, etc.) parts operating 
together, is described in Wilson’s work (Wilson P. R. et al., 1997). They present the 
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interaction between the various domains and determine that the behavioural models in the 
different domains can be created using the VHDL-AMS (VHDL Analogue and Mixed-
Signal) language. 
In Christen’s work (Christen E. & Bakalar L., 1999), a revision of the VHDL-AMS language 
for analogue applications and mixed-signal is provided. The main elements of the language 
are studied. Doboli’s work (Doboli A. & Vermuri R., 2003) and that of Pêcheaus (Pêcheaus et 
al., 2005) also deal with the manner of modelling using VHDL-AMS. 
Trofimov and Mosin (Travimov M. & Mosin S., 2004) note that one way of increasing the 
speed of undertaking project development is to use the top-down methodology. In analogue 
and mixed-signal circuit projects, the generation of analogue models is at a high level of 
abstraction. The use of models at high levels of abstraction permits a complete simulation of 
a mixed-signal device. However, an adequate tool must be used for modelling and 
simulation, and there must be a great interaction between the project tools. 
Grout and Keane (Grout I. A. & Keane K., 2000) show a prototype of one tool (software 
toolbox) that analyses and processes a Simulink® block diagram model producing a VHDL 
representation of the model. The derived VHDL model will be a combination of 
behavioural, RTL (Register Transfer Logic) and structural definitions mapped directly from 
the Simulink® model. This approach was considered to enable a user to develop and 
simulate a digital control algorithm using MATLAB® and once the initial algorithm 
development was completed, to then convert this to synthesisable VHDL code. 
In a study undertaken the following year, Grout (Grout I. A., 2001) show the application of 
the developed tool to transform a process modelled into Simulink® in a described model in 
VHDL. A closed-loop control system is used in this work. 
Zorzi (Zorzi M. et al., 2004) describe a tool, called I.M.A.Ge-AMS, for writing new Spice 
models using the VHDL-AMS standard. The core of the I.M.A.Ge-AMS tool is a compiler 
derived from the VHDL-AMS compiler, developed for another EDA tool called SANSA. 
In 2004, a paper by Grout and O’Shea (Grout I. A. & O´Shea T., 2004) discusses the need to 
provide suitable provision for, and flexibility in the use of, modelling and simulation 
languages suitable for supporting the range of mixed-signal microelectronic circuit design, 
test and test development activities that are encountered in today’s complex microelectronic 
products. In this work, emphasis is placed on language support for test development 
activities. The target area considered is Delta-Sigma (Δ-Σ) modulation for on-chip signal 
generation in the support of mixed-signal built-in self-test (MS-BIST). In the same year, 
Zorzi’s work (Zorzi M. et al., 2004) shows the tool to integrate the VHDL-AMS with Spice. 
The developed tool allows the user to write new models using VHDL-AMS and 
automatically generates the embedded codes to be used by Spice. This approach shows the 
advantage of using a behavioural language with a simulator that is the best known of all 
analogue simulators at the present time. 
The following section will present the basic theory of digital-to-analogue converter 
operation and modelling with emphasis in the R-2R ladder networks. The mathematical 
model of R-2R ladder network is also presented. 

2. Digital-to-analogue converter modelling 
In this section, the concepts used in digital-to-analogue converter design modelling are 
reviewed. This type of circuit was selected because it is the most frequently encountered 
mixed-signal circuit. The data converter can be either an analogue-to-digital (A/D) 
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(converting signals from the analogue to the digital domain) or a digital-to-analogue (D/A) 
converter (converting signals from the digital to the analogue domain). 
With the increasing requirements on the design (and testing) of the data converter, the 
development of electronic design automation (EDA) tools for supporting design and testing 
of A/D and D/A converters are becoming more important. In addition, with the advances 
obtained in the development and use of hardware description languages (HDLs), new EDA 
tools which integrate different environments are being created. This has permitted the 
migration from development of structural representation (logic synthesis) to behavioural 
specifications (higher levels abstraction). The new behavioural specification has removed 
many of the traditional constraints to design and has given the designer freedom of choice 
as to the best solution to any particular problem. 
One of the basic ideas developed was to create the model using mathematical blocks 
exercising a top-down design methodology for both continuous time and discrete time in 
nature. With the Simulink® toolbox, these models are represented using a graphical block 
diagram format, in a visual form that can aid in supporting the designer’s understanding of 
the problem. 
Digital-to-analogue conversion is the process in which data in discrete values are converted 
to a continuous variable form (current or voltage). A characteristic feature in digital-to-
analogue conversion is the relative value of bits. In a binary code, each more significant bit 
has twice the value of the previous bit. That is, in the representation 2n, where n = 0, 1, 2, 3, 
4… etc., the n + 1th bit is in a more significant position than the bit in the nth position. An 
analogue voltage generated from a binary code will have components that are related by 
powers of 2. 
In the present models for commercially available DACs, the output voltage of logic gates 
(output digital level) is used to activate electronic switches that apply zero voltage to the 
inputs of the digital-to-analogue converter for the logic 0 state and 5.0 V, or another 
reference voltage, for the logic 1 state. Fig. 2 shows the simplified circuit of the basic digital-
to-analogue converter with 4 bits. It converts each bit of its inputs (digital data) that has a 
binary value of 1 to a current, and sums these currents into Isum at its analogue output. Each   
 

 
Fig. 2. Simplified circuit diagram of a basic digital-to-analogue converter with 4 bits 
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switch (Sn) controls a current source (In). When a switch is ON, its respective current source 
contributes its current to the output current (Isum), which becomes proportional to the 
parallel input presented as the digital input (digital data input). 
A popular approach used within the digital-to-analogue converter available in IC form is 
the R-2R current ladder. Only two resistor values are required, regardless of the number of 
bits used, which simplifies resistor trimming during the IC fabrication process. The principle 
of the R-2R ladder is that at each node the ladder is divided in two. The current divides 
equally because the resistor values are 2R for each leg. All the models used in this work use 
the R-2R current ladder network. The R-2R ladder network is described in the next section.  

2.1 The R-2R ladder network 
The R-2R ladder network provides for a simple and inexpensive way in which to perform 
digital-to-analogue conversion. Its popularity is due to the networks’ inherent accuracy 
superiority (when compared with other models) and ease of manufacture. Fig. 3 presents a 
diagram of the basic R-2R ladder network with N bits. Note that the network consists of 
only two resistors values. One resistor has R value and the other one has 2R value (twice the 
value of R) no matter how many bits make up the ladder. The particular value of R is not 
critical to the function of the R-2R ladder. 
The node labelled ‘grd’ (at one end of the termination resistor) is connected to ground. The 
termination resistor assures that the Thevenin resistance of the network, as measured to 
ground looking toward the LSB (with all the bits grounded), is R. The Thevenin resistance of 
an R-2R ladder is always R, regardless of the number of bits in the ladder. From Fig. 3, it can 
be noted that the information is presented to the ladder as individual bits of a digital word 
switched between a reference voltage, labelled ‘Vref’ and ground. The output voltage Vout is 
dependent on the number and location of the bits switched to Vref or ground. Vout will vary 
between 0 volts and Vref volts. 
 

 
Fig. 3. The R-2R ladder network with N bits 

If all inputs are connected to ground, 0 volts are produced at the output Vout. If all inputs 
are connected to Vref, the output voltage approaches Vref, and if some inputs are connected 
to ground and some to Vref then an output voltage between 0 volts and Vref appears at Vout. 
These inputs range from the most significant bit (MSB) to the least significant bit (LSB). 
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Fig. 3. The R-2R ladder network with N bits 

If all inputs are connected to ground, 0 volts are produced at the output Vout. If all inputs 
are connected to Vref, the output voltage approaches Vref, and if some inputs are connected 
to ground and some to Vref then an output voltage between 0 volts and Vref appears at Vout. 
These inputs range from the most significant bit (MSB) to the least significant bit (LSB). 
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The MSB, when activated, causes the greatest change in the output voltage and the LSB, 
when activated, will cause the smallest change in the output voltage. The output voltage 
caused by connecting a particular bit to Vref with all other bits in grounded is Vout= Vref / 2N, 
where N is the bit number. Then for N = 1, Vout = Vref / 2, for N = 2, Vout = Vref / 4, etc. 
Table 1 shows the effect of individual bit locations to the Nth bit. Notice that since the bit  
N =1 has the greatest effect on the output voltage, it is designated the MSB. 
 

Bit number Vout 
1 (MSB) Vr/2 

2 Vr/4 
3 Vr/8 
4 Vr/16 
5 Vr/32 
6 Vr/64 
7 Vr/128 
8 Vr/256 
9 Vr/512 

10 Vr/1024 
n (LSB) Vr/2n 

Table 1. Effect of individual bits on Vout 

The R-2R ladder is a linear circuit. Then, by the principle of superposition, the output can be 
calculated by taking the sum of the effect of all bits connected to Vref. For example, if bits 1 
and 3 are connected to Vref with all other inputs grounded, the output voltage is calculated 
by Vout = (Vref /2) + (Vref /8) which reduces to Vout = (5.Vref) /8. 
As the R-2R ladder is a binary circuit, the effect of each successive bit approaching the LSB 
(less significant bit) is half that of the previous bit. If this sequence is extended to a ladder of 
infinite bits, the effect of the LSB on Vout approaches 0. Conversely, the full-scale output of 
the network approaches Vref.  

2.2 Mathematical model that represents the R-2R ladder 
As shown in Table 1, each bit contributes one small part of the reference voltage in the 
generation of the output voltage. The sum of the contribution of each individual bit then 
represents the analogue signal output. For example, in a DAC with 8 bits, the most 
significant bit contributes 0.5 of the reference voltage. The least significant bit contributes 
only 0.00390625 of the reference voltage. Each bit then contributes one specific gain value to 
the output voltage. The sum of all gains multiplied by the reference voltage then generates 
the final output voltage.  
A simple scheme for analogue signal generation using only the mathematical approach was 
created for this work. As shown in Fig. 4, the mathematical approach of R-2R ladder consists 
of an arrangement of gain, sum and multiplier blocks. Each of the gain blocks has a weighting 
factor that is added when its input is supplied with a logic 1 and multiplied by reference 
voltage, so generating the final output voltage. 
In the example presented in Fig. 4, using Vref = 1V when B3 = B0 = 1 and B2 = B1 = 0, the 
output value is 0.5625 which represents the addition of each input. The advantage of the 
approach is that the DAC using R-2R ladder can be easily simulated using the 
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MATLAB®/Simulink® or any other mathematical modelling environment. Note that this 
model is similar to R-2R ladder network presented in Fig. 3. 
In this work, models of commercially available digital-to-analogue converters were 
developed. All converters considered had a resolution of 8 bits and used the R-2R ladder 
approach to implement the conversion circuitry. The IC designs used were the DAC08 
(Analog Devices Inc. [a]), AD7524 (Analog Devices Inc. [b]) and AD5450 (Analog Devices 
Inc. [c]). 
Today, the designer of digital circuits and systems typically uses hardware description 
languages (HDLs) such as VHDL or Verilog®-HDL in order model the circuit or system at a 
high level of design abstraction. Although these HDLs provide language constructs for 
behavioural simulation, their language subsets are far too restrictive for system level design. 
On the other hand, the MATLAB®/Simulink® modelling and simulation environment 
provides a powerful high level mathematical modelling environment for systems that can be 
widely used for high level algorithm development. It is a high-performance language for 
technical computing. It has a large collection of computational algorithms ranging from 
elementary functions, like summation and multiplication, through to complex arithmetic 
functions, such as fast Fourier transforms (FFTs).  
A hardware description language, such as VHDL, can readily be used to describe a digital 
circuit or system. However, this language has a very limited capability when dealing with 
complex mathematical operations. The use of an interface, however, between 
MATLAB®/Simulink® and certain HDLs can fill the gap between an HDL and a high level 
mathematical modelling and simulation environment. 
 

 
Fig. 4. Mathematical approach for modelling the R-2R ladder using Simulink® 

In the next section, models developed in MATLAB®/Simulink® that implemented the 
digital-to-analogue converters selected for this work are presented. 

3. Data converter models implemented in MATLAB®/Simulink® 
A highly useful feature of Simulink® used in this work is the possibility of using it in the 
development of hybrid system models.  In the DAC models developed, the use of sum, 
multiplier, logic gates and shift register components, along with components to generate input 
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signals and undertake results analysis was required. All these basic components are 
available in libraries provided with Simulink®. These components are found in different 
libraries named toolboxes. A list of professional toolboxes currently available can be obtained 
from The MathWorks Inc. This list is by no means static; more toolboxes are being created 
every year. For example, there are toolboxes for communication systems, control systems, 
frequency-domain design, fuzzy logic and digital signal processing. With the components 
available to the user, it is possible to create models of the DACs selected in order to 
undertake a suitable design modelling and simulation study. Components are available to 
implement the analogue and digital circuit parts of the data converter. In addition, there are 
components to generate the input signals and to perform results analysis. 
Using the available and, or and not logic gates, all required digital parts were created; shift 
register, counters, latches and all the logic necessary to implement the ADC7524 and ADC5450 
control using subsystems. 
As the model increases in size and complexity, the model visualization can be kept 
manageable by grouping blocks into suitably defined subsystems. For example, an R-2R 
ladder network can be generated as a subsystem and used in all the models. Fig. 5 shows the 
R-2R ladder created as a subsystem. This subsystem may then be used in all the models. 
 

 
Fig. 5. R-2R ladder created as a subsystem 

The subsystem named R-2R ladder is a block that has inputs labelled S0 to S7 (digital 
inputs) and an output Vout (analogue output). As shown in Fig. 5, the subsystem was 
created using the available gain, sum, input and output components, found in the 
Simulink® libraries. 
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3.1 DAC08 modelled in MATLAB®/Simulink® 
The DAC08 is a multiplying D/A converter that uses the R-2R ladder in which an output 
current is the product of a digital number and an input reference current. Each digital input 
has a weight represented by the gain. These gains are added when their inputs have 1 logic 
and are multiplied by reference voltage, generating the output voltage. Table 2 shows the 
weight of each individual bit in the DAC08. 
 

Bit position Weight 
S7 (MSB) 0.5 

S6 0.25 
S5 0.125 
S4 0.0625 
S3 0.03125 
S2 0.015625 
S1 0.00781250 

S0 (LSB) 0.00390625 

Table 2. Individual bit weighting in the DAC08 model 

With this information it is possible to create the DAC08 converter model using the components 
available in the Simulink® libraries. Fig. 6 shows the DAC08 model implemented in 
Simulink®. It can be seen that the model is composed of the R-2R ladder network block, a 
product block and a subtraction block to generate the output currents (Io and Iob).   
The multiplier block generates output voltage of the binary value in the digital input. The 
reference voltage will define the maximum output voltage. The commutation between the 
outputs, labelled Io and Iob, is performed by the subtraction block. 
 

 
Fig. 6. DAC08 model implemented in Simulink® 

As the R-2R ladder block is analogue in nature, there is a need to use the correct data type 
between the digital inputs and the analogue ladder network. In the R-2R ladder, the blocks 
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labelled Data type conversion were used. These blocks implement the necessary conversion 
between different data types. Fig. 7 shows the used ladder R-2R network implemented as a 
subsystem. To test this model, an 8-bit sine waveform was generated as the converter signal 
input. To use the waveform as input of the model, the vectors B1 (MSB) to B8 (LSB) were 
generated from a MATLAB® M-file (with a file extension .m) and were used by Simulink® 
through the From Workspace block. The Simulink® model used to test the DAC08 is shown in 
Fig. 8 and the output signal, resulting from digital to analogue conversion, is shown in Fig. 9. 
 

 
Fig. 7. R-2R ladder network implemented as subsystem 

3.2 AD7524 modelled in MATLAB®/Simulink® 
The AD7524 consists of an R-2R ladder and an input latch with 8 bits. The load cycle of the 
AD7524 is similar to the write cycle of a random access memory (RAM). In the write mode, 
when CSb (chip select – active low) and WRb (write – active low) are both LOW, the AD7524 
is in the WRITE mode and the AD7524 analogue output responds to data activity at the 
DB0-DB7 data bus inputs. 
In all tests undertaken in the study, the CSb and WRb were set to a low level. In this mode, 
the AD7524 acts like a non-latched input D/A converter. Fig. 10 shows the AD7524 model 
implemented in Simulink®. We can see that the model is comprised of an R-2R ladder 
network block, a product block and a subtraction block to generate the outputs (Out1 and 
Out2).  This model also has Data Latch blocks with 8 bits of input. The R-2R ladder block is 
similar to the one used by the ADC08 converter presented in Fig. 5. In this model there is a  
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   B1 IS THE MORE SIGNIFICANT BIT 

Fig. 8. Simulink® model used to test the DAC08 

 

 
Fig. 9. Output analogue waveform resulting from the digital-to-analogue conversion 

subsystem named convertor generated to implement the data type conversion that was used 
outside of the R-2R ladder block. The 8-bit input for the Data Latch block was constructed by 
two latch blocks with 4 input bits and by a single control circuit. This modularity is for easy 
construction of latch with 12, 16 and 20 bits. Fig. 11 shows the Data Latch block. 
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Fig. 10. AD7524 model implemented in Simulink® 

 

 
Fig. 11. 8-bit data latch block 

 

 
Fig. 12. Block for control of writing 
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The block for control of writing is a simple NOR gate. When the inputs labelled CS_b and 
W_b have low level logic applied, the output of the block is high level logic. In other words: 
out = not (CS_b + W_b). This enables the latch to transfer the input to the output. Fig. 12 
shows the control circuit to enable the transfer of data between the input and the output. 
The block labelled latch 8 was created using two latch blocks with 4 bits. The latch block with 
4 bits is shown in Fig. 13. 
 

 
Fig. 13. Latch block with 4 bits 

The same waveform was used for testing the Simulink® model as shown in Fig. 14. 
 

 
Fig. 14. Simulink® model to the ADC 7524 converter 
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3.3 AD5450 modelled in MATLAB®/Simulink® 
The AD545n series (n = 0, 1, 2, 3) DAC has a 3-wire interface that is compatible with the 
majority of interface standards. Data is written to the device in 16-bit words. This word 
consists of two control bits and 14 data bits. The AD5450 uses 8 data bits and ignores the 6 
LSBs. The controls bits C1 and C0 are used to load and update the code and change the 
active clock edge. Table 3 shows the control bits of the AD5450. 
 

C1 C0 Function implemented 
0 0 Load and update (power-on default) 
0 1 Reserved 
1 0 Reserved 
1 1 Clock data to shift register upon rising edge 

Table 3. AD5450 control bits 

The SYNC function, low active, is an edge-triggered input that acts as a frame-
synchronization signal and chip enable. Data can only be transferred to the device while 
SYNC is low. After the falling edge of the 16th SCLK pulse, bring SYNC high to transfer 
data from the input shift register to the DAC register. The AD5450 also uses the R-2R ladder 
network to do the conversion. 
Fig. 15 shows the AD5450 model implemented in Simulink®. It can be seen that the model is 
composed of an R-2R ladder network block. The R-2R ladder block is similar in use to the 
ADC08 and AD7524 converters. In this model we also used the data type conversion outside 
of the R-2R ladder block. It can also been seen that there is a block named DAC Data Latch 
which implements the control blocks, the latch block and the shift register block. 
 

 
Fig. 15. Simulink® model to the AD5450 converter 

Fig. 16 shows the DAC Data Latch block. This block has another 4 blocks called Control Load, 
Control Latch, Data Latch and Shift Register. 
It can be seen that there are three transport delay blocks in this circuit required to enable the 
correct operation of the model. Without these timing delays, the model cannot have the 
correct functionality. When a transport delay block is used, there is also a need for a Data Type 
Conversion block. Fig. 17 shows the Control Load block. It has a circuit that counts the clock, 
called Count Pulses, and another circuit called Set Trigger, to set the trigger signal. The Count 
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Pulses block loads data into the latch to be converted after the count circuit receives 16 clock 
pulses. 
 

 
Fig. 16. AD5450 data latch block 

 

 
Fig. 17. The Control Load Block 
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Pulses block loads data into the latch to be converted after the count circuit receives 16 clock 
pulses. 
 

 
Fig. 16. AD5450 data latch block 

 

 
Fig. 17. The Control Load Block 
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Several other blocks created as subsystems are used to test the AD5450 model presented in 
Fig. 18. 
 

 
Fig. 18. Simulink® model used to test the AD5450 converter 

In order to test this model, the same 8-bit sine waveform, as used previously, was used. This 
model uses the serial input. For each 8-bit vector generated, to represent the sine waveform, 
a bit stream (sequence of bits) was also generated. A MATLAB® M-file was created to 
generate the workspace bit stream. 
The next section presents an approach developed to support mixed-signal circuit design and 
analysis. The methodology proposed is a novel approach to the problem of developing 
model descriptions of mixed-signal circuit topologies by the construction of a set of 
subsystems that support the automated mapping of MATLAB®/Simulink® models to 
structural VHDL-AMS descriptions. The tool developed, named MS2SV 
(MATLAB®/Simulink® to SystemVision™), reads a Simulink® model file and translates it to 
a structural VHDL-AMS code. It also creates the file structure required to simulate the 
translated model in the SystemVision™ environment from Mentor Graphics®. The MS2SV 
translator was developed using the C programming language and it has a number of 
predefined library components required for the translation process. The motivation for 
using Simulink® as a high level design model comes from the fact that it is the standard 
language used, for example, in areas of control. Simulink® is also a popular tool used in 
education and research. The choice of VHDL-AMS as the target language is motivated by 
the standard of hardware description language, available in the majority of synthesis 
environments. It is worth pointing out that Simulink® is purely a simulation language, 
therefore, the automatic translation of Simulink® to VHDL-AMS is highly desirable. 

4. The MS2SV model conversion toolbox 
The MS2SV conversion toolbox was developed using the C programming language. The 
developed program reads the file type .mdl (MATLAB®/Simulink® model) describing a 
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model to be implemented and generates all the necessary structure for this model to be 
simulated in the SystemVision™ environment. The .mdl model is then described (translated) 
into VHDL-AMS code. In the process of translation, all the components presented in the 
Simulink® model are identified in the library of components previously developed for this 
specific use. An overview of methodology is shown in Fig. 19. 
It can be seen that the steps involved are as below: 
i. Initial specification of the model and model performance analysis through simulation 

using Simulink®. 
ii. Conversion of the Simulink® model to a correspondent VHDL-AMS model. 
iii. Simulation and analysis of the converted model using SystemVision™ environment. 
iv. Comparison of simulation results from both model forms. 
v. Continue the synthesis process (of the VHDL-AMS code parts) if the results comparison 

is acceptable, or return to a new specification if the results comparison is not acceptable. 
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model to be implemented and generates all the necessary structure for this model to be 
simulated in the SystemVision™ environment. The .mdl model is then described (translated) 
into VHDL-AMS code. In the process of translation, all the components presented in the 
Simulink® model are identified in the library of components previously developed for this 
specific use. An overview of methodology is shown in Fig. 19. 
It can be seen that the steps involved are as below: 
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In the initial phase of specification, the user can only use the components available in the 
library named LIB_MS2SV. This library has a set of combinational and sequential primitives, 
such as or, and, not, latches, bistables (flip-flops), counters and shift registers. In addition, it 
contains analogue primitives, such as gain, product and sum. Also available are a number of 
subsystems created for specific use, along with constant types and pulse sources. Fig. 20 
shows some of the components available in the library LIB_MS2SV. 
 

 
Fig. 20. LIB_MS2SV library of components 

One important aspect of the design methodology is related to the names used to specify the 
input/output ports of the system. The name of all digital signals must finish with _D and 
cannot have names which are reserved words in VHDL-AMS. Note also that the names of 
components are different from the conventional names as in the conversion process, the 
conventional names are used as reserved words in the target models. They should also not 
have names that finish with a number, for example CONVDA8. This is because if there is a 
need to use two or more instantiations of the component CONVDA8, then Simulink® will 
automatically change the name of the second component to CONVDA1, CONVDA2, and so 
on. These new names will not then be recognized correctly. This naming rule is not however 
applied to logic gates. In this case the programme identifies only the name GAND, GOR, etc. 
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The number of the input is specified inside of the .mdl file. When the MS2SV programme is 
executed, the programme identifies all the important information inside the .mdl file and 
recognises this information in the library of components LIB_MS2SV. The translation of the 
structure of the original model into the corresponding VHDL-AMS code structure is then 
undertaken. Once the Simulink® model has been translated into VHDL-AMS code, a project 
set is created in the SystemVision™ project environment which allows for adequate 
simulation and analysis of the translated model. 

4.1 Using the MS2SV toolbox 
The MS2SV programme was developed using the C programming language and it is to be 
used with the computer command prompt. To call and run the program, the designer needs 
to use the following command: 

C:> ms2sv_1 input_file output_file 
 

Read the SIMULINK® 
Model 

The .mdl file is 
interpreted 

Build the netlist of 
circuit 

Create adequate file 
structure to 

SystemVision 
environment 

       Generates 
VHDL- AMS codes 

.mdl file 
(Simulink® model) 

 

List of 
components 

List of links of
components 

Information to 
generate Netlis 

Structure
of files 

VHDL -AMS 
descriptions 

Debug  file 

LIB_MS2SV 

 
Fig. 21. Block diagram of MS2SV programme 
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The ms2sv_1 is the name of executable file, the input_file is the name of model Simulink® 
(.mdl file) and the output_file is a text file (any name) used to save information of some steps 
of execution. This text file is very useful to find mistakes and debug. Fig. 21 shows the block 
diagram of the MS2SV programme. 
It can be seen from Fig. 21 that the steps used by MS2SV to translate a Simulink® model to 
corresponding VHDL-AMS code are: 
i. Read the Simulink® model: this model is a file type .mdl that was created by 

MATLAB®. The name of this file will be the name of the entity of the VHDL-AMS 
description translated. 

ii. Interpreter: this step does the interpretation of the .mdl file. The .mdl file has a lot of 
different information that is not useful to be translated. As an example, the .mdl file has 
information about the position of the components in the screen, the orientation, the 
foreground colour, font name, font size and names other different information. It is the 
most difficult job of the programme. When finishing this step, the list of components, 
the list of links between components and the necessary information to build the circuits 
are generated. 

iii. Building the circuit: all the information generated in the last step is arranged. Now the 
programme has the Simulink® model description in an adequate format to generate the 
corresponding VHDL-AMS code. 

iv. Create the file structure to SystemVisionTM: all the necessary structure of the directory 
and file to a perfect compilation and simulation is created in this step. In the present 
version of the programme, all the structure is created under the SystemVisionTM Project 
directory. 

v. Generate VHDL-AMS code: all the identified components of the model have one 
corresponding code in VHDL-AMS. This code is at the library of components. This step 
identifies the corresponding code and generates all the VHDL-AMS description to the 
translated code. For all components not included at EDULIB, the library has one VHDL 
file. One VHDL-AMS file may need other VHDL-AMS files. This hierarchical structure 
is very important to be specified in the benchmark of SystemVisionTM. In this step the 
debug file is also generated. 

4.2 MS2SV toolbox evaluation 
To evaluate MS2SV toolbox, the models of digital-to-analogue converter designs 
implemented in MATLAB®/Simulink® (as presented in section 3) were developed again, 
however now using only the LIB_MS2SV library. These models were translated to VHDL-
AMS code using the developed tool and the translated codes were compiled and simulated 
in the SystemVision™ environment. In this section, only the Simulink® model for the DAC08 
data converter is presented and then translated to VHDL-AMS. The waveform used to 
simulate the operation of the circuit was the ramp function only, as the LIB_MS2SV library 
does not yet have any other sources to allow the generation of different waveforms. In the 
future, the intention is to generate additional types of sources for placement within the 
MS2SV library.  

4.2.1 Project for the DAC08 data converter 
The Simulink® model to DAC08 was translated by the MS2SV programme. The following 
VHDL-AMS code was generated: 

A Methodology and Tool to  
Translate MATLAB®/Simulink® Models of Mixed-Signal Circuits to VHDL-AMS 

 

401 

Entity d08ramp – Top of hierarchy 
-- genhdl/d08ramp  

-- Generatedby MS2SV toolversion 1.0 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
USE ieee.electrical_systems.all; 
LIBRARY edulib; 
USE work.all; 
libraryfundamentals_vda; 
library spice2vhd; 
entity d08ramp is 
Port( 
         terminal Vout :electrical); 
end entity d08ramp; 
architecture arch_d08ramp of d08ramp is 
terminal VREF :        electrical; 
  terminal Sum2        : electrical; 
  terminal Sum1        : electrical; 
  terminal Sum         : electrical; 
  signal Pulse7        : std_logic; 
  signal Pulse6        : std_logic; 
  signal Pulse5        : std_logic; 
  signal Pulse4        : std_logic; 
  signal Pulse3        : std_logic; 
  signal Pulse2        : std_logic; 
  signal Pulse1        : std_logic; 
  signal Pulse         : std_logic; 
  terminal Product     :electrical; 
  terminal Gain7       :electrical; 
  terminal Gain6       :electrical; 
  terminal Gain5       :electrical; 
  terminal Gain4       :electrical; 
  terminal Gain3       :electrical; 
  terminal Gain2       :electrical; 
  terminal Gain1       :electrical; 
  terminal Gain        :electrical; 
  terminal Conversion7 :electrical; 
  terminal Conversion6 :electrical; 
  terminal Conversion5 :electrical; 
  terminal Conversion4 :electrical; 
  terminal Conversion3 :electrical; 
  terminal Conversion2 :electrical; 
  terminal Conversion1 :electrical; 
  terminal Conversion  :electrical; 
begin 
  V_VREF :entity EDULIB.V_CONSTANT(IDEAL) 
genericmap ( LEVEL => -10.0 ) 
portmap ( POS => VREF, 
          NEG => ELECTRICAL_REF ); 
  E_Pulse7 :entity EDULIB.CLOCK_FREQ(IDEAL) 
genericmap ( FREQ => 0.0078125 ) 
portmap ( CLK_OUT => Pulse7 ); 
  D2A_Conversion7 :entity 

EDULIB.D2A_BIT(IDEAL) 
genericmap( VHIGH => 1.0, 
                        VLOW => 0.0 ) 
portmap ( D => Pulse7, 
                  A => Conversion7 ); 
  E_Gain7 :entity EDULIB.E_GAIN(BEHAVIORAL) 
genericmap ( K => 0.5 ) 
portmap( INPUT => Conversion7, 
                  OUTPUT => Gain7 ); 

  E_Pulse5 :entity 
EDULIB.CLOCK_FREQ(IDEAL) 
genericmap ( FREQ => 0.03125 ) 
portmap ( CLK_OUT => Pulse5 ); 
  D2A_Conversion5 :entity 

EDULIB.D2A_BIT(IDEAL) 
genericmap( VHIGH => 1.0, 
            VLOW => 0.0 ) 
portmap ( D => Pulse5, 
          A => Conversion5 ); 
  E_Gain5 :entity 

EDULIB.E_GAIN(BEHAVIORAL) 
genericmap ( K => 0.125 ) 
portmap( INPUT => Conversion5, 
         OUTPUT => Gain5 ); 
  E_Pulse6 :entity 

EDULIB.CLOCK_FREQ(IDEAL) 
genericmap ( FREQ => 0.015625 ) 
portmap ( CLK_OUT => Pulse6 ); 
  D2A_Conversion6 :entity 

EDULIB.D2A_BIT(IDEAL) 
genericmap( VHIGH => 1.0, 
            VLOW => 0.0 ) 
portmap ( D => Pulse6, 
          A => Conversion6 ); 
  E_Gain6 :entity 

EDULIB.E_GAIN(BEHAVIORAL) 
genericmap ( K => 0.25 ) 
portmap( INPUT => Conversion6, 
         OUTPUT => Gain6 ); 
  E_Pulse4 :entity 

EDULIB.CLOCK_FREQ(IDEAL) 
genericmap ( FREQ => 0.0625 ) 
portmap ( CLK_OUT => Pulse4 ); 
  D2A_Conversion4 :entity 

EDULIB.D2A_BIT(IDEAL) 
genericmap( VHIGH => 1.0, 
            VLOW => 0.0 ) 
portmap ( D => Pulse4, 
          A => Conversion4 ); 
  E_Gain4 :entity 

EDULIB.E_GAIN(BEHAVIORAL) 
genericmap ( K => 0.0625 ) 
portmap( INPUT => Conversion4, 
         OUTPUT => Gain4 ); 
  E_Sum1 :entity 

WORK.L_SUM4(ARCH_L_SUM4) 
portmap( IN1 => Gain7, 
         IN2 => Gain5, 
         IN3 => Gain6, 
         IN4 => Gain4, 
         OUTPUT => Sum1 ); 
E_Pulse :entity 

EDULIB.CLOCK_FREQ(IDEAL) 
genericmap ( FREQ => 1.0 ) 
portmap ( CLK_OUT => Pulse ); 
  D2A_Conversion :entity 

EDULIB.D2A_BIT(IDEAL) 
genericmap( VHIGH => 1.0, 
            VLOW => 0.0 ) 
portmap ( D => Pulse, 

          A =>Conversion ); 

Fig. 22. (continues on next page) presents the simulation result in SystemVision™ using the 
translated VHDL-AMS codes 
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The ms2sv_1 is the name of executable file, the input_file is the name of model Simulink® 
(.mdl file) and the output_file is a text file (any name) used to save information of some steps 
of execution. This text file is very useful to find mistakes and debug. Fig. 21 shows the block 
diagram of the MS2SV programme. 
It can be seen from Fig. 21 that the steps used by MS2SV to translate a Simulink® model to 
corresponding VHDL-AMS code are: 
i. Read the Simulink® model: this model is a file type .mdl that was created by 

MATLAB®. The name of this file will be the name of the entity of the VHDL-AMS 
description translated. 

ii. Interpreter: this step does the interpretation of the .mdl file. The .mdl file has a lot of 
different information that is not useful to be translated. As an example, the .mdl file has 
information about the position of the components in the screen, the orientation, the 
foreground colour, font name, font size and names other different information. It is the 
most difficult job of the programme. When finishing this step, the list of components, 
the list of links between components and the necessary information to build the circuits 
are generated. 

iii. Building the circuit: all the information generated in the last step is arranged. Now the 
programme has the Simulink® model description in an adequate format to generate the 
corresponding VHDL-AMS code. 

iv. Create the file structure to SystemVisionTM: all the necessary structure of the directory 
and file to a perfect compilation and simulation is created in this step. In the present 
version of the programme, all the structure is created under the SystemVisionTM Project 
directory. 

v. Generate VHDL-AMS code: all the identified components of the model have one 
corresponding code in VHDL-AMS. This code is at the library of components. This step 
identifies the corresponding code and generates all the VHDL-AMS description to the 
translated code. For all components not included at EDULIB, the library has one VHDL 
file. One VHDL-AMS file may need other VHDL-AMS files. This hierarchical structure 
is very important to be specified in the benchmark of SystemVisionTM. In this step the 
debug file is also generated. 

4.2 MS2SV toolbox evaluation 
To evaluate MS2SV toolbox, the models of digital-to-analogue converter designs 
implemented in MATLAB®/Simulink® (as presented in section 3) were developed again, 
however now using only the LIB_MS2SV library. These models were translated to VHDL-
AMS code using the developed tool and the translated codes were compiled and simulated 
in the SystemVision™ environment. In this section, only the Simulink® model for the DAC08 
data converter is presented and then translated to VHDL-AMS. The waveform used to 
simulate the operation of the circuit was the ramp function only, as the LIB_MS2SV library 
does not yet have any other sources to allow the generation of different waveforms. In the 
future, the intention is to generate additional types of sources for placement within the 
MS2SV library.  

4.2.1 Project for the DAC08 data converter 
The Simulink® model to DAC08 was translated by the MS2SV programme. The following 
VHDL-AMS code was generated: 
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Entity d08ramp – Top of hierarchy 
-- genhdl/d08ramp  

-- Generatedby MS2SV toolversion 1.0 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
USE ieee.electrical_systems.all; 
LIBRARY edulib; 
USE work.all; 
libraryfundamentals_vda; 
library spice2vhd; 
entity d08ramp is 
Port( 
         terminal Vout :electrical); 
end entity d08ramp; 
architecture arch_d08ramp of d08ramp is 
terminal VREF :        electrical; 
  terminal Sum2        : electrical; 
  terminal Sum1        : electrical; 
  terminal Sum         : electrical; 
  signal Pulse7        : std_logic; 
  signal Pulse6        : std_logic; 
  signal Pulse5        : std_logic; 
  signal Pulse4        : std_logic; 
  signal Pulse3        : std_logic; 
  signal Pulse2        : std_logic; 
  signal Pulse1        : std_logic; 
  signal Pulse         : std_logic; 
  terminal Product     :electrical; 
  terminal Gain7       :electrical; 
  terminal Gain6       :electrical; 
  terminal Gain5       :electrical; 
  terminal Gain4       :electrical; 
  terminal Gain3       :electrical; 
  terminal Gain2       :electrical; 
  terminal Gain1       :electrical; 
  terminal Gain        :electrical; 
  terminal Conversion7 :electrical; 
  terminal Conversion6 :electrical; 
  terminal Conversion5 :electrical; 
  terminal Conversion4 :electrical; 
  terminal Conversion3 :electrical; 
  terminal Conversion2 :electrical; 
  terminal Conversion1 :electrical; 
  terminal Conversion  :electrical; 
begin 
  V_VREF :entity EDULIB.V_CONSTANT(IDEAL) 
genericmap ( LEVEL => -10.0 ) 
portmap ( POS => VREF, 
          NEG => ELECTRICAL_REF ); 
  E_Pulse7 :entity EDULIB.CLOCK_FREQ(IDEAL) 
genericmap ( FREQ => 0.0078125 ) 
portmap ( CLK_OUT => Pulse7 ); 
  D2A_Conversion7 :entity 

EDULIB.D2A_BIT(IDEAL) 
genericmap( VHIGH => 1.0, 
                        VLOW => 0.0 ) 
portmap ( D => Pulse7, 
                  A => Conversion7 ); 
  E_Gain7 :entity EDULIB.E_GAIN(BEHAVIORAL) 
genericmap ( K => 0.5 ) 
portmap( INPUT => Conversion7, 
                  OUTPUT => Gain7 ); 

  E_Pulse5 :entity 
EDULIB.CLOCK_FREQ(IDEAL) 
genericmap ( FREQ => 0.03125 ) 
portmap ( CLK_OUT => Pulse5 ); 
  D2A_Conversion5 :entity 

EDULIB.D2A_BIT(IDEAL) 
genericmap( VHIGH => 1.0, 
            VLOW => 0.0 ) 
portmap ( D => Pulse5, 
          A => Conversion5 ); 
  E_Gain5 :entity 

EDULIB.E_GAIN(BEHAVIORAL) 
genericmap ( K => 0.125 ) 
portmap( INPUT => Conversion5, 
         OUTPUT => Gain5 ); 
  E_Pulse6 :entity 

EDULIB.CLOCK_FREQ(IDEAL) 
genericmap ( FREQ => 0.015625 ) 
portmap ( CLK_OUT => Pulse6 ); 
  D2A_Conversion6 :entity 

EDULIB.D2A_BIT(IDEAL) 
genericmap( VHIGH => 1.0, 
            VLOW => 0.0 ) 
portmap ( D => Pulse6, 
          A => Conversion6 ); 
  E_Gain6 :entity 

EDULIB.E_GAIN(BEHAVIORAL) 
genericmap ( K => 0.25 ) 
portmap( INPUT => Conversion6, 
         OUTPUT => Gain6 ); 
  E_Pulse4 :entity 

EDULIB.CLOCK_FREQ(IDEAL) 
genericmap ( FREQ => 0.0625 ) 
portmap ( CLK_OUT => Pulse4 ); 
  D2A_Conversion4 :entity 

EDULIB.D2A_BIT(IDEAL) 
genericmap( VHIGH => 1.0, 
            VLOW => 0.0 ) 
portmap ( D => Pulse4, 
          A => Conversion4 ); 
  E_Gain4 :entity 

EDULIB.E_GAIN(BEHAVIORAL) 
genericmap ( K => 0.0625 ) 
portmap( INPUT => Conversion4, 
         OUTPUT => Gain4 ); 
  E_Sum1 :entity 

WORK.L_SUM4(ARCH_L_SUM4) 
portmap( IN1 => Gain7, 
         IN2 => Gain5, 
         IN3 => Gain6, 
         IN4 => Gain4, 
         OUTPUT => Sum1 ); 
E_Pulse :entity 

EDULIB.CLOCK_FREQ(IDEAL) 
genericmap ( FREQ => 1.0 ) 
portmap ( CLK_OUT => Pulse ); 
  D2A_Conversion :entity 

EDULIB.D2A_BIT(IDEAL) 
genericmap( VHIGH => 1.0, 
            VLOW => 0.0 ) 
portmap ( D => Pulse, 

          A =>Conversion ); 

Fig. 22. (continues on next page) presents the simulation result in SystemVision™ using the 
translated VHDL-AMS codes 
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E_Gain :entity EDULIB.E_GAIN(BEHAVIORAL) 
genericmap ( K => 0.003906 ) 
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genericmap ( FREQ => 0.125 ) 
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portmap ( CLK_OUT => Pulse2 ); 
  D2A_Conversion2 :entity EDULIB.D2A_BIT(IDEAL) 
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portmap ( D => Pulse2, 
          A => Conversion2 ); 
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genericmap ( K => 0.015625 ) 
portmap( INPUT => Conversion2, 
         OUTPUT => Gain2 ); 
  E_Pulse1 :entity EDULIB.CLOCK_FREQ(IDEAL) 
genericmap ( FREQ => 0.5 ) 
portmap ( CLK_OUT => Pulse1 ); 
  D2A_Conversion1 :entity EDULIB.D2A_BIT(IDEAL) 
genericmap( VHIGH => 1.0, 
            VLOW => 0.0 ) 
portmap ( D => Pulse1, 
         A => Conversion1 ); 
  E_Gain1 :entity EDULIB.E_GAIN(BEHAVIORAL) 
genericmap ( K => 0.007813 ) 
portmap( INPUT => Conversion1, 
         OUTPUT => Gain1 ); 
E_Sum :entity WORK.L_SUM4(ARCH_L_SUM4) 
portmap( IN1 =>Gain, 
         IN2 => Gain3, 
         IN3 => Gain2, 
         IN4 => Gain1, 
         OUTPUT =>Sum ); 
  E_Sum2 :entity EDULIB.E_SUM(BEHAVIORAL) 
portmap( IN1 => Sum1, 
         IN2 =>Sum, 
         OUTPUT => Sum2 ); 
E_Product :entity EDULIB.E_MULT(BEHAVIORAL) 
portmap( IN1 => VREF, 
         IN2 => Sum2, 
         OUTPUT =>Vout ); 

end architecture arch_d08ramp; 

Fig. 22. (continues) presents the simulation result in SystemVision™ using the translated 
VHDL-AMS codes 

5. Conclusions 
In this chapter, work undertaken to investigate the modelling, simulation and synthesis of 
mixed-signal integrated circuit designs using a combination of hardware description 
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languages (HDLs) and mathematical modelling tools was presented. Three different models 
of digital-to-analogue converter designs used in commercial applications were represented. 
These models were implemented in MATLAB®/Simulink® and then in SystemVisionTM 
using the VHDL-AMS language. An approach to develop and support mixed-signal circuit 
design and analysis was shown. The methodology proposed shows a novel approach to the 
problem of developing model descriptions of a mixed-signal circuit topologies, by 
construction of a set of subsystems that support the automated mapping of 
MATLAB®/Simulink® models to structural VHDL-AMS description. The toolbox developed 
is named MS2SV (MATLAB®/Simulink® to SystemVision™) and this is used to read a 
Simulink® model file and then translate it to a structural VHDL-AMS code. It also creates the 
file structure required to simulate the translated model in the SystemVision™ environment 
from Mentor Graphics®. The results show the viability of this type of approach. It had a 
direct relation between the used elements by MATLAB®/Simulink® to implement the 
studied models and elements used by SystemVision™ to implement the same model 
functionality for a mixed-signal circuit design. 
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1. Introduction 
High level models comprise both faulty and fault-free models. High level fault-free 
modeling may simply indicate behavior of a fault-free circuit, but normally it is not able to 
cope with faulty conditions with strong nonlinearity. The only way to solve this is to replace 
the fault-free model with a faulty one. Furthermore, in fault-free simulation, the difference 
in term of simulation speed between transistor level and high level may not be obvious, but 
this can be shown under fault simulation. High level fault modeling (HLFM) techniques 
have shown the potential ability to deal with at least some degree of nonlinearity in large 
systems.  
Unlike for linear systems, no technique currently guarantees for completely general 
nonlinear systems, even in principle, to produce a macromodel that conforms to any 
reasonable fidelity metric. The difficulty is due to the fact that nonlinear systems can be 
widely varied, with extremely complex dynamical behavior possible, which is very far from 
being exhaustively investigated or understood. Generally in view of the diversity and 
complexity of nonlinear systems, it is difficult to conceive of a single overarching theory or 
method that can be employed for effective modeling of an arbitrary nonlinear block.  
Models can be obtained either manually or automatically. Automated model generation 
(AMG) approaches are becoming an increasingly important component of methodologies 
for effective system verification. Similar to manual creation, AMG can generate lower order 
macromodels via an automated computational procedure by receiving the information from 
transistor level models (Roychowdhury 2003; Roychowdhury 2004). 
Unfortunately, there are not any approaches describing the use of AMG approaches for 
HLFM at a system level except for the publication in (Xia, Bell et al. 2010). For 
straightforward system simulation relatively simple models may be adequate, but they can 
prove inadequate during HLFM. The accuracy and speedup of existing models may be 
doubted when fault simulation is implemented because faulty behavior may force 
(nonfaulty) subsystems into highly nonlinear regions of operation, which may not be 
covered by their models. Multiple training data is required to cover the potentially wide 
range of operating conditions.  
The chapter is organized as follows. Section 2 reviews various AMG approaches using 
MATLAB. A specific AMG approach using MATLAB is presented in sections 3. Section 4 
demonstrates the results in simulated and real environments followed by conclusion for the 
chapter in section 5.  
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For clarity, an attempt has been made to adhere to a standard notational convention. Lower 
case boldface characters will generally refer to vectors. Upper case BOLDFACE characters 
will generally refer to matrices. Vector or matrix transposition will be denoted using (.)T and 
(.)* denotes conjugation for complex valued signals. K K×ℜ  denotes the real vector space of 
K×K dimensions. 

2. Review of automated model generation approaches using MATLAB 
Automatic generation of circuit models for handling strong nonlinearity has received great 
interest over the last few years. It is essential for realistic exploration of the design space in 
current and future mixed-signal SoCs (system-on-chips) and SiPs (system-in-packages). 
Generally such techniques take a detailed description of a block such as SPICE level netlist 
and then generate a much smaller macromodel via an automated computational procedure. 
The advantage of this approach is its generality. As long as the equations of the original 
system are available numerically, knowledge of circuit structure, operating principles and so 
on are not very important (Roychowdhury 2003).  
The model generated by AMG can be structured as either linear-time invariant (LTI), linear-
time varying (LTV), nonlinear-time invariant or nonlinear-time varying. LTI no doubt form 
the most important class of dynamical systems. The basic structure of a LTI block for mixed 
mode circuits is illustrated in Fig. 1, where u(t) and y(t) represent inputs, and output to the 
system in the time domain, respectively. U(s) and Y(s) are forms in the Laplace domain. The 
definitive property of any LTI system is that the input and output are related by convolution 
with an impulse response h(t) in the time-domain, i.e., ( ) ( ) * ( )y t x t h t= , their transforms are 
related to multiplication with a system transfer function H(s), i.e., ( ) ( ) ( )Y s X s H s= ⋅ . Their 
relationship can be expressed by partial differential equations (PDEs) or ordinary 
differential equations (ODEs). Such differential equations can be easily implemented using 
analogue hardware description language (AHDL).  
A typical model structure for LTI is AutoRegressive with eXogenous (ARX) that is able to 
describe any single-input single-output (SISO) linear discrete-time dynamic system (Ljung 
1999). 
 

Impulse response h(t)
ODEs/PDEs 

Transfer function H(s)
u(t)/U(s) y(t)/Y(s) 

 
Fig. 1. Linear time-invariant block 

LTV models are used in practice because most real-world systems are time-varying as a 
result of system parameters changing as function of time. They also permit linearization of 
nonlinear systems in the vicinity of a set of operating points of a trajectory. Similar to LTI 
systems, LTV can also be completely characterized by impulse responses or transfer 
functions. The main difference between them is that time-shift in the input of LTV does not 
necessarily result in the same time-shift of the output. A basic structure of LTV is depicted 
in Fig. 2, where u(t) and y(t) represent inputs, and output to the system in the time domain, 
respectively. U(s) and Y(s) are forms in the Laplace domain.  
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Impulse response h(t,tau)
T-V ODEs/PDEs 

Transfer function H(t,s) 
u(t)/U(s) y(t)/Y(s)

 
Fig. 2. Linear time-varying block 

LTV are capable of handling time variation in state-space forms (Ljung 1999). Furthermore, 
nonlinear models such as the Wiener and Hammerstein model, and Situation-Dependent 
AutoRegressive with eXogenous (SDARX) give much richer possibilities to describe 
systems.  
These models can be generated by using estimation algorithms, which comprise lookup 
tables (Yang and McGaughy 2004), radial basis functions (RBF) (Mutnury, Swaminathan et 
al. 2003), artificial neural networks (ANN) (Davalo and Naïm 1991; Zhang and Gupta 2000) 
and its derivations such as fuzzy logic (FL) (Verbruggen and Babuška 1999) and neural-
fuzzy network (NF) (Uppal and Patton 2005), and regression (Simeu and Mir 2005). Model 
generators can also be categorized into the black, grey or white box approaches, depending 
on the level of existing knowledge of the system’s structure and parameters. Dong et al 
(Dong and Roychowdhury 2005) indicates that white-box methods can produce more 
accurate macromodels than black-box methods. However, this work was only applied to a 
limited number of digital circuits.  
Regression using MATLAB is an approach that is of interest in this chapter. It is a form of 
statistical modeling that attempts to evaluate the relationship between one variable (termed 
the dependent variable) and one or more other variables (termed the independent variables) 
(Ljung 1999). It can be divided into linear regression and nonlinear regression for generating 
linear or nonlinear models. (McConaghy, Eeckelaert et al. 2005; McConaghy and Gielen 
2005) use the regression approach (Hong, Sharkey et al. 2003), via the predicted residual 
error sums of squares (PRESS) statistic (Breiman 1996), to test predictive robustness of linear 
models that are generated by an automatic symbolic model generator named CAFFEINE 
(Canonical Functional Form Expression in Evolution). CAFFEINE takes SPICE simulation 
data as inputs to generate open-loop symbolic models by using genetic programming (GP) 
via a grammar that is specially designed to constrain the search to a canonical functional 
form without cutting out good solutions. Results show that these models are interpretable, 
and handle nonlinearity with better prediction quality than posynomials (coefficients of a 
polynomial need not be positive, and the exponents of a posynomial can be real numbers, 
while for polynomials they must be non-negative integers). However, McConaghy et al did 
not address whether the generated model can be fitted into a large system and model 
nonlinearity well. Additionally, speed of model generation was not mentioned. 
Unfortunately, AMG may produce high order models of excessive complexity for both 
continuous-time and discrete-time systems, so model order reduction (MOR) techniques are 
required. The purpose of MOR is to use the properties of dynamical systems in order to find 
approaches for reducing their complexity, while preserving (to the maximum possible 
extent) their input-output behavior. It comprises a branch of systems and control theory 
(Roychowdhury 2004). Combining MOR with the model structures produces new model 
structures dubbed LTI MOR (Pillage and Rohrer 1990), LTV MOR (Phillips 1998; 
Roychowdhury 1999) and weakly nonlinear methods including polynomial-based (Li and 
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Pileggi 2003; Li and Pileggi 2005), trajectory piecewise linear (TPWL) (Rewienski and White 
2001), and piecewise polynomial (PWP) (Dong and Roychowdhury 2003).  
Mathematically, a LTI model with a MOR method is expressed as a set of differential 
equations. In (1) u(t) represents the input waveforms to the block and y(t) are the outputs. 
The number of inputs and outputs is relatively small compared to the size of x(t), which is 
the state of the internal variables of the block. A, B, C, D and E are constant matrices, 

& , , , ( )n p p p pn nE A R B R C R u t R× ××∈ ∈ ∈ ∈ . 
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MOR methods for LTI systems fall into two major groups: Projection-based methods and 
Non-projection based methods. The former consists of such methods as Krylov-subspace 
(moment matching methods), Balanced-truncation method, proper orthogonal decomposition 
(POD) methods etc. Krylov-subspace based techniques such as Padé-via-Lanczos (PVL) 
techniques (Feldmann and Freund 1995), Krylov-subspace projection methods were an 
important milestone in LTI MOR macromodeling (Grimme 1997). Non-projection based 
methods comprise methods such as Hankel optimal model reduction, singular perturbation 
method, various optimization-based methods etc. Via Krylov-subspace operation, reduced 
models are obtained in (2), where , , ,E A B C  are reduced order matrices, & q pE A R ×∈ , 

,   q p p qB R C R× ×∈ ∈ , W and V are matrices for spanning the matrices.  
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However, the reduced models using Krylov methods retained the possibility of violating 
passivity, or even being unstable (Roychowdhury 2003).  
LTI MOR may not be applicable for many functional blocks in mixed signal systems that are 
usually nonlinear. It is unable to model behaviors such as distortion and clipping in 
amplifiers. Therefore, LTV MOR is required. The detailed behavior of the system is 
described using time-varying differential equations as shown in (3): 
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The dependence of A, B, C, D and E on t is able to capture time-variation in the system. This 
time-variation is periodic in some practical case such as in mixers, the local oscillator input 
is often a square waveform or a sine waveform, switched or clocked systems are driven by 
periodic clocks (Roychowdhury 2003). 
Although LTV MOR may be used when modeling some weakly nonlinear systems, in most 
of cases nonlinear system techniques are required for such systems. A standard nonlinear 
system formation is based on a set of nonlinear differential-algebraic equations (DAEs) 
shown in (4), where, nx R∈ , n is the order of matrices, x(t) and y(t) indicate the vectors of 
circuit unknowns and outputs, u is the input, ( )q ⋅  and ( )f ⋅  are nonlinear vector functions, 
and b and c are input and output matrices, respectively. 
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A polynomial approximation is simply extension of linearization, with f(x) and q(x) replaced 
by the first few terms of a Taylor series at the bias point x0 as shown in (5), where q(x) = x 
(assumed for simplicity), ⊗  is the Kronecker tensor products operator, 
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leverage an existing body of knowledge on weakly polynomial differential equation 
systems. 
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Volterra series theory (Schetzen 1980) and weakly nonlinear perturbation techniques 
(Nayfeh and Balachandran 1995) can then be used to justify a relaxation-like approach for 
this kind of systems. The former provides an elegant way to characterize weakly nonlinear 
systems in terms of nonlinear transfer functions (Volterra 2005). By using Volterra series, 
response x(t) in (5) can be expressed as a sum of responses at different orders, i.e.,  
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nonlinear responses in (5) need to be solved recursively using Volterra series as shown from 
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The nth-order response can be related to a Volterra kernel of order n, hn(τ1,...,τn), which is an 
extension to the impulse response function of the LTI system exhibited in (9), to capture 
both nonlinearities and dynamics by convolution. Volterra kernels are the backbone of any 
Volterra series. They contain knowledge of a system’s behavior, and predict the response of 
the system (Volterra 2005). 
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Alternatively, a variant that matches moments at multiple frequency points is shown in (10), 
where hn(τ1,...,τn) is transformed into the frequency domain via Laplace transform.  
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A polynomial approximation is simply extension of linearization, with f(x) and q(x) replaced 
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1( , , )n nH s s…  is referred to as the nonlinear transfer function of order n. The nth-order 
response, xn, can also be related to the input using 1( , , )n nH s s… .  
Unfortunately, the size of Volterra based nonlinear descriptions often increase dramatically 
with problem size. Li et al  combines and extends Volterra and projection approaches using 
a method termed NORM (Nonlinear model Order Reduction Method) to reduce the model 
size (Li and Pileggi 2003).  
Outside a relatively small range of validity, but polynomials are known to be extremely 
poor for global approximation (Roychowdhury 2004), so other methods such as piecewise 
approximation can be used to achieve better solutions. (Rewienski and White 2001) 
developed an approach termed trajectory piecewise-linear (TPWL) using a piecewise-linear 
(PWL) system. Initially Rewienski et al select a reasonable number of “centre points” along a 
simulation trajectory in the state space, which is generated by exciting the circuit with a 
representative training input. Around each centre point, system nonlinearities are 
approximated by implicitly defined linearization. A model is generated if the current state 
point x is ‘close enough’ to the last linearized point xi, i.e., ix x ε− < , which means that x 
lies within a circle of radius of ε and centred at xi. Each of the linearized models takes the 
form shown in (11), with expansions around states x0 ,…, xs-1: where x0 is the initial state of 
the system and Ai are the Jacobians of f(.) evaluated at states xi.  

 ( ) ( )i i i
dx f x A x x Bu
dt

= + − +  (11) 

A Krylov subspace projection method is then used to reduce the complexity of the linear 
model within each piecewise region. Rewienski et al then combined all s linear models 
according to a weighting equation in (12), where ( )iw x� are weights depending on state x. 
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TPWL is more suitable for circuits with strong nonlinearities such as comparators, and has 
more advantages than PWL because as the dimension of the state-space in PWL grows one 
concern with these methods is a potential explosion in the number of regions which may 
severely limit simplicity of a small macromodel. However, Rewienski et al did not address 
the criterion of the training stimulus. Moreover, because PWL approximations do not 
capture higher-order derivative information, the ability of TPWL to reproduce small-signal 
distortion or intermodulation is limited. Therefore, Krylov-TBR TPWL was developed using 
TBR projection to obtain further order reduction (Vasilyev, Rewienski et al. 2003).  
The piecewise polynomial (PWP) technique (Dong and Roychowdhury 2003), which is a 
combination of polynomial model reduction with the trajectory piecewise linear method, is 
able to improve TPWL by dividing the nonlinear state-space into different regions, each of 
which is fitted with a polynomial model around the centre expansion point. These points 
can be selected either from “training simulation” or from DC sweeps. The resulting 
macromodel is refined incrementally by new piecewise regions until a desired accuracy is 
reached. Firstly they expand a polynomial function into many points, each of them is then 
simplified by approximating the nonlinear function in each piecewise region to obtain much 
smaller size models. These models are then stitched together. Finally a scalar weight 
function is used to ensure fast and smooth switching from one region to another. A key 
advantage of PWP is that a macromodel generated can capture not only linear weakly 
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nonlinear (such as distortion and intermodulation) but also strongly nonlinear (such as 
clipping and slewing) system dynamics. Moreover, fidelity in large-swing and large-signal 
analysis can be retained. PWP is further implemented in (Dong and Roychowdhury 2004) 
for extracting broadly applicable general-purpose macromodels from SPICE netlists such 
that the generated model is able to capture different loading effects, simultaneous switching 
noise (SSN), crosstalk noise and so on. Furthermore, a speed up of eight times simulation 
speed is achieved (Dong and Roychowdhury 2005). However, multiple training data has to 
be used to cover different operating regions. 
Xia et al (Xia, Bell et al. 2010) developed an algorithm to generate multiple macromodels 
automatically to perform HLFM and high level modeling (HLM). Moreover, the models 
generated contain low-orders (2nd), so MOR is not required. More details on the approach 
will be discussed in section 3. 

3. The multiple model generation approach using MATLAB 
3.1 Introduction to least square estimate 
Linear models can be obtained using recursive least square (RLS) estimation. It is a 
mathematical procedure for finding the best-fitting curve to a given set of points by 
minimizing the sum of the squares of the offsets of the points from the curve (Ljung 1999). 
Its general process is shown in Fig. 3, where u(t) is the input stimulus, which is used to 
connect both a system and the estimator; y(t) is the output response from a system using the 
transistor level simulation (TLS); yE(t) is the output response using an estimation approach 
such as the RLS. 
 

 

Output y(t)Input  u(t)

 
A system 

(TLS) 

 
Estimator  

(RLS) 
 

Original 
 signals 

- 

Estimated 
Output yE(t) 

 
Fig. 3. General process of the estimation 

Both the system and estimator use the input stimulus to produce individual output 
response, which are then compared, if the difference is significant, the parameters of the 
model need to be modified in order to reduce difference. 
Wilkinson et al (Wilkinson, Roberts et al. 1991) combined RLS estimation with the delta 
operator (Middleton and Goodwin 1990) to obtain the transfer function of a real time 
controller for a servo motor system instead of using discrete-time transfer function because 
that model coefficients in discrete-time models strongly depend on the sampling rate, which 
result in aliasing and slow simulation time. By using the delta operator the coefficients 
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produced relate to physical quantities, as in the continuous-time domain model, but are less 
susceptible to the choice of sampling interval (Wilkinson, Roberts et al. 1991). Initially a 
discrete-time system is given in (13): 

 1 2 1 2( ) ( 1) ( 2) ( ) ( 1) ( 2) ( )na nby t a y t a y t a y t na b u t b u t b u t nb= − − − − − − + − + − + −… …  (13) 

A linear regression form of the system is shown in (14): 

 ( ) ( )Ty t tϕ θ=  (14) 

where θ is the parameter vector shown in (15), φ(t) is the regression vector displayed in (16). 
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The least square estimate (LSE) of the parameter vector can be found from measurements of 
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Its recursive form is expressed in (18), where ε(t) is the prediction error, λ(t) represents 
forgetting factor (ff), P(t) indicates covariance matrix, and L(t) is the gain vector. 
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The linear regression is then restructured using the delta operator as shown in (19) 
(Middleton and Goodwin 1990), where δ represents delta, q is the forward shift operator 
and Ts is the sampling interval. The relationship between δ and q is a simple linear function, 
so δ can offer the same flexibility in the modeling of discrete-time systems as q does.  
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This operator behaves as a form of the forward-difference formula, as shown in (20) (Burden 
and Faires 1985). This is used extensively in numerical analysis for computing the derivative 
of a function at a point.  
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The delta operator makes use of the discrete incremental difference (or delta) operator that 
whilst operating on discrete data samples, is similar to those of the continuous-time Laplace 
operator. A better correspondence can be obtained between continuous and discrete time if 
the shift operator is replaced by a difference operator that is more like a derivative 
(Middleton and Goodwin 1990).  
A similar procedure is used to achieve regression based on the delta operator. This starts by 
considering a continuous time transfer function shown in (21).  
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When Ts is sufficiently short, the continuous time transfer function G(s) is equal to the delta 
transfer function G(δ) (Middleton and Goodwin 1990) displayed in (22).  
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After arranging this, equation (23) is obtained: 
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This can be written as (24) (Middleton and Goodwin 1990), which is similar to (14): 
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Using a similar approach to LSE in the discrete-time transform, the parameter vector is 
obtained using the delta operator in (25):  
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RLS is also obtained in (26), as shown that it is similar to equation (18), the difference is that 
the vectors including , ,yθ ε  have been deltarised. 
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produced relate to physical quantities, as in the continuous-time domain model, but are less 
susceptible to the choice of sampling interval (Wilkinson, Roberts et al. 1991). Initially a 
discrete-time system is given in (13): 
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A linear regression form of the system is shown in (14): 
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However, the approach in (Wilkinson, Roberts et al. 1991) is only available to single-input 
single-output (SISO) systems. 

3.2 System development using delta transfer function 
In this section a novel AMG approach named multiple model gradation system using delta 
transfer operator (MMGSD) is developed. The concept of process is shown in Fig. 4. The 
MMGSD generates macromodels by observing the variation in output voltage error against 
input range. The advantage is that the estimated signal can be adjusted recursively in time 
to handle nonlinearity. It consists of two parts: the automated model estimator (AME) and 
automated model predictor (AMP). The AME implements the model generation algorithm, 
and the AMP uses these models from AME to predict signals in the simulation with 
different types of stimuli. The system is based on a set of models n. The location of each 
model is decided by the thresholds seen in u(t). 
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Fig. 4. Schematics for the procedure of MMGSD 

The AME comprises three stages: the pre-analysis, estimator and post-analysis. The general 
structure is shown in Fig. 5. 
Pre-analysis is mainly to set up conditions such as input range and the number of intervals 
for model creation and is only performed once; the estimator is used to determine the 
quality of output data; post-analysis is the critical step because procedures for creating 
models are implemented here. This process terminates when no new model is created.  
Pre-analysis is mainly to set up conditions such as input range. In the whole algorithm, this 
stage is only run once. The Estimator process starts by running through all samples using 
the for loop in MATLAB. The indices for creating the threshold are found with a find 
statement. A statement min is used to guarantee that only the smallest index is selected, and 
then the new model pointed by this index is generated. Parameters (th) and the covariance 
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matrix (p) in each model need to be created and updated. The innovation error (epsi) and 
residual error (epsilon) are all calculated. Moreover, the prefilter needs also to be updated. 
The estimation is not over until all samples finish (Ljung 1999). 
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Fig. 5. The flowchart for the AME 

Post-analysis is the critical step because procedures for creating models are run here. The 
workflow is described in Fig. 6. The decision to add a new model to an interval of input 
voltage is based on (27), where mediumRange is half of the difference between the 
maximum amplitude of the error (highInterval) and the minimum amplitude of the error 
(lowInterval) for the interval. criticalRange is the equivalent summation. criteria calculated 
for the interval results from the comparison of these measures and that of the central 
interval of the simulation (mediumRange(central)).  
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If the difference between two mediumRange is greater than the criticalRange, one model is 
added within the jth interval (if there are j intervals), otherwise no action is taken. If j is 
greater than a central point, the threshold will be set at the lower range, otherwise it is set at 
the higher range in order to obtain the position close to the central point. In order to increase 



  
Engineering Education and Research Using MATLAB 

 

414 

However, the approach in (Wilkinson, Roberts et al. 1991) is only available to single-input 
single-output (SISO) systems. 

3.2 System development using delta transfer function 
In this section a novel AMG approach named multiple model gradation system using delta 
transfer operator (MMGSD) is developed. The concept of process is shown in Fig. 4. The 
MMGSD generates macromodels by observing the variation in output voltage error against 
input range. The advantage is that the estimated signal can be adjusted recursively in time 
to handle nonlinearity. It consists of two parts: the automated model estimator (AME) and 
automated model predictor (AMP). The AME implements the model generation algorithm, 
and the AMP uses these models from AME to predict signals in the simulation with 
different types of stimuli. The system is based on a set of models n. The location of each 
model is decided by the thresholds seen in u(t). 
 

 

Output y(t)Input  u(t) 

1st model  

2nd model 

nth model 

Predicted 
signal 

 
AME 

 
AMP  

. 

. 

. 

 

Original 
 signals Input  

u(t) or 
Other types 
of stimuli 

 
Model library   

 

 
Fig. 4. Schematics for the procedure of MMGSD 

The AME comprises three stages: the pre-analysis, estimator and post-analysis. The general 
structure is shown in Fig. 5. 
Pre-analysis is mainly to set up conditions such as input range and the number of intervals 
for model creation and is only performed once; the estimator is used to determine the 
quality of output data; post-analysis is the critical step because procedures for creating 
models are implemented here. This process terminates when no new model is created.  
Pre-analysis is mainly to set up conditions such as input range. In the whole algorithm, this 
stage is only run once. The Estimator process starts by running through all samples using 
the for loop in MATLAB. The indices for creating the threshold are found with a find 
statement. A statement min is used to guarantee that only the smallest index is selected, and 
then the new model pointed by this index is generated. Parameters (th) and the covariance 

 
Automated Model Generation Approach Using MATLAB   

 

415 

matrix (p) in each model need to be created and updated. The innovation error (epsi) and 
residual error (epsilon) are all calculated. Moreover, the prefilter needs also to be updated. 
The estimation is not over until all samples finish (Ljung 1999). 
 

start 

Pre-analysis 

Create a model 

Post-analysis   

Estimator 

yes

no 

end 

Is new model 
needed? 

 
Fig. 5. The flowchart for the AME 

Post-analysis is the critical step because procedures for creating models are run here. The 
workflow is described in Fig. 6. The decision to add a new model to an interval of input 
voltage is based on (27), where mediumRange is half of the difference between the 
maximum amplitude of the error (highInterval) and the minimum amplitude of the error 
(lowInterval) for the interval. criticalRange is the equivalent summation. criteria calculated 
for the interval results from the comparison of these measures and that of the central 
interval of the simulation (mediumRange(central)).  

 
( ) / 2

( ) / 2
[ ( )]

mediumRange highInterval lowInterval
criticalRange highInterval lowInterval
criteria mediumRange mediumRange central criticalRange

= −
= +

= − −
 (27) 

If the difference between two mediumRange is greater than the criticalRange, one model is 
added within the jth interval (if there are j intervals), otherwise no action is taken. If j is 
greater than a central point, the threshold will be set at the lower range, otherwise it is set at 
the higher range in order to obtain the position close to the central point. In order to increase 



  
Engineering Education and Research Using MATLAB 

 

416 

simulation speed a shift mechanism is used to delete equivalent models. Finally the new 
threshold array is sorted into monotonic order. Only one model is created per iteration, 
because the error profile is recalculated whenever a model is added. 
The AMP is used to verify the AME system. It loads models generated by the AME to 
predict output responses. 
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Fig. 6. The algorithm for post-analysis 
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The model structure is based on the RARMAX system (Ljung 1999) but with modification 
since RARMAX is under the discrete-time transform, whereas the MMGSD is based on delta 
transform. Therefore, during simulation (estimation) some quantities in the system need to 
be either deltarised or undeltarised, for example, the residual error epsilon in the AME and 
AMP is already deltarised, but during the vector update the undeltarised value is required. 
Therefore, we create two functions in the MMGSD: the Deltarise function and Undeltarise 
function. The former is to generate derivative vectors based on original vectors. The 
undeltarise function requires original data during the estimation. These two functions are 
used in different places in the MMGSD. 

3.2.1 The deltarise function 
The deltarise function is used to find the deltarised value using the delta operator given in 
(28), where delta (δ) is related to both the present and future values, Ts is the sampling rate, 
q is the forward shift operator used to describe discrete models, which is shown in (29).   

 1

s

q d
T dt

δ
−

= ≅  (28) 

 1k kqx x +=  (29) 

The equivalent form of (29) is obtained in (30), the relationship between δ and q is a simple 
linear function, so δ can offer the same flexibility in the modeling of discrete-time systems as 
q does. 

 1 ( ) ( )k k s s s
k

s s

x x x kT T x kT dxx
T T dt

δ + − + −
= = ≅  (30) 

The use of delta operator and its relationship is illustrated in the following example. It is a 
discrete-time model, but only output vectors are displayed in (31(a)). Initially each vector is 
subtracted from the one next to it, as seen in (31(b)), and is then divided by Ts, so deltarised 
value is obtained, as seen in (31(c)). However, the last one highlighted by the rectangle is not 
involved in the calculation. 

 ( ) ( ) ( ) ( )y t                y t 1         y t 2      y t 3− − −  (31(a)) 

 ( ) ( ) ( )y t 1          y t 2         y t 3− − −  (31(b)) 

 ( ) ( ) ( )y t 1     y t 2      y t 3δ δ δ− − −  (31(c)) 

 ( ) ( )y t 2     y t 3δ δ− −   (31(d)) 

To achieve δ2y(t-3), equation (31(c)) is subtracted from (31(d)), and then divided by Ts. The 
procedure is used to obtain δ3y(t-3) seen in (31(g)).  

 ( ) ( )2 2y t 2     y t 3δ δ− −  (31(e)) 

 ( )2 3y tδ −   (31(f)) 
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 ( )3 3y tδ −  (31(g)) 

Thus, the deltarised version of (31(a)) is obtained shown in (32). 

 ( ) ( ) ( ) ( )3 2 1 03      3     3    3y t y t y t y tδ δ δ δ− − − −  (32) 

The same procedure is also used for other vectors such as the inputs vectors u, e and the 
noise vector c. Delay is not included here. However, there is some difference such that in the 
input vector the current deltarised values (u(t), v(t)) are not required. 

3.2.2 The undeltarise function  
This function is based on (28) but with the modification, q = δTs+1, in order to model at the 
current time. An example is also used to demonstrate how this reverse algorithm works. It is 
a model in delta transform, but only the output vectors y are shown in (33(a)). Firstly each 
vector, except for the last one, highlighted by the rectangle because it is already 
undeltarised, is multiplied by Ts in (33(b)). We then add the output vectors as shown in 
(33(b)) and (33(c)), so undeltarised vectors are obtained in (33(d)), i.e., y(t-2) is obtained. 
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To achieve y(t-1), equation (33(d)) is multiplied by Ts, and then we add the vectors shown in 
(33(e))- (33(g)). 
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Finally y(t) is obtained using the same procedure as above. 
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Therefore, the undeltarised version of (33(a)) is achieved shown in (34). 
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The number of iterations depends on a variable called numb, the reason to use the variable is 
that during undeltarising, vectors such as output vector need to be undeltarised once to 
obtain the value at next time, but during the prefilter update, it needs to be fully 
undeltarsied. If a full undeltarisation is required, the variable is set to 0, otherwise an integer 
is selected. If the number is greater than the size of the vector array an error message is 
produced. 

3.2.3 Two functions utility in MMGSD 
It is known that the delta operator is a very high gain system because of the sampling 
interval Ts (10us in this case), so it is important not to put a vector or a variable in the wrong 
place during the manipulation, otherwise, the whole process may numerically explode very 
quickly.  
In this subsection some key modifications in the MMGSD based on the functions defined 
above are described in the following subsections. 

3.2.3.1 The AME  
In order to obtain the deltarised output data dy at current time and the deltarised vector 
array dphi, the vector array phi (φ) and the original output data y at current time are 
needed. The deltarise function is employed in (35). 

 ( )( )4y  y ,  dphi deltarise phi iiia Ts= ⎡ ⎤⎣ ⎦  (35) 

where iiia indexes the array for the output vector in phi. Ts is the sampling interval, dphi4y 
is the deltarised vector array for output, in which the first element is dy, and all other 
elements are assigned to dphi(iiia).  
Similarly input vectors u and e, and the noise vector c are deltarised values for dphi. 
However, their deltarised values at the current time are not required.  
Secondly in the prefilter ztil in RML, the relationship between psi (ψ) and phi (φ) in z 
transform is expressed as: phi(t) = c(z)*psi(t), or  phi(t) = psi(t)+c1psi(t-1)+…+cncpsi(t-nc), 
where c is the polynomial coefficients [1, c1, …, cnc] for noises to improve the property of psi 
so that the estimator converges more reliable. It is seen that phi(t) is related to psi at both 
current and previous time. The relationship between psi and phi in delta (δ) transform is 
expressed as in (36), where the c polynomial is a deltarised version of the coefficients, 

 ( ) ( ) ( )phi t c psi tδ= ⋅  (36) 

or its full expression in (37).  

 1 1 2
1( ) ( ) ( ) ... ( )nc nc nc

ncphi t nc psi t nc c psi t nc c psi t ncδ δ δ− − −− = − + − + + −  (37) 

To achieve deltarised psi at current time, this equation is manipulated as shown in (38). It is 
a two-dimensional array, the number of rows is equal to the size of vectors in phi and the 
number of columns is equal to the number of terms in the c polynomial.  

 ( ) ( ) ( ) ( )1 1 2
1      nc nc nc

ncpsi t nc phi t nc c psi t nc c psi t ncδ δ δ− − −− = − − − −…− −  (38) 
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 ( )3 3y tδ −  (31(g)) 

Thus, the deltarised version of (31(a)) is obtained shown in (32). 

 ( ) ( ) ( ) ( )3 2 1 03      3     3    3y t y t y t y tδ δ δ δ− − − −  (32) 

The same procedure is also used for other vectors such as the inputs vectors u, e and the 
noise vector c. Delay is not included here. However, there is some difference such that in the 
input vector the current deltarised values (u(t), v(t)) are not required. 
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This function is based on (28) but with the modification, q = δTs+1, in order to model at the 
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To achieve y(t-1), equation (33(d)) is multiplied by Ts, and then we add the vectors shown in 
(33(e))- (33(g)). 

( )

( )

( )

( )

( )

( )

2 1
s s

1 0

1

T y t 2 T y t 2 (33(e))

                                                    (33(f))y 2 y 2

(33(g))y t 1y t 1

t t

δ δ

δ δ

δ

− −
+ +

− −

−−

 

Finally y(t) is obtained using the same procedure as above. 
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where iiia indexes the array for the output vector in phi. Ts is the sampling interval, dphi4y 
is the deltarised vector array for output, in which the first element is dy, and all other 
elements are assigned to dphi(iiia).  
Similarly input vectors u and e, and the noise vector c are deltarised values for dphi. 
However, their deltarised values at the current time are not required.  
Secondly in the prefilter ztil in RML, the relationship between psi (ψ) and phi (φ) in z 
transform is expressed as: phi(t) = c(z)*psi(t), or  phi(t) = psi(t)+c1psi(t-1)+…+cncpsi(t-nc), 
where c is the polynomial coefficients [1, c1, …, cnc] for noises to improve the property of psi 
so that the estimator converges more reliable. It is seen that phi(t) is related to psi at both 
current and previous time. The relationship between psi and phi in delta (δ) transform is 
expressed as in (36), where the c polynomial is a deltarised version of the coefficients, 
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or its full expression in (37).  
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To achieve deltarised psi at current time, this equation is manipulated as shown in (38). It is 
a two-dimensional array, the number of rows is equal to the size of vectors in phi and the 
number of columns is equal to the number of terms in the c polynomial.  
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When using the z transform, (Ljung 1999) makes use of the fact that past values of psi and 
phi are readily available in the estimator, so that psi(t) can be obtained easily from available 
data vectors in the estimator. This is because the nature of the data does not change with 
storage position in the data vector. However, when using the delta transform ( )-1 -nc psi t ncδ  
cannot be obtained using the same procedure, because samples in the data vector are 
different orders of δ. All these data vectors have to be refilled at each sampling interval.  
The vectors in ( )1nc psi t ncδ − −  are shown in (39), if, for example, the coefficients array nn is 
[3 4 2 1 4]. 
 
 

2 0 3 0 1 0 3 0( 3) ( 3), ( 4) ( 4), ( 2) ( 2),1, ( 4) ( 4)y t y t u t u t t t v t v tδ δ δ δ δ ε δ ε δ δ− − − − − − − − − −… … …  (39) 
 
 
 

2 0( 3) ( 3)y t y tδ δ− − − −…  are obtained by deltarising ( 1) ( 3)y t y t− − − −…  using deltarise 
function. The undeltarise function in 0 is also required to firstly fully undeltarise each row 
of dpsi at previous time to achieve the current time psi(t), e.g., ( 1) ( 3)y t y t− − − −…  is 
achieved by fully undeltarising 2 0( 3) ( 3)y t y tδ δ− − − −… . The undeltarise function is 
employed again but only for a single iteration (numb = 1) to obtain dpsi the next time, so 
this matrix is shifted forward once. The last term (δ0psi) in the array is then thrown away, 
so δ1psi becomes δ0psi and so on in order to add the new array in front and keep the 
algorithm consistent.  
Finally the vector array phi is updated with the new estimation including the noise vector 
that is updated by residual error epsilon. We must keep in mind that depsilon is the 
deltarised version of epsilon, in this case we only have depsilon at current time, thus the 
undeltarise function is needed for epsilon, as shown in (40). 
 

 epsilon = undeltarise([depsilon dphi(iiic)], Ts, 0) (40) 
 

where dphi(iiic) includes noise vectors at previous time, iiic is the index array for noise 
vectors in dphi, Ts is the sampling rate, 0 indicates the full undeltarisation as has been 
discussed above.  

3.2.3.1 The AMP 

Similar to the AME both the deltarise and undeltarise functions are required through the 
system. Unlike the AME, the predicted value y is used for updating the vector array phi, 
whereas in the AME inputs u, e and output y are obtained from the training data.  
To obtain the output data y, dy is fully undeltarised by employing the undeltarise function 
shown in (41): 
 

 y = undeltarise([dy  -dphi(iiia)], Ts, 0) (41) 
 

where dphi(iiia) includes the previous deltarised output vector, iiia is the array for the 
outputs in dphi, Ts is the sampling rate, 0 indicates the full undeltarisation is utilized.  

4. Results and discussions 
In this subsection the MMGSD is evaluated based on two experiments. The data obtained 
from a two-stage CMOS operational amplifier (op amp) as shown in Fig. 7. The op amp is 
used in an open-loop configuration.  
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Fig. 7. Schematic of the two-stage CMOS operational amplifier 

4.1 A single model detection 
The aim of the experiment is to prove that it is able to hunt for known models and converges 
well. The process follows two steps: 
1. The AMP system is applied to a known linear model. Both input data and output data 

are stored in a text file. 
2. The AME generates the model based on these data. 
The reason to work in the opposite way is that the AMP is less complicated than the AME 
and it is easier to find out whether or not the delta operator works well in the MMGSD. The 
system used in this example is a linear model given in (42). 
 

 2

(20 500) (10 250) 250
20 500

in ip offset
o

s V s V V
V

s s
− + + + +

=
+ +

 (42) 

 
 

Two types of training data are generated from the PRBSG for the MISO AMP: one is a 0.6V, 
50Hz square waveform with a 0.12V, 100kHz PRBS superimposed on it for the inverting 
input, a similar signal but with lower amplitude and frequency is applied to the 
noninverting input with 14,000 samples. Another training waveform is a 0.2V, 100Hz 
triangle waveform with a 0.05V, 100kHz PRBS superimposed on it for the inverting input, 
the second input is a similar signal but with lower amplitude and frequency for the 
noninverting input with 14,000 samples. 
The AME is employed to generate the model seen in (43) with Ts of 10us. It is seen that two 
models can be matched referring to their coefficients.  
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employed again but only for a single iteration (numb = 1) to obtain dpsi the next time, so 
this matrix is shifted forward once. The last term (δ0psi) in the array is then thrown away, 
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Finally the vector array phi is updated with the new estimation including the noise vector 
that is updated by residual error epsilon. We must keep in mind that depsilon is the 
deltarised version of epsilon, in this case we only have depsilon at current time, thus the 
undeltarise function is needed for epsilon, as shown in (40). 
 

 epsilon = undeltarise([depsilon dphi(iiic)], Ts, 0) (40) 
 

where dphi(iiic) includes noise vectors at previous time, iiic is the index array for noise 
vectors in dphi, Ts is the sampling rate, 0 indicates the full undeltarisation as has been 
discussed above.  

3.2.3.1 The AMP 

Similar to the AME both the deltarise and undeltarise functions are required through the 
system. Unlike the AME, the predicted value y is used for updating the vector array phi, 
whereas in the AME inputs u, e and output y are obtained from the training data.  
To obtain the output data y, dy is fully undeltarised by employing the undeltarise function 
shown in (41): 
 

 y = undeltarise([dy  -dphi(iiia)], Ts, 0) (41) 
 

where dphi(iiia) includes the previous deltarised output vector, iiia is the array for the 
outputs in dphi, Ts is the sampling rate, 0 indicates the full undeltarisation is utilized.  

4. Results and discussions 
In this subsection the MMGSD is evaluated based on two experiments. The data obtained 
from a two-stage CMOS operational amplifier (op amp) as shown in Fig. 7. The op amp is 
used in an open-loop configuration.  
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Fig. 7. Schematic of the two-stage CMOS operational amplifier 

4.1 A single model detection 
The aim of the experiment is to prove that it is able to hunt for known models and converges 
well. The process follows two steps: 
1. The AMP system is applied to a known linear model. Both input data and output data 

are stored in a text file. 
2. The AME generates the model based on these data. 
The reason to work in the opposite way is that the AMP is less complicated than the AME 
and it is easier to find out whether or not the delta operator works well in the MMGSD. The 
system used in this example is a linear model given in (42). 
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Two types of training data are generated from the PRBSG for the MISO AMP: one is a 0.6V, 
50Hz square waveform with a 0.12V, 100kHz PRBS superimposed on it for the inverting 
input, a similar signal but with lower amplitude and frequency is applied to the 
noninverting input with 14,000 samples. Another training waveform is a 0.2V, 100Hz 
triangle waveform with a 0.05V, 100kHz PRBS superimposed on it for the inverting input, 
the second input is a similar signal but with lower amplitude and frequency for the 
noninverting input with 14,000 samples. 
The AME is employed to generate the model seen in (43) with Ts of 10us. It is seen that two 
models can be matched referring to their coefficients.  
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4.2 High level fault modeling (HLFM) 
In this subsection HLFM is performed to evaluate the models generated using AMG in 
MATLAB. The training stimulus is a 2.5V, 83.33Hz triangle waveform with a 0.5V, 100kHz 
PRBS superimposed on it and connects to the inverting input of the open-loop op amp. A 
similar signal but with lower amplitude and frequency is applied to the noninverting input. 
The MMGSD generated five models to cover both fault-free and faulty situations. The model 
thresholds were -2.5V, -1.5V -0.5V, 0.5, 1.5V and 2.5V and number of training samples used 
for these models were 2263, 2010, 2267, 2452 and 3048, respectively. The generated models 
are then used to perform a fault simulation of a circuit built from these op amps.  
A standard quadratic low-pass filter, shown in Fig. 8, was used to investigate fault 
simulation with the generated model. The input signal was a 2.0V, 20Hz sinusoid. Transient 
analysis using SystemVision from Mentor Graphics results from 60ms to 200ms with a step 
of 0.1ms where used to compare output waveforms. 
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Fig. 8. The quadratic low-pass filter. 

Simulation of fault M9_dss_11 is shown in Fig. 9. Again the signal becomes nonlinear 
compared with the fault free case and in this instance the TLFS and HLFS are well matched 
throughout. TLFS takes 1.297s to complete simulation, and HLFS requires 2.543s 

5. Conclusion 
In this chapter automated model generation (AMG) techniques using MATLAB were 
outlined. The models generated were able to generate either SISO or MISO models from 
transistor level SPICE simulations. They showed the advantage and ability to perform high 
level fault modeling (HLFM) with the reasonable accuracy compared with transistor level 
fault simulation (TLFS). 
                                                 
1 short between drain and source on transistor 9 at op1 
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In section 1, various model structures were introduced, such as linear-time invariant (LTI) 
models, or nonlinear-time varying models.    
 

 
 

Fig. 9. The output signal from fault M9_dss_1 

In section 2, various estimation methodologies were concluded, which consisted of 
regression, table lookup, neural networks and so on. Particularly regression approaches 
were focused in this case. 
In section 3, an example of AMG termed multiple model generation system using delta 
operator (MMGSD) was introduced under MATLAB environment. We demonstrated how 
the delta operator was converted from the discrete-time operator, and how they could be 
used in the MMGSD.  
In section 4, two experiments were implemented. The first one was to demonstrate that the 
MMGSD was capable of detecting an existing model accurately. The second experiment 
proved that it could handle the low-pass filter and model nonlinear behaviors accurately.  
In summary, AMG approaches using MATLAB are efficient to support high level modeling 
and simulation, especially useful for high level fault modeling and simulation because of 
their accuracy.     
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1. Introduction 
The problem of surface approximation by means of soft mathematical functions is a relevant 
topic in Hydrology. The generation of these functions allows solving implicitly some of the 
most important calculation in order to predict the behavior of the hydrological basin. Thus, 
this work proposes the use of an Evolutionary Algorithm (EA) (Bäck, 1996) to generate 3-D 
mesh surface from a set of topographic data. In literature, there are only few existing works 
about the use of Evolutionary Algorithms (EAs) applied to the reconstruction of topographic 
surfaces, most of them are based on Genetic Algorithms (GAs) (Holland, 1975; Goldberg, 
1989) as an approximation polynomial parameter estimator. Thus, this paper introduces a 
Genetic Programming (GP) approach whose aim is to obtain a mathematical function that 
allows a compact representation of the surface of the topographic information. This surface 
generation problem is then formulated as symbolic regression. The use of EAs, specifically 
GP (Koza, 1990; Banzhaf et al., 1998), constitute a promise alternative for the traditional 
interpolation techniques that employ approximation polynomials, due to GP integrates in a 
natural way the common non-linearities present in complex interpolation problems. This 
proposal is then applied to a set of topographic data corresponding to the Mezcalapa River 
zone, which is the local name of the Grijalva River located at the southeast of the Mexican 
Republic and it is one of the most important rivers due to its flow and generation of electric 
energy.  
The GP algorithm is programmed in MATLAB® and the results produced by means of this 
GP approach give indication of a significant improvement in terms of the quality of the 
approximation in relation to the results obtained by means of approximation polynomials 
method applied to this region. In the following section a brief review of some works on 
mathematical modeling applied to Civil and Hydraulic Engineering are detailed. After that, 
description of genetic programming algorithm and its implementation in MATLAB are 
presented. The application of this evolutionary method to evolve mathematical models in 
order to construct topographic surface is presented. Finally results and conclusions are 
drawn. 
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2. Previous works 
The literature related to the application of EAs to the problem of topographic surface 
generation is sparse. Some related papers, in terms of mathematical modeling, are the one 
by Fujiwara and Sawai (1999), where the use of EAs is proposed to optimize 3-D facial 
images. The problem is formulated as the selection of n points from a total set of N points 
that constitutes the original image; but, by selecting only n points (n<N), the image can be 
reconstructed with a good approximation to the original one.  
Huang and Ho (2003) proposed a genetic algorithm again to select the n points where n<N 
and N is the number of points of the original image in order to approximate a surface. In this 
work, a crossover operator named OAX (Orthogonal Arrays Crossover) was introduced. 
Kodoma et al (2005) proposed the use of hybrid algorithms by combining matrix-based 
representation genetic algorithm and a simulated annealing algorithm to reduce the 
computing time; however, performance presented by this hybrid algorithm and the original 
proposal based only on genetic algorithms are similar.  
The work by Gálvez et al (2007) concerns to the problem of curve and surface fitting. They 
focus on the case of 3D point clouds fitted with Bézier curves and surfaces. Two Artificial 
Intelligence (AI) techniques are considered in this paper: the use of GAs and the functional 
networks scheme. Wagner et al (2007) present the ability of a state-of-the-art multi-objective 
EA to be successfully integrated in surface reconstruction software. 
Goinski (2008) proposes a novel technique for surface reconstruction from a points cloud in 
3D. The aim is to combine EAs with a recursive subdivision scheme. Paszkowicz (2009) 
reports recent use of GAs in various domains related to materials science, solid state physics 
and chemistry, crystallography, biology, and engineering. Shape and topology optimization 
is one of the applications reported in the field of engineering. 
Periaux et al (2009) compare the performances of two different optimization techniques for 
solving inverse problems; the first one deals with the Hierarchical Asynchronous Parallel 
Evolutionary Algorithms software (HAPEA) and the second is implemented with a game 
strategy named Nash-EA. 
In the context of GP, this has been used to solve symbolic regression problems. In Koza 
(1990), GP was used to generate a program to represent the colors of an image as a two 
dimensions array. Keller et al. (1999) proposed the use of GP to reconstruct surfaces of 
prototype pieces of industrial equipment. In this case, the objective is related to the works 
by Kodoma et al. (2005), Fujiwara and Sawai (1999) and Huang and Ho (2003). 
The generation of mathematical function by means of symbolic regression has been widely 
studied in the GP field, as shown by the following papers by Keijzer (2003), Streeter and 
Becker (2001), Iba and Nikolaev (2001), Parasuraman et al (2007), Miller and Harding (2008), 
Baumes et al (2009), Barmpalexis et al (2011), among others. It seems that the representation 
of surface plays an important role in a variety of disciplines including aided-design, 
computer vision, graphic computation and geographical signal and image processing. Thus, 
evolutionary algorithms, in particular genetic programming, have been promising areas to 
these applications.  
In the field of hydraulic engineering, the problem of approximating a soft mathematical 
function to a set of topographic data was considered (Mendoza et al., 1996). It required of 
getting an explicit mathematical expression and then the derivative of it in order to 
construct a model of coordinates curves adjusted to free surface. The problem was initially 
solved by representing the topographic elevation as a function of the dependent variables x-

 
A Matlab Genetic Programming Approach to Topographic Mesh Surface Generation 

 

429 

y, which was approximated to a third order Taylor series (Arfken, 1980). Coefficients were 
adjusted by a Least Square Algorithm. Obtained results were, in general, acceptable. 
However, there were a significant number of points where the proposed method did not 
provide appropriate estimation (Mendoza et al., 1996). These points corresponded to regions 
of peaks and valleys surrounded by very different topographic points.  
In order to improve the quality of the approximation, Mendoza (2002) proposed the use of 
algorithms belonging to the EAs field. As it is known, EAs are optimization techniques 
based on the concepts of natural selection and evolution. This work is then focused on the 
use of one of these evolutionary techniques, Genetic Programming (Banzhaf, et al., 1998).  
In the present work, representing a topographic surface by means of a mathematical 
function is proposed and the problem is formulated as a symbolic regression using 
traditional genetic programming. A GP Toolbox for MATLAB is then developed and 
detailed in next sections. 

3. Genetic programming 
Nature has provided the inspiration for the design of computational algorithms in a variety 
of ways. These computational processes have taken two main natural systems as their basis 
that is the brain and the genetic evolution theory. EAs are one of these computational models 
and are proposed in this work for modelling topographic surface. 
EAs, also known as Evolutionary Computation (EC), use computational models of 
evolutionary processes in the design and implementation of computer-based problem 
solving. A general definition and classification of these evolutionary techniques is given in 
Bäck (1996). He defines an EA as a search and optimisation algorithm, inspired by the 
process of natural evolution, which maintains a population of structures that evolve 
according to rules of selection and other operators such as recombination and mutation. 
Here, the structure of all evolution-based algorithms is shown in Figure 1. 
The adaptive search algorithm called Genetic Programming (GP) was designed by Koza 
(1990). GP is an evolution-based search model that is a subclass of the popular GAs 
[Holland, 1975; Goldberg, 1989]. Koza introduced a more complex representation based on 
computer programs. Although finding algorithms or programs is more difficult than finding a 
single solution, it is more useful since generalised solutions work for an entire class of tasks. 
 

PROGRAM Evolution-Based Algorithm 
 t = 0 
 Create Initial Population P(t) 
 Evaluate Initial Population P(t) 
 While (not termination_criterion) do 

 t = t + 1 
 Select Individuals for Reproduction P(t) from P(t-1) 
 Alter P(t) 
 Evaluate New Population P(t) 

 end 

Fig. 1. Evolution-based algorithm 
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To illustrate the hierarchical encoding used for GP, Figure 2 gives a simple example where 
the operations +, -, *, %, sin, cos, exp, sqrtp belong to the function set and the variables X 
and Y and the set of constants pi, 1, 2, 3, 4, and 5, constitute the terminal set. It is important 
to mention that division has been assigned the symbol “%”; this means protected division in 
order to avoid infinity results producing by operations like dividing by zero. It is also de 
case for square root operation where sqrtp function takes the absolute value of its argument. 
Note in Figure 2 that the parse tree is also equivalent to the prefix expression, as well as to 
the mathematical function and the MATLAB function.  
 

 
Fig. 2. A tree-based individual encoding and its equivalent representation in prefix notation, 
MATLAB program and mathematical function 

3.1 Genetic programming operators 

As for the conventional GA, reproduction and crossover are considered the main genetic 
operators, mutation being a secondary operator. 

3.1.1 Reproduction 

Reproduction in GP works in a similar way to that in a GA, being one of the foundations of 
the survival of the fittest. It is an asexual operator that selects an individual structure 
according to some selection method based on the fitness measures. The selected individual 
is then copied without any alteration to the new population. 

3.1.2 Crossover 

One of the main differences between GP and the traditional implementation of GA is the 
fact that GP crossover does not preserve any kind of context in the chromosome. This is due 
to the fact that the standard crossover defined by Koza (1990) exchanges subtrees which are 
chosen at random in both parents. Koza has pointed out that random subtree crossover 
maintains diversity in the population because crossing two identical structures, generally, 

 
A Matlab Genetic Programming Approach to Topographic Mesh Surface Generation 

 

431 

will create different offspring. This is because the crossover points are, in general, different 
in the two parents. 
Crossover works by first selecting a pair of structures from the current population. Then, a 
node rooted from each parent is randomly selected. These nodes become the roots for the 
sub-structures lying below the crossover point. In the next step, the sub-structures are 
exchanged between the parents producing two new structures which are usually of different 
sizes to their parents. Figure 4 illustrates the crossover operation over a function set and 
terminal set defined as for Figure 2. 
Note that for GP-crossover, the crossover point can be either a terminal or an internal point. 
If the crossover points in both parents are internal nodes, this means that function nodes are 
chosen as roots for the substructures to be exchanged. A second case of crossover occurs 
when a terminal node and an internal node, as the root of the substructure, are chosen in the 
first and second parents, respectively. When an internal node is selected, the number of 
arguments taken by the associated function must be considered in order to exchange a valid 
substructure.  
A third case of crossover occurs when the crossover node is a terminal in both parents. In 
this case, the size and shape of the parents do not modify but the arguments of the two 
functions are swapped. 

3.1.3 Mutation 

Mutation is considered a secondary operator. It operates by randomly selecting a node, 
which can be either a terminal or internal point, and replacing the associated sub-structure 
with a randomly generated subtree up to a maximum size. A Maximum Mutation Size 
(MMS) parameter is introduced which is different from the maximum tree size parameter, 
MS. 
In a conventional GA, the mutation operator introduces a certain degree of diversity into the 
population which is being beneficial. In contrast, the GP-crossover operation is the 
mechanism for diversification in the GP population. This fact is the justification given by 
Koza (1990) for using a 0% mutation probability. Hence, convergence of the population is 
unlikely in genetic programming. 
Nevertheless, Angeline (1996) has described a set of mutation operators named: grow, 
shrink, cycle, switch and numerical terminal mutation. These mutation schemes are defined 
as follows: 
Grow exchanges a randomly selected terminal point with a randomly generated subtree. 
Shrink substitutes a selected subtree with a single terminal. 
Cycle replaces a selected internal (a function) node by another function. 
Switch selects two subtrees from the same parent and then switches their positions. 
Numerical Terminal selects a single real-valued numerical (not a variable) terminal and 
adds to it Gaussian noise with a particular variance.  

4. A GA toolbox for MATLAB 
MATLAB is a high-level language and possesses a variety of already implemented functions, 
where problems can be easily coded in m-files. These facts make the programming of a GA 
in MATLAB an easy process. 
The Genetic Algorithm Toolbox uses MATLAB matrix functions to build a set of routines for 
implementing a wide range of genetic algorithm methods (Chipperfield et al., 1994). 
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To illustrate the hierarchical encoding used for GP, Figure 2 gives a simple example where 
the operations +, -, *, %, sin, cos, exp, sqrtp belong to the function set and the variables X 
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Fig. 2. A tree-based individual encoding and its equivalent representation in prefix notation, 
MATLAB program and mathematical function 
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MATLAB essentially supports only one data type, a rectangular matrix of real or complex 
numeric elements. Thus, four data structures are defined for the implementation of the GA 
Toolbox developed by Chipperfield et al. (1994): 
1. Chromosomes: It is a matrix of size Nind*Lind, where Nind is the population size and 

Lind is the length of the strings (rows of chromosomes) representing individuals. 
2. Phenotypes: This data structure corresponds to the decision variables matrix and is 

obtained by applying a mapping process (decoding) from the chromosome 
representation into the decision variable space. Thus, this structure is a matrix of size 
Nind*Nvar, where Nvar is the number of variables that are encoding into chromosomes 
and each row corresponds to an individual’s phenotype. 

3. Objective Function: It is used to evaluate the performance of each individual (first 
chromosomes and after decoding phenotypes) of the population in the problem 
domain. This can be scalar (for mono-objective GA), or a matrix in the case of a 
multiobjective GA. Then, this data structure is a matrix of size Nind*Nobj, where Nobj is 
the number of objective (Nobj=1 for single objective problems).  

4. Fitness Values: These are derived from the objective function by means of a fitness 
assignment function (scaling or ranking). Fitness values are defined in Nind*1 matrix 
and are non-negative scalars.  

5. GP structures in MATLAB 
From Figure 2, it is seen that the parse-tree has an equivalent prefix notation (a LISP structure); 
thus, this codification is adopted in order to implement genetic programming in MATLAB. 
Then, a population is defined by a Nind*Maxnodes matrix whose content is initially zeros. By 
means of this encoding, the initial population matrix is: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

000

000
000

pop

 
Then, random parse-trees are generated taking random values from the primitive sets. It is 
important to mention that the root node is always defined as a function node and the arity 
(number of input arguments of each function) is taking into account in order to generate 
syntactically valid structures. An example is presented as follows: 
1. The root node has been randomly chosen from the function set. For this example, this 

function is “exp”. 
2. This function takes one argument, thus another node is randomly selected from the 

function or terminal sets. Here, a function node was chosen (“+”); the “exp” function 
has its argument but the “+” function takes two arguments. Arguments for the “+” 
must be randomly selected. 

3. This process continues until terminals are selected and the expression cannot increase 
its size and (Nodesremain < (Maxnodes – Nodescurr)), where Nodesremain means the nodes 
needed in the structure in order to produce a syntactically valid expression and 
Nodescurr is the number of nodes selected at the moment to conform an expression that is 
still incomplete. In the case where (Nodesremain = (Maxnodes – Nodescurr)), only terminal 
nodes are selected for a syntactically valid expression and the process concludes.  
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In Figure 3, it is then showed some parse-trees and their equivalent prefix notation into a 
population matrix. 
 

 
 

exp * cos % sin cos 0
cos * 0 0 0 0 0 0

% * 0 0 0 0 0

pi X X Y
X Y Z

pop

X Y X Y

+⎡ ⎤
⎢ ⎥+⎢ ⎥=
⎢ ⎥
⎢ ⎥

+⎣ ⎦

 

Fig. 3. Initial GP population in MATLAB 

But, in order to facilitate the use of MATLAB to manipulate matrix values of the same type, 
an identifier is considered for each primitive (function or terminal) as shown in Table 1. 
 

Integer Indentifier Primitive Value 

1 + 

2 - 

3 * 

4 % 

5 exp 

6 cos 

7 sin 

1000 random constant 

1001 X 

1002 Y 

1003 Z 

1004 pi 

Table 1. ID for GP Primitive Sets 

Then, matrix presented in Figure 3 is transformed to the following matrix: 
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5 1 3 1004 6 1001 4 7 1001 6 1002 0
1 6 1001 3 1002 1003 0 0 0 0 0 0

4 3 1001 1002 1 1001 1002 0 0 0 0 0

pop

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Genetic operators are applied on these prefix representations by selecting a random 
crossover node in the first parent in the interval [1, MaxNodesPopi] and a random node in the 
second parent between [1, MaxNodesPopi+1], where MaxNodesPop is a Nind column vector 
containing information related to the number of nodes of each individual into the 
population. This vector is updated each time crossover or mutation is performed. After that, 
associate expression to these selected nodes are taken and exchanged creating two new 
individuals. 
In the case of mutation, again a node is randomly selected in the range [1, MaxNodesPopi] 
and the syntactically valid associate sub-expression is eliminated and a new sub-expression 
is inserted. This is created from the primitive sets and using the routine of creating initial 
population. 
If a new individual generated by means of crossover or mutation exceeds the allowed 
maximum size (maximum number of nodes), a new randomly selected node is taken in the 
range defined by the position of the previously selected node and MaxNodePopi. This fact 
avoids that individuals grow rapidly causing bloat1. 
An example of crossover on the MATLAB GP representation is exemplified in Figure 4. 
Previous pop matrix is considered in this example. It is important to mention that the 
individual selection mechanism can be any method (roulette wheel, tournament, stochastic 
universal selection) and it is borrowed from the GA Toolbox, as well as the fitness 
assignment mechanism.  

5.1 Function evaluation 
In order to evaluate each individual into the population, a bottom-up parser must be 
constructed as a MATLAB function. Based on primitive set defined in Table 1 and the last 
individual of pop matrix from Figure 3, this program is evaluate as illustrated in Figure 5 
considering that the variables X and Y take the following values [-3, -2, -1, 0, 1, 2, 3]T and [0, 
1, 2, 3, 4, 5, 6]T, respectively. The output of the evaluated individual (information at the root 
node) is a vector of size Nx1, where N is the number of data points, in this simple example N 
is equal 7. Thus, the objective function is defined as the minimization of the estimated mean 
quadratic error produced between the output of each program (individual) and the real 
values of the topographic elevation. This is expressed in the following equation: 

∑ −=
=

N

1j

2
ijji 'zz

N
1f

 
where fi is the objective value of the i-th individual, z is the vector of measured topographic 
elevations, z’ is the vector of estimated topographic elevations for N recorded coordinates. 
The objective value is scalar and the fitness assignment mechanism described in 
Chipperfield et al. (1994) can be straightforward applied. Observe that for the GP Toolbox 
                                                 
1 Bloat is the rapid growth of programs produced by genetic programming.  

 
A Matlab Genetic Programming Approach to Topographic Mesh Surface Generation 

 

435 

only three data structures must be defined: pop, a Nind*MaxNodes matrix; objective value, a 
Nind column vector; and a fitness value, a Nind column vector. 
 

 
 

 
Fig. 4. GP toolbox crossover mechanism 
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only three data structures must be defined: pop, a Nind*MaxNodes matrix; objective value, a 
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Fig. 5. A bottom-up parser to evaluate GP individuals 

6. Estimation of topographic surface by means of GP toolbox in MATLAB 
In this section, the MATLAB GP toolbox is applied to model and estimate the topographic 
elevation of the region shown in Figure 6. The number of available topographic data was 
1600 points corresponding to the Mezcalapa river zone located at the southeast of the 
Mexican Republic. In order to apply the evolutionary methods, the following considerations 
were taken into account: 
a. The function set was composed of the four basic arithmetic operators, trigonometric 

functions (sine and cosine) and the square root sqrt function. Thus, the arity set was 
defined as {2, 2, 2, 2, 1, 1, 1}, the arithmetic functions take two input arguments and the 
remaining functions take one input argument. 

b. The terminal set consisted of the independent variables (coordinates) x and y, and the 
ephemeral random constants in the range [-1, 1]. 

c. The termination criterion was set as the maximum number of generations. 
d. In order to evaluate the performance of each individual into the population, estimate 

mean squared error between the topographic elevation obtained by the individual and 
the known elevation z was used.  

e. The selection mechanism used in these experiments was tournament selection with 
tournament of size 3. 

f. The population was composed of 100 individuals of a maximum size of 256 nodes. 
g. Probabilities of crossover and mutation were set to 0.95 and 0.05, respectively. 
h. Finally, ten independent runs were carried out for each sub-region. 
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Fig. 6. Mezcalapa river zone, southeast of Mexican Republic 

7. Results analysis 
The strategy followed in order to reproduce the topography of The Mezcalapa fork River 
was to divide into ten regions the total area; each one of 160 triples of points with 
coordinates (xi, yi, zi). In order to avoid numerical noise a constant value in x and y 
coordinates was added; then, the wireframe map of the total area is shown in Figure 7. 
Figure 8 shows a wireframe map of the same area reconstructed with the estimated values 
of the topographic level; comparing the results, they show that the map based on the 
estimated values is softer, reproduces well the peaks and the valleys but it does not reach 
the values they present.  
The real topography is more rugged and steep; in general, the estimated values of the 
topographic height fall short in the values of the peaks and valleys, leading to smooth the 
values of these. Perhaps the most evidence of this softening is the upper right of the region, 
the real topography exhibits a series of peaks, which show vaguely in the topography 
generated with the estimated values. In general the border values are well reproduced, but 
the extreme internal values (peaks or valleys) are the ones with the information surrounding 
do not have a good estimate. 
In general, when the estimate is good the calculated value is almost the same as the 
measured, however if the information does not help the estimation errors are large (over one 
meter) that future studies will try to improve. 
The analysis of the results shows good estimations of the z values but there are some 
particular areas where it is necessary to refine the set of functions and terminals for better 
estimations of the value of the topographic level. The average error in the ten areas was 0.70 
masl; the maximorum maximum value is in area 1 and is 4.4 masl; minimorum minimum 
value is in area 7 and it has a value of 0.0096 masl. Table 2 shows for each region, the 
average, the maximum and the minimum errors.  
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Fig. 7. Total region, real values of the topographic level 

 

 
Fig. 8. Wireframe map, estimated values of the topographic level 
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Region max error (masl) min error (masl)
1 4.39 0.0023
2 2.34 0.0014
3 2.92 0.012
4 3.26 0.033
5 2.87 0.0028
6 3.85 0.0042
7 3.68 0.00096
8 3.05 0.0013
9 2.83 0.0015
10 3.14 0.003

0.69
0.69

average error (masl)
0.64
0.72
0.68
0.74
0.83
0.69
0.71
0.6

 
Table 2. Results for each region 

Figure 9 shows the difference in absolute value between real z value and estimated z value. 
It can see that the vast majority of points are in the area where the error is less than 0.5 masl. 
However it is also showed that there are points where the estimation error exceeds the value 
of a meter, the latter leads to recommend a further study to refine the areas which have 
picks or valleys and normally these values are surrounded by information that does not 
provide much help for their estimation. 
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Fig. 9. Differences between real and estimated z values 

8. Conclusions 
In this work, a GP MATLAB Toolbox has been introduced exploiting the facilities that this 
interpreter offers. Individual trees are mapped into matrix where each row corresponds to 
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Fig. 8. Wireframe map, estimated values of the topographic level 
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Region max error (masl) min error (masl)
1 4.39 0.0023
2 2.34 0.0014
3 2.92 0.012
4 3.26 0.033
5 2.87 0.0028
6 3.85 0.0042
7 3.68 0.00096
8 3.05 0.0013
9 2.83 0.0015
10 3.14 0.003

0.69
0.69

average error (masl)
0.64
0.72
0.68
0.74
0.83
0.69
0.71
0.6

 
Table 2. Results for each region 

Figure 9 shows the difference in absolute value between real z value and estimated z value. 
It can see that the vast majority of points are in the area where the error is less than 0.5 masl. 
However it is also showed that there are points where the estimation error exceeds the value 
of a meter, the latter leads to recommend a further study to refine the areas which have 
picks or valleys and normally these values are surrounded by information that does not 
provide much help for their estimation. 
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an individual in prefix notation. This type of representation allows to exploit the MATLAB 
data type, rectangular matrix. Then, the GP Toolbox was applied to model topographic 
surfaces; the study region was, in this case the Mezcalapa fork river. Modeling problem was 
formulated as a symbolic regression and obtained results showed considerably good the 
reconstruction of the topographic surface. However, it is necessary to continue the study to 
refine the model’s estimations in the areas in which the values of the peaks and valleys are 
not reached. In general, it reproduces well the topography but it can be improved by 
considering different function sets, genetic operators or more complex individuals in order 
to reduce the estimation errors since the standard GP was the one implemented in this 
work. 
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1. Introduction  
In the last two decades, integral and differential calculus of an arbitrary (or fractional) order 
has become a subject of great interest in different areas of physics, biology, economics and 
other sciences. It is accepted today as a new tool that extends the descriptive power of the 
conventional calculus, supporting mathematical models that, in many cases, describe more 
accurately the dynamic response of actual systems in various applications. While the 
theoretical and practical interest of these fractional order operators is nowadays well 
established, its applicability to science and engineering can be considered as an emerging 
topic. Among other, the need to numerically compute the fractional order derivatives and 
integrals arises frequently in many fields, especially in electronics, telecommunications, 
automatic control and digital signal processing.  
The purpose of this chapter is to introduce the fractional calculus and its applications to 
solutions of fractional order circuits. Systematic methods and MATLAB-based computer 
routines are given. The next section provides a brief review of fractional calculus followed 
by useful approximations for these fractional operators (Section 2). In Section 3 we briefly 
present fundamental issues of the fractional order circuits in relation to nonlinear dynamical 
phenomena together with its fractional-order vector space representation - a generalization 
of the state space concept – and the modified Chua’s circuit of fractional order as an 
example. Brief summary and conclusions follow in Section 4.  

2. Fractional calculus 
2.1 Fundamentals 
The recent increased interest in the study of dynamic systems of non-integer orders 
(Baleanu et al., 2010, Caponeto et al., 2010, Das, 2008) stems from the premise that most of 
the processes associated with complex systems have non-local dynamics involving long-
memory in time, and that fractional integral and fractional derivative operators share some 
of those characteristics. Many originally considered systems with lumped and/or 
distributed parameters can be more exactly described by fractional order systems (Dorčák et 
al. 2007; Kilbas et al., 2006; Monje et al., 2010; Nonnenmacher & Metzler, 2000; Sheu Long-
Jye et al. 2007; Trzaska, 2010).  
Extending derivatives and integrals from integer orders to non-integer orders has a firm and 
long standing theoretical foundation. For example, Leibniz mentioned this concept in a 
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letter to L’Hospital over three hundred years ago and the earliest more or less systematic 
studies have been made in the beginning and middle of the 19th century by Liouville, 
Riemann and Holmgren. In the literature, people often use the term “fractional order (FO) 
calculus”, or “fractional order dynamic system” where “fractional” actually means “non-
integer” (Oldham, 1974; Petras, 2006; Podlubny, 1999; Tavazoei et al., 2008; Zhao & Xue, 
2008).  
The definitions most commonly used in the literature are the Riemann-Liouville definition, 
the Grünwald-Letnikov definition, and the Caputo definition, as given below: 
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for n-1 < α < n and where Γ(·) is the Gamma function, and z⎡ ⎤⎢ ⎥  means the integer part of z. 
The “memory” effect of these operators is demonstrated by (1) and (2), where the 
convolution integral in (1) and the infinite series in (2) reveal the unlimited memory of these 
operators, ideal for modeling hereditary and memory properties in physical systems and 
materials. The initial conditions for the fractional order differential equations with the 
Caputo derivative (3) are of the same form as the initial conditions for the integer-order 
differential equations (Baleanu et al., 2010; Kilbas et al., 2006; Tavazoei & Haeri, 2008). 
Two general properties of the fractional-order derivative are of major interest here. The first 
is the composition of fractional with integer-order derivative and the second is the property 
of linearity. Similar to integer-order differentiation, fractional-order differentiation fulfils the 
relations 
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In addition, fractional order systems may have other features that make them more suitable 
for the study of electronic circuits when most of the desired specifications are not readily 
achieved by traditional models (Petras, 2006; Trzaska, 2009).  

2.2 Fractional order differential equations  
A fractional order linear time invariant system can be represented in the form of a scalar 
differential equation of fractional order as follows: 
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where y(t) is the system response and u(t) the excitation signal, D the derivative operator 
and αn > αn-1 >…> α0 and βm > βm-1> …>β0 non-integer positive numbers. Coefficients ak,  
k = 0, 1, 2, …, n and bh, h = 0, 1, 2, …, m are constants.  
An alternative representation of (6), more useful for the analysis of fractional-order systems, 
is given in the following state space form: 
 

α

α
d (t) ( ,α, β, t) (t) (t),    (t) (t) (t),   φ( ,α, , β, t) given for t  β

dt
+ = + = + >

x φ x A, Ax Bu y Cx Du x A  (7) 

 

where x(t) є Rn, u(t) є Rm, y(t) є Rp are states, inputs, and outputs vectors of the system and  
A є Rn×n, B є Rn×m, C є Rp×n, D є Rp×m denote constant element matrices, and α is the fractional 
commensurate order (Das, 2008; Kilbas et al., 2006). 
The fractional dynamic variables in the system of equations (7) are not states in the true 
sense of the ‘state’ space. Consequently, as the initialization function vector is generally 
required, the set of elements of the vector x(t), evaluated at any point in time, does not 
specify the entire ‘state’ of the system. Thus, for fractional-order systems, the ability to 
predict the future response of a system requires the set of fractional differential equations 
along with their initialization functions, that is, equation (7). 

3. Fractional order circuits 
Today, micro- and nanoelectronic products are wide-spread in all kinds of industries and in 
commonly used household devices and the needs of microelectronic industry often drive 
science and technology research. One of such needs, and the primary task in modeling of 
micro- and nanoelectronic devices, is the prediction of circuits’ behavior in various 
situations. This means, on the one hand, the estimation of the effective (or overall) 
properties of a circuit from its structural composition, commonly referred to as 
homogenization and, on the other hand, allowing for localization, i.e. estimation of the local 
load state within the individual constituents as response to an overall applied (far field) 
load. In an effort to better understand dynamical properties of electronic circuits, their 
stability features and the impact of various parameters, the fractional order approach seems 
to be very promising (see for example Das, 2008; Dorčák et al., 2007; Petras, 2006; Santhiah et 
al., 2011; Trzaska, 2008; Marszałek & Trzaska, 2011): many real dynamical circuits are better 
characterized by using non-integer order models based on fractional order differential or 
integral calculations. However, the newly produced nano-devices need superior accuracies 
and possibilities of correlating their hierarchies to models of the fractional order α (Baleanu 
et al., 2010). While stepping from micro- to nanoelectronics one is faced with heterogeneous 
multi-order models which couple mathematical descriptions using integer order and 
fractional order differential equations.  
This approach requires the theoretical understanding and numerical modeling of the 
fundamental fractional order phenomena that underlie integrated devices. As a first step 
understanding the possible dynamic behavior of linear fractional order circuits (FOCs) is 
fundamental as most properties and conclusions of integer order circuits (IOCs) cannot be 
simply extended to that of the FOCs (Caponetto, 2010). The models of the FOCs exhibit 
more degrees of freedom and they contain unlimited memory that make the circuit behave 
in more complicated manner.  
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In addition, fractional order systems may have other features that make them more suitable 
for the study of electronic circuits when most of the desired specifications are not readily 
achieved by traditional models (Petras, 2006; Trzaska, 2009).  

2.2 Fractional order differential equations  
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αα α α β β0n n 1 n 2 m m 1
n n 1 n 2 0 m m 1

ββ 0m 1
m 2 0

a D y(t) a D y(t) a D y(t) a D y(t) b D u(t) b D u(t)

                                                                                                         b D u(t) b D

− − −
− − −

−
−

+ + + + = +

+ + + u(t)
 (6)  

 
Matlab Solutions of Chaotic Fractional Order Circuits 

 

445 

where y(t) is the system response and u(t) the excitation signal, D the derivative operator 
and αn > αn-1 >…> α0 and βm > βm-1> …>β0 non-integer positive numbers. Coefficients ak,  
k = 0, 1, 2, …, n and bh, h = 0, 1, 2, …, m are constants.  
An alternative representation of (6), more useful for the analysis of fractional-order systems, 
is given in the following state space form: 
 

α

α
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dt
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x φ x A, Ax Bu y Cx Du x A  (7) 

 

where x(t) є Rn, u(t) є Rm, y(t) є Rp are states, inputs, and outputs vectors of the system and  
A є Rn×n, B є Rn×m, C є Rp×n, D є Rp×m denote constant element matrices, and α is the fractional 
commensurate order (Das, 2008; Kilbas et al., 2006). 
The fractional dynamic variables in the system of equations (7) are not states in the true 
sense of the ‘state’ space. Consequently, as the initialization function vector is generally 
required, the set of elements of the vector x(t), evaluated at any point in time, does not 
specify the entire ‘state’ of the system. Thus, for fractional-order systems, the ability to 
predict the future response of a system requires the set of fractional differential equations 
along with their initialization functions, that is, equation (7). 

3. Fractional order circuits 
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commonly used household devices and the needs of microelectronic industry often drive 
science and technology research. One of such needs, and the primary task in modeling of 
micro- and nanoelectronic devices, is the prediction of circuits’ behavior in various 
situations. This means, on the one hand, the estimation of the effective (or overall) 
properties of a circuit from its structural composition, commonly referred to as 
homogenization and, on the other hand, allowing for localization, i.e. estimation of the local 
load state within the individual constituents as response to an overall applied (far field) 
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to be very promising (see for example Das, 2008; Dorčák et al., 2007; Petras, 2006; Santhiah et 
al., 2011; Trzaska, 2008; Marszałek & Trzaska, 2011): many real dynamical circuits are better 
characterized by using non-integer order models based on fractional order differential or 
integral calculations. However, the newly produced nano-devices need superior accuracies 
and possibilities of correlating their hierarchies to models of the fractional order α (Baleanu 
et al., 2010). While stepping from micro- to nanoelectronics one is faced with heterogeneous 
multi-order models which couple mathematical descriptions using integer order and 
fractional order differential equations.  
This approach requires the theoretical understanding and numerical modeling of the 
fundamental fractional order phenomena that underlie integrated devices. As a first step 
understanding the possible dynamic behavior of linear fractional order circuits (FOCs) is 
fundamental as most properties and conclusions of integer order circuits (IOCs) cannot be 
simply extended to that of the FOCs (Caponetto, 2010). The models of the FOCs exhibit 
more degrees of freedom and they contain unlimited memory that make the circuit behave 
in more complicated manner.  
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3.1 Basic properties of fractional order circuits 
Generally, the descriptions of the components of electronic circuits need not to be limited to 
the separate characteristics of ideal resistors, capacitors or inductors: a component may have 
characteristics somewhere between the characteristics of standard components such as 
fractional order electrical impedance, that is between the characteristics of a resistor and a 
capacitor. For instance, a supercapacitor also known as ultracapacitor shows the constant 
phase behavior or capacitance dispersion, and thus simple RC circuit does not give an 
adequate description of the AC response of such elements. Its simplest model can be based 
on Curie’s empirical law (Westerlund, 2002) which states that under DC voltage excitation 
U0 applied at t =0 the current through a supercapacitor is 

 0
m

1

Ui(t)
h t

=  (8) 

where h1 and m are constants. 
However, for a general excitation voltage u(t) we have the current  

 
m

f m
d u(t)i(t) C

dt
=  (9) 

where Cf is fractional capacitance of the supercapacitor depending on the kind of dielectric 
and rate of development of the electrode surfaces (Baleanu et al., 2010; Petras, 2006). 
For a real coil with proximity and skin effects the relation between its voltage and current 
takes the form 

 
n

f n
d i(t)u(t) L
dt

=  (10) 

where Lf is the fractional inductance and n ∈ (0, 1) depends on the coil form and its 
materials.  
The importance of (9) and (10) lies mainly in the fact that they can easily be used to describe 
many other practical electronic and electrical devices because there is a large number of 
electric and magnetic phenomena where the fractional order models appear to be the most 
appropriate (M. Trzaska & Trzaska, 2007). It should be emphasized however that, although 
the real microelectronic objects are generally fractional (Dorčák et al., 2007), for many of 
them the fractionality is very low. To demonstrate these facts we shall consider some 
selected cases of FOCs. 
Let us begin with a brief description of the application of fractional order calculus to 
analysis of a linear circuit shown in Fig. 1a which contains fractors Lf and Cf. The fractors 
represent a real coil and a supercapacitor, respectively, and are described by 

 
3/2 1/2

L
f C f3/2 1/2

d i (t) d u(t)u(t) L ,     i (t) C
dt dt

= =  (11) 

Denoting x(t) = iL(t) and then applying the Kirchhoff laws and taking into account (11) we 
obtain the following mathematical model of the fractional order 

 
2 3/2

f f z2 3/2
d x(t) d x(t)A B x(t) i (t)

dt dt
+ + =  (12) 
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where Af =Cf Lf , Bf = GLf denote constant coefficients and iz(t) is a time varying right hand 
side term.  
 

   
                                   (a)                                                                              (b) 
Fig. 1. Linear circuit containing fractors Lf and Cf: a) structure, b) input and output signals 
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                                    (a)                                                                                  (b) 
Fig. 2. Voltage source connected to uniform RC line: a) scheme of the circuit, b) impulse H(t) 
and unit-step u(t) responses  

To determine the solution of (12) we have used a special numerical procedure based on the 
Bagley-Torvik scheme (Trzaska, 2010). Taking into account Af = 1.25s2, Bf = 0.5s3/2 and  
iz(t) = 8A for 0 < t < 1s with iz(t) = 0 for t >1s and applying the mentioned numerical 
procedure implemented in MATLAB (Attia, 1999; Redfern & Campbell, 1998) we obtain the 
solution shown in Fig. 1b. It is easily seen that the circuit displays comprehensive dynamical 
behavior, such that the transient output signal varies very slowly in respect to the excitation. 
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where Af =Cf Lf , Bf = GLf denote constant coefficients and iz(t) is a time varying right hand 
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solution shown in Fig. 1b. It is easily seen that the circuit displays comprehensive dynamical 
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Next, let us consider a fractional order circuit shown in Fig. 2a. It represents the connection 
of a voltage source e(t) exhibiting internal conventional inductance L=1H with a very long  
(l ≈ ∞) uniform RC transmission line. The transmission line can be represented by a circuit 
with uniformly distributed constant parameters and the whole circuit considered at the 
line’s input is described by the following fractional order model 

 
3/2

3/2
C d u(t)L u(t) e(t)
R dt

+ =  (13) 

where u(t) denotes the voltage at the line’s input. 
However, in order to effectively analyze such systems, it is necessary to develop 
approximations to the fractional operators using the standard integer order operators. In the 
work that follows, the approximations are effected in the Laplace variable s = α + jω. It 
should be pointed out that the resulting approximations provide sufficient accuracy for the 
time domain hardware implementations (Faleiros et al., 2006). 
For the sake of simplicity of notations without any loss of generality we assume in what 

follows that 3 21L CR 1s− =  and zero initial conditions are taken into consideration. Thus, 
applying Kirchhoff laws and relations describing circuit elements in the Laplace transform 
domain leads to the following fractional order model 

 3/2
1U(s) E(s)

s 1
=

+
 (14) 

where U(s) and E(s) denote the Laplace transforms of u(t) and e(t), respectively. Now taking 
into account the inverse Laplace transforms of both sides of (14) yields 

 
t

-1
3/2

0
u(t) [U(s)] H ( 1,τ)e(t τ)dτ= = − −∫L  (15) 

where the function H3/2(-1,t) is determined by 

 
3n/2

3/2 3n 0 2

tH ( 1,t) t
Γ( (n 1))

∞

=
− = ∑

+
 (16) 

and represents the impulse response of the circuit. In the case of the source voltage  
e(t) = E0η(t) with E0 = const and η(t) denoting Heaviside function the voltage at the line’s 
input is determined as follows 

 3/2
η 3/2 0u (t) [η (t) E (t )]E= −  (17) 

where E3/2(t) denotes the Mittag-Leffler function for a = 3/2 and b = 1. Taking into account 
(16) and (17) we can plot the circuit response for the inputs in the form of Dirac impulse and 
unit-step functions (E0 = 1) separately. The computed responses are presented in Fig. 2b. It 
has to be noted that in almost all cases the impulse responses of fractional order circuits are 
related to the Mittag-Leffler function (Podlubny, 1999), which is effectively the fractional 
order analog of the exponential function. With this knowledge, it has been possible to better 
clarify the time responses associated with fractional order circuits. 
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Interestingly, an alternative approach to the solution of the above circuit can be sought by 
applying Symbolic Math Toolbox. On the base of (14) we can determine the fractance 
(fractional transfer function) of the circuit, namely 

 3/2
1(s)

s 1
=

+
F  (18) 

Considering s1/2 as basic complex variable we can expand right hand side of (18) in the 
following partial fractions 

 
jπ /3 jπ /3

1/2 jπ /3 jπ /31/2 1/2
1 1 e e(s) ( )
3 s 1 s e s e

−

−= − −
+ − −

F  (19) 

Observe, that first term in (19) with pole at -1 on the complex plane with variable s1/2 
introduces an important damping of the impulse response and the remaining terms with 
poles at e±j2π/3 are responsible on the damping oscillations and all terms taken in the whole 
give the circuit response which oscillates at an over damped rate. This is easily seen from 
the time-variations of H(t) presented in Fig. 2b. The diagram corresponds to the expression 

 

j2π /3 j2π /3
j2π /3 j(4π /3)t j2π /-1 t

3/2

j2π /3 j(4π /3) j2π /3

1 1 e e3F(s) H ( 1,t) [ e e e erfc(e t )
3 πt πt πt

te e erfc(e t )]

−
− − −= − = − − + −

+

L  (20) 

which has been determined by applying the inverse Laplace commands from the Symbolic 
Math Toolbox. It is worth noting that the form of (20) is an alternative form of (16).  
Now, to highlight numerous benefits from the application of suitable procedures contained 
in the MATLAB package we consider the circuit shown in Fig. 3a. It is composed of a real 
coil Lf and a supercapacitor Cf, both elements considered as fractors and a zero order voltage 
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Fig. 3. Fractional order circuit with controlled source and resistor: a) circuit scheme,  
b) capacitor’s voltage for various resistances 

source controlled by the supercapacitor’s voltage vC (t) = Au(t). Applying circuit laws we 
obtain the following set of expression in terms of fractional order derivatives 
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Fig. 3. Fractional order circuit with controlled source and resistor: a) circuit scheme,  
b) capacitor’s voltage for various resistances 

source controlled by the supercapacitor’s voltage vC (t) = Au(t). Applying circuit laws we 
obtain the following set of expression in terms of fractional order derivatives 
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1 2

1 2

α α

f L f R Cα α
d i(t) d u(t)L u (t),    C i(t),     Ri(t) u (t),     Au(t) v (t)
dt dt

= = = =  (21) 

with the same symbol meanings as in Fig. 3a. Applying the voltage Kirchhoff law and 
taking into account (21) and rearranging the terms we obtain the following fractional order 
equation 

 
1 2 2

1 2 2

α α α

f f fα α α
d i(t) d u(t)L C    RC u(t)  Au(t)
dt dt

+

+ + + =  (22) 

If we assume that Lf Cf ≡ 1, A =3, R =var, and Cf =const then equation (22) takes the form 

 
1 2 2

1 2 2

α α α

α α α
d u(t) d u(t)  R 2u(t)  0τdt dt

+

+ + − =  (23) 

where Rτ = RCf denotes the time constant of the R, Cf series connection. In order to analyze 
effectively the above equation it is convenient to apply the standard procedures supplied by 
the MATLAB programs package and particularly those from the Symbolic Math Toolbox. In 
this regard, the Laplace transform of the initialized fractional-order differential equation (23) 
with α1= α2 = ½ takes the form 

 
-1/2

τ -1/2
dsU(s) u(0) sR U(s) u(0) 2U(s) 0
dt

− + − − =  (24) 

where U(s)=L [u(t)] denotes the Laplace transform of the capacitor voltage u(t). Solving (24) 
with respect to U(s) yields 

 
τ

BU(s)
s R s 2

=
+ −

 (25) 

where B=u(0) + d-1/2/dt-1/2 u(0) is a constant depending on circuit initial conditions. Because 
(25) contains the fundamental ‘fractional’ poles it can be rewritten, using partial fractions, in 
a more simple form as follows 

 
2 1 1 2

B 1 1U(s) ( )
p p s p ) s p

= −
− − −

 (26) 

 

where 2
1

1p ( a a 8)
2

= − + + and 2
2

1p ( a a 8)
2

= − − +  denote the fractional poles of U(s) with 

a = Rτ. The above result indicates that the response of the initialized fractional order circuit 
can be determined by inverse transforming of each term of (26) separately. To accomplish 
these tasks, it is convenient rewrite (26) in an equivalent form as follows 
 

 1 2U(s) U (s) U (s)= +  (27) 

with 

 1 2 1 1 2 2 1 2U (s) B /((p p )( s p )),     U (s) B /((p p )( s p ))= − − = − − −  (28) 
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To obtain the inverse Laplace transform of (28) we have used quite simple procedure of 
symbolic computing, namely 
syms a s t B; 
p1=-a/2+0.5*sqrt(a^2+8); 
p2=-a/2-0.5*sqrt(a^2+8); 
U1=B/(p2-p1)/(sqrt(s)-p1); 
U2=-B/(p2-p1)/(sqrt(s)-p2); 
u1=ilaplace(U1), 
u2=ilaplace(U2) 
The symbolically computed expressions take the form 

u1=-B/(a^2+8)^(1/2)*(1/(pi*t)^(1/2)-(-/2*(a^2+8)^(1/2)+1/2*a)*exp((-1/2*(a^2+8)^(1/2) 
+1/2*a)^2*t)*erfc((2*(a^2+8)^(1/2)+1/2*a)*t^(1/2))); 

u2=B/(a^2+8)^(1/2)*(1/(pi*t)^(1/2)-(1/2*(a^2+8)^(1/2) 
+1/2*a)*exp((1/2*(a^2+8)^(1/2) 

+1/2*a)^2*t)*erfc((1/2*(a^2+8)^(1/2)+1/2*a)*t^(1/2))) 
(29)

 
Thus, following (25) – (29) we can represent the desired response as 

 1 2u(t) u u= +  (30) 

The above expressions are useful for determining the influence of the resistance’s control on 
the circuit response. Plots of the u-function versus time for B = -0.1 and various values of Rτ 
are given in Fig. 3b. Looking at the values of the poles p1 and p2 we conclude that they 
correspond to a saddle node equilibrium point which involves instability of the circuit 
response for the whole range of possible values of the resistance Rτ (Das, 2008).  
The above results can be used in many possible applications of FOCs and help assessing 
whether the latter are capable of addressing the industry’s problems. They can serve as an 
overall introduction to fractional order methods and approaches as well as hands on 
exercises using state-of-the art software capabilities.  

3.2 Chaotic fractional order circuits 
Although chaotic phenomena have been studied extensively for a few dozen of years, the 
chaos theory still remains a fascinating area for exploration and there always seems to be 
some new aspects that can be revealed. Chaotic behaviors have been observed in different 
areas of science and engineering and various mathematical definitions of chaos have been 
proposed, resulting in a lack of a commonly accepted definition for it (Awrejcewicz & 
Lamarque, 2003; Chua, 1994; Ogorzałek, 1997). Thus, instead of selecting a definition for 
‘chaos’, it is much easier to list properties of chaotic systems: it is accepted that the chaotic 
behavior is a recurrent, bounded, nonperiodic, long-time evolution of a system leading to a 
strange attractor in phase space. Also, chaotic systems present an extreme sensitivity to 
initial conditions i.e. small differences in the initial states can lead to extraordinary 
differences in the system states (Marszalek & Trzaska, 2009; Tadeusiewicz & Halgas, 2005). 
Chaos can be a desirable feature in many applications. For example in electronics and 
telecommunications chaos could be induced to spread modal energy at resonance or to 
achieve optimal spatial emission of electromagnetic waves. 
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If we assume that Lf Cf ≡ 1, A =3, R =var, and Cf =const then equation (22) takes the form 
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some new aspects that can be revealed. Chaotic behaviors have been observed in different 
areas of science and engineering and various mathematical definitions of chaos have been 
proposed, resulting in a lack of a commonly accepted definition for it (Awrejcewicz & 
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Chaos can be a desirable feature in many applications. For example in electronics and 
telecommunications chaos could be induced to spread modal energy at resonance or to 
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In this subsection the effects of fractional dynamics in chaotic circuits are studied. In 
particular, Chua’s circuit is modified to include fractional order elements. It is worth 
mentioning that fractional order Chua’s circuit has proven to be an excellent paradigm for 
generation of a multitude of different dynamical phenomena and can thus obviate the need 
to consider many different models to simulate those phenomena. One of the main reasons 
behind Chua’s circuits’ popularity is their flexibility and generality for representing 
virtually many practical structures, including those undergoing dynamic changes of 
topology. Varying the total circuit order incrementally demonstrates that systems of “order” 
less than three can exhibit chaos as well as other nonlinear behavior. This effectively forces a 
clarification of the definition of order which can no longer be considered only by the total 
number of differentiations or by the highest power of the Laplace variable s. 

3.2.1 Analysis of oscillations in the modified Chua’s circuit 
Let us consider the fractional order circuit shown in Fig. 4a which represents a modified 
Chua’s circuit (Marszalek & Trzaska, 2010). Standard Chua’s circuit is well known and has 
been extensively studied in (Brown et al, 2001; Chua, 1994; Trzaska, 2005). The particular 
form to be considered here was presented by Trzaska (2008) and used further in Marszalek 
and Trzaska (2009). This circuit is different from the usual Chua’s circuit in that the 
piecewise-linear nonlinearity is replaced by an appropriate cubic nonlinearity which leads 
to a very similar behavior. In a general case, this nonlinear oscillator comprises a nonlinear 
resistor with a cubic characteristic In(V1), three fractors represented by an inductor and two 
supercapacitors, a current controlled current source I and a biasing constant current source 
a. Its behavior depends on all six constants (parameters) involved. It can exhibit a wide 
spectrum of dynamical behaviors such as the relaxation, multi-mode oscillation, bifurcation 
and chaos. The mathematical description of dynamical components is based on expressions 
(16) and (17) and the studied circuit can be described as follows 
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where q1, q3 and q2 denote fractional orders of the supercapacitors C1, C3 and of the real coil 
L, respectively. Constant resistance is denoted by R. It is worth mentioning that even in the 
case of integer orders q1 = q2 =q3 =1 the above circuit can exhibit a number of exceptional 
behaviors depending on circuit linear element parameters, the form of the nonlinear resistor 
characteristic as well as on initial conditions. Of particular interest here are the mixed-mode 
oscillations (MMOs) which consist of a series of small-amplitude oscillations (also called the 
subthreshold oscillations, or STOs) and large-amplitude oscillations, or relaxations, 
occurring in various patterns. For instance, assuming C1 = 0.01F, L = 1H, C3 = 1F and  
a = 0.0005A, b = 0.0035, α =1.5 and β = -1 with q1 = q2 = q3 = 1 we get the MMOs illustrated 
in Fig. 4b with respect to the state variable x1(t). The solution of the circuit equations and the 
illustration figure have been obtained by applying standard MATLAB’s procedure ODE45 
and plot commands, respectively. A series of numerical computations when various 
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parameters of the circuits bifurcate have been performed and the one showed is typical for 
MMOs. The importance of MMOs lies mainly in the fact that during bifurcations the circuits’ 
dynamics undergoes complex transitions between various stable and chaotic modes, 
including the mixed mode oscillations, period doubling bifurcations and chaotic responses. 
In most cases the solutions pertain to canard phenomenon. The most accepted and popular 
approach to explain the MMOs phenomenon in R3 is that they result from a combination of 
canard solutions around a fold singularity and relaxation spikes coupled together by a 
special global return mechanism (Trzaska & Marszalek, 2011). 
 

  
                              (a)                                                                                (b) 

Fig. 4. Modified Chua’s circuit: a) scheme with fractors C1, L, C3 and I = (1 + b)x2,  
In = αx12 +βx13, a = const > 0, b = const > 0, α < 0 and β > 0, b) MMOs in an integer order case 

Using the same element parameters values as the ones assumed above and changing only 
the form of the nonlinear characteristic to 0.88 ≤ α ≤ 1 with step size 0.0005 we obtain the 
solutions exhibiting bifurcations between MMOs and chaotic oscillations. In this chapter, we 
use two no-chaos criteria for a fractional order circuit represented by state variable equation 
dqx(t)/dtq = f (x(t)). Those criteria are: (i) x(t) approaches a fixed point; (ii) x(t) is bounded. It 
is clear that if a circuit contravenes both of the above conditions, it has necessary, albeit not 
sufficient, condition to demonstrate chaotic behavior (Marszalek & Trzaska, 2010). 
The code presented below computes bifurcation diagram shown in Fig. 5a. The same code 
can be used to compute diagrams for other parameters provided that appropriate changes 
are made in the lines with parameters in bold-face. 

Main code: 
Clear 
M = [1 0  0 
   0 1  0  
   0 0  1]; 
x0=[-0.5; 0.2; 0.5]; 
options = odeset('Mass',M,'RelTol',1e-12,'AbsTol',[1e-14 1e-14 1e-14], 'Vectorized','on'); 
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where q1, q3 and q2 denote fractional orders of the supercapacitors C1, C3 and of the real coil 
L, respectively. Constant resistance is denoted by R. It is worth mentioning that even in the 
case of integer orders q1 = q2 =q3 =1 the above circuit can exhibit a number of exceptional 
behaviors depending on circuit linear element parameters, the form of the nonlinear resistor 
characteristic as well as on initial conditions. Of particular interest here are the mixed-mode 
oscillations (MMOs) which consist of a series of small-amplitude oscillations (also called the 
subthreshold oscillations, or STOs) and large-amplitude oscillations, or relaxations, 
occurring in various patterns. For instance, assuming C1 = 0.01F, L = 1H, C3 = 1F and  
a = 0.0005A, b = 0.0035, α =1.5 and β = -1 with q1 = q2 = q3 = 1 we get the MMOs illustrated 
in Fig. 4b with respect to the state variable x1(t). The solution of the circuit equations and the 
illustration figure have been obtained by applying standard MATLAB’s procedure ODE45 
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approach to explain the MMOs phenomenon in R3 is that they result from a combination of 
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is clear that if a circuit contravenes both of the above conditions, it has necessary, albeit not 
sufficient, condition to demonstrate chaotic behavior (Marszalek & Trzaska, 2010). 
The code presented below computes bifurcation diagram shown in Fig. 5a. The same code 
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are made in the lines with parameters in bold-face. 
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global t x y z dt alpha 
dt=0.01; 
for alpha=0.8800:0.0005:1.6000  
alpha 
clear n 
clear m 
[t,x]=ode15s(@equations,0:dt:500,x0);  
n=length(x(:,1)); 
m=floor(n/2); 
y=diff(x(m,n,1))/dt; 
z=diff(y)/dt; 
k=1; 
clear aa 
for i=m:n 
t0=t(i); %Comp. local max. pts for m<t<n 
option=optimset(’display’,’off’); 
zer=fsolve(@differ,t0,option); 
if interp1(t(m:n-2),z,zer)>0 
aa(k)=interp1(t(m:n),x(m:n,1),zer); 
k=k+1; 
end 
end 
kmax=k-1; 
h=plot(alpha.*ones(1,kmax),aa,’r.’); 
hold on 
set(h,’MarkerSize’,0.1); 
end 
Function equations.m: 
function xdot=equations(t,x) 
global alpha 
a=0.0005; b=0.01; eps=0.01; beta=-1; R=0.3; 
xdot(1) = (-x(2) + alpha*x(1)ˆ2 + beta*x(1)ˆ3)/eps; 
xdot(2) = x(1) - x(3) - R*x(2); 
xdot(3) = a - b*x(2); 
xdot = xdot’; 
end 
Function differ.m: 
function f=differ(a) 
global t x dt 
s=diff(x(m:n,1))/dt; 
f=interp1(t(m:n-1),s,aa); 
end 
 

Fig. 5 shows the solutions obtained with local maximum values of x1(t) as a function of α. In 
all the integrations the initial conditions were zero for all three variables in (31). Note that 
the number of local maximum points at the level 0.2 − 0.3 (on the lower fold of the surface  
x2 = αx21 + βx31) increases if α increases. The number of upper local maximum points (at the 
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0.7−0.9 level) increases, too. There are, however, sudden drops in the numbers of both lower 
and upper maximum points. This happens, for example, around α = 0.945 in Fig. 5a where 
we observe pure periodic MMOs of type 2-1. Thus, it is clear from Fig. 5a that by selecting α 
= 0.94 one may expect a chaotic response of the circuit. Similar diagram appears in the case 
of changing parameter b with α =1 and holding other parameters the same as above. The 
result is shown in Fig. 5b for 0.005 ≤ b ≤ 0.035. The intervals of b leading to chaotic states are 
marked by S0, S1, …, S9 and the total range of b equals ST. 
 

   
                                        (a)                                                                              (b) 

Fig. 5. Local maximum values of x1(t): a) as a function of α , b) as function of b 

The intervals Si can be used to determine the fractal dimensions of the circuits, since a 
detailed analysis of the large–small (Ls) amplitude patterns clearly indicates that they are 
directly linked to the Farey sequence of the pairs of co-prime integers. Starting from the 
bifurcation diagram shown in Fig. 5b and using the values of Sk and ST one can solve the 
following equation to compute the fractal dimension, denoted by D, namely 
syms D 

solve('(21/167)^D+(17/167)^D+(15/167)^D+(12/167)^D+(10/167)^D+(9/167)^D ... 
+2*(7/167)^D+ (8/167)^D+(6/167)^D-1') 

In results we have 
ans = 
 .84815781317251170768166648997506 
On the basis of similar series of computations with respect to the remaining state variables 
x2(t) and x3(t) we can conclude that all three variables yield the counting box fractal 
dimension, denoted by Dc, of the circuits at Dc = 2.5446. As a consequence, we shall 
conjecture that the dynamics of the circuits presented in Fig. 4a is in fact of fractal type. Note 
that it is well known that chaos cannot occur in conventional continuous systems of total 
integer order less than three. 
As mentioned above, determination of proper parameter range for which a dynamical 
circuit exhibits chaotic behavior is not always simple and sometimes needs a large amount 
of numerical simulations. Although more than three decades have passed from the birth of 
chaos theory, our knowledge about conditions for chaos existence in dynamical systems is 
still incomplete. Nowadays, it is commonly accepted that the chaotic behavior of nonlinear 
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0.7−0.9 level) increases, too. There are, however, sudden drops in the numbers of both lower 
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dimension, denoted by Dc, of the circuits at Dc = 2.5446. As a consequence, we shall 
conjecture that the dynamics of the circuits presented in Fig. 4a is in fact of fractal type. Note 
that it is well known that chaos cannot occur in conventional continuous systems of total 
integer order less than three. 
As mentioned above, determination of proper parameter range for which a dynamical 
circuit exhibits chaotic behavior is not always simple and sometimes needs a large amount 
of numerical simulations. Although more than three decades have passed from the birth of 
chaos theory, our knowledge about conditions for chaos existence in dynamical systems is 
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systems exhibits highly organized shapes leading to a strange attractor in phase space. 
Moreover, even if a system is characterized by the geometrical form of the corresponding 
attractor with a defined shape, the modified Chua’s circuit can generate both an unusual 
complexity and an astonishing unpredictability. Noteworthy, up to date no analytical 
solution has been found for studies of chaotic systems. 

3.2.2 Numerical solution of the fractional-order Chua’s circuit  
In what follows the effects of fractional dynamics in chaotic modified Chua circuits with the 
structure shown in Fig. 4a are studied. Taking into account the circuit state variable equation 
(31) we can approximate its solution by applying the discretization procedure and 
numerical calculation of fractional-order derivation using an explicit relation derived from 
the Grunwald–Letnikov definition (2). Using the following relation for the explicit numerical 
approximation of q-th derivative at the points kh, (k = 1, 2, . . .) (Kilbas et al., 2006): 
 

 
kq q n

kh h 0m n 0

q
D x(t) lim h ( 1) x((k n)h)(k Q ) n

−

→ =
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= − −∑ ⎜ ⎟− ⎝ ⎠
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where Qm is the ‘‘memory length’’, h is the time step size of the calculation and n q
( 1)

n
⎛ ⎞

− ⎜ ⎟
⎝ ⎠

are 

binomial coefficients (q)
nb , (n = 0, 1, 2, …, k) which are calculated as follows 

 (q) (q)(q)
n0 n 1

1 qb 1,    b (1 )b
n −
+

= = −  (33) 

For discretized evaluation purposes it is convenient to simplify notation and introduce the 
following substitutions 

 .,1 2 3x(i) x (ih);      y(i)  x (ih);      z(i)  x (ih);    i  0, 1, 2, ..= = = =  (34) 
 

Initial conditions are taken in the form 

 x(1) = x1(0);  y(1) = x2(0);  z(1) = x3(0); (35) 

Introducing the solution approximation in the polynomial form we obtain the following 
discrete mathematical model of the circuit for state variables x(i), y(i) and z(i), namely 

 
x(i) (alpha * ( y(i) f1(a0,a1,x(i 1))) * h ^ q1 back(x,b1,i),
y(i) (beta * (x(i) R * y(i 1) z(i 1)) * h ^ q2 back(y,b2,i),
z(i) (gamma * (a b * y(i)) * h ^ q3 back(z,b3,i)

= − + − −
= − − − − −
= − −

 (36) 

where  

 1 1 1
1 3alpha C ;    beta L ;   gamma C ;   i 2, 3, ..., n.− − −= = = =  (37) 

and for nonlinear characteristic f1(x)= αx^2 +βx^3 we have 

 a0 α;  a1 β;= =  (38) 
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To compute discrete state variable (36) and to plot their diagrams the code presented below 
can be used. The same code can be used for other parameters provided that appropriate 
changes are made in the lines with parameters in bold-face (Petras, 2010) 

Main code: 

Clc 
clear 
% Numerical Solution of the Fractional-Order Modified Chua's Circuit 
% with cubic nonlinearity defined in function fm() 
function [h, xdisc]=MOChua(parameters, orders, tfin, x0) 
% 
% time step 
h=0.001; tfin=200; 
% number of discrete points 
n=round(tfin/h); 
%orders of derivatives 
q1=0.9; q2=0.9; q3=0.9; 
%parameters 
alpha=100.0; beta=1.0;gamma=1.0;R=0.1;a=0.0005; b=0.001;a0=1.5; a1=-1; 
%initial conditions 
x0=0;y0=0;z0=0; 
% binomial coefficients  
bp1=1; bp2=1; bp3=1; 
for j=1:n 
  b1(j)=(1-(1+q1)/j)*bp1; 
  b2(j)=(1-(1+q2)/j)*bp2; 
  b3(j)=(1-(1+q3)/j)*bp3; 
  bp1=b1(j); bp2=b2(j); bp3=b3(j); 
end 
% initial conditions setting 
x(1)=x0; y(1)=y0; z(1)=z0; 
% discretized solution 
for i=2:n 
  x(i)=(alpha*(-y(i-1)+f1(a0,a1,x(i-1))))*h^q1 - back(x, b1, i); 
  y(i)=(beta*(x(i)-R*y(i-1)-z(i-1)))*h^q2 - back(y, b2, i); 
  z(i)=(gamma*(a-b*y(i)))*h^q3 - back(z, b3, i); 
  f(i)=f1(a0,a1,x(i)); 
end 
%plots 
t=h:h:tfin; 
plot(t,x),grid,pause 
plot(x,y),grid,pause 
plot(t,x,t,y,t,z),grid,pause 
plot3(x,y,z),grid,pause 
plot(x,f),grid 
% 
The codes f1(a0,a1,x) for the characteristic of a nonlinear resistor and back(x,b,i) are as follows 
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systems exhibits highly organized shapes leading to a strange attractor in phase space. 
Moreover, even if a system is characterized by the geometrical form of the corresponding 
attractor with a defined shape, the modified Chua’s circuit can generate both an unusual 
complexity and an astonishing unpredictability. Noteworthy, up to date no analytical 
solution has been found for studies of chaotic systems. 

3.2.2 Numerical solution of the fractional-order Chua’s circuit  
In what follows the effects of fractional dynamics in chaotic modified Chua circuits with the 
structure shown in Fig. 4a are studied. Taking into account the circuit state variable equation 
(31) we can approximate its solution by applying the discretization procedure and 
numerical calculation of fractional-order derivation using an explicit relation derived from 
the Grunwald–Letnikov definition (2). Using the following relation for the explicit numerical 
approximation of q-th derivative at the points kh, (k = 1, 2, . . .) (Kilbas et al., 2006): 
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For discretized evaluation purposes it is convenient to simplify notation and introduce the 
following substitutions 

 .,1 2 3x(i) x (ih);      y(i)  x (ih);      z(i)  x (ih);    i  0, 1, 2, ..= = = =  (34) 
 

Initial conditions are taken in the form 

 x(1) = x1(0);  y(1) = x2(0);  z(1) = x3(0); (35) 

Introducing the solution approximation in the polynomial form we obtain the following 
discrete mathematical model of the circuit for state variables x(i), y(i) and z(i), namely 

 
x(i) (alpha * ( y(i) f1(a0,a1,x(i 1))) * h ^ q1 back(x,b1,i),
y(i) (beta * (x(i) R * y(i 1) z(i 1)) * h ^ q2 back(y,b2,i),
z(i) (gamma * (a b * y(i)) * h ^ q3 back(z,b3,i)

= − + − −
= − − − − −
= − −

 (36) 

where  

 1 1 1
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and for nonlinear characteristic f1(x)= αx^2 +βx^3 we have 

 a0 α;  a1 β;= =  (38) 
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To compute discrete state variable (36) and to plot their diagrams the code presented below 
can be used. The same code can be used for other parameters provided that appropriate 
changes are made in the lines with parameters in bold-face (Petras, 2010) 

Main code: 

Clc 
clear 
% Numerical Solution of the Fractional-Order Modified Chua's Circuit 
% with cubic nonlinearity defined in function fm() 
function [h, xdisc]=MOChua(parameters, orders, tfin, x0) 
% 
% time step 
h=0.001; tfin=200; 
% number of discrete points 
n=round(tfin/h); 
%orders of derivatives 
q1=0.9; q2=0.9; q3=0.9; 
%parameters 
alpha=100.0; beta=1.0;gamma=1.0;R=0.1;a=0.0005; b=0.001;a0=1.5; a1=-1; 
%initial conditions 
x0=0;y0=0;z0=0; 
% binomial coefficients  
bp1=1; bp2=1; bp3=1; 
for j=1:n 
  b1(j)=(1-(1+q1)/j)*bp1; 
  b2(j)=(1-(1+q2)/j)*bp2; 
  b3(j)=(1-(1+q3)/j)*bp3; 
  bp1=b1(j); bp2=b2(j); bp3=b3(j); 
end 
% initial conditions setting 
x(1)=x0; y(1)=y0; z(1)=z0; 
% discretized solution 
for i=2:n 
  x(i)=(alpha*(-y(i-1)+f1(a0,a1,x(i-1))))*h^q1 - back(x, b1, i); 
  y(i)=(beta*(x(i)-R*y(i-1)-z(i-1)))*h^q2 - back(y, b2, i); 
  z(i)=(gamma*(a-b*y(i)))*h^q3 - back(z, b3, i); 
  f(i)=f1(a0,a1,x(i)); 
end 
%plots 
t=h:h:tfin; 
plot(t,x),grid,pause 
plot(x,y),grid,pause 
plot(t,x,t,y,t,z),grid,pause 
plot3(x,y,z),grid,pause 
plot(x,f),grid 
% 
The codes f1(a0,a1,x) for the characteristic of a nonlinear resistor and back(x,b,i) are as follows 
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function [fn]=f1(a0, a1, un); 
a0=1.5;a1=-1.; 
fn=a0*un.^2 + a1*un.^3; 
% 
function [vo] =back(r, b, k) 
% 
temp = 0; 
for j=1:k-1 
  temp = temp + b(j)*r(k-j); 
end 
vo = temp; 
% 
 

Simulations were then performed using various qk, k =1, 2, 3, from the value interval 0.8 ÷ 1.1. 
In all cases the Lyapunov exponents were computed and one of them at least exhibited 
positive value which indicates that the circuit is behaving chaotically. Moreover, the 
numerical simulations also indicated that the lower limit of the fractional derivative q of all 
state vector components leading to generating chaos takes values from the interval (0.8 ÷0.9). 
Therefore, using q = 0.9 as fractional state vector derivative yields the lowest value at 2.7 for 
circuit order generating chaos in the modified Chua circuit. The simulation results obtained 
for these circuits are presented in Fig. 6 for alpha =100.0, beta = gamma = 1.0, a = 0.0005,  
b = 0.005, a0 = 1.5, a1 = -1.  

3.2.3 Fractional-order Chua’s circuit with piecewise-linear resistor  
Let us explore now the fractional-order modified Chua’s circuit of Fig. 4a but with the 
nonlinear resistor exhibiting piecewise-linear current-voltage characteristic. In order to 
appreciate the richness of the dynamics of the present variant circuit we involve the 
resistor’s piecewise-linear characteristic composed of three linear segments leading to the 
form quite similar to that shown in Fig. 6d. It can be described by the formula 

 n 1 1 2 1I abs(u ) H (u u )= + ⋅ −  (39) 

where u1 and u2 determine successive segments of the piecewise-linear characteristic 
depending on the voltage at the nonlinear resistor terminals. These segments can be 
represented as follows 

 1 1 1 2 2 1 0u a x ,   u a x a= = + , (40) 

where constant coefficients a1 and a2 determine the slopes of particular characteristic 
segments, and a0 is the free term. To get a continuous piecewise-linear characteristic the 
segments are exactly matched as a result of the concatenation given by the shifted Heaviside 
function  

 1 c
1

1 c

abs(x x )1H (1 )
2 x x

−
= +

−
 (41) 

with xc fixed at the point of coordinate x1 corresponding to characteristic folding of 
neighboring segments. 
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Fig. 6. Simulation results for a modified Chua’s circuit of fractional orders q1 = q2 = q3 = 0.9:  
a) state variable x1(t), b) all state variables: x1(t) - in blue, x2(t) - in green, x3(t) – in red,  
c) x2(t) versus x1(t), d) nonlinear resistor’s characteristic f1(x1)= 2 3

1 11.5x x−  

To perform simulations of the fractional-order modified Chua’s circuit with nonlinear 
resistor characteristic determined by (39) we can use the above presented MATLAB code 
after changing only the code corresponding to the nonlinear term by the following one 
 

function [fn]=f2(a0, a1, a2, u0, un); 
a0=1.0; a1=1.5; a2=-0.75; u0=1.0; 
J1=abs(un-u0)./(un-u0);H1=0.5*(1+J1);  
u1=a1*un;u2=a2*un+a0; 
fn=abs(u1)+H1.*(u2-u1); 
 

where appropriate changes can be made in parameters in bold-face, similarly to the main code. 
The resulting characteristic for a range of parameters assumed as above are shown in Fig. 7a.  
A slight modification of arguments of the code above enables to generate other forms of 
piecewise-linear characteristics of the nonlinear resistor. For instance, the case of 5-segment 
characteristic obtained by such modified code is presented in Fig. 7b.  
It is worth noticing that the piecewise-linear models are an attractive alternative to 
continuous nonlinear ones because they are both efficient in memory use and economical in 
computation time, despite the fact that the derivation of a model usually requires two steps: 
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function [fn]=f1(a0, a1, un); 
a0=1.5;a1=-1.; 
fn=a0*un.^2 + a1*un.^3; 
% 
function [vo] =back(r, b, k) 
% 
temp = 0; 
for j=1:k-1 
  temp = temp + b(j)*r(k-j); 
end 
vo = temp; 
% 
 

Simulations were then performed using various qk, k =1, 2, 3, from the value interval 0.8 ÷ 1.1. 
In all cases the Lyapunov exponents were computed and one of them at least exhibited 
positive value which indicates that the circuit is behaving chaotically. Moreover, the 
numerical simulations also indicated that the lower limit of the fractional derivative q of all 
state vector components leading to generating chaos takes values from the interval (0.8 ÷0.9). 
Therefore, using q = 0.9 as fractional state vector derivative yields the lowest value at 2.7 for 
circuit order generating chaos in the modified Chua circuit. The simulation results obtained 
for these circuits are presented in Fig. 6 for alpha =100.0, beta = gamma = 1.0, a = 0.0005,  
b = 0.005, a0 = 1.5, a1 = -1.  

3.2.3 Fractional-order Chua’s circuit with piecewise-linear resistor  
Let us explore now the fractional-order modified Chua’s circuit of Fig. 4a but with the 
nonlinear resistor exhibiting piecewise-linear current-voltage characteristic. In order to 
appreciate the richness of the dynamics of the present variant circuit we involve the 
resistor’s piecewise-linear characteristic composed of three linear segments leading to the 
form quite similar to that shown in Fig. 6d. It can be described by the formula 

 n 1 1 2 1I abs(u ) H (u u )= + ⋅ −  (39) 

where u1 and u2 determine successive segments of the piecewise-linear characteristic 
depending on the voltage at the nonlinear resistor terminals. These segments can be 
represented as follows 

 1 1 1 2 2 1 0u a x ,   u a x a= = + , (40) 

where constant coefficients a1 and a2 determine the slopes of particular characteristic 
segments, and a0 is the free term. To get a continuous piecewise-linear characteristic the 
segments are exactly matched as a result of the concatenation given by the shifted Heaviside 
function  
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with xc fixed at the point of coordinate x1 corresponding to characteristic folding of 
neighboring segments. 
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Fig. 6. Simulation results for a modified Chua’s circuit of fractional orders q1 = q2 = q3 = 0.9:  
a) state variable x1(t), b) all state variables: x1(t) - in blue, x2(t) - in green, x3(t) – in red,  
c) x2(t) versus x1(t), d) nonlinear resistor’s characteristic f1(x1)= 2 3

1 11.5x x−  

To perform simulations of the fractional-order modified Chua’s circuit with nonlinear 
resistor characteristic determined by (39) we can use the above presented MATLAB code 
after changing only the code corresponding to the nonlinear term by the following one 
 

function [fn]=f2(a0, a1, a2, u0, un); 
a0=1.0; a1=1.5; a2=-0.75; u0=1.0; 
J1=abs(un-u0)./(un-u0);H1=0.5*(1+J1);  
u1=a1*un;u2=a2*un+a0; 
fn=abs(u1)+H1.*(u2-u1); 
 

where appropriate changes can be made in parameters in bold-face, similarly to the main code. 
The resulting characteristic for a range of parameters assumed as above are shown in Fig. 7a.  
A slight modification of arguments of the code above enables to generate other forms of 
piecewise-linear characteristics of the nonlinear resistor. For instance, the case of 5-segment 
characteristic obtained by such modified code is presented in Fig. 7b.  
It is worth noticing that the piecewise-linear models are an attractive alternative to 
continuous nonlinear ones because they are both efficient in memory use and economical in 
computation time, despite the fact that the derivation of a model usually requires two steps: 
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first, the piecewise-linear approximation of nonlinear elements’ characteristics, and second, 
their algebraic representations. Applying such an approach to studies of nonlinear circuits 
leads to piecewise-linear differential equations yielding a pervasively better understanding 
of various problems in applications. For instance, the piecewise-linear models for operational 
amplifiers (op amps) and operational transconductance amplifiers (OTA’s) are both simple 
and frequently used. Another way of approximating dynamic circuits with semiconductor 
diodes can be obtained by replacing the real characteristic by piecewise-linear functions 
between diode current and voltage.  
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Fig. 7. Piecewise-linear characteristics of the nonlinear resistor: a) 3- segments, b) 5-segments 

As it is well known nonlinear devices are already present in a great variety of applications 
in both power-electronic engineering and signal processing, and in many electrical networks 
controlling elements like thyristors. To reduce the simulation time of the transient behavior 
of such circuits and for analysis purposes (e.g., stability or chaos (Tang & Wang, 2005; 
Trzaska, 2007)), these circuit components are often modeled using piecewise-linear 
characteristics. Piecewise-linear circuits exhibit most of the phenomena of fractional order 
nonlinear circuits being yet weakly penetrating. Computer simulations of the suggested 
discrete maps with memory prove that the nonlinear dynamical circuits, which are 
described by the equations with fractional derivatives, exhibit a new type of chaotic 
behavior. This type of behavior demonstrates a fractional generalization of attractors. The 
subsequent numerical simulation results demonstrate this claim. 

3.2.4 Chaotic oscillations in the circuit with piecewise-linear resistor 
For the modified Chua’s circuit of different fractional orders q = [q1, q2, q3]’ we have chosen 
function f(x) and the circuit parameters R, L, C1, C3, a, b, and h to satisfy the conditions of 
numerical stability, convergence and accuracy, so that the model (36) with appropriately 
adapted piecewise-linear characteristic (code for f2(a0, a1, a2, u0, un)) generates regular 
oscillations or demonstrates chaotic behaviors. For one of the chaotic circuits given in Fig. 4a 
with alpha = 1.5, beta = 0.85, gamma=1.0, R=0.0, a=0.005, b= 0.05, and piecewise-linear 
characteristic shown in Fig. 7a we have numerically investigated the sensitivity of the circuit 
states to the fractional orders q1, q2 and q3. In all computations performed we have fixed 
initial conditions to be zero. The obtained numerical simulations demonstrated that the non-
regular oscillations specified by chaotic attractors can be generated for the components of 
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the vector fractional derivative q taking values from the set (0.8 ÷1.0). The chaotic dynamics 
was identified in two fractional order modified Chua’s circuits with 3-segments and 5-
segments piecewise-linearity. 
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Fig. 8. Results of simulations for modified Chua circuits with three segments of piecewise- 
linear characteristic: a) state variable x1(t), b) phase trajectory x2(t) versus x1(t), c) 3D phase 
trajectory, d) phase trajectory x2(t) versus x3(t) 
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Fig. 9. Chaotic attractors for modified Chua circuits with quintuple segments of piecewise-
linear characteristic: a) phase trajectory x2(t) versus x1(t), b) 3D phase trajectory 
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first, the piecewise-linear approximation of nonlinear elements’ characteristics, and second, 
their algebraic representations. Applying such an approach to studies of nonlinear circuits 
leads to piecewise-linear differential equations yielding a pervasively better understanding 
of various problems in applications. For instance, the piecewise-linear models for operational 
amplifiers (op amps) and operational transconductance amplifiers (OTA’s) are both simple 
and frequently used. Another way of approximating dynamic circuits with semiconductor 
diodes can be obtained by replacing the real characteristic by piecewise-linear functions 
between diode current and voltage.  
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Fig. 7. Piecewise-linear characteristics of the nonlinear resistor: a) 3- segments, b) 5-segments 

As it is well known nonlinear devices are already present in a great variety of applications 
in both power-electronic engineering and signal processing, and in many electrical networks 
controlling elements like thyristors. To reduce the simulation time of the transient behavior 
of such circuits and for analysis purposes (e.g., stability or chaos (Tang & Wang, 2005; 
Trzaska, 2007)), these circuit components are often modeled using piecewise-linear 
characteristics. Piecewise-linear circuits exhibit most of the phenomena of fractional order 
nonlinear circuits being yet weakly penetrating. Computer simulations of the suggested 
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the vector fractional derivative q taking values from the set (0.8 ÷1.0). The chaotic dynamics 
was identified in two fractional order modified Chua’s circuits with 3-segments and 5-
segments piecewise-linearity. 
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Fig. 8. Results of simulations for modified Chua circuits with three segments of piecewise- 
linear characteristic: a) state variable x1(t), b) phase trajectory x2(t) versus x1(t), c) 3D phase 
trajectory, d) phase trajectory x2(t) versus x3(t) 
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Fig. 9. Chaotic attractors for modified Chua circuits with quintuple segments of piecewise-
linear characteristic: a) phase trajectory x2(t) versus x1(t), b) 3D phase trajectory 
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Examples of numerical simulation results confirming the existence of chaos in circuits with 
components described by piecewise-linear characteristics are presented in Figs. 8 and 9. It 
should be noted that the qualitative features of the studied circuits are very well predicted 
using sufficiently small step h of integrations in such a way that the quantitative results are 
reasonably close to the ones obtained for continuous relations representing cubic and 
quintuple nonlinearities.  
As mentioned in the previous paragraph, determination of proper parameter range for which 
a dynamical system exhibits chaotic behavior is not always simple and sometimes needs a 
large amount of numerical simulations. Unfortunately, outside of numerical simulation, 
there is currently no other method to distinguish between regular and chaotic oscillations.  

4. Conclusion  
Most properties and conclusions of integer order circuits cannot be simply extended to that 
of the fractional order circuits. The models of the fractional order circuits contain unlimited 
memory and they exhibit more degrees of freedom. Due to the lack of appropriate 
mathematical tools, chaos analysis in fractional order circuits is more complicated than that 
in integer order systems. However, it is possible to design a circuit with moderate 
characteristics, which behavior is not properly represented using conventional methods. In 
that case the fractional calculus provides a framework for more efficient circuit modeling 
and control. For instance, the microstructures containing such components as supercapacitors 
with nano- and microcrystalline surface deposited electrodes can be modeled more 
successfully by fractional order equations than by traditional models. However, many 
challenges in the field of fractional order nonlinear circuits remain, notably the ones related 
to regularity and chaoticity of oscillations. In the case of the modified Chua’s circuit the 
degree of chaoticity can be determined by a measure Dc expressing the counting box fractal 
dimension of chaotic flows. In the context of the emerging field of computational 
nanoscience, and in particular in the area of algorithms devoted to numerically explore the 
electronic circuits, the reported examples reinforce the suitability of the modified Chua’s 
circuits for emulating fractional emergent phenomena. 
In this Chapter different circuit dynamics have been described. The wide range of oscillation 
forms and their combination reflect the complexity of fractional-order nonlinear circuits. 
Numerical investigations of the behavior of the modified Chua’s circuit for different forms 
of the nonlinear resistor characteristic can be realized with appropriate procedures from the 
standard MATLAB program package and from the Symbolic Math Tools box. It should be 
pointed out that the use of discretized form of the Grünvald-Letnikov fractional derivative 
provides a very important tool in the study of the dynamics of fractional order nonlinear 
circuits. Additionally, examples of program codes by which fractional order nonlinear 
circuits can be effectively simulated have been provided for studies of circuits with 
continuous nonlinear and/or piecewise-linear output-input characteristics of respective 
elements. This approach seems very promising for predicting chaos in fractional order 
systems studied in domains such as electrical science, diffusion process, electrochemistry, 
control science, viscoelasticity, material science, etc. 
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1. Introduction 
Embedding a hidden stream of bits in a file is called Digital Watermarking. The file could be 
an image, audio, video or text. Nowadays, digital watermarking has many applications such 
as broadcast monitoring, owner identification, proof of ownership, transaction tracking, 
content authentication, copy control, device control, and file reconstruction (Cox et. al., 2008). 
In literature, the host file is called the “asset”, and the bit stream is called the “message”. The 
main specifications of a watermarking system are: Robustness (Against intentional attacks 
or unintentional ones such as compression), Imperceptibility, and Capacity. Importance of 
each depends on the application. As a matter of fact there is a trade-off between these factors 
(Barni & Bartolini, 2004). Although watermarking in some literature includes visible 
imprints, here we only mean the invisible embedding of the data. 
In this chapter, we will introduce how to use MATLAB to implement image watermarking 
algorithms. These algorithms include the most famous ones which are widely used in 
current literature or more complicated approaches are based upon. These are commonly 
divided into three categories (Barni & Bartolini, 2004) 
1. Watermarking in Spatial Domain 
2. Watermarking in Spectral Domain 
3. Watermarking in Hybrid Domain 
In section 2 we will go through some basic image processing commands in MATLAB. 
Section 3 provides information about different fundamental watermarking methods. 
Evaluating the algorithms is discussed in Section 4, and finally section 5 brings a conclusion. 

2. Basic image processing commands in MATLAB 
Digital Image, like many other files, is known as a matrix in MATLAB. Here, we go through 
several basic image processing commands. 

2.1 Loading an image 
For loading an image, it is better to put the image in the same folder with the m-file. This 
way, the image can be easily loaded through “imread” command: 
 

A = imread(‘lena.tif’); 
 

Else if the image is in a different folder, it should be fully addressed: 
A = imread(‘C:\Users\User1\Desktop\lena.tif’); 
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1. Introduction 
Embedding a hidden stream of bits in a file is called Digital Watermarking. The file could be 
an image, audio, video or text. Nowadays, digital watermarking has many applications such 
as broadcast monitoring, owner identification, proof of ownership, transaction tracking, 
content authentication, copy control, device control, and file reconstruction (Cox et. al., 2008). 
In literature, the host file is called the “asset”, and the bit stream is called the “message”. The 
main specifications of a watermarking system are: Robustness (Against intentional attacks 
or unintentional ones such as compression), Imperceptibility, and Capacity. Importance of 
each depends on the application. As a matter of fact there is a trade-off between these factors 
(Barni & Bartolini, 2004). Although watermarking in some literature includes visible 
imprints, here we only mean the invisible embedding of the data. 
In this chapter, we will introduce how to use MATLAB to implement image watermarking 
algorithms. These algorithms include the most famous ones which are widely used in 
current literature or more complicated approaches are based upon. These are commonly 
divided into three categories (Barni & Bartolini, 2004) 
1. Watermarking in Spatial Domain 
2. Watermarking in Spectral Domain 
3. Watermarking in Hybrid Domain 
In section 2 we will go through some basic image processing commands in MATLAB. 
Section 3 provides information about different fundamental watermarking methods. 
Evaluating the algorithms is discussed in Section 4, and finally section 5 brings a conclusion. 

2. Basic image processing commands in MATLAB 
Digital Image, like many other files, is known as a matrix in MATLAB. Here, we go through 
several basic image processing commands. 

2.1 Loading an image 
For loading an image, it is better to put the image in the same folder with the m-file. This 
way, the image can be easily loaded through “imread” command: 
 

A = imread(‘lena.tif’); 
 

Else if the image is in a different folder, it should be fully addressed: 
A = imread(‘C:\Users\User1\Desktop\lena.tif’); 
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The supported formats by MATLAB are: bmp, cur, fts(fits), gif, hdf, ico, j2c(j2k), jp2, jpf(jpx), 
jpg(jpeg), pbm, pcx, pgm, png, pnm, ppm, ras, tif(tiff), and xwd. ‘A’ is now a matrix of 
pixels brightness values. If the image is in black and white, the matrix is 2-dimmensional. 
However, if there is a color image, we will have a 3-dimmensional matrix, which has three 
planes of main colors: Red, Green, and Blue. The number of bits that are needed to preserve 
the value of every pixel is called “bit depth” of the image. The output class of “imread” 
command is “logical” for depth of one bit, “uint8” for bit depth between 2-8, and “uint16” 
for higher bit depths. 

2.2 Displaying an image 
The most common command for displaying an image(matrix) is “imshow”: 
 

imshow(A); 
 

This command can also depict matrices with double values. If the values are not between 0-
255, it is better to map them to this region. This can be simply done by adding an empty 
matrix to the command. This way, the lowest value of the matrix is considered ‘0’, and the 
highest is considered 255: 
 

imshow(A, [ ] ); 

2.3 Creating an image 
“imwrite” is used for creating an image file out of a matrix. The image file is created in the 
same folder with the m-file if no address is given. This command has some useful 
parameters such as JPEG image compression ratio: 
 

imwrite(A,'wm_lena.jpg','Mode','lossy','Quality',65,'Bitdepth',8); 

3. Watermarking methods 
As mentioned in Introduction there are 3 main categories for digital watermarking methods. 

3.1 Watermarking in spatial domain 
The message can be any coded or straight arrange of bits. Furthermore, the message can be 
another image. Consider the asset and the message as shown in  Fig. 1. 
Fig. 2 shows different bit-planes of the asset with a depth of 8 bits. Bit-plane is the plane that 
one specific bit of every pixel create.  
The command “bitget” can be used here to create the bit-plane splitter function as depicted 
below: 
 

function [B8,B7,B6,B5,B4,B3,B2,B1] = bitplane (pic) 
    B1 = bitget(pic,1)*2^0; 
    B2 = bitget(pic,2)*2^1 ; 
    B3 = bitget(pic,3)*2^2 ; 
    B4 = bitget(pic,4)*2^3 ; 
    B5 = bitget(pic,5)*2^4 ; 
    B6 = bitget(pic,6)*2^5 ; 
    B7 = bitget(pic,7)*2^6 ;  
    B8 = bitget(pic,8)*2^7 ; 
end 
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Fig. 1. Examples of asset and message 

  

 
Fig. 2. Bit-planes of the asset image 

The first bit-plane is the least significant one (LSB) and most of the time is hardly related to 
the main shapes of the picture. On the other hand, the last bit-plane is the most significant 
one (MSB) and contains the main lines and edges of the picture. We consider this image as 
the asset file. The message also, as shown in  Fig. 3, contains 8 bit-planes. Note that the same 
story is true about lower bit-planes. 
Now, as depicted in  Fig. 4, we put the significant message bit-planes instead of insignificant 
bit-planes of the asset, and reconstruct the mandrill image. 
As clear in  Fig. 5, the resulting watermarked image has a good quality and the watermark 
message is imperceptible.  
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Fig. 3. Bit-planes of the message image 

 

 
Fig. 4. Substituting the LSB(s) of the asset with MSB(s) of the message 

The extraction process simply contains another bit-planes extraction and reconstruction of 
the message using insignificant bit-planes: 
 

message = B3_w * 2^7 + B2_w * 2^6 + B1_w * 2^5; 
 

 Fig. 6 depicts the extracted message. Note that the main shape of the message is preserved 
by its highest bit-planes. 
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Fig. 5. Watermarked image 

3.2 Watermarking in spectral domain 
There are several transforms that brings an image into frequency domain. Among most 
common of those, we can mention are: Discrete Cosines Transform (DCT) and Fast Fourier 
Transform (FFT). 
In frequency domain, coefficients are slightly modified. This will make some unnoticeable 
changes in the whole image and makes it more robust to attack compared to what we have 
in spatial methods. One of the most popular approaches in this category is the one proposed 
by Cox et al which is cited by 4166 articles so far according to Google Scholar1. In this 
method, discrete cosines transform (DCT) is applied on the asset image as shown in  Fig. 7. 
Fortunately, there is a direct command for obtaining DCT coefficients of images: 
 

B = dct2(A); 
 

Note that the output is a matrix of the same size, but with values of “double” class. As 
illustrated in  Fig. 7, the absolute values of the coefficients corresponding to the low 

                                                 
1 http://scholar.google.com/scholar?cites=11123322117781572712&as_sdt=2005&sciodt=0, 5&hl=en 
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frequencies are higher and appear in the up-left corner of the square, while high frequency 
coefficients appear in down-right with lower absolute values.  
 

 
Fig. 6. Extracted message 

 

 
Fig. 7. Bringing an image into DCT domain 
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To have a better concept of values it is worth to mention that the largest value (51,614) is 
corresponding to the DC value of the image placed in position (0,0) of the square. “imshow” 
is used for displaying the DCT coefficients. The message is also coded into an spread 
spectrum sequence. This step makes the watermarking message robust against many attacks 
such as JPEG compression which aims to omit the unnoticeable details in high frequencies. 
Now how the message is added to the asset?  Fig. 8 describes the process. 
 

 
Fig. 8. Watermark embedding in spectral domain (Cox et. al. ,1997) 

The question still remains that which coefficients are going to change and how. Cox et. al.  
use 1000 largest coefficients to embed a watermark sequence of length 1000. The only 
exception is the DC term, located in (0,0) of the DCT matrix, that should not be changed due 
to its perceptible change in the whole brightness of the picture. On the other hand, high 
frequencies are easily changed under common attacks such as compression. Nevertheless, 
the author suggests not to change some coefficients near to DC term due to their noticeable 
change. The suggested area is approximately depicted in  Fig. 7 .Coefficients are modified 
according to the stream bits of the message using to the equation 1 (Cox et al., 1997): 

 ( )AW A iC C 1 W= ⋅ + α ⋅  (1) 

In which CAW is the watermarked coefficient, CA is the original one, α represents 
watermarking strength (e.g.  0.3), and Wi is the corresponding bit of the message data. The 
formula easily suggests that if a coefficient is larger, it should be modified to a greater 
extent. We can write the code for the method so far as follows (α=0.1): 
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[fname pthname]=uigetfile('*.jpg;*.png;*.tif;*bmp','Select the Asset Image'); %select image 
I=imread([pthname fname]); 
wmsz=1000; %watermark size 
I=I(:,:,1);%get the first color in case of RGB image 
[r,c]=size(I); 
D=dct2(I);%get DCT of the Asset 
D_vec=reshape(D,1,r*c);%putting all DCT values in a vector 
[D_vec_srt,Idx]=sort(abs(D_vec),'descend');%re-ordering all the absolute values 
W=randn(1,wmsz);%generate a Gaussian spread spectrum noise to use as watermark signal 
Idx2=Idx(2:wmsz+1);%choosing 1000 biggest values other than the DC value 
%finding associated row-column order for vector values 
IND=zeros(wmsz,2); 
for k=1:wmsz 
    x=floor(Idx2(k)/r)+1;%associated culomn in the image 
    y=mod(Idx2(k),r);%associated row in the image 
    IND(k,1)=y; 
    IND(k,2)=x; 
end 
D_w=D; 
for k=1:wmsz 
    %insert the WM signal into the DCT values 
D_w(IND(k,1),IND(k,2))=D_w(IND(k,1),IND(k,2))+.1*D_w(IND(k,1),IND(k,2)).*W(k); 
end 
I2=idct2(D_w);%inverse DCT to produce the watermarked asset 
 

The extraction process is simply subtracting the original DCT coefficients from the 
watermarked image ones. The code can be written like below: 
 

W2=[];%will contain watermark signal extracted from the image 
for k=1:wmsz 
   W2=[W2(D_w(IND(k,1),IND(k,2))/D(IND(k,1),IND(k,2))-1)*10];%watermark extraction 
end 
 

 Fig. 9 illustrates the process. 
Cox et. al. provide equation (2) to check the similarity between the extracted watermark and 
the original sequence. 

 ( )sim , X XX X
X X

∗
∗

∗ ∗

⋅
=

⋅
 (2) 

In which “X” is the original and “X*” is the extracted message. Creating a function for this 
equation would be useful: 
 

function SIM=WM_detect(Wstar,Worig) 
SIM=sum(Wstar.*Worig)/sqrt(sum(Wstar.*Wstar)); 
end 
 

If the extracted message similarity is checked with 1000 random sequences including the 
original, a result such as what can be seen in  Fig. 10 is obtained. Regarding this plot, a 
suitable value of threshold can be set to detect the original watermark. 
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Fig. 9. Watermark  extraction (Cox et. al., 1997) 

 

 
Fig. 10. Detector response to 1000 random sequences including the original (Cox et. al., 1997) 
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This algorithm, despite the previous in spatial domain, needs the original asset for 
extraction. Methods like these are called “non-blind detection” (LSB was a sample of “blind 
detection”). A solution for this can be setting fix mid-frequency coefficients for preserving 
the watermark message (Barni & Bartolini, 2004). 

3.3 Watermarking in hybrid domain 
Watermarking in hybrid domain means modifying the image regarding both spatial and 
spectral specifications. One popular algorithm in this domain is performing the previous 
method in small blocks of the image. This could happen in 8×8 blocks which ideally match 
JPEG compression to provide least distort to the message facing with JPEG compression 
attack (Barni & Bartolini, 2004).  Fig. 11 illustrates this method. Pixels in blue represent 
intensity of middle frequencies in the image and are most suitable for carrying message 
data. The code has not been brought here because it is simply performing spread spectrum 
algorithm in separate smaller blocks. 
 

 
Fig. 11. Block-based hybrid method (recreated from Barni & Bartolini, 2004) 

Another famous example of this is “Discrete Wavelet Transform” abbreviated as DWT. For 
bringing an image to the wavelet domain one can easily use the “dwt2” command: 
 

[bA,bH,bV,bD] = dwt2(A, ‘wname’); 
 

In which “wname” is the type of the filter you prefer to use as wavelet decomposition and 
reconstruction filters. This can be among the filter families of Daubechies (‘db1’), Coiflets 
(‘coif1’), Symlets (‘sym2’), Discrete Meyer (‘dmey’), Biorthogonal (‘bior1.1’), and Reverse 
Biorthogonal (rbio1.1). The option is also provided that you can use your own defined filters: 
 

Lo_D =  [1 2 1]/4;      % LP Decomposition Filter 
Hi_D =  [1 -2 1]/4;     % HP Decomposition Filter 
[bA,bH,bV,bD] = dwt2(A, Lo_D, Hi_D); 
 

The same story is true about the inverse transform: 
 

A = idwt2(bA,bH,bV,bD, 'wname') 
 

Or 
 

Lo_R =  [-1 2 6 2 -1]/8;      % LP Reconstruction Filter 
Hi_R =  [1 2 -6 2 1]/8;     % HP Reconstruction Filter 
B = idwt2(bA,bH,bV,bD, Lo_R, Hi_R); 
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The output decomposed matrices of “dwt2” are of class “double” and contain negative or 
above 255 values. Hence, there should be some mappings if you tend to display them. The 
result is provided in  Fig. 12. In the code, the maximum value for sub-bands is set to 60 
which is mapped to 255. This is because they have tiny values comparing the LL image. 
 

[bA,bH,bV,bD] = dwt2(A,'bior1.1'); 
B=[bA,bH;bV,bD]; 
subplot(2,2,1); 
imshow(abs(bA),[]); 
subplot(2,2,2); 
imshow(abs(bH),[0 60]); 
subplot(2,2,3); 
imshow(abs(bV),[0 60]); 
subplot(2,2,4); 
imshow(abs(bD),[0 60]); 
 

 
Fig. 12. Single level wavelet decomposition 
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Watermarking usually takes place in sub-bands. Just like the spread spectrum method, 
largest coefficients can be modified according to a similar equation to (1). Another solution 
is to change LSBs of these values (Vatsa et. al., 2006). 

4. Evaluation of watermarking methods 
Several Functions are used to qualify the watermarking algorithm, examining tests on the 
resulted watermarked image. 

4.1 Imperceptibility 
The imperceptibility of the watermark is tested through comparing the watermarked image 
with the original one. Several tests are usually used in this regard. 

4.1.1 MSE 
Mean Squared Error (MSE) is one of the earliest tests that were performed to test if two 
pictures are similar. A function could be simply written according to equation (3). 
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function out = MSE (pic1, pic2) 
e=0; 
[m,n]=size(pic1); 
for i=1:m 
    for j=1:n 
        e = e + double((pic1(i,j)-pic2(i,j))^2); 
    end 
end 
out = e / (m*n); 
end 

4.1.2 PSNR 
Pick Signal to Noise Ratio (PSNR) is a better test since it takes the signal strength into 
consideration (not only the error). Equation (4) describes how this value is obtained. 
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function out=PSNR(pic1, pic2) 
e=MSE(pic1, pic2); 
m=max(max(pic1)); 
out=10*log(double(m)^2/e); 
end 

4.1.3 SSIM 
The main problem about the previous two criteria is that they are not similar to what 
similarity means to human visual system (HVS). Structural Similarity (SSIM) is a function 
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defined as equation (5) by Wang et. al. in 2004 which overcame this problem to a great 
extent. 
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Where “µ”, “σ”, & “σxy” are mean, variance, and covariance of the images, and “c1, c2” are 
the stabilizing constants. SSIM has a value between 0-1. Similar images have SSIM near to 1. 
 Fig. 13 illustrates the magnificent advantages of SSIM over MSE. 
 

 
                        (a)                                                   (b)                                                 (c) 

 
                        (d)                                                   (e)                                                 (f) 

Fig. 13. Comparison of MSE and SSIM. All altered images have the same MSE=210 (a) Original 
image (b) SSIM=0.9168 (c) SSIM=0.9900 (d) SSIM=0.6949 (e) SSIM=0.7052 (f) SSIM=0.7748. 
(Wang et. al., 2004) 

The MATLAB code is available on authors’ webpage.2 

4.2 Robustness 
The robustness of a watermark method can be evaluated by performing attacks on the 
watermarked image and evaluating the similarity of the extracted message to the original 
one. 
                                                 
2 http://www.cns.nyu.edu/~lcv/ssim/ssim_index.m 
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4.2.1 Compression attack 
The most used image compression is definitely JPEG. In MATLAB, for compressing an 
image to different quality factors, the image should be created from a matrix and be reread: 
 

imwrite(A,'wm_lena.jpg','Mode','lossy','Quality',75); 
A = imread (‘wm_lena.jpg’); 

4.2.2 Noise attack 
Adding noise in MATLAB is simply done by “imnoise” command. Gaussian, Poisson, Salt & 
Pepper, and Speckle are among the noises that could be used here.  Fig. 14 shows the result 
of the code: 
 

Lena = imread('lena.tif'); 
Lena = imnoise(Lena,'salt & pepper',0.02); 
imshow(Lena); 
 

 
Fig. 14. Salt & Pepper noise 

4.2.3 Croppinga 
Cropping attack is simply cutting off parts of the image. If the algorithm is non-blind, it is 
better to bring back those parts from the original image for a better recovery of the message, 
as depicted in  Fig. 15. 
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Fig. 15. Recovery from a cropping attack 

4.3 Capacity 
The capacity of the watermark method can be easily tested by increasing the length of the 
watermarking message. Any watermarking method is not capable of holding more than a 
certain length of message or it will endanger its imperceptibility. 

5. Conclusion 
In this chapter, implementation of basic digital watermarking methods in MATLAB is 
described. Fundamental methods in spatial, spectral, and hybrid domains are described and 
sample codes are given. Finally, some solutions for qualifying the watermarking method are 
described. 
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to students in University of Tehran. 

7. References 
Cox, J.; Miller, M. L.; Bloom, J. A.; Fridrich J. & Kalker T. (2008). Digital Watermarking and 

Steganography, Morgan Kaufmann Pub., Elsevier Inc. 
Barni M. & Bartolini F. (2004). Watermarking Systems Engineering, Marcel Dekker Inc., Italy 
Cox, J.; Kilian, J.; Leighton F. T. & Shamoon T. (1997). Secure spread spectrum watermarking 

for multimedia. IEEE Transactions on Image Processing, Vol. 6, No. 12,(December 
1997), pp. 1673-1687 



 
Engineering Education and Research Using MATLAB 

 

478 

4.2.1 Compression attack 
The most used image compression is definitely JPEG. In MATLAB, for compressing an 
image to different quality factors, the image should be created from a matrix and be reread: 
 

imwrite(A,'wm_lena.jpg','Mode','lossy','Quality',75); 
A = imread (‘wm_lena.jpg’); 

4.2.2 Noise attack 
Adding noise in MATLAB is simply done by “imnoise” command. Gaussian, Poisson, Salt & 
Pepper, and Speckle are among the noises that could be used here.  Fig. 14 shows the result 
of the code: 
 

Lena = imread('lena.tif'); 
Lena = imnoise(Lena,'salt & pepper',0.02); 
imshow(Lena); 
 

 
Fig. 14. Salt & Pepper noise 

4.2.3 Croppinga 
Cropping attack is simply cutting off parts of the image. If the algorithm is non-blind, it is 
better to bring back those parts from the original image for a better recovery of the message, 
as depicted in  Fig. 15. 

 
Digital Watermarking Using MATLAB 

 

479 

 
Fig. 15. Recovery from a cropping attack 

4.3 Capacity 
The capacity of the watermark method can be easily tested by increasing the length of the 
watermarking message. Any watermarking method is not capable of holding more than a 
certain length of message or it will endanger its imperceptibility. 

5. Conclusion 
In this chapter, implementation of basic digital watermarking methods in MATLAB is 
described. Fundamental methods in spatial, spectral, and hybrid domains are described and 
sample codes are given. Finally, some solutions for qualifying the watermarking method are 
described. 

6. Acknowledgment 
The author wants to thank Prof. Nasiri Avanaki who introduced the world of watermarking 
to students in University of Tehran. 

7. References 
Cox, J.; Miller, M. L.; Bloom, J. A.; Fridrich J. & Kalker T. (2008). Digital Watermarking and 

Steganography, Morgan Kaufmann Pub., Elsevier Inc. 
Barni M. & Bartolini F. (2004). Watermarking Systems Engineering, Marcel Dekker Inc., Italy 
Cox, J.; Kilian, J.; Leighton F. T. & Shamoon T. (1997). Secure spread spectrum watermarking 

for multimedia. IEEE Transactions on Image Processing, Vol. 6, No. 12,(December 
1997), pp. 1673-1687 



 
Engineering Education and Research Using MATLAB 

 

480 

Vatsa, M.; Singh, R.; Noore, A.; Houck M. M. & Morris K. (2006). Robust biometric image 
watermarking fingerprint and face template protection. IEICE Electronics Express, 
Vol. 3, No. 2, pp. 23-28  

Wang, Z.; Bovik, A. C.; Sheikh, H. R. & Simoncelli E. P. (2004).Image quality assessment: 
From error visibility to structural similarity. IEEE Trans. Image Processing, vol. 13, 
no. 4, pp. 600-612. 



 
Engineering Education and Research Using MATLAB 

 

480 

Vatsa, M.; Singh, R.; Noore, A.; Houck M. M. & Morris K. (2006). Robust biometric image 
watermarking fingerprint and face template protection. IEICE Electronics Express, 
Vol. 3, No. 2, pp. 23-28  

Wang, Z.; Bovik, A. C.; Sheikh, H. R. & Simoncelli E. P. (2004).Image quality assessment: 
From error visibility to structural similarity. IEEE Trans. Image Processing, vol. 13, 
no. 4, pp. 600-612. 



Engineering Education and 
Research Using MATLAB

Edited by Ali H. Assi

Edited by Ali H. Assi

MATLAB is a software package used primarily in the field of engineering for signal 
processing, numerical data analysis, modeling, programming, simulation, and 

computer graphic visualization. In the last few years, it has become widely accepted 
as an efficient tool, and, therefore, its use has significantly increased in scientific 

communities and academic institutions. This book consists of 20 chapters presenting 
research works using MATLAB tools. Chapters include techniques for programming 

and developing Graphical User Interfaces (GUIs), dynamic systems, electric machines, 
signal and image processing, power electronics, mixed signal circuits, genetic 

programming, digital watermarking, control systems, time-series regression modeling, 
and artificial neural networks.

Photo by Shutterstock

ISBN 978-953-307-656-0

Engineering Education and Research U
sing M

ATLA
B

ISBN 978-953-51-5590-4


	Engineering Education and Research Using MATLAB
	Contents
	Preface
	Chapter 1
Modeling and Simulation of Multiphase Machines in the Matlab/Simulink Environment
	Chapter 2
De-Noising Audio Signals Using MATLAB Wavelets Toolbox
	Chapter 3
A Matlab® Approach for Implementing Control Algorithms in Real-Time: RTWT
	Chapter 4
MatLab in Model-Based Design for Power Electronics Systems
	Chapter 5
Mixed-Signal Circuits Modelling and Simulations Using Matlab
	Chapter 6
Control Optimization Using MATLAB
	Chapter 7
MATLAB GUI Application for Teaching Electronics
	Chapter 8
MATLAB-Assisted Regression Modeling of Mean Daily Global Solar Radiation in Al-Ain, UAE
	Chapter 9
Using MATLAB to Develop Artificial Neural Network Models for Predicting Global Solar Radiation in Al Ain City – UAE
	Chapter 10
Fractional Derivatives, Fractional Integrals, and Fractional Differential Equations in Matlab
	Chapter 11
Analysis of Dynamic Systems Using Bond Graph Method Through SIMULINK
	Chapter 12
Solving Fluid Dynamics Problems with Matlab
	Chapter 13
The Use of Matlab in the Study of the Glass Transition and Vitrification in Polymers
	Chapter 14
Advanced User-Interaction with GUIs in MatLAB®
	Chapter 15
Using MATLAB to Achieve Nanoscale Optical Sectioning in the Vicinity of Metamaterial Substrates by Simulating Emitter-Substrate Interactions
	Chapter 16
A Methodology and Tool to Translate MATLAB®/Simulink® Models of Mixed-Signal Circuits to VHDL-AMS
	Chapter 17
Automated Model Generation Approach Using MATLAB
	Chapter 18
A Matlab Genetic Programming Approach to Topographic Mesh Surface Generation
	Chapter 19
Matlab Solutions of Chaotic Fractional Order Circuits
	Chapter 20
Digital Watermarking Using MATLAB

