
Engineering High-Performance Community
Detection Heuristics for Massive Graphs

Christian L. Staudt and Henning Meyerhenke
Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Germany

{christian.staudt, meyerhenke}@kit.edu

Abstract—The amount of graph-structured data has recently
experienced an enormous growth in many applications. To
transform such data into useful information, high-performance
analytics algorithms and software tools are necessary. One
common graph analytics kernel is community detection (or graph
clustering). Despite extensive research on heuristic solvers for this
task, only few parallel codes exist, although parallelism is often
necessary to scale to the data volume of real-world applications.

We address the deficit in computing capability by a flexible and
extensible clustering algorithm framework with shared-memory
parallelism. Within this framework we implement our parallel
variations of known sequential algorithms and combine them by
an ensemble approach. In extensive experiments driven by the
algorithm engineering paradigm, we identify the most successful
parameters and combinations of these algorithms. The processing
rate of our fastest algorithm exceeds 10M edges/second for
many large graphs, making it suitable for massive data streams.
Moreover, the strongest algorithm we developed yields the best
tradeoff between quality and speed for graph clusterers to date.

Keywords: Community detection, graph clustering, high-
performance network analysis, parallel algorithm engineering

I. INTRODUCTION

The data volume produced by electronic devices is growing
at an enourmous rate. An important class of such data is
structured as or can be modeled by graphs. For instance, online
social networks are increasingly popular, the largest being
Facebook with more than 600 million daily active users.1 The
WWW forms a network of hyperlinked webpages in excess
of 30 billion nodes. To be able to analyze network data of
this magnitude in near real-time, algorithms and hardware
have to keep up with these data volumes and rates. However,
only few algorithms are able to handle such massive inputs.
A particular challenge is not only the size of the data, but
also its structure. Complex networks, in contrast to regular
meshes, have topological features which pose computational
challenges: In a scale-free network, the presence of a few
high-degree nodes (hubs) generates load balancing issues. In
a small world network, the entire graph can be visited in only
a few hops from any source node, which negatively affects
cache-performance. This increases the importance of structural
network analysis. As a result, costly algorithms can be applied
only to certain relevant parts of the network after they have
been identified in a precedent analysis.

1Facebook key facts: http://newsroom.fb.com/Key-Facts

In this work, we approach the task of community detection
in networks, also known as graph clustering, with a focus
on scalability. Applications are manifold, from counteracting
search engine rank manipulation [18] to discovering scientific
communities in publication databases [20]. So far, extensive
research on graph clustering has given rise to a variety of
definitions of what constitutes a good community and a variety
of methods for finding such communities, many of which
are described in surveys by Schaeffer [18] and Fortunato [6].
Among these definitions, the lowest common denominator is
that a community or cluster is an internally dense node set
with sparse connections to the rest of the graph. The clustering
quality measure modularity [9] formalizes the notion of a
good clustering by comparing its coverage (fraction of edges
within a cluster) to an expected value based on a random
edge distribution model. Modularity is not without flaws [7]
nor alternatives [21], but has emerged as a well-accepted
measure of clustering quality. This makes modularity our
measure of choice for evaluating our results. While optimiz-
ing modularity is NP-hard [3], efficient heuristics have been
introduced which explicitly increase modularity: A globally
greedy agglomerative method [4] runs in O(md log n) for
graphs with n nodes and m edges, where d is the depth
of the dendrogram of mergers and typically d ∼ log n. A
locally greedy multilevel-algorithm known as the Louvain
method [2] has been experimentally shown to be three orders
of magnitude faster than Clauset et al.’s [4] agglomeration.
Noack and Rotta [17] present another multilevel algorithm,
which combines agglomeration with refinement.

A. Motivation

For graphs with millions or billions of edges, only (near)
linear-time clustering algorithms can be considered in practice.
Several fast clustering methods have been developed in recent
years. There is, however, a lack of research in adapting these
methods to take advantage of parallelism. A very recent
attempt at assessing the state of the art in community de-
tection was conducted by the 10th DIMACS Implementation
Challenge on Graph Partitioning and Graph Clustering [1].
DIMACS challenges are scientific competitions in which the
participants solve problems from a specified test set, with the
aim of high solution quality and high execution performance.
Ten solver families were submitted (with a total of 15 different

ar
X

iv
:1

30
4.

44
53

v1
 [

cs
.D

C
]

 1
6

A
pr

 2
01

3

http://newsroom.fb.com/Key-Facts

implementations) for optimizing modularity. However, only
two of them relied on parallel processing and only very few
could handle the largest graphs with billions of edges in a
reasonable amount of time.

Accordingly, our objective is the development and imple-
mentation of a highly parallel clustering heuristic which is able
to handle massive graphs quickly while also producing a high-
quality clustering. In the following, the data sets and results
from the DIMACS challenge will serve as a major benchmark
for our own work presented here.

B. Methods

We implement two parallel algorithms, each of which can be
used as a relatively efficient standalone clusterer. In addition,
we also implement a two-phase approach that combines their
strengths: The problem size is first reduced in a preprocess-
ing phase focusing on speed. Afterwards, a more expensive
method is applied which emphasizes quality maximization.
The preprocessing phase is inspired by a machine learning
strategy known as ensemble learning [14], in which the output
of several weak classifiers is combined to form a strong one.
In our case, multiple base clusterers run in parallel as an
ensemble. Their clusterings are then combined to form a core
clustering, representing the consensus of all base clusterers.
The graph is contracted according to the core clustering, and
then assigned to a single final clusterer. Finally, the resulting
clustering of the coarse graph is applied to the input graph.
Within this extensible framework, which we call the ensem-
ble preprocessing method (EPP), we apply a parallel label
propagation algorithm (PLP) as base clusterers and a parallel
variant of the Louvain method (PLM) as the final clusterer.
Label propagation is a very simple procedure where nodes
adopt the cluster assignment (label) which is most frequent
among their neighbors until a stable clustering emerges. The
Louvain method is a multilevel technique in which nodes are
repeatedly moved to the clusters of a neighbor. We combine
multiple PLP base clusterings with a highly parallel hashing-
based scheme, implicitly finding nodes at the boundary of
communities whose affiliation is disputable. Afterwards we
considerably reduce the problem size by graph contraction,
and then allow the slower but qualitatively superior PLM to
maximize modularity, thus investing extra time into classifying
boundary nodes.

C. Capabilities

With our shared-memory parallel implementation of label
propagation clustering (PLP), we provide an extremely fast
basic clustering algorithm that scales well with the number of
processors. The processing rate of PLP exceeds 107 edges
per second for many large graphs, making it suitable for
massive data streams (see Figure 1, and Section VI-A for a
description of the graphs). With PLM, we present the first
parallel implementation of the Louvain clustering method
for massive inputs. The EPP ensemble algorithm combines

105 106 107 108

kron-g500-simple-logn20
uk-2007-05

as-Skitter
uk-2002

coAuthorsCiteseer
soc-LiveJournal

europe
cage15

coPapersDBLP
eu-2005 edges/s

Figure 1. Processing rate in edges per second of the PLP algorithm on large
graphs.

the advantages of PLP and PLM. After the fast PLP pre-
processing phase, even the largest graphs become tractable
for the qualitatively strong PLM. To our knowledge, EPP
yields the best tradeoff between quality and speed for graph
clusterers to date. Our implementation outperforms state-of-
the-art algorithms with respect to either speed or clustering
quality, as evidenced by comparison to the DIMACS Challenge
results (see Section VII-D).

Our clustering algorithm framework is flexible and exten-
sible, supporting rapid iteration between design, implementa-
tion and testing required for algorithm engineering [12]. In
this work, we focus on specific configurations of clustering
algorithms, but novel combinations can be quickly evaluated
in the future.

II. RELATED WORK

This section gives a short overview over related efforts.
For a comprehensive overview of graph clustering, we refer
the interested reader to the aforementioned surveys [18], [6].
Recent developments and results are covered by the 10th
DIMACS Implementation Challenge [1].

Clustering by label propagation has originally been de-
scribed by Raghavan et al. [15], and several variants of the
algorithm exist. One of these variants under the name peer
pressure clustering is due to Gilbert et al. [8], who use the
algorithm as a prototype application within a parallel toolbox
that uses numerical algorithms for combinatorial problems.
Unfortunately, the latter report running times only for a
different clustering algorithm, which solves a very specific
benchmark problem and is not applicable in our context.

Ovelgönne and Geyer-Schulz [14] apply the ensemble learn-
ing paradigm to graph clustering. They develop what they call
the Core Groups Graph Clusterer (CGGC) scheme, which
we adapt and evaluate as the Ensemble Preprocessing (EPP)
algorithm. They also introduce an iterated scheme (CGGCi)
in which the core clustering is again assigned to an en-
semble, creating a hierarchy of clusterings/contracted graphs
until clustering quality does not improve any more. We also
implement a variation of the iterated scheme as the Ensemble
Multilevel (EML) algorithm. Within this framework, they test
two base clusterers: Randomized Greedy (RG), a variant of
the aforementioned algorithm by Clauset et al. [4], avoids a
loss in clustering quality that arises from highly unbalanced
cluster sizes. Secondly, a sequential implementation of the

2

label propagation clustering scheme is used. CGGC with RG
as base and final clusterers competes in the DIMACS challenge
under the name RG+, and emerged as the winner of the Pareto
part of the challenge, which related quality to speed in order
to elect the best tradeoff.

Recently Ovelgönne [13] presented a distributed imple-
mentation (based on the big data framework Hadoop) of an
ensemble preprocessing scheme using label propagation as a
base algorithm. This implementation processes a 3.3 billion
edge web graph in a few hours on a 50 machine Hadoop
cluster [13, p. 10]. Our OpenMP-based implementation of the
similar EPP algorithm requires only a few minutes on one
shared-memory machine with 16 physical cores.

Among the few parallel clusterers competing in the DI-
MACS challenge, Fagginger Auer and Bisseling [5] submitted
an agglomerative clusterer with an implementation for both
the GPU (using NVIDIA CUDA) and the CPU (using Intel
TBB). The algorithm weights all edges with the difference
in modularity resulting from a contraction of the edge, then
computes a heavy matching M and contracts according to
M . This process continues recursively with a hierarchy of
successively smaller graphs. The matching procedure can
adapt to star-like structures in the graph to avoid insufficient
parallelism due to small matchings. In the challenge, the
CPU implementation competed as CLU_TBB and proved
exceptionally fast. Independently, Riedy et al. [16] developed
a similar clusterer, which follows the same principle but does
not provide the adaptation to star-like structures.

Other parallel efforts include an algorithm by Zhang et
al. [22], which identifies communities based on a custom
metric rather than modularity. More closely related to our work
is a variant of label propagation by Soman and Narang [19]
for multicore and GPU architectures, which seeks to improve
quality by re-weighting the graph, and has been shown to
cluster a graph with about 100 million edges in a few minutes
on an IBM Power6 system.

III. PRELIMINARIES

We denote a graph, the abstraction of a network data set,
as G = (V,E) with a node (or, interchangeably, vertex) set
V of size n and an edge set E of size m. In the following,
edges {u, v} are undirected and have weights ω : E → R+.
The weight of a set of nodes is denoted as ω(E′) :=∑
{u,v}∈E’ω(u, v). A clustering ζ = {C1, . . . , Ck} is a par-

tition of the node set V into disjoint subsets called clusters.
Equivalently, a clustering can be understood as a mapping
ζ : V → P(V) where ζ(v) returns the cluster containing node
v. For our implementation, the nodes have consecutive integer
identifiers id(v) in the range [0, n− 1] and edges are pairs of
node identifiers. A clustering is represented as an array of size
n, indexed by integer node identifiers and containing integer
cluster identifiers, i.e. a mapping ζ : N→ N.

IV. ALGORITHMS

In this section we formulate and describe our parallel
variants of existing sequential clustering algorithms, as well
as ensemble techniques which combine them. Implementation
details are discussed in Section V.

A. Parallel Label Propagation

Label propagation clustering, as originally introduced by
Raghavan et al. [15], extracts a clustering from a labelling
V → N of the node set. Initially, each node is assigned a
unique label, and then multiple iterations over the node set
are performed: In each iteration, every node adopts the most
frequent label in its neighborhood (breaking ties arbitrarily and
uniformly). Densely connected groups of nodes thus agree on
a common label, and eventually a globally stable consensus is
reached, which usually corresponds to a good clustering of the
network. Label propagation therefore finds a clustering in near
linear time: Each iteration takes O(m) time, and the algorithm
has been empirically shown to reach a stable solution in only
a few iterations, though not mathematically proven to do so.
The number of iterations seems to depend more on the graph
structure than the size. More theoretical analysis is done by
Kothapalli et al. [11]. The algorithm performs updates to
an array of n labels and does not involve the computation
of an objective function. Thus, it maximizes modularity (or
similar measures) only implicitly. Due to its local update
rule, label propagation is well suited for a fast and parallel
implementation.

Algorithm 1 denotes PLP, our parallel variant of label
propagation. We adapt the algorithm in a straightforward way
to make it applicable to weighted graphs. Instead of the
most frequent label, the heaviest label in the neighborhood is
chosen, i.e. the label l that maximizes

∑
u∈N(v):ζ(u)=l ω(v, u).

Iteration continues until the number of nodes which changed
their labels falls below a threshold θ. We implement a number
of modifications to the original algorithm, described in more
detail in Section V-A.

B. Parallel Louvain Method

The algorithm known as the Louvain method was first
presented by Blondel et al. [2]. It can be classified as a locally
greedy agglomerative (bottom-up) algorithm with modularity
as an objective function. In each pass, nodes are repeatedly
moved to neighboring clusters so that the locally maximal
increase in modularity is achieved, until the clustering is stable.
Then, the graph is contracted according to the clustering and
the procedure continues recursively, forming clusters of clus-
ters. Finally, the clustering of the coarsest graph determines
the clustering of the input graph by direct prolongation.

Note that the change in modularity resulting from a node
move can be calculated by scanning only the local neigh-
borhood of a node: Let ω(u,C) :=

∑
{u,v}:v∈C ω(u, v)

be the weight of all edges from u to nodes in cluster
C, and define the volume of a node and a cluster as

3

Algorithm 1: PLP: Parallel Label Propagation
Input: graph G = (V,E)
Result: clustering ζ : V → N

1 parallel for v ∈ V
2 ζ(v)← id(v)

3 updated← n
4 Vactive ← V
5 while updated > θ do
6 updated← 0
7 parallel for v ∈ {u ∈ Vactive : deg(u) > 0}
8 l? ← arg maxl

{∑
u∈N(v):ζ(u)=l ω(v, u)

}
9 if ζ(v) 6= l? then

10 ζ(v)← l?

11 updated← updated + 1
12 Vactive ← Vactive ∪N(v)
13 else
14 Vactive ← Vactive \ {v}

15 return ζ

vol(u) :=
∑
{u,v}:v∈N(u)ω(u, v) + 2 · ω(u, u) and vol(C) :=∑

u∈C vol(u), respectively. The difference in modularity when
moving node u ∈ C to cluster D is then:

∆mod(u, C → D) =
ω(u,D \ {u})− ω(u,C \ {u})

ω(E)

+
(vol(C \ {u})− vol(D \ {u})) · vol(u)

2 · ω(E)2

We introduce a shared-memory parallelization of the Lou-
vain method (PLM, Algorithm 2) in which node moves are
evaluated and performed in parallel instead of sequentially.
This approach may work on stale data so that a monotonous
modularity increase is no longer guaranteed. Suppose that
during the evaluation of a possible move of node u other
threads might have performed moves that affect the ∆mod
scores of u. In some cases this can lead to a move of
u that actually decreases modularity. Still, such undesirable
decisions can also be corrected in a following iteration, which
is why the solution quality is not necessarily worse. Working
only on independent sets of vertices in parallel does not
provide a solution since the sets would have to be very small,
limiting parallelism and/or leading to the undesirable effect of
a very deep coarsening hierarchy. Concerns about termination
turned out to be theoretical for our set of benchmark graphs,
all of which can be successfully clustered with PLM. We
describe implementation aspects in Section V-B and discuss
the difference between sequential and parallel solutions in
Section VII-B.

C. Ensemble Techniques

In the area of machine learning, ensemble learning is a
strategy in which multiple base classifiers or weak classifiers
are combined to form a strong classifier. It has been shown
that combining results of classifiers only slightly better than

Algorithm 2: PLM: Parallel Louvain Method
Input: graph G = (V,E)
Result: clustering ζ : V → N

1 ζ ← ζsingleton(G)
2 anychange← false
3 repeat
4 done← true
5 parallel for u ∈ V
6 δ ← maxv∈N(u) {∆mod(v, ζ(u)→ ζ(v))}
7 C ← ζ(arg maxv∈N(u) {∆mod(v, ζ(u)→ ζ(v))})
8 if δ > 0 then
9 ζ(u)← C

10 done← false
11 anychange← true

12 until done
13 if anychange then
14 G′ ← contract(G, ζ)
15 ζ ← prolong(PLM(G′))

16 return ζ

Algorithm 3: EPP: Ensemble Preprocessing
Input: graph G = (V,E)
Result: clustering ζ : V → N

1 parallel for base ∈ B
2 ζi ← basei(G)

3 ζ̄ ← combine(ζ1, . . . , ζb)
4 G1 ← contract(G, ζ̄)
5 ζ1 ← final(G1)
6 ζ ← project(ζ1, G)
7 return ζ

random guessing yields qualitatively good results. Classifica-
tion in this context can be understood as deciding whether
a pair of nodes should belong to the same cluster. We follow
this general idea, which has been applied successfully to graph
clustering before [14]. Subsequently, we describe two ensem-
ble techniques EPP and EML of which EPP emerges as a
highly efficient clusterer. We also quickly describe algorithms
for combining multiple base clusterings.

1) Ensemble Preprocessing: When aiming for a good trade-
off between speed and quality, the following approach emerged
as the most promising one: In a preprocessing step, assign G
to an ensemble of base clusterers. The graph is then contracted
according to the core clustering ζ̄, which represents the con-
sensus of the base clusterers (see Section IV-C3 for details).
This contraction reduces the problem size considerably, and
implicitly identifies the contested and the unambiguos parts
of the graph. After the preprocessing phase, the contracted
graph G′ is assigned to the final clusterer, whose result is
applied to the input graph by prolongation. We instantiate this
scheme with PLP as a base clusterer and PLM as the final
clusterer. Thus we achieve massive nested parallelism with
several parallel PLP instances running concurrently in the
first phase, and proceed in the second phase with the more
expensive but qualitatively superior PLM. This constitutes the

4

EPP algorithm (Algorithm 3). We write EPPb to indicate the
number of PLP base clusterers.

2) Ensemble Multilevel: A natural way to extend the en-
semble preprocessing method is to apply it recursively: After
the core clustering has been computed, the original graph
G is contracted to a smaller graph G′ according to the
clustering. Then the algorithm is called recursively on G′,
again assigning the contracted graph to an ensemble. Several
options for stopping the recursion are possible: (i) If the
clustering remains the singleton clustering and thus G = G′,
(ii) if the coarsest graph is smaller than a threshold, (iii) if
the change in modularity from one recursion level to the next
is non-positive, or (iv) if the quality of the clustering has not
improved for a number of levels. Clearly, option (i) requires
the program to be stopped to prevent an infinite loop. The
other options are not strictly necessary, but save running time
in case further quality improvements are unlikely.

3) Core Clustering and Graph Contraction: A consensus
of b > 1 base clusterers is formed by combining the base
clusterings ζi in the following way: Only if a pair of nodes is
classified as belonging to the same cluster in every ζi, then it is
assigned to the same cluster in the core clustering ζ̄. Formally,
for all node pairs u, v ∈ V :

∀i ∈ [1, b] : ζi(u) = ζi(v) ⇐⇒ ζ̄(u) = ζ̄(v). (IV.1)

We introduce a combination algorithm based on hashing.
With a suitable hash function h(ζ1(v), . . . , ζb(v)), the clus-
ter identifiers of the base clusterings are mapped to a new
identifier ζ̄(v) in the core clustering. Except for unlikely hash
collisions, a pair of nodes will be assigned to the same cluster
only if the criterion above is satisfied.

If base clusterings with connected clusters need to be
converted to a core clustering with all clusters connected, an
alternative approach may be necessary. We suggest a method
inspired by region growing. Starting with a singleton clustering
ζ̄, every edge {u, v} is traversed in a breadth-first search of
the graph and nodes are assigned according to the rule

∀ζi : ζi(u) = ζi(v) =⇒ ζ̄(v)← ζ̄(u).

However, this approach is relatively slow, does not easily
support parallelism, and may not yield clusters according to
Eq. (IV.1).

Graph contraction according to a clustering is performed in
a straightforward way such that the nodes of a cluster in G
are aggregated to a single node in G′. An edge between two
nodes in G′ receives as weight the sum of weights of inter-
cluster edges in G, while self-loops preserve the weight of
intra-cluster edges.

V. IMPLEMENTATION

The language of choice for all implementations is C++11,
allowing us to use object-oriented and functional programming
concepts while also compiling to native code. We implemented

all algorithms on top of a simple custom adjacency array graph
data structure. A high-level interface encapsulates the data
structure and enables a clear and concise notation of graph
algorithms. In particular, our interface conveniently supports
parallel programming through parallel node and edge iteration
methods which receive a function (generally a closure) and
apply it to all elements in parallel. Parallelism is achieved
in the form of loop parallelization with OpenMP, using
the parallel for directive with schedule(guided)
where appropriate for improved load balacing.

We publish our source under a permissive free software
license to encourage reproduction, reuse and contribution by
the community.2

What follows are details on the implementation of algo-
rithms from Section IV.

A. Parallel Label Propagation

0.05 0.00 0.05 0.10 0.15 0.20

celegans_metabolic
polblogs

PGPgiantcompo
G_n_pin_pout

preferentialAttachment
kron-g500-simple-logn20

belgium
uk-2002

caidaRouterLevel
as-22july06

coAuthorsCiteseer
power

cage15
coPapersDBLP

kron-g500-simple-logn16 ∆mod

Figure 2. In general, only small modularity differences result from an explicit
randomization of PLP node order

In the original description [15], nodes are traversed in
random order. Since the cost of explicitly randomizing the
node order in parallel is not insignificant, we make this
optional and rely on some randomization through parallelism
otherwise. We also observe that forgoing randomization has a
negligible effect on quality for nearly all graphs (Figure 2).

We avoid unneccessary computation by distinguishing be-
tween active and inactive nodes. It is unneccessary to recom-
pute the label weights for a node whose neighborhood has not
changed in the previous iteration. Nodes which already have
the heaviest label become inactive, and are only reactivated if a
neighboring node is updated. We restrict iteration to the set of
active nodes. Iterations are repeated until the number of nodes
updated falls below a threshold value. The motivation for
setting threshold values other than zero is that on some graph
instances, the majority of iterations are spent on updating only
a very small fraction of high-degree nodes (see Figure 3).
Since preliminary experiments have shown that time can be
saved and clustering quality is not significantly degraded by
simply omitting these iterations, we set an update threshold of
θ = n ·10−5. Note that we do not use the termination criterion
specified in [14] as it does not lead to convergence on some
inputs. In the original description [15], the criterion is to stop

2open-source release: http://parco.iti.kit.edu/software/

5

http://parco.iti.kit.edu/software/

0 20 40 60 80 100 120
100

101

102

103

104

105

106

107

108

active

updated

Figure 3. Number of active and updated labels per iteration of PLP for
graph uk-2002.

when all nodes have the label of the relative majority in their
neighborhood.

Label propagation can be parallelized easily by dividing
the range of nodes among multiple threads which operate
on a common label array. This parallelization is not free
of race conditions, since by the time the neighborhood of a
node u is evaluated in iteration i to set ζi(u), a neighbor v
might still have label ζi−1(v) or already ζi(v). The clustering
outcome thus depends on the order of threads. However,
these race conditions are acceptable and even beneficial in
an ensemble setting since they introduce random variations
and increase base clustering diversity. This also corresponds
to asynchronous updating, which has been found to avoid
oscillation of labels on bipartite structures [15].

When dealing with scale-free networks whose degree dis-
tribution follows a power law, assigning node ranges of equal
size to each thread can lead to load imbalance as computa-
tional cost depends on the node degree. Instead of statically
dividing the iteration among the threads, guided scheduling
(with parallel for schedule(guided)) can help to
overcome load balancing issues, although this introduces some
overhead. We observed that dynamic scheduling is generally
superior to static parallelization in terms of PLP’s speed.

B. Parallel Louvain Method

Our implementation of PLM (Algorithm 2) employs parallel
iteration over the node set. Since the computation of the ∆mod
scores is the most frequent operation, it needs to be very fast.
That is why we store and update interim values, which is
not apparent from the high-level pseudocode in Algorithm 2.
To this end, we associate with each node a map in which
the ∆mod values for neighboring clusters are stored and
updated when node moves occur. We can thus avoid the costly
recomputation for each possible node move. A lock for each
vertex v protects all read and write accesses to v’s map since
std::map is not thread-safe. Two strategies are available for
apportioning the node set among the threads, simple (static
scheduling) and balanced (guided scheduling), whose effects
are discussed in Section VII-B.

103 104 105 106 107 108 109 1010

celegans_metabolic
power

polblogs
PGPgiantcompo

as-22july06
preferentialAttachment

G_n_pin_pout
caidaRouterLevel

coAuthorsCiteseer
belgium

as-Skitter
coPapersDBLP

eu-2005
soc-LiveJournal

cage15
europe

kron-g500-simple-logn20
uk-2002

uk-2007-05

Graphs

n

m

Figure 4. Size comparison of all graphs used in experiments

category real-world data? set

uk-2007-05 web yes L

uk-2002 web yes TL

kron-g500-simple-logn20 Kronecker no TL

europe street yes L

cage15 biophysics yes TL

soc-LiveJournal (undir.) social yes L

eu-2005 web yes L

coPapersDBLP coauthorship yes TL

as-Skitter internet yes L

belgium street yes T

coAuthorsCiteseer coauthorship yes T

caidaRouterLevel internet yes T

G_n_pin_pout random no T

preferentialAttachment random no T

as-22july06 internet yes T

PGPgiantcompo social yes T

polblogs web yes T

power powergrid yes T

celegans_metabolic biochemistry yes T

Table I
GRAPHS USED IN EXPERIMENTS

C. Ensemble Techniques

Our implementations of the ensemble techniques EML and
EPP are agnostic to the base and final algorithms and can be
instantiated with a variery of clusterers. We implemented EML
so that it stops if the modularity value has not been improved
for three levels. As argued in Section IV-C3, the use of a b-way
hash function is advantageous for creating the core clustering,
as it is significantly faster than region growing due to a high
degree of parallelism. We use a relatively simple function
called djb2 due to Bernstein,3 which appears sufficient for
our purposes.

6

VI. EXPERIMENTAL SETUP

A. Graphs

We perform experiments on a variety of graphs from
different categories of both real-world and synthetic data
sets—among them web graphs, internet topology networks,
social networks, scientific coauthorship networks and street
networks (see Table I). Therefore, we cover a wide range of
graph-structural properties, from regular meshes to complex
networks which show a non-trivial combination of randomness
and regularity. Note that the achievable modularity depends on
the structural characteristics of the graph, such as an inherent
community structure, which may or may not be distinctive.

The majority of our test graphs are taken from the collection
compiled for the 10th DIMACS Implementation Challenge
and are freely available on the web.4 They are undirected,
unweighted graphs stored in files of the METIS adjacency
format. Two additonal large complex networks, as-Skitter
and soc-LiveJournal, are derived from the Stanford Large
Network Dataset Collection.5 We create an undirected version
of soc-LiveJournal, for which we replace each directed edge
by an undirected edge and delete multiple edges.

In order to evaluate algorithm engineering decisions, we use
a fixed subset of the DIMACS graphs (set T), selected for its
broad range of network categories and sizes. To demonstrate
the scalability of our algorithms, experiments are performed
with an additional set of large graphs (set L), which focuses
on complex networks. For experiments on Platform 2, we also
add the largest available graph uk-2007-05, a web graph of
the .uk domain with n ≈ 105 · 106 and m ≈ 3.3 · 109, which
needs more than 250 GB of memory in the course of an EPP
run. Table I lists the complete set of graphs and gives a short
characterization of each.

B. Settings

For representative experiments, we average quality and
speed values over 5 runs in order to compensate for fluctua-
tions. Table II provides information on the two platforms used.
The memory capacity of Platform 2 is needed to handle the
largest available graph uk-2007-05, but it is generally slower
than Platform 1, which we used to obtain the best results. All
running times are given in seconds.

Platform 1 (compute11.iti.kit.edu) Platform 2 (ic2.scc.kit.edu)

compiler gcc 4.7.1 gcc 4.7.2

OS SUSE 12.2-64 SUSE ES 11 SP2

CPU 2x 8-Core Xeon 4x 8-Core Xeon

E5-2670, 2.6 GHz E7-8837, 2.67 GHz

RAM 64 GB 512 GB

Table II
PLATFORMS USED IN EXPERIMENTS

3hash functions: http://www.cse.yorku.ca/~oz/hash.html
4DIMACS collection: http://www.cc.gatech.edu/dimacs10/downloads.shtml
5Stanford collection: http://snap.stanford.edu/data/index.html

VII. EXPERIMENTS AND RESULTS

In this section we report on a representative subset of our
experimental results for our different parallel algorithms.

A. Parallel Label Propagation

PLP is extremely fast and able to handle the large graphs
easily (Figure 6). The 3.3 billion edge web graph uk-2007-05
is processed in under 120 seconds with 32 threads working
in parallel on Platform 2. The “weak classifier” PLP is
nonetheless able to detect an inherent community structure
and produce a clustering with reasonable modularity values,
although it cannot distinguish communities in a Kronecker
graph, which has a very weak community structure.

101 102

1
2
4
8

16 t

Figure 5. Strong scaling of PLP on the uk-2002 web graph (Platform 1,
running time in s)

For weak scaling experiments, we use a series of synthetic
Kronecker graphs where each graph has twice the size of
its predecessor (from log n = 16 . . . 21), and double the
number of threads simultaneously from 1 to 16. PLP exhibits
good weak scaling, apart from some overhead introduced
by OpenMP parallelization. To demonstrate strong scaling
behavior, we apply PLP to the large uk-2002 web graph and
increase the number of threads from 1 to 16 (Figure 5). We
observe linear strong scaling in the range of 2-16 threads. We
conjecture that the exception when transitioning from 1 to 2
threads is caused not only by OpenMP overhead, but also by
the Intel SpeedStep technology of Platform 1, where processor
clock frequency is adapted to the number of cores currently
utilized.

10-1 100 101 102 103

kron-g500-simple-logn20
as-Skitter

uk-2002
coAuthorsCiteseer

soc-LiveJournal
europe
cage15

coPapersDBLP
eu-2005 t

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

kron-g500-simple-logn20
as-Skitter

uk-2002
coAuthorsCiteseer

soc-LiveJournal
europe
cage15

coPapersDBLP
eu-2005 mod

Figure 6. PLP handles large graphs in seconds and detects meaningful
community structure on most instances (Platform 1, running time in s)

7

http://www.cse.yorku.ca/~oz/hash.html
http://www.cc.gatech.edu/dimacs10/downloads.shtml
http://snap.stanford.edu/data/index.html

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

PGPgiantcompo
as-22july06

belgium
caidaRouterLevel

celegans_metabolic
coPapersDBLP

polblogs
power

preferentialAttachment LM seq

PLM

Figure 7. Clustering quality for PLM and its sequential variant

B. Parallel Louvain Method

As Figure 7 shows, we observe only small deviations in
clustering quality between our sequential and parallel im-
plementation, supporting the argument that PLM is able to
correct undesirable decisions due to stale data. Note that
PLM finds higher quality clusterings than PLP but is too
slow for our purposes on large graphs. Comparing simple and
balanced parallelization on graph set T (Figure 9), we observe
that quality and speed vary depending on the graph. Using
guided scheduling may result in both speedup and slowdown,
as well as loss or gain of modularity. We conjecture that
the order in which nodes are visited has an influence on
clustering quality. The observation that some graph instances
are affected by the choice of strategy while others are not
might be explained by differences in sort order in the graph
input file: If e.g. the high-degree nodes present in complex
networks are accumulated in the beginning of the index range,
the order in which nodes are considered can lead to significant
differences in clustering outcome. Therefore, we confirm that
the choice between simple and balanced parallelization should
remain a configurable parameter of the implementation. In the
following, we use the balanced variant as default.

102

1
2
4
8

16 t

Figure 8. Strong scaling of PLM on the eu-2005 web graph (Platform 1,
running time in s)

PLM shows worse weak scaling than PLP, with about 50%
increase in running time per doubling step. We use the smaller
web graph eu-2005 to demonstrate strong scaling behavior of
PLM. Evidently, the algorithm can benefit from increased par-
allelism, but less predictably so compared to PLP. Overhead
is introduced by the locking of data structures which PLM
requires in contrast to PLP. In addition to this, parallelism can
lead the algorithm to take different control paths and possibly
terminate earlier, leading to irregular scaling results.

C. Ensemble Techniques

1) Ensemble Multilevel: Our experiments with EML show
that the iterated scheme does not pay off in terms of quality

0.10 0.08 0.06 0.04 0.02 0.00 0.02

G_n_pin_pout
PGPgiantcompo

as-22july06
belgium
cage15

caidaRouterLevel
celegans_metabolic

coAuthorsCiteseer
coPapersDBLP

kron-g500-simple-logn20
polblogs

power
preferentialAttachment

uk-2002 ∆mod

-102 -101 -100 0 100 101

G_n_pin_pout
PGPgiantcompo

as-22july06
belgium
cage15

caidaRouterLevel
celegans_metabolic

coAuthorsCiteseer
coPapersDBLP

kron-g500-simple-logn20
polblogs

power
preferentialAttachment

uk-2002 ∆t

Figure 9. Differences in quality (above) and running time (below) when
switching from simple to balanced parallelism in PLM (Platform 1, running
time in s)

in most cases. Usually the quality obtained on the first or
second level cannot be further improved. This contrasts results
by Ovelgönne and Geyer-Schulz [14]. One reason for this
discrepancy may well be small differences in our implemen-
tation of label propagation. Furthermore, it seems that PLP
is not the ideal sole base clusterer on coarser levels. There
its clusterings become quite similar. Similar base clusterings
limit the core clustering optimization process. EPP, discussed
next, is therefore faster and even improves quality compared
to EML.

2) Ensemble Preprocessing: Figure 10 shows an EPP
instance with a 4-piece PLP ensemble and PLM as final
clusterer in comparison to a single PLP instance. We observe
that the approach of EPP pays off in the form of improved
modularity values on all but one instance. In the latter case,
PLP cannot detect the extremely weak community structure
in the first place. This comes at the cost of a running time
about 10 times higher. Still, large graphs are easily handled
in a few seconds to minutes. On Platform 2, a modularity of
0.99598 is reached for the uk-2007-05 graph in 660 seconds.

We vary the ensemble size, doubling the number of base
clusterers from 1 to 8, and observe the difference in modularity
(Figure 11). On average, clustering quality can be gained by
increasing the ensemble size, although the actual difference de-
pends strongly on the individual graph. On a few small graphs,
a bigger ensemble makes the difference between failure to
distinguish communities and a clustering with reasonable
quality, while on a large graph like uk-2002, the difference
is near zero. A loss in quality is rare but was observed for
the coPapersDBLP network. Running time increases at least
proportionally to the number of base clusterers. We therefore

8

0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12

kron-g500-simple-logn20
as-Skitter

uk-2002
coAuthorsCiteseer

soc-LiveJournal
europe
cage15

coPapersDBLP
eu-2005 ∆mod

10-1 100 101 102 103

kron-g500-simple-logn20
as-Skitter

uk-2002
coAuthorsCiteseer

soc-LiveJournal
europe
cage15

coPapersDBLP
eu-2005 PLP

EPP4

Figure 10. Quality improvement (above) and absolute running time (below)
of EPP4 compared to a single PLP (Platform 1, running time in s)

conclude that forming a large ensemble is not justified, since
a small ensemble already provides quality improvement, and
settle on four base clusterers for the remaining experiments.

Combining the results of multiple classifiers in an ensemble
learning scenario is only meaningful if the base classifiers
disagree about some elements. Therefore, we inspected the
diversity of the base clusterings by calculating the Jaccard
dissimilarity measure [10], observing that the clusterings pro-
duced my multiple PLP instances are not necessarily differ-
ent, that the dissimilarity varies non-deterministically between
multiple runs, and that quality produced by EPP depends
on the degree of dissimilarity to some extent. As a possible
solution for creating diversity among the clusterings, explicitly
randomizing the order in which PLP traverses the nodes
becomes interesting again in an ensemble setting. However,
we find that explicit randomization has no significant effect
on clustering quality in an ensemble setting, while it slows
down the algorithm for large graphs. We therefore confirm that
explicit randomization should be omitted. As an alternative
solution, we try to perturb the clustering initially by randomly
choosing a small number of seed nodes and deactivating them,
or activating only this seed set. However, deactivation of seed
nodes does not seem to influence clustering diversity or result
quality in a reproducible way.

0.1 0.0 0.1 0.2 0.3 0.4

celegans_metabolic
polblogs

PGPgiantcompo
G_n_pin_pout

preferentialAttachment
kron-g500-simple-logn20

belgium
uk-2002

caidaRouterLevel
as-22july06

coAuthorsCiteseer
power

cage15
coPapersDBLP 2

4

8

Figure 11. Modularity differences when increasing the ensemble size from
1 to 2, 4 and 8 base clusterers

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

eu-2005
uk-2002

coAuthorsCiteseer
coPapersDBLP

kron-g500-simple-logn20
cage15 CLU_TBB

EPP4

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

eu-2005
uk-2002

coAuthorsCiteseer
coPapersDBLP

kron-g500-simple-logn20
cage15 RG

EPP4

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

eu-2005
uk-2002

coAuthorsCiteseer
coPapersDBLP

kron-g500-simple-logn20
cage15 RG+

EPP4

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

eu-2005
uk-2002

coAuthorsCiteseer
coPapersDBLP

kron-g500-simple-logn20
cage15 CGGCi_RG

EPP4

Figure 12. Quality comparison of EPP to DIMACS challenge competitors

D. Comparison with DIMACS competitors

In the following, we perform a comparision of our best
performing algorithms to clusterers which excelled in the DI-
MACS challenge either by solution quality or time to solution.
With modularity, we have a widely accepted objective measure
of clustering quality, but there is no accepted normalization
for running times on different machines. Therefore, we would
like to stress that running times were measured on different
platforms and comparability is limited. That said, the compar-
ison does provide some insight on how our implementation
performs with respect to state-of-the-art competitors.

Figure 12 shows modularity values for EPP4 in comparison
with CLU_TBB, RG, RG+ and CGGCi_RG on a set of
large graphs which is the intersection of our set L and the
graphs in the final challenge testbed. Within the limits of
comparability, EPP4 and CLU_TBB, the fastest competitor,
show running times of the same magnitude (60 and 30 seconds
on the uk-2002 graph). In turn, EPP achieves significantly
better modularity values on some graphs. Overall, RG and
RG+ clearly achieve better quality on some graphs, but are
decidedly slower. EPP is one magnitude faster than RG and
more than two orders of magnitude faster than Pareto winner
RG+, which implements an ensemble technique very similar
to that of EPP. CGGCi_RG, the multilevel ensemble scheme
using the RG algorithm, is also superior in terms of quality,
but nearly 4 orders of magnitude slower (with running times
in the range of 100 hours). We conclude that EPP is not
dominated by any other clusterer to which we were able to
compare it. Moreover, if the quality of PLP is sufficient for
an application, this algorithm should be considered since it is
faster than all other competitors.

9

VIII. CONCLUSION AND FUTURE WORK

For this paper we have developed and implemented parallel
algorithms for community detection, a common clustering task
in network analysis. Successful combinations and parameter
settings have been identified in extensive experiments on
synthetic and real-world networks. While the PLP algorithm
is extremely fast, its quality might not always be satisfactory
for some applications. PLM is to the best of our knowledge
the first parallel variant of the established Louvain algorithm
for massive inputs. Its combination with an ensemble of PLP
base clusterers yields the strong clusterer EPP that can cluster
a graph with 3.3 billion edges in 11 minutes. Thus it delivers
the best tradeoff between quality and speed compared to the
state of the art.

Moreover, we have introduced an algorithmic framework
whose extensibility and flexibility allow a seamless addition
of further high-performance network analysis functionality. We
invite other researchers to contribute to this effort.

We have exhausted the DIMACS Challenge and Stanford
graph collections in terms of graph size without reaching
the limits of our algorithms and available hardware in terms
of running time. Therefore, future work is concerned with
efficient practical algorithms for other, possibly more complex,
network analysis and optimization tasks, and also for dynamic
graphs from data streams. In practice, the memory footprint
of large graphs is more relevant as a limiting factor than
the execution time of the PLP and EPP algorithms, but the
compactness of our graph data structure can be improved.

Also, on some of our small graphs, the PLP algorithm oc-
casionally blunders, e. g., it merges two natural communities,
which significantly degrades the modularity scores. A deeper
analysis of this behavior is necessary, but difficult due to
non-determinism. Additional techniques might help, such as
counteracting “epidemic spread” of labels as examined in [19].

Acknowledgements: This work was partially supported by
the project Parallel Analysis of Dynamic Networks — Algo-
rithm Engineering of Efficient Combinatorial and Numerical
Methods, which is funded by the Ministry of Science, Research
and the Arts Baden-Württemberg.

REFERENCES

[1] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, Eds., Graph
Partitioning and Graph Clustering, ser. Contemporary Mathematics.
AMS and DIMACS, 2013, no. 588.

[2] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 2008.

[3] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski,
and D. Wagner, “On modularity clustering,” IEEE Trans. Knowledge and
Data Engineering, vol. 20, no. 2, pp. 172–188, 2008.

[4] A. Clauset, M. E. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical review E, vol. 70, no. 6,
p. 066111, 2004.

[5] B. O. Fagginger Auer and R. H. Bisseling, “Graph coarsening and
clustering on the GPU,” in Graph Partitioning and Graph Clustering,
ser. Contemporary Mathematics. AMS and DIMACS, 2013, no. 588.

[6] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, no. 3-5, pp. 75 – 174, 2010.

[7] S. Fortunato and M. Barthelemy, “Resolution limit in community
detection,” Proceedings of the National Academy of Sciences, vol. 104,
no. 1, pp. 36–41, 2007.

[8] J. Gilbert, S. Reinhardt, and V. Shah, “High-performance graph algo-
rithms from parallel sparse matrices,” Mar. 2006.

[9] M. Girvan and M. Newman, “Community structure in social and
biological networks,” Proc. of the National Academy of Sciences, vol. 99,
no. 12, p. 7821, 2002.

[10] P. Jaccard, Distribution de la Flore Alpine: dans le Bassin des dranses
et dans quelques régions voisines. Rouge, 1901.

[11] K. Kothapalli, S. Pemmaraju, and V. Sardeshmukh, “On the analysis of
a label propagation algorithm for community detection,” in Distributed
Computing and Networking, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2013, vol. 7730, pp. 255–269.

[12] M. Müller-Hannemann and S. Schirra, Eds., Algorithm Engineering:
Bridging the Gap between Algorithm Theory and Practice, ser. Lecture
Notes in Computer Science, vol. 5971. Springer, 2010.

[13] M. Ovelgönne, “Distributed community detection in web-scale net-
works,” University of Maryland, Tech. Rep., July 2012.

[14] M. Ovelgönne and A. Geyer-Schulz, “An ensemble learning strategy
for graph clustering,” in Graph Partitioning and Graph Clustering, ser.
Contemporary Mathematics. AMS and DIMACS, 2013, no. 588.

[15] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm
to detect community structures in large-scale networks,” Physical Review
E, vol. 76, no. 3, p. 036106, 2007.

[16] E. J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader, “Parallel com-
munity detection for massive graphs,” in Graph Partitioning and Graph
Clustering, ser. Contemporary Mathematics. AMS and DIMACS, 2013,
no. 588.

[17] R. Rotta and A. Noack, “Multilevel local search algorithms for
modularity clustering,” J. Exp. Algorithmics, vol. 16, pp. 2.3:2.1–
2.3:2.27, Jul. 2011.

[18] S. E. Schaeffer, “Graph clustering,” Computer Science Review, vol. 1,
no. 1, pp. 27–64, 2007.

[19] J. Soman and A. Narang, “Fast community detection algorithm with
gpus and multicore architectures,” in Proc. 25th IEEE Intl. Parallel &
Distributed Processing Symposium (IPDPS). IEEE, 2011, pp. 568–579.

[20] C. Staudt, A. Schumm, H. Meyerhenke, R. Gorke, and D. Wagner,
“Static and dynamic aspects of scientific collaboration networks,” in
Advances in Social Networks Analysis and Mining (ASONAM), 2012
IEEE/ACM International Conference on. IEEE, 2012, pp. 522–526.

[21] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” in Proceedings of the ACM SIGKDD Workshop
on Mining Data Semantics. ACM, 2012, p. 3.

[22] Y. Zhang, J. Wang, Y. Wang, and L. Zhou, “Parallel community detection
on large networks with propinquity dynamics,” in Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery
and data mining, ser. KDD ’09. New York, NY, USA: ACM, 2009,
pp. 997–1006.

10

	I Introduction
	I-A Motivation
	I-B Methods
	I-C Capabilities

	II Related Work
	III Preliminaries
	IV Algorithms
	IV-A Parallel Label Propagation
	IV-B Parallel Louvain Method
	IV-C Ensemble Techniques
	IV-C1 Ensemble Preprocessing
	IV-C2 Ensemble Multilevel
	IV-C3 Core Clustering and Graph Contraction

	V Implementation
	V-A Parallel Label Propagation
	V-B Parallel Louvain Method
	V-C Ensemble Techniques

	VI Experimental Setup
	VI-A Graphs
	VI-B Settings

	VII Experiments and Results
	VII-A Parallel Label Propagation
	VII-B Parallel Louvain Method
	VII-C Ensemble Techniques
	VII-C1 Ensemble Multilevel
	VII-C2 Ensemble Preprocessing

	VII-D Comparison with DIMACS competitors

	VIII Conclusion and Future Work
	References

