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Sergei V. Zhukovsky and Jesper Gluckstad

Engineering light-matter interaction for emerging 
optical manipulation applications

Abstract: In this review, we explore recent trends in opti-

cal micromanipulation by engineering light-matter inter-

action and controlling the mechanical effects of optical 

fields. One central theme is exploring the rich phenom-

ena beyond the now established precision measurements 

based on trapping micro beads with tightly focused 

beams. Novel synthesized beams, exploiting the linear 

and angular momentum of light, open new possibilities in 

optical trapping and micromanipulation. Similarly, novel 

structures are promising to enable new optical micro-

manipulation modalities. Moreover, an overview of the 

amazing features of the optics of tractor beams and back-

ward-directed energy fluxes will be presented. Recently 

the so-called effect of negative propagation of the beams 

(existence of the backward energy fluxes) has been con-

firmed for X-waves and Airy beams. In the review, we will 

also discuss the negative pulling force of structured beams 

and negative energy fluxes in the vicinity of fibers. The 

effect is achieved due to the interaction of multipoles or, 

in another interpretation, the momentum conservation. 

Both backward-directed Poynting vector and backward 

optical forces are counter-intuitive and give an insight into 

new physics and technologies. Exploiting the degrees of 

freedom in synthesizing novel beams and designed micro-

structures offer attractive prospects for emerging optical 

manipulation applications.
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1  Introduction

Mechanical effects are among the most important aspects 

of light-matter interaction. The mechanical effects of 

optical fields provide a novel way to transport and 

manipulate objects in a highly precise way, which was 

witnessed over the last two decades (e.g., see reviews [1–

4]). The first observation of the mechanical effect of light 

on matter can be traced back to more than 400  years 

ago [5, 6], when J. Kepler saw the comet tails point away 

from the sun. More than 250 years later [7], J. C. Maxwell 

published his theory of classical electrodynamics, and 

people came to know that the momentum carried by 

light can be transferred to an object, pushing it forward, 

just like a comet tail. Momentum conservation is one of 

the basic concepts to understand the optical forces and 

optical trapping between light and objects. Since the 

invention of the laser in 1960, optical manipulation has 

developed intensively, and many significant applica-

tions [3] have become indispensable tools in scientific 

research and everyday life. A decade later, Ashkin [8] 

used focused laser beams to accelerate and trap micro-

particles. In 1986, Ashkin and his coworkers [9] first 

demonstrated optical trapping by gradient force from a 

strongly focused beam, known as optical tweezers. Since 

then, optical manipulation has been intensely devel-

oped in various structures and devices, such as optical 

fibers [10], waveguides [11], optical nanoapertures [12], 

and so on [13–15]. More recently, new trends and themes 

are emerging rapidly, which shine new light on optical 

manipulation both in theory and applications.
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All optical forces originate from transfer of momen-

tum when light interacts with matter. However, it is not 

uncommon to encounter different components of the 

optical force in literature. One such component is the 

scattering force [16]. The scattering force in the absence 

of intensity gradients and, in this case, its direction can 

be modified by applying a phase gradient [17] to tilt 

local wavevectors and create a transverse component of 

the scattering force. Another component is the gradient 

force that originates from the intensity gradient in free 

space [3, 9], in nanostructures [18, 19]. Optically induced 

mechanical effects can also result indirectly, e.g., in pho-

tophoresis [20], where nonuniform laser heating of par-

ticles, typically aerosols, results in asymmetric fluidic 

forces, which are much stronger than the direct optical 

force, and can manipulate the particles over relatively 

much larger distances. This kind of force, however, is 

beyond the scope of this current paper. On the other 

hand, all the components involved in the interaction 

of light with matter can be divided into three parts: one 

part is the incident beam, the second part is the manip-

ulation of target object, and the third part is the back-

ground. Therefore, all the features of optical forces can 

be tailored by engineering those three parts, either indi-

vidually or simultaneously. In this context, new trends 

and themes in optical manipulation are classified and 

reviewed in the current paper.

One trend in optical manipulation is the use of syn-

thesized optical beams, rather than Gaussian beams only. 

Such synthesized beams include phase gradient beams 

[17], vortex beams [21, 22], non-diffracting beams [23], 

accelerating beams [24], self-healing beams [25], or more 

complex structured beams achieved by encoding holo-

grams on spatial light modulators (SLM) [26, 27]. Among 

these synthesized beams, a phase-gradient force can be 

generated, which provides a complementary force to the 

intensity-gradient force. The synthesized beams enable 

a much greater freedom in object manipulation than the 

Gaussian beams.

Aside from the optical parameters, the geomet-

ric parameters (i.e., the shape of the object) also play 

an important role in the interaction of light and matter. 

Therefore, another new trend in the optical manipulation 

is to design objects with specified geometric shapes. For 

example, when the object is an ideal sphere, only a simple 

forward motion is expected in a light field of a plane wave. 

However, when the object is cut and acquires asymmetry, 

it may move along other directions, e.g., a stable light lift 

[16]. Furthermore, when the object is more complex and 

carefully designed [28–30], it may act as an optical motor 

when illuminated by a light beam. Thus, the engineering 

of microstructure geometries provide further new ways for 

optical manipulation.

One may expect that when an object is illuminated 

by a beam having minimal gradient along its propaga-

tion (referred to as a “gradientless beam” subsequently), 

it will only be subjected to a “pushing” force directed 

along the beam, since the momentum of photons will 

be transferred to the object in the interaction process. 

Recently, however, a sharply counter-intuitive phenom-

enon has been found, i.e., a gradientless beam may pull 

the object “backwards” to the beam source [26, 31, 32], 

rather than push it away. The beams with this nega-

tive scattering force have been named “optical tractor 

beams”, and are also found in the acoustic domain 

[33]. Considering the momentum conservation of the 

system, a negative or pulling force is obviously present 

only when the forward momentum of the incident beam 

is amplified. Still, both theoretical achievements and 

experimental realizations of tractor beams are extremely 

challenging. Up to now, only several methods have been 

proposed, which can be methodologically grouped into 

two general kinds. One method is to engineer the optical 

beams. Engineered beams include non-paraxial Bessel 

beams [34, 35] and superpositions ofplane waves or 

Bessel beams [36–38]. The other method is to use some 

special kind of materials, such as gain materials [39, 40], 

negative refractive index materials [41], optomagnetic 

materials [42]. Optical tractor beams provide a new route 

for long-distance optical manipulation using the nega-

tive scattering force.

In this paper, we briefly review the recent progress 

and novel trends in the field of optical manipulation. 

As mentioned above, we are not including the vast pro-

gress related to the optical tweezers, since it has been 

reviewed by many other authors elsewhere [2]. In Section 

2, we briefly outline the basic theory and methods used 

in optical manipulation analysis, including the Poynt-

ing vector and Maxwell’s stress tensor, which are tightly 

related to the optical forces. In Section 3, optical manipu-

lation using synthesized beams is discussed, including 

phase-gradient, accelerating, and self-healing beams. 

In Section 4, we present the optical manipulation of 

micro-objects with designed geometries, which act as 

microtools, couplers of optical radiation to subwave-

length components, or other functional elements. In the 

final two sections, we focus on a new topic in the optical 

manipulation, i.e., negative or pulling optical forces. In 

Section 5, we focus on the effects of the negative Poynting 

vector; in Section 6, we focus on the optical tractor beam, 

including its basic principles and several experimental 

configurations.
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2  Particle micromanipulation

2.1   Mechanical micromanipulation with 

optical fields

The basic principle of optical micromanipulation can 

be described by the momentum conservation principle: 

When light changes its momentum upon interaction with 

matter, the rate of change of the optical momentum cor-

responds to an optical force exerted on the material. For 

example, it is relatively easy to qualitatively infer the 

direction of the optical force on a microsphere by observ-

ing the light deflection, e.g., in the simulated propagation 

of a focused field upon interacting with a microsphere, as 

shown in Figure 1A. Therefore, besides its conventional 

use as particle position indicator [45], the experimental 

measurements of the light deflections can also be used as 

indicators of momentum change, i.e., for direct measure-

ment of the optical force [43, 46].

Despite this intuitively simple picture, analytical solu-

tions of the optical force problem are, nonetheless, not 

available for arbitrary illumination and particle geometries, 

although these can be addressed by numerical models 

[47–50]. For instance, finite-difference time-domain (FDTD) 

simulations can solve Maxwell’s equations to map out the 

electromagnetic field and calculate the force arising from 

the light-matter interaction. Moreover, useful insight can 

be derived using solutions of simple model systems such as 

homogeneous dielectric spheres in the Rayleigh (size <  < λ) 

[51, 52], or ray optics (size >  > λ) [53] regimes.

For an electromagnetic wave in free space character-

ized by electric field E and magnetic field B, the Poynting 

vector, S = E × B, is typically associated with electromagnetic 

energy but it also plays a key role in describing the optical 

force (J. H. Poynting himself contributed scientifically to 

the description of optical force [54]). An electromagnetic 

wave has an associated linear momentum density, ,m
�

 

which is related to the Poynting vector as,
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Thus, one can visualize how the optical momentum 

evolves when focused light interacts with a dielectric 

microsphere (e.g., the transverse and axial components 

of the Poynting vector simulated in [44] are shown in  

Figure 1B and C, respectively). When an electromagnetic 

wave interacts with a small polarizable dielectric particle 

with dipole moment density P, the Lorentz force density 

may be written as
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Some authors identify the first term with the (field) gra-

dient force and the second term with the scattering force 

[55]. However, an alternative nomenclature can be derived 

if the terms are expanded and regrouped to yield, after 

time averaging [52],
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where the first term now directly shows the force due to 

the intensity gradient. The second term now includes 

contributions from both terms in Eq. (2.2) to describe the 

rate of change of the linear momentum density, which is 

intuitively easier to associate with scattering.

Light intensity -0.4

0.69 0.21 1.11 2.01 2.92 -5.82 -4.29 -2.76 -1.22 0.31

Sx ×1012Sx ×1012

-0.2 0 0.2 0.4 0.6

x (µm)

-0.4-0.6 -0.2 0 0.2 0.4 0.6

x (µm)

A B C

Figure 1 Linear optical momentum and optical force when light is focused off the center of a bead. (A) Simulated axial section showing the 
x-component of the electric field for a 1064 nm beam focused onto a 1-µm polystyrene sphere in water by a 1.3NA lens. The optical force 
can be deduced from the deflection of light due to the dielectric bead, which is indicative of the momentum change (adapted from [43]); (B) 
x-component of the Poynting vector, S

x
; (C) z-component of the Poynting vector, S

z
, with the vector field indicating the full Poynting vector 

(the simulations of this smaller microsphere are adapted from [44]).
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Separating the optical force into these components 

provides a useful framework for understanding optical 

micromanipulation phenomena. Although the optical 

force is usually described as radiation pressure that 

pushes particles along the propagation direction of light 

due to scattering [8], the gradient force provides a way 

for light to pull particles towards the light source, which 

forms the basis for creating stable three-dimensional 

optical trapping sites [9]. Moreover, so-called tractor 

beam geometries – illumination and particle geometries 

that can result in pulling the particles towards the light 

source even without the gradient force – can be achieved 

when light is preferentially scattered forward, as will be 

discussed further in Sections 5 and 6, where we also con-

sider magnetodielectric particles.

Instead of rewriting the force density in terms of gra-

dient and scattering force components, we may instead 

write it in terms of the Maxwell stress tensor, :Tɶ

 
2

1
-

tc

∂
=∇⋅

∂

S
f Tɶ

 
(2.4)

With the second term associated with the rate of change of 

the electromagnetic momentum density, the first term, the 

divergence of the Maxwell stress tensor, can be identified 

as a momentum flux. In numerical simulations where the 

total field (i.e., including the incident and scattered radia-

tion) is considered, the second term vanishes with time-

averaging and the optical force is obtained by the volume 

integral of the first term.

2.2  Experimental geometries and strategies

Experimental strategies can tailor the experimental geom-

etry based on the available degrees of freedom in the 

illumination, particle and its environment to achieve the 

optical force required for targeting specific applications 

of optical micromanipulation. Tightly focused beams can 

create sharp intensity gradients to have stable trapping 

points for single beam optical tweezers [9]. Stable traps 

can also be created with dual beam traps that use counter 

propagating beams to create stable trapping points [3, 8, 

56]. Beam modulation techniques are also available to 

generate dynamic beams for creating a reconfigurable 

trap or even multiple traps for moving particles along 

user-defined trajectories. Alternately, defined trajectories 

can also be generated using static beams, for instance in 

passive optical sorting that separate particles according to 

their optical properties [57–59].

Although the interplay between illumination, parti-

cle and environment provides a useful theoretical context 

for describing optical micromanipulation, actual experi-

mental geometries can involve many different blocks or 

modules, as illustrated in Figure 2. We note that not all 

systems exploit the available degrees of freedom and, 

hence, not all components may be present in every 

optical micromanipulation system. However, this sys-

tem’s description provides a framework for making sense 

of the numerous activities within optical micromanipu-

lation, which are viewed as attempts to optimize the dif-

ferent components. For example, one can target different 

modules in order to extend the achievable dynamic range 

of the optical forces. Examples are numerous. When target-

ing the modulation and delivery modules, correctly under 

filling microscope objectives with laser illumination can 

be used to optimize the available power [60]. Reaching the 

nanonewton (nN) optical force domain can either be done 

in the particle module using antireflection-coated beads 

[61], or in the source module by just using regular beads 

but replacing the light source with a short-pulsed laser 

[62]. Moreover, by moving beyond the standard micro-

spheres, microfabrication-tailored particle shapes can be 

used to create optically steered microtools [63], which we 

will discuss further in Section 4. Tailored particle shapes 

can also achieve user-designed light deflection to engi-

neer the optical force, e.g., partial refraction for achieving 

Light source Light modulation

Feedback control

Detection

Environment

Particle

Light delivery

Figure 2 Experimental strategies can target certain applications by optimizing the available degrees of freedom in the different compo-
nents of a generic optical micromanipulation system.
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a stable optical lift [16] or even total internal reflection in 

waveguides for generating tailored optical forces [64, 65]. 

Optimizing the particle appears as a more recent trend 

compared to the earlier thrust in beam shaping and light 

modulation (see e.g., [66] for a review).

There are techniques that address several modules 

simultaneously. Designed fibers can both modulate and 

deliver light [67]. Light modulation can be targeted in order 

to correct for aberrations in the light delivery [68] and the 

trapping environment [69]. The trapping environment can 

also be designed and tweaked to aid in optical microma-

nipulation. Fluidic drag from microflows directed oppo-

site to the optical force can separate particles according 

to their optical properties [70]. A hollow core waveguide 

can be even more universal: it can confine both the par-

ticle and optical radiation to achieve higher energy and 

momentum densities [71], also representing an innovation 

in light delivery. In principle, the feedback control module 

involves working with the different components simulta-

neously (e.g., particle position detection is used in feed-

back-based control of light modulation to improve optical 

manipulation [72]).

Having established the context of experimental opti-

mizations based on the different generic components, 

we will now focus on the trends in using novel beams for 

illumination (Section 3) and the manipulation of designed 

microstructures (Section 4).

3   Micromanipulation with synthe-

sized novel beams

The nature of light scattering off a given particle depends 

on the intrinsic properties of light such as energy (wave-

length, amplitude) and momentum (polarization and 

wave vector), as well as extrinsic properties governing 

the spatial distribution of these quantities (where the 

intensity gradient also arises). Modulation and control 

over these properties provide a way to direct the course 

of optical micromanipulation. Static spatial light modu-

lation can be achieved with lenses, axicons and other 

fixed optical elements while electrooptic modulators 

(i.e., Spatial light modulators) can address dynamic 

and reconfigurable spatial modulation to synthesize 

novel beams e.g., using computer-generated diffractive 

elements or generalized phase contrast [73, 74]. Syn-

thesized beams can be tweaked to adjust the interplay 

between the gradient and scattering optical components 

to produce a wide range of optical micromanipulation 

possibilities.

3.1  Phase gradient and angular momentum

Apart from an extrinsic orbital angular momentum (the 

moment of linear momentum about an arbitrarily chosen 

axis), light can also have both an intrinsic orbital angular 

momentum (e.g., an optical vortex) and spin angular 

momentum (circular polarization) [75]. When light illumi-

nates particles, it can exchange angular momentum with 

them to influence the dynamics of its rotational or orbital 

motion. In fact, Poynting’s original proposals for verify-

ing optical momentum and radiation pressure were based 

on angular momentum and rotation, rather than on linear 

momentum.

An optical vortex beam carries an intrinsic orbital 

angular momentum and is also referred to as a “dough-

nut beam” since its transverse profile appears as a bright 

ring surrounding a dark core. A particle can orbit the dark 

core of an optical vortex if it is small enough to get trapped 

by gradient forces along its bright ring. Once trapped, the 

transverse component of the local wave vector leads to a 

tangential/azimuthal component of the scattering force, 

which in turn leads to orbital motion along the trapping 

bright ring, as shown in Figure 3A [22]. Using a similar prin-

ciple, beams can be synthesized in such a way that gradi-

ent forces constrain particles along light tracks where the 

scattering force from skewed wave vectors can simultane-

ously act to drive particles along these tracks. This type 

of optical micromanipulation can be said to arise due to 

optical forces from phase gradients [17] since, in this case, 

the transverse component of the wave vector is simply the 

transverse gradient of the phase. This transverse force 

from the phase gradient may be demonstrated by differ-

ently shaped beams that contain optical vortices [21, 27]. 

For example, a vortex-carrying beam reshaped to contain 

a triangular dark core in [27] is illustrated in Figure 3B.  

The optical force from phase gradients is, however, not 

restricted to optical-vortex-carrying beams but, in prin-

ciple, should apply to beam produced by suitable beam 

shaping techniques that can independently control ampli-

tude and phase distributions. Hence, based on this princi-

ple, a line pattern having a parabolic phase gradient can 

push two particles in opposite direction along the line 

trap, as shown in Figure 3C. This principle has also been 

demonstrated for three-dimensionally shaped light distri-

butions such as knotted optical traps [76].

With optical forces arising from phase gradients, 

it is crucial to also have sharp axial gradients if optical 

axial confinement is required and it is undesirable to 

resort to other forces for axial confinement (e.g., gravity 

force or normal force from sample chamber). On the other 

hand, beams that completely lack axial gradients are 
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propagation invariant beams and can be of interest in 

other applications.

3.2   Propagation-invariant and self-healing 

beams

The transverse profiles of light beams typically evolve 

during propagation due to diffraction. However, some 

beams can maintain their transverse profile during 

propagation [77]. These propagation-invariant beams 

are interesting for a number of reasons. Certain parts of 

such beams, such as the central lobe of a Bessel beam, 

can seemingly have a diffraction-free character [23]: the 

light that diffracts out of the central lobe is replenished 

by diffraction from the other parts of the beam. This con-

stant replenishment by diffraction from the other parts of 

the beam during propagation also leads to the seemingly 

self-healing or self-reconstructing behavior. For instance, 

the central spot in a zero-order Bessel beam self-replen-

ishes after encountering obstructions during propagation 

(however, this replenishment can be hampered by block-

ing the outer rings of the Bessel beam, rather than its 

central spot, which would cause the central spot to lose 

its interesting properties). The absence of axial intensity 

gradients in propagation-invariant beams is also a useful 

property for isolating scattering-based axial optical forces.

Although the Bessel beam is a popular example of a 

propagation-invariant beam, various patterns can exhibit 

propagation invariance, even speckle-like patterns [78, 

79]. The defining property is that the pattern is formed 

by a set of plane waves whose wave vectors lie on a cone, 

which corresponds to a spatial power spectrum that forms 

a ring (see Figure 4A). An intuitively simple experimental 

demonstration is based on an optical Fourier transform 

geometry where a light ring is placed at the front focal 

plane (the Fourier plane) of a lens [82]. Extending this 

Fourier optics approach, iterative algorithms can exploit 

the phase freedom in the Fourier ring to create different 

propagation-invariant patterns using Fourier holograms 

[80]. An example of such iteratively designed pattern is 

shown in Figure 5B. Instead of iteratively tailoring the 

phase of the plane wave, a random phase can be assigned 

to the phase waves in the light cone. Then, a nondiffract-

ing speckle pattern is produced (e.g., see Figure 4C from 

[79]). In contrast, a Bessel beam of mth-order is formed 

when the plane wave phases are designed to vary linearly 

around the wave-vector cone and the phase increments by 

2πm after every turn (higher-order Bessel beam in Figure 

4D is from [81]).

Propagation-invariant beams can be useful, e.g., for 

optical switching in active optical sorting experiments for 

selectively propelling a chosen particle away from a trans-

verse laminar flow, where the beam can push the particle 

over a relatively longer range. In this case, the self-healing 

behavior can be useful when propelling a series of parti-

cles along the same path defined by light. However, the 

beams are typically invariant and self-healing only over 

A B C

Figure 3 Motion of particles along light tracks due to skewed scattering and gradient forces. (A) A particle confined by gradient forces in 
the bright ring of an optical vortex can orbit that ring due to the azimuthal component of the scattering force (adapted from [22]); (B) similar 
principle for a triangular dark core of an optical vortex; (C) two microspheres (top) held by a line trap (middle) can be pushed along opposite 
directions when the line trap contains a parabolic phase gradient (manifests as a divergence in beam propagation shown in the bottom 
figure).
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a limited range in experimental implementations because 

finite apertures truncate the infinite transverse extent 

(and energy) required by ideal propagation-invariant 

beams [85].

3.3  “Accelerating” beams

Just as diffraction can give the illusion of diffraction-free 

propagation of appropriately prepared beams, it can also 

create the illusion of accelerating beams: beams that 

can curve around corners, seemingly accelerating in free 

space and homogeneous media instead of propagating 

in a straight line. Examples of accelerating beam include 

Airy beams [24] and other parabolic beams [86], which 

are quasi-invariant beams: their intensity patterns appear 

invariant in an accelerating frame (i.e., the overall pattern 

is preserved but exhibits transverse shifts during propa-

gation). The parabolic trajectory of an Airy beam in the 

axial section is shown in Figure 5A from [24], which also 

shows a finite quasi-invariant range due to truncations 

from limited apertures of the optical system.

Like the invariant beams in the previous section, the 

propagation of accelerating beams is completely governed 

by classical diffraction. The “self-healing” and “diffrac-

tion-free” properties of the main lobe are due to the dif-

fraction from other parts of the beam. As shown in [87], 

the Poynting vectors in the other parts of the beam have 

transverse components (energy flow) pointing towards 

the central lobe. The quasi-invariance is robust to pertur-

bations from scattering and turbulence but the central 

lobe exhibits regular diffraction broadening when all 

the other lobes are blocked. The transverse components 

of the Poynting vectors have corresponding momentum 
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Figure 5 Accelerating beams (A) a finite-energy Airy beam is quasi invariant over a finite range [24]; (B) Airy beams can guide multiple par-
ticles along an accelerating trajectory [83]; (C) spiral beams, like the helico-conical beam can steer particles along a spiral trajectory [84].
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Figure 4 Nondiffracting beams (NDBs): (A) the angular spectrum showing a conical superposition of plane waves that creates NDBs; 
(B) iterative design that tweak the phases of the plane wave can create NDBs with arbitrary patterns (from [80]); (C) a nondiffracting speckle 
is formed when the plane waves have random phases (from [79]); (D) a Bessel beam of mth-order is formed when the phase varies linearly 
around the cone and changes by 2πm times every turn (a 4th-order Bessel beam is shown, from [81]). The radius of the inner ring increases 
with higher order and a 0-order Bessel beam has a bright center.
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flow (cf. force from phase gradients). Thus, when incident 

on an array of particles, the phase and intensity gradi-

ent from the minor lobes tend to bring particles towards 

the brightest spot, which can then propel them along the 

accelerating path [83]. The quasi-invariance again leads 

to self-healing properties of the Airy beam, which can 

be useful for guiding multiple particles along the curved 

path.

Other accelerating beams such as those produced 

by a superposition of higher-order Bessel beams having 

unequal orders also exhibit quasi invariance, but in a 

rotating coordinate system, hence resulting in a beam 

that propagates along a spiral path and have been called 

helicon beams [88, 89] and solenoid beams [26]. There are 

also diffracting accelerating beams, e.g., the helico-con-

ical beam (HCB) – created e.g., using Fourier holograms 

having a transmission function of the form exp[ilθ(K-r/r
0
)], 

which is characterized by a nonseparable helical (azi-

muthal) phase and the conical (radial) phase [90]. Despite 

their diffractive behavior, HCBs have also been shown to 

self-reconstruct after encountering an obstruction [25]. 

Helico-conical beams can work as “optical twisters” that 

can steer microparticles along spiral trajectories during 

optical micromanipulation [84].

4   Micromanipulation of designed 

microstructures

The previous section identified different techniques 

for optimizing optical forces by synthesizing improved 

beams. However, under any kind of illumination, the light 

scattering and the optical force would depend both on the 

material (material constants) and on the geometry (spatial 

distribution and geometric shape) of the illuminated par-

ticle. Homogeneous spherical beads are popular in optical 

micromanipulation studies both for the experimental pre-

dictability and theoretical tractability. However, together 

with conventional microfabrication technologies, the 

laser direct-write methods for three-dimensional fabri-

cation (e.g., multiphoton polymerization [91]) open new 

possibilities for creating synthetic microstructures of 

various shapes for wide range of applications [92]. Hence, 

it is worth examining structure-based degrees of freedom 

for optimizing optical micromanipulation [93]. Besides 

potential improvements in systems for delivering and 

measuring optical forces, these optimizations can lead to 

as well as expand the range of modalities for exploiting 

optical forces. One of the core ideas is to use fabrication 

technologies for shaping microstructures that redirects 

optical momentum by design to achieve the desired 

mechanical effects from optical forces [64].

4.1   Microstructures optimized for force 

sensing and delivery

Force-calibrated optical tweezers systems are, to date, the 

main success story regarding the application of optical 

forces. Thus, it makes sense to explore particle-based opti-

mizations when trapping small dielectric spheres, which 

are employed in these systems. Is there anything left to 

be optimized on the microbead? Indeed, a recent study 

shows that something as simple as optimizing the bead 

size (to match the trapping beam) can lead to improve-

ments (reduced errors) when doing force measurements 

in optical traps [94]. Another conceptually simple (but 

technique-intensive) approach is to apply anti-reflec-

tion coating onto high-refractive-index microspheres 

to achieve stability and nanonewton optical forces [61]. 

These enhancements can be applied when trapping the 

typically spherical handles of more complex structures 

such as components in micro-assembly [95] or optically-

steered microtools [96, 97]. However, more complex 

structures will require a different calibration than simple 

spheres due to difference in their dynamics [97].

Microfabrication is also advancing developments 

in optically driven micromotors [28–30, 98, 99]. Optical 

micromotors can, among others, drive fluids in micro-

pumps [29], establish a velocity field for applying hydro-

dynamic shear [30], or, upon proper calibration, work 

as miniature instruments for probing fluid properties 

[99]. Interestingly, fluid-mediated optomechanics can be 

achieved not only by delivering optical momentum but 

also by optical energy, e.g., via pulsed laser-induced cavi-

tation bubbles [100].

An ongoing goal is to use microfabrication to shape 

the object according to the demands of specific optical 

micromanipulation applications [93]. Besides optimizing 

microspheres, an alternative would be to exploit micro-

fabrication to come up with new ways of creating optical 

manipulation handles. Veering away from analytically 

solvable spheres means an increasing role of numeri-

cal optimization in the design process. Some of these 

attempts are illustrated in Figure 6. Figure 6A illustrates 

that a plane wave can exert a stable transverse component 

using Fresnel reflection and refraction on a half-cylin-

der [16]; Figure 6B shows that a microstructure contain-

ing waveguides can be optically manipulated using the 

optical force arising from the light deflections caused by 

the waveguides [64]. Figure 6C shows that focused light 
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can exert an optical pulling force on a tapered rod within 

a certain range of displacements [101].

4.2   Trapped microstructures for light 

delivery

One goal of nanophotonics technologies is to create func-

tional tools that can perform tasks in the submicrometer 

domain. Here the classical diffraction barrier presents a 

challenge for techniques based on far-field optics. In STED 

microscopy [102], resolution enhancement is mediated by 

a second light source that shuts off fluorescence around 

a nanometric core where fluorescence is then localized 

using only far-field optics. In optical micromanipulation, a 

way to jump the diffraction hurdle is using structure-medi-

ated micro-to-nano coupling [92]. Here, a trapped micro-

structure, big enough to be amenable to optical trapping, 

serves to tap onto a diffraction limited beam and channel 

its effects onto subwavelength regime. One example is to 

optically manipulate a relatively large microstructure to 

direct its subwavelength tip for SPM-like imaging [96].

The structure-mediated approach also makes it pos-

sible to tap into diffraction limited light to deliver it to 

subwavelength targets, as shown by the approaches illus-

trated in Figure 7. In Figure 7A, a microbead trapped by an 

infraredbeam serves as a microlens for focusing an ultravio-

let laser beam to enable subwavelength direct-write mate-

rial nanopatterning [103]. Using a two-photon polymerized 

microstructure having optical trapping handles and an 

embedded waveguide, a second laser beam can be guided 

onto its tip to selectively excite fluorescence on a micro-

sphere situated within a vertical stack [63]. The waveguide is 

bidirectional and can also redirect light captured by its tip. 

Optical traps can also manipulate nanowires, albeit with 

limited orientational control since the nanowires tend to 

align along the optical axis. Figure 7C shows that by resting 

one tip of a nanowire on a fluorescent bead, trapping the 

other tip can, with the proper choice of the nanowire mate-

rial, generate second harmonic light, which can be guided 

along the nanowire to excite fluorescence on the bead [104].

5   Negative Poynting vector: force 

becoming negative?

5.1   Fundamentals of reversed Poynting 

vector

The Poynting vector is commonly associated with the 

flow of the energy of a wave. In the simplest case the 
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Figure 6 Exploring alternative microstructure geometries for exerting constant force; (A) gradient free (plane wave) illumination leading to 
stable optical lift; (B) a structure containing waveguides can be optically manipulated by exploiting the optical force arising from the light 
deflected by the waveguides; (C) Focused light can exert constant force on a tapered microrod.
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time-averaged Poynting vector of a plane wave S = ε
0
c|E|2k/2  

is constant and positive in the sense that its direction coin-

cides with that of the wavevector k. However, in general, 

the laser radiation can be modeled and realized in more 

intricate ways. It is often a paraxial electromagnetic beam 

– superposition of plane waves with wavevector directions 

close to the optical axis z. The Poynting vector compo-

nent of paraxial beams naturally oscillates in the vicinity 

of the constant value. The oscillation becomes stronger 

when the angles between the wavevectors and the z axis 

increase. Thus, for full-vectorial non-paraxial beams the 

local value of the Poynting vector component can take 

negative values, i.e., point in the opposite direction with 

respect to the beam propagation (see Figure 8A).

Negative Poynting vector component (energy flux 

density) does not mean that the overall beam energy 

flows in the direction opposite to the wavevector direc-

tion like in metamaterials with negative refraction. The 

total energy flux dΦ=∫S s  remains positive, but the local 

value of Sds can reverse sign. In other words, the energy 

fluxes computed over a selected part of the whole infinite 

plane z = const can take both positive and negative values, 

though they have no immediate physical meaning [105]. 

Nevertheless, if it were feasible to absorb all radiation 

except the selected area, one could think of producing a 

beam with reversed Poynting vector and reversed energy 

flux [106].

It would be perfect if the reversed Poynting vector 

could be detected using nanoparticles. Time-averaged 

optical force for the Rayleigh-regime spherical particles 

(with radius much less than the radiation wavelength) can 

be presented as the sum of the gradient force (due to the 

spatially distributed intensity) and the nonconservative 

force. The nonconservative force is the sum of the radia-

tion pressure force F
rp

, proportional to the Poynting vector 

at the point of particle position, and the gradient-phase 

force F
gp

 [32, 107]. For non-diffractive waves the intensity 

along the z axis is constant, so the gradient force vanishes. 

The radiation pressure optical force can be negative due to 

the negative Poynting vector component, but its effect is 

often blocked by F
gp

. So, for the gradientless electromag-

netic beams the optical force is negative if F
rp

+F
gp

 < 0.

In the following section, we will consider some 

typical examples of the systems where the Poynting 

vector becomes reversed. These are the superposition of 

two plane waves (Figure 8B), non-paraxial Bessel beams 

(Figure 8C), non-paraxial Airy beams (Figure 8D), and 

fiber modes (Figure 8E).
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Figure 7 Trapped microstructures for light delivery. (A) An infrared-beam-trapped microbead focuses an ultraviolet laser beam for sub-
wavelength direct-write material nanopatterning [103]; (B) a trapped microstructure guides a second laser beam to selectively excite a 
microsphere within a vertical stack (left inset: top- and side-view experiment snapshots; right inset: tip emissions for different input wave-
lengths) [63]; (C) a nanowire, trapped on one tip, guides second-harmonic generated light to the other tip resting on a bead and excites 
fluorescence in it [104].
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5.2  Negative Poynting vector

5.2.1  Plane waves

The simplest system to introduce the negative Poynting 

vector is a superposition of several plane waves. Actually, 

two plane waves are sufficient. In agreement with Ref. 

[105] we consider two plane waves as depicted in Figure 

8B and detect the Poynting vector component in the z 

direction. The superposition of the plane waves results 

in sufficiently non-paraxial electromagnetic field, if the 

angle φ is large enough. From Figure 9 we notice that φ 

should be  < 45° to ensure the emergence of the reversed 

Poynting vector. On the other hand, small y-components 

of the electric field of the first plane wave are preferred. 

This means that the other (longitudinal) field component 

E
z1

 is responsible for the negative energy flux density of 

the superposition. Spatial distribution of the Poynting 

vector component in the inset of Figure 9 shows strong 

oscillations as we predicted before. Symmetric wave struc-

tures with respect to the z-axis are also possible and will 

be considered in the following subsection.

5.2.2  Bessel beams

When three-dimensional electromagnetic field consists 

of plane waves with wave vectors forming a cone (see 

the inset in Figure 8C), the field can form a Bessel light 

beam. Paraxial Bessel beams with small angles α at the 

vertex of the cone are well studied both theoretically and 

experimentally and their fascinating properties such as 
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Figure 8 (A) Sketch illustrating possible Poynting vector component S
z
 for plane waves, paraxial beams and non-paraxial beams;  

(B) configuration of two plane waves resulting in the regions of negative component of Poynting vector S
z
(x, y, z); (C) squared electric field 

for non-paraxial Bessel beams of different orders m with the angle α = 50° at the vertex of the cone in the spectrum of Bessel beam (shown in 
the inset); (D) paraxial and non-paraxial Airy beam profiles at the distance k

0
z = 0.5 from the source (k

0
 = 2π/λ is the wavenumber in vacuum). 

The paraxial beam maintains its intensity profile, while the non-paraxial Airy beam is disturbed; (E) schematic illustration of the fiber gener-
ating the regions of the negative Poynting vector components.
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non-diffraction propagation [108, 109] and self-recon-

struction [110] are known. Non-paraxial Bessel beams 

are the full-vector solutions of the Maxwell equations 

and can be theoretically constructed for any angle at the 

cone vertex α. In contrast to the paraxial Bessel beams, 

their non-paraxial analog has not been studied much 

experimentally. Nevertheless, the non-paraxial Bessel 

beams possess amazing properties. First of all they are 

able to produce the regions of the reversed Poynting 

vector [106, 111].

In general, a non-paraxial Bessel beam consists of 

oppositely polarized components, TM and TE non-paraxial 

Bessel beams with complex amplitudes c
1
 = |c

1
|exp(iψ

1
) and 

c
2
 = |c

2
|exp(iψ

2
), respectively. Non-paraxial Bessel beams 

of different orders m are depicted in Figure 8C. Squared 
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Figure 10 Diagrams of negative Poynting vector component S
z
 (in a.u.) of the first-order non-paraxial beams calculated at (A) k

0
r = 0 and (b) 

k
0
r = 3. In the insets, the negative component S

z
(x, y) for parameters (A) α = 60° and ψ = 80°, and (B) α = 70° and ψ = -100° is demonstrated.

electric field of a non-paraxial Bessel beam is described 

by the Bessel functions. Only in paraxial approxima-

tion the Bessel beam of the mth order is defined by the 

Bessel function of the same order. In general, this is not 

the case [106]. Depending on the relative phase ψ = ψ
1
-ψ

2
 

(|c
1
| = |c

2
| = 1) and angle α, the Poynting vector component S

z
 

is determined and shown in Figure 10. Although a nega-

tive Poynting vector component arises at the axis of the 

beam r = 0 even for paraxial beams (α close to 0), it is hard 

to meet the appropriate conditions, because the TM and 

TE beams must be π/2-shifted with very sharp tolerance 

(Figure 10A). The largest effect of reversed Poynting vector 

exists for strongly non-paraxial Bessel beams. It should be 

noted that the regions of S
z
 < 0 appear off the axis of the 

beam, too, as indicated in the insets of Figure 10 with the 

concentric rings. Therefore, the negative Poynting vector 

component as function of angles ψ and α can be found at 

k
0
r = 3, where k

0
 is the wavenumber in vacuum. Note that 

despite the regions of negative Poynting vector compo-

nents, the whole energy flux through the infinite plane 

z = const is positive.

Actually, any non-paraxial beam can be used to intro-

duce locally negative energy flux density. We will mention 

only X-waves and Airy beams. An X-wave is weighted 

frequency superposition of Bessel beams, and it demon-

strates all negative components of the Poynting vector. As 

mentioned in Ref. [112], a truncated X-wave can exhibit 

negative energy flux. Airy light beams [24, 113] had their 

precursors in quantum mechanics called non-spreading 

wave packets [114]. Airy beams received their name exactly 

owing to the similarity between the Schrödinger equation 

and the diffraction equation. They maintain their inten-

sity during propagation (Figure 8D), but shift the distribu-

tion in the transversal direction, emulating the effect of 
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an accelerated particle on a parabola. The non-paraxial 

Airy beam loses the property of non-diffraction. It is basi-

cally a superposition of propagating and evanescent field 

parts [115]. Superposition of propagating and evanescent 

components at the low-intensity fringes of the Airy func-

tion results in the negative S
z
 [116] and, unlike Bessel light 

beams, the superposition of the TE and TM beams is no 

longer needed. Thus, the evanescent field part of the Airy 

beam not only leads to the harmful spreading, but also 

engages the negative-Poynting effects.

6  Pulling optical force

6.1  Precursors of tractor beams

It has been almost three decades since the introduction 

and experimental observation of optical trap beam by 

Ashkin in 1986 [9]. After that, optical trapping and manip-

ulation techniques, known as optical tweezers, have 

found applications in biological, physical, and chemi-

cal research [1, 2]. Using light to manipulate objects with 

high precision and finesse can revolutionize multidisci-

plinary research fields. This technique made it possible 

to reach lower temperatures in atomic cooling [117–119], 

to achieve higher resolution in light scattering [120], to 

manipulate living biological cells at will without causing 

damage [121–123], and to fabricate complex nanoscale 

structures [124].

Light has linear and angular momenta, which could 

exert forces and torques on small objects. The optical 

force had been verified in experiments at the beginning 

of 1900s. However, due to positive radiation pressure and 

momentum conservation, the forces usually push the 

object along the direction of the light [35]. Ashkin, one of 

the pioneers in optical trapping, reported the first experi-

mental observation of stable trapping by using two oppos-

ing equal Gaussian beams [8]. The stable equilibrium was 

located at the symmetry point of the two beams. Particles 

exhibited a restoring force near the stable symmetry point, 

and would be trapped there. Subsequently, the trapping 

theory was developed and found numerous applications 

in optical levitation [125, 126].

In 1986, Ashkin and his co-workers proposed a single 

focused beam to trap small neutral particles by gradi-

ent force [9], which is the foundation of modern optical 

manipulation techniques. Small particles in the electric 

field of light develop an electric dipole moment that 

can be described by the induced polarizability α. The 

induced electric dipole of high refractive index particles 

undertakes a gradient force (1/2)α∇E2 toward the beam 

focus. Meanwhile, the particle suffers from the scatter-

ing force, which originates from the momentum trans-

ferred to the particle from the incident beam and points 

along its direction. When the gradient force overwhelms 

the scattering force, small particles can be firmly trapped 

near the focal point, and the particles can also be manip-

ulated in three dimensions by changing the location of 

the beam focus.

6.2   Poynting-vector indicators of pulling 

force

The simplest system to show the appearance of the 

pulling force effect in the field of a gradientless beam is 

a small (Rayleigh-limit) spherical particle. Non-magnetic 

Rayleigh beads in inhomogeneous field E = g(z)exp(ik
z
z)e 

are affected by the time-averaged force

 

2 2
20

| | Re( ) ( )
Im( ) ,

2 2
e

z z e

d g
F k g

dz

ε α
α

 
= +  

e

 

(6.1)

where α
e
 is the relative electric polarizability of the par-

ticle. The first term is the gradient force and the second 

one is the nonconservative force. Usually the gradient 

force is dominant and can serve for quite effective optical 

manipulation in optical tweezers. Indeed, the positive 

and negative gradient of the field is able to pull and 

push particles. Using spatial modulation techniques, 

it is feasible to move the nanoparticles along arbitrary 

trajectories.

When there is no gradient of the electric field, i.e., 

g(z) is constant function, we lose control over the bead’s 

axial movement and we get a unidirectional force, which 

can push transparent and lossy particles and pull spheres 

with optical gain [39]. We are interested in the approaches 

to achieve pulling of transparent and lossy beads using 

gradientless electromagnetic fields without resorting to 

quite exotic gain particles.

Let us start by considering magnetic spherical par-

ticles of radius R, relative dielectric permittivity ε and 

magnetic permeability µ. We assume that Rayleigh par-

ticles are electromagnetically small, so the condition 

/ 1Rεµ λ<<  is fulfilled. The beads possess induced elec-

tric p and magnetic m dipole moments, which depend on 

the incident electric E and magnetic H fields at the center 

of the sphere, and electric α
e
 and magnetic α

m
 polarizabili-

ties as p = ε
0
α

e
E and m = α

m
H, respectively. In the Rayleigh 

approximation, the total polarizabilities are expressed in 

terms of the static polarizabilities ( 0 )

,
:

e m
α
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Localized plasmonic resonance arises for ε = -2 (µ = -2), 

but far from resonance the inequality |Re(α
e, m

)| >  > Im(α
e, m

)  

holds for small nanoparticles. For transparent (non-

absorbing) beads the permittivities and permeabilities are 

real, as static polarizabilities.

The time-averaged component of the force along the 

optical axis of the beam z has the form [42]
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(6.3)

Propagation-invariant (non-diffractive) light beams 

have the same intensity pattern for any z, i.e., E = e(r
⊥
)

exp(iβk
0
z), where r

⊥
 = r-ze

z
 is the transverse radius-vector 

and β = (e
z
k) is the longitudinal component of the wavevec-

tor (propagation constant). Propagation-invariant beams 

do not exert gradient forces on the beads in the z-direction, 

so the same nonconservative force can affect the particle 

for a long time. The condition Re(α
e, m

) >  > Im(α
e, m

) allows 

us to simplify the last term in the expression for the force 

(6.3) as * * *Re( [ ] ) Re( ) Re( ) Re([ ] ).
e m z e m z

α α α α× ≈ ×E H E H  

Thus, one rewrites Eq. (6.3) as
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(6.4)

The first two terms proportional to the imaginary 

parts of the polarizabilities are always positive for trans-

parent and absorptive particles. For paraxial propagation-

invariant electromagnetic beams these positive terms are 

much larger than the third term, so the resulting force 

is always pushing. The sign of the third term in Eq. (6.4) 

depends on the sign of the longitudinal component of the 

Poynting vector S
z
. When Re(α

e
)Re(α

m
) > 0, the nanoparti-

cle can experience a pulling force in the region of positive 

S
z
, but only if S

z
 is large and β is small enough. The require-

ment of small longitudinal component of the wavevec-

tor β means that the wavevectors of partial plane waves 

form large angles with respect to the axis z or, in other 

words, the beam is strongly non-paraxial. Non-paraxial 

beams are generally needed to create the reversed Poynt-

ing vector effect, too, but in this case S
z
 < 0 is not required. 

On the contrary, the regions with positive Poynting vector 
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Figure 11 Pulling optical force at the axis of the beam r = 0, when 
the Poynting vector is (A) positive and (B) negative. Parameters: 
c

1
 = 108 V/m, λ = 1.55 µm. The Poynting vector of the non-paraxial 

Bessel light beam of the first order is depicted in the inset.

components are preferred. Condition on the polarizabili-

ties Re(α
e
)Re(α

m
) > 0 is valid for transparent beads, when 

(ε < –2 or ε > 1) and (µ < -2 or µ > 1), or 1 > ε > -2 and 1 > µ > -2.

On the other hand, nanoparticles are also pulled 

towards the light source when Re(α
e
)Re(α

m
) < 0, the Poynt-

ing vector component S
z
 is negative, and β is small. This 

case corresponds to the beads made of a metamaterial 

with rather non-conventional permittivities and permea-

bilities: either (ε < -2, ε > 1) and 1 > µ > -2, or 1 > ε > -2 and (µ < -2, 

µ > 1). Figure 11 demonstrates the optical pulling forces in 

the cases of positive and negative Poynting vector compo-

nent S
z
.

How small longitudinal wavenumber β should be can 

be estimated for the non-absorptive Rayleigh nanoparti-

cles with 3 ( 0 )

0 , ,
Re( ) 4

e m e m
k α πα= and 3 ( 0 ) 2

0 , ,
Im( ) 8 / 3.

e m e m
k α πα=  

The force (6.4) is pulling, if
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Using the inequality Re(E × H*)
z
 < |E||H|, one derives β < 1/2. 

Introducing the angle α = arccos(β), which forms a partial 

plane wave with respect to the zaxis (it is the angle at the 

vertex of the cone for Bessel beams), we estimate its value 

as α > 60°. This clearly means that the light beam should 

be strongly nonparaxial to pull a small sphere. When the 

sphere is lossy, α should be even greater.

The effect of pulling force can be understood both 

from the wave and from the corpuscular point of view. The 

stream of photons incident on a bead creates two contri-

butions to the optical force [31]. The first one is interpreted 

as direct transfer of the longitudinal momentum 
o

k βℏ  of 
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the incident photons to nanoparticles. The second contri-

bution takes into account the effect of scattered photons. 

If the photons are primarily backscattered, they transfer 

positive momentum to the bead according to the momen-

tum conservation law. Then the particle is pushed by the 

incident beam like it happens in paraxial beams. When 

the angle α is large (non-paraxial beam), the forward 

scattering increases and the transferred momentum 

becomes negative – the particle is pulled by a propaga-

tion invariant light beam! This situation can be noticed 

in the diagrams of differential cross-sections, i.e., in the 

far-zone characteristics of scattering. In Figure 12 we 

notice that forward scattering exceeding backward scat-

tering is in fact the defining characteristic of the pulling 

force. However, this approach does not predict the exact 

value of the critical angle α, which should be at least 60°. 

Even though the optical force and the difference between 

forward- and backward-scattering cross-sections both 

stem from the expressions similar to the third term in Eq. 

(6.3), they are not simply proportional. So, the qualitative 

indicator of the pulling force is the scattering pattern. It 

should be noted that the analogous explanation for the 

negative force was made for acoustic Bessel beams in 

Refs. [33, 127, 128].

The second interpretation of the negative-force effects 

is based on the multipole approach [31, 35, 38]. Eq. (6.3) is 

the force written with only electric and magnetic dipole 

moments. This means that in the case of Rayleigh parti-

cles we can be limited by only several terms of the series, 

which generally includes also quadrupole terms, octupole 

terms, etc. The effect of the pulling force appears owing 

to the interaction of these multipoles. Say, in Eq. (6.3) the 

third term describes the interaction between the electric 

(p) and the magnetic (m) dipole moments and is propor-

tional to Re(p × m*). Thus, the series can be presented in 

the form

 d q o
= + + +…F F FF

 
(6.6)

F
d
 consists of positive dipole inputs and a dipole-interac-

tion term, which can be either positive or negative. F
q
 is 

the quadrupole terms and electric-magnetic quadrupole 

and quadrupole-dipole interaction terms. F
o
 includes the 

interaction of octupoles with dipoles, quadrupoles, and 

octupoles themselves.

Eq. (6.6) should be applied for large Mie particles. 

The polarizabilities for large particles can be presented 

as in Eq. (6.2), but the static polarizabilities should be 

replaced by different quantities, expressed in terms of the 

spherical Bessel functions (first Mie coefficients a
1
 and 

b
1
). With these non-static polarizabilities the force (6.3) 

can be used for much larger particles. One more good 

issue is that magnetic permeability is no longer needed 

to achieve the pulling force effect. One can use the artifi-

cial magnetic permeability [129, 130] instead, which stems 

from the dielectric permittivity in the Mie coefficient b
1
. 

Taking a non-magnetic polystyrene bead, e.g., the dipole 

approximation correctly predicts the appearance of the 
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Figure 12 Difference between forward- and backward-scattering cross-sections calculated as 
α π
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( / ) - ( / )d do d d do d  vs. the angle α of 

the non-paraxial Bessel beam. Differential cross-sections are shown in the insets. Parameters: λ = 532 nm, R = 8.5 nm, m = 1.
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pulling force effect near the electric size k
0
R = 1.4, but fails 

for larger particles. Both dipole and quadrupole terms 

(including their interaction) are sufficient to describe the 

pulling force effect in the size up to k
0
R = 3.5.

It should also be noted that the near-field Poynting 

vector mapping alone is not able to predict the dynamics of 

the object in the light field. One needs to apply the integra-

tion of the Maxwell stress tensor over the surface around 

the object. This exact formula is transformed into the inte-

gration of the Poynting vector only at the infinite radius 

of the integration sphere, resulting in the expression 

-( 1/ ) ( - ) ,
inc

c ds= ∫F S S�  where S and S
inc

 are the Poynting 

vectors of the total field (including scattering) and inci-

dent field, respectively. When the integration is performed 

over finite spheres, the force cannot be calculated in terms 

of the energy flux density. If we use the aforementioned 

formula based on the Poynting vector nonetheless, we get 

oscillations depending on the radius of the integration. 

The correct value is achieved only at infinity or by means 

of the averaging over a large number of oscillations. In the 

latter case, calculation of the optical force is reduced to 

integration over the radial coordinate, i.e., we get to the 

expression for the force in the form of the Newton’s law 

of dynamics F = ∆G/∆t, where 2( 1/ ) ( - )
inc

c dV∆ = ∫G S S  

is the momentum transferred to the bead from the elec-

tromagnetic field. The integration should be carried out 

over the infinite surface to obtain the exact result. When 

the integration embraces only finite volume, the force is 

still oscillatory, but the amplitude of such oscillations is 

suppressed.

6.3   Solenoid tractor beams and optical 

conveyors

The experimental demonstration of optical tractor beams 

has been realized, among others, by theoptical solenoid, 

which draws colloidal silica spheres against the light’s 

direction of propagation [26]. The total force is the com-

bination of intensity gradient force (drawing particles 

to the intensity maximum) and phase gradient force 

(pushing particles along the light axis). By variation of 

helical pitch of solenoid beam, the phase-gradient forces 

can be manipulated to transport particles in both direc-

tions of the optical axis. Theoretically, solenoid beams are 

diffraction-free [82], but the trapping extents are limited 

by optical system. Due to the interference of the projected 

solenoid beam and higher diffraction orders, the inten-

sity of solenoid beam is actually not uniform along the 

solenoid, hence the particle will be localized somewhere 

along the solenoid.

Solenoid beams can also work as optical conveyors, 

making objects move back and forth. The pulling dis-

tance is increased greatly by using a coaxial Bessel beam 

[37, 131]. Moreover, despite the variations in geometrical 

or optical properties of the particles, they can be trapped 

continuously at a stable speed. Simply changing the phase 

variation rate along the conveyors could move the object 

in the other direction, making it a bidirectional optical 

conveyor [37].

6.4   Manipulation by interfering optical 

fields

Compared to gradient force, trapping forces from gradi-

entless light beams show many advantages in control-

ling objects, such as long range trapping. In the view of 

momentum conservation, two situations are favorable for 

getting optical pulling force. One is to concentrate the scat-

tering in the forward direction, as was described above. 

The other is to try and impart less momentum along the 

propagation direction of light. When the forward scatter-

ing overwhelms the photon momentum in the propaga-

tion direction, an object could be drawn towards the light 

source.

Kerker et  al. [132] predicted that backward scatter-

ing of a small dielectric sphere becomes zero when its 

parameters satisfy the condition ε = µ. For a Rayleigh 

sphere, the light scattering can be approximated by 

the dipole terms of the Mie expansion. Then the scat-

tered intensities are reduced to very simple forms to 

obtain the conditions for zero backward scattering and 

zero forward scattering. Though there are some excep-

tions to the Kerker theory [133, 134], this prediction was 

confirmed experimentally in the microwave range [135]. 

Increasing the particle size, higher-order multipoles 

could appear and interact with the dipole mode, giving 

rise to a Fano resonance [136]. Around the Fano reso-

nance, the backward scattering and forward scattering 

spectra have asymmetric shapes. At the dip of backward 

scattering, the light scattering could also be focused 

in the forward direction [136]. In both these cases, the 

optical pushing forces are considerably reduced [137, 

138]. However, a plane wave still cannot exert a pulling 

force on a dielectric sphere because scattering cannot 

fully occur in the forward direction.

Compared to a plane wave, the wave vector of Bessel 

beam is not in the propagating direction, but with an angle 

θ
0
 which could be controlled to impart less incident momen-

tum in the direction of wave propagation. Chen et al. real-

ized an optical pulling force by maximizing the forward 
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scattering, which is due to the coupling between radiation 

multipoles, and at the same time by keeping the projection 

of photon momentum along the propagation axis small. The 

total z-component of the force for a lossless particle includes 

an incident part and an interference part [31],

 
incident interference 1

z z sca 0
F (cos cos )

z
F F W c−= + = θ −〈 θ〉

 
(6.7)

where W
sca

 is the energy scattering rate, and 〈cosθ〉 repre-

sents the averaged cosine of the scattering angle, which 

depends on the properties of the particles and the incident 

beam. It also reflects the interference between the particle 

and incident beam, and can be tuned by the phases in 

the multipoles. When 〈cosθ〉 is larger than cosθ
0
, the total 

force will pull the particle back to the light source. Note 

that a Bessel beam without a phase shift between its TE 

and TM components could also show negative forces as 

long as the excited electric moments are greater than the 

excited magnetic moments [35]. π/2 phase-shifted beams 

are found to have wider ranges of material parameter for 

the existence of pulling force. The negative force region 

is almost symmetric in the force diagram of permittivity 

versus permeability. Meanwhile, particles satisfying the 

Kerker condition of zero-backward scattering are more 

favorable for optical trapping.

So far, the pulling force of a Bessel beam has been sen-

sitive to the particle size and material parameters. Further 

study revealed that optical tractor beam could pull dipole 

objects almost of any size and refractive index [34]. The 

force on a dipole particle can be written as Eq.(6.4). The 

first two terms in that equation represent the contribu-

tions from the electric dipole and the magnetic dipole. 

The third term is the interaction between these two 

dipoles, which is the origin of negative force. To obtain 

a pulling force, small k
z
 and large P

z
 are required. This 

means the Bessel beam should be strongly nonparaxial 

(θ
0
 > 60°) to realize universal pulling. In spite of consider-

able challenges in generation of such strongly nonparax-

ial Bessel beams, the hypergeometric laser beam [139] is a 

promising candidate to possess the required nonparaxial-

ity. On the other hand, the scattered field can be focused 

in the forward direction by controlling the interaction of 

the electric and magnetic dipoles. Then the optical force 

on the dipole particle is negative due to the momentum 

conservation and can pull the particle as a tractor beam. 

Very recently, tractor beams have been demonstrated 

experimentally to move, transport, and sort various sizes 

of spherical particles [36]. The works on the interference 

between the particles and light field will provide deep 

insights on the light-matter interaction and extend the 

similar ideas to acoustics [34, 140].

7  Conclusions

We have provided an overview of various principles gov-

erning the interaction between light and microparticles. 

These principles help identify the available degrees of 

freedom for engineering light-matter interaction to enable 

and widen the emerging applications of optical microman-

ipulation. Understanding the intricate light-matter interac-

tion from the use of synthesized complex electromagnetic 

beams and/or designed micro- and nano-structured 

objects can be useful for achieving desired light scattering 

or exploit the phase gradient and angular momentum of 

the light. In particular, we reviewed the optical manipula-

tion of synthesized microstructures, which is enabling new 

possibilities in force sensing and light delivery. We also 

reviewed some propagation-invariant beams and acceler-

ating beams such as Bessel and Airy beams which have 

infinite energy and do not diffract. They possess the self-

healing property, i.e., reconstructing the beam after the 

interaction with an obstacle. Interesting properties arise 

for non-paraxial Bessel beams whose plane wave compo-

nents form large angles with respect to the optical axis. 

The Poynting vector of the non-paraxial Bessel beams can 

be locally reversed, thus inducing speculations about the 

pulling microobjects to the light source. Actually, reversed 

energy flux density is not a rare phenomenon: it appears 

for any non-paraxial beam, as well as in an optical fiber. 

Though the reversed Poynting vector does not result in the 

pulling optical force, the latter emerges for non-paraxial 

Bessel beams owing to the multipoles interaction. Together 

with the ordinary tweezers technique, non-paraxial beams 

can be applied for the optical manipulation acting on par-

ticle as a tractor beam. The concepts we considered have 

the general wave nature and, therefore, may be applicable 

for optic and acoustic beams.
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