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Macrophages play critical roles in tumor progression. In the tumor microenvironment,
macrophages display highly diverse phenotypes and may perform antitumorigenic or
protumorigenic functions in a context-dependent manner. Recent studies have shown that
macrophages can be engineered to transport drug nanoparticles (NPs) to tumor sites in a
targeted manner, thereby exerting significant anticancer effects. In addition, macrophages
engineered to express chimeric antigen receptors (CARs) were shown to actively migrate to
tumor sites and eliminate tumor cells through phagocytosis. Importantly, after reaching tumor
sites, these engineered macrophages can significantly change the otherwise immune-
suppressive tumor microenvironment and thereby enhance T cell-mediated anticancer
immune responses. In this review, we first introduce the multifaceted activities of
macrophages and the principles of nanotechnology in cancer therapy and then elaborate
on macrophage engineering via nanotechnology or genetic approaches and discuss the
effects, mechanisms, and limitations of such engineered macrophages, with a focus on using
live macrophages as carriers to actively deliver NP drugs to tumor sites. Several new
directions in macrophage engineering are reviewed, such as transporting NP drugs
through macrophage cell membranes or extracellular vesicles, reprogramming tumor-
associated macrophages (TAMs) by nanotechnology, and engineering macrophages with
CARs. Finally, we discuss the possibility of combining engineered macrophages and other
treatments to improve outcomes in cancer therapy.

Keywords: macrophages, bioengineering, nanotechnology, cancer immunotherapy, chimeric antigen receptors
INTRODUCTION

Macrophages are a class of immune cells with highly diverse phenotypes and functions. Some
macrophages residing in tissues are known as tissue-resident macrophages (TREMs), such as
Kupffer cells in the liver and pulmonary macrophages in the lungs. TREMs have a long lifespan,
participate in local immune responses, and are essential components to maintain internal
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homeostasis (1–3). Peripheral monocytes can also be recruited to
inflammatory tissues, where they differentiate into macrophages
(4) . In a typical inflammatory response caused by
microorganisms, pathogen-derived molecules known as
pathogen-associated molecular patterns (PAMPs), such as
lipopolysaccharide (LPS) in bacterial wall, can be detected by
macrophages through a group of receptors called pattern
recognition receptors (PRRs), which triggers the activation of
macrophages (5–7). Activated macrophages can effectively
eliminate pathogens by their potent phagocytic activity (5–7).
They also recruit immune cells from blood and activate T cell
response through antigen processing and presentation, thus
playing a key role in both innate and acquired immunity (8–10).

Tumors are often accompanied by a certain degree of
inflammatory response (11, 12). Macrophages in tumor tissues
are collectively referred to as tumor-associated macrophages
(TAMs). Tumor cells frequently overexpress some cytokines,
such as macrophage colony-stimulating factor 1 (CSF-1) and
monocyte chemoattractant protein-1, (MCP-1), which recruit a
large number of macrophages into tumor sites (13). In addition,
tumor blood vessels have an irregular structure and abnormal
function; they are dilated, leaky, and inefficient at delivering
oxygen, which causes hypoxia in tumor tissues (14). Hypoxia in
turn induces the expression of vascular endothelial growth factor
(VEGF), a key mediator of tumor angiogenesis, but is also a potent
macrophage-recruiting cytokine (15). Therefore, macrophages are
often the most abundant type of tumor-infiltrating immune cells
(16–18). However, the activity of macrophages in tumors is often
suppressed; they cannot kill tumor cells efficiently through
phagocytosis and overexpress immunosuppressive cytokines,
including IL-10 and TGF-b, thereby establishing an unfavorable
tumor immune microenvironment (16–18). TAMs also promote
tumor cell survival and metastasis and induce drug resistance by
secreting growth factors or by direct cell-cell contact with tumor
cells (19, 20). Therefore, in many cases, TAMs are protumorigenic,
and identifying effective methods to modify TAMs to improve
anticancer therapy is of great interest (16–18).

The application of nanotechnology in cancer therapy holds
great promise (21, 22). Nanoparticles (NPs) are synthetic
structures with a nanoscale dimension and can be generally
divided into two categories: organic NPs (i.e., liposomes, polymer
micelles) and inorganic NPs (i.e., gold, silver, iron oxide) (23).
NPs have been used to deliver a variety of anticancer agents, such
as traditional chemotherapeutic drugs (23), targeted drugs (24),
and genetic materials [i.e., messenger RNA (25), small interfering
RNA (26), and the CRISPR/Cas9 genetic editing system (27)].
Due to their distinctive physicochemical properties, NPs can
enhance the delivery of anticancer agents to tumors by both
passive and active mechanisms (21, 28). As mentioned above,
tumor blood vessels have increased permeability, which allows
NPs to pass through the leaky endothelium; meanwhile, due to
defective lymphatic drainage, the extraverted NPs can
accumulate in the tumor interstitium, leading to an increased
local drug concentration, a process known as the enhanced
permeability and retention (EPR) (29). However, in many
cases, the passive mechanism and EPR are not sufficient (29),
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and by active targeting strategies, such as ligand-mediated
systems (30), stimulus-responsive systems (31), and biological
system (32), the efficiency of NP targeted delivery can be
improved. For example, most tumors have an increased rate of
glycolysis, leading to an acidic environment due to the
accumulation of lactic acid. Based on this feature, various pH-
responsive systems have been developed (33, 34), which
effectively dissociate NPs and decrease their size in low-pH
areas (inside the tumors), thereby enhancing their ability to
deeply penetrate into tumors (35). Moreover, the NP surface can
be modified by ligand molecules that can recognize specific
receptors on the tumor cell surface, thus increasing the affinity
between tumor cells and NPs, which is critical for effective
internalization of NPs by tumor cells (36, 37).

Among various active strategies, biological NP delivery
systems are attracting considerable interest (32). NPs can be
loaded in cell membranes (CMs), extracellular vesicles (EVs), or
even live cells for targeted delivery. Regarding live-cell NP
carriers, research mainly focuses on immune cells (38),
especially macrophages, as they are superior in their ability to
migrate toward tumors. Many studies have demonstrated that
NP-loaded macrophages (NPL-Ms) can directionally migrate to
tumors and transport the payload to tumor cells, leading to a
pronounced antitumor effect (39, 40). Moreover, after reaching
tumors, these engineered macrophages can exert additional
effects by stimulating anticancer immune responses (24, 41). In
this review, we first introduce the origin, differentiation, and
function of macrophages as well as the application of
nanotechnology in anticancer therapy. Then, we elaborate on
the activities, mechanisms, and limitations of the engineered
macrophages. Finally, we discuss several new strategies in
macrophage engineering and discuss their potential as novel
anticancer therapeutics.
MACROPHAGES FUNDAMENTALLY
IMPACT THE DEVELOPMENT OF CANCER

Macrophages are key players in inflammation and participate in
the crosstalk between inflammation and cancer development
(Figure 1). In a typical inflammatory response, macrophages
can perform three basic functions: 1) pathogen clearance, i.e.,
eliminating pathogens through phagocytosis or secreting anti-
infective substances (5–7); 2) immune activation, i.e., activating
humoral and cellular immune responses by presenting antigens to
T cells and modifying the immunemicroenvironment by releasing
a variety of inflammatory factors (8–10); and 3) tissue repair, i.e.,
releasing factors in the late stage of inflammation that promote
angiogenesis, coordinating the functions of a variety of interstitial
cells, and mediating the repair of local tissue structure (42, 43).
Macrophages can sense environmental stimuli and differentiate
into functionally polarized subgroups (44–46), which is usually
described as M1 orM2 differentiation, terms that were first used to
describe the two functionally opposite statuses of macrophages
that are induced in vitro (47, 48). Lipopolysaccharide (LPS) and
interferon-gamma (IFN-g) can promote the differentiation of
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macrophages toward M1 polarization, characterized by high
production of nitric oxide (NO), reactive oxygen species (ROS),
and a series of proinflammatory cytokines, such as interleukin
(IL)-1b and IL-12. M1 macrophages activate T helper type 1
(Th1)-type immune responses and have strong phagocytic and
antigen-presenting activities. Hence, they are considered
proinflammatory and tumor suppressive (49, 50). In contrast,
IL-10, transforming growth factor-beta (TGF-b), and some other
immunosuppressive factors, such as IL-4 and IL-13, can induce
M2 macrophage differentiation. M2 macrophages participate in
the Th2-type immune response, inhibit CD8+ T cell activities, and
promote angiogenesis and tissue repair and therefore are believed
to be anti-inflammatory and tumor-promoting factors (51, 52).
However, recent studies have suggested that the extreme M1/M2
differentiation pattern induced in vitro cannot reflect the complex
situation in vivo. For example, macrophages in the tumor
microenvironment often exhibit some characteristics of both M1
andM2macrophages (44, 53, 54). Although the dichotomy ofM1/
M2 macrophages is an oversimplification, it is still a meaningful
way to describe the functionally poised status of macrophages in
certain situations.

There is a close relationship between cancer and inflammation.
Tumor growth is often accompanied by a certain degree of
inflammation, and the underlying mechanisms are complex (11,
12). For example, chronic viral infection induces constant
inflammation and contributes to the development of some types
of cancer (55, 56). In addition, tumor blood vessels are often
distributed abnormally and have a broken structure, and they
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cannot meet the oxygen and nutrition requirements of fast-
growing tumor cells, resulting in hypoxia and nutrition
deficiency within some tumor areas. Consequently, some tumor
cells undergo apoptosis or necrosis and release proinflammatory
substances, such as adenosine triphosphate (ATP) and high
mobility group box 1 (HMGB1), inducing persistent low-grade
inflammation and recruiting various immune cells into tumors
(57, 58). Macrophages in tumor tissues are collectively referred to
as tumor-associated macrophages (TAMs) and are often more
numerous than other infiltrated immune cells (16–18). This in
itself suggests that macrophages may have a tumor-promoting
effect. Numerous studies have demonstrated that tumor cells often
express high levels of chemokines, such as GM-CSF, M-CSF, and
CXCL12, recruiting many monocytes from the circulation into
local tumor sites (15). After entering tumors, monocytes
differentiate into mature macrophages, followed by functional
polarization toward M2-type TAMs, which is dictated by factors
from the immunosuppressive tumor microenvironment. TAMs
secrete factors such as CCL22, CXCL1, and PDGF, which bind to
corresponding receptors on tumor cells, thereby promoting tumor
growth and metastasis, as well as resistance to various cancer
treatments (19, 20, 59–61).

In addition, TAMs contribute to the establishment of a deeper
immunosuppressive tumor microenvironment by secreting
soluble factors and cell-cell contact with other immune cells
(54). For example, CCL20 secreted by TAMs recruits regulatory
T cells that inhibit the response of effector T cells (62). Moreover,
TAMs express low levels of major histocompatibility complex
FIGURE 1 | Development, differentiation, and function of macrophages. Under physiological conditions, macrophages are highly versatile and widely present in
almost all tissues and organs. Some macrophages that reside in tissues are called TREMs. TREMs originate mainly from yolk sac macrophage progenitors and fetal
liver macrophages during embryonic development. After birth, TREMs maintain their number partially through self-renewal and sometimes through the recruitment of
monocyte-derived macrophages. Pluripotent hematopoietic stem cells in bone marrow develop into monocytes through multiple stages, including common myeloid
progenitors (CMPs), granulocyte-macrophage progenitors (GMPs), macrophage and dendritic cell precursors (MDPs), and common monocyte progenitors (cMoPs).
In typical inflammation caused by pathogen infection, monocytes are mobilized from the bone marrow into the blood circulation and subsequently recruited into
inflammatory sites, where they differentiate into M1 macrophages and efficiently phagocytose the pathogen. Inflammation also recruits lymphocytes and initiates
antigen-specific immune responses with the help of macrophages and dendritic cells, ultimately resulting in pathogen clearance. At the late stage of inflammation,
macrophages differentiate toward the M2 type and participate in the tissue repair process, leading to the restoration of internal homeostasis. In contrast, monocytes
and TREMs preferentially differentiate toward M2 polarization after they enter the tumor microenvironment, wherein they promote tumor growth and metastasis,
mediate resistance to cancer treatments and inhibit antitumor immune responses.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ding et al. Engineering Macrophages for Cancer Therapy
(MHC)-II and costimulatory molecules on the cell surface, which
greatly diminishes their ability to stimulate T cells (63). Although
TAMs maintain the ability to phagocytose tumor cells to some
extent, tumor cells often express high levels of CD47 molecules
that bind to signal regulatory protein a (SIRPa) on the surface of
TAMs, sending the “don’t eat me” signal and inhibiting the
phagocytic activity of TAMs (64). Although many studies have
supported the notion that macrophages have tumor-promoting
effects, some evidence suggests that macrophages play important
antitumorigenic roles in some types of cancers, such as colorectal
cancer and early-stage lung cancer (65, 66). More importantly,
the functions of macrophages are highly plastic, and their
anticancer activities can be reactivated by various means,
including macrophage engineering via nanotechnology and
genetic manipulation, which this review will focus on.
NANOTECHNOLOGY IN
CANCER THERAPY

Recently, the application of nanotechnology in cancer therapy
has attracted increasing attention (21, 22). NPs travel through
the bloodstream to tumor sites, enter the interstitial fluid through
the vascular wall via passive diffusion, and finally are taken up by
tumor cells. However, tumor blood vessels have an abnormal
structure, resulting in an uneven distribution of NPs, which often
accumulate at the edge of blood vessels, resulting in limited
anticancer activity of NPs (29, 67). Active targeting strategies,
mainly the use of ligand-mediated systems, stimulus-response
systems, and cell-mediated systems, are currently under intensive
investigation for their potential to solve the above problem by
targeted delivery of NPs to tumor tissues and enhanced tissue
distribution and penetration.

The first category of active strategies is the use of ligand-
mediated systems. In this strategy, ligands or antibody molecules
that recognize biomarkers on tumor cells are present on the shell
of NPs, thereby enhancing the interaction between NPs and tumor
cells and promoting the transport of NPs to tumor tissues.
Targeting biomarkers can be tumor-specific antigens or
overexpressed oncoproteins, such as prostate-specific membrane
antigen (PSMA) for prostate cancer (68, 69), epidermal growth
factor receptor (EGFR) for lung cancer cells (36, 70), and human
epidermal growth factor receptor 2 (HER2) for gastric cancer or
breast cancer cells (37, 71). However, the outcomes of this strategy
to date are often unsatisfactory in vivo due to various reasons, such
as the high heterogeneity of tumor tissues and the fast clearance of
NPs in circulation (72, 73).

The second category is stimulus-response systems. These
systems use specific stimulus signals to promote the directional
delivery of NPs to tumors and to boost the anticancer activities of
NP-carried drugs (31, 74). The signals can be tumor intrinsic,
such as an increased glutamine level (75), a decreased pH value
(76), and hypoxia (77), or tumor extrinsic, such as a light source
(78), a heat source (79), a magnetic field (80), or ultrasound (81).
Among them, light-responsive systems may be the most well-
studied systems because they can be readily controlled in a
Frontiers in Oncology | www.frontiersin.org 4
spatiotemporal manner, resulting in directional transport,
improved tumor penetration and distribution, and controlled
release of NP-carried drugs. For more information, please refer
to the relevant reviews (82, 83).

The third method involves carrier cells or cell components. As
mentioned earlier, the development of many cancers is
accompanied by a certain degree of inflammation and immune
cell infiltration. Immune cells can sense tumor-derived
chemokines and actively move to tumor sites (84, 85).
Interestingly, although hypoxia prevents the infiltration of T
cells, it stimulates tumor cells to release a large number of
macrophage-recruiting factors, such as CCL2, CSF-1, and
VEGF, resulting in pronounced enrichment of macrophages in
hypoxic tumor regions (15, 86). A series of studies have
demonstrated that macrophages can be exploited as cell
carriers to actively transport NPs into tumor sites (30, 87), and
the following section will introduce the preparation, function,
mechanisms, and limitations of NPL-Ms in cancer therapy.
ENGINEERING MACROPHAGES FOR NP
DELIVERY IN CANCER THERAPY

NP Loading in Macrophages
There are two main sources of macrophages for NP loading. One
source is primary macrophages, such as bone marrow-derived
macrophages, alveolar macrophages, and peritoneal
macrophages. The second source is cell lines, including the
mouse macrophage cell lines RAW264.7 and J774A.1 and the
human peripheral blood monocyte cell line THP-1 (24, 41, 88–
91). NPL-Ms can carry a variety of NPs, including liposomes (92,
93), magnetic NPs (94, 95), polymeric NPs (96, 97), gold (AU)
NPs (98–101), and others (102, 103). Because macrophages
naturally phagocytose NPs (104, 105), NPL-Ms can be
prepared by a simple coincubation method. Li et al. prepared
RAW264.7 macrophages loaded with paclitaxel (PTX)-
containing NPs. Intravenous injection of NPL-Ms significantly
inhibited the growth of a breast cancer model (39). Ibarra et al.
prepared mouse bone marrow-derived monocytes and THP-1
cells loaded with polymer NPs, and they showed that NP loading
had no significant effect on the viability and function of
macrophages, nor did it affect the differentiation of THP-1
cells into macrophages upon stimulation with phorbol 12-
myristate 13-acetate (PMA). Moreover, these cells had a
stronger NP loading ability after LPS stimulation (96).
Electroporation can also be used to prepare NPL-Ms and
might be a superior approach for loading easily degradable
substances such as nucleic acids or enzyme precursors (106, 107).

NPL-Ms can be exploited for cancer therapy with in situ
strategies. Because monocytes/macrophages efficiently
phagocytose apoptotic bodies, Zheng et al. intravenously
injected light-sensitive gold NPs encapsulated by apoptotic
bodies, which were quickly engulfed by macrophages, thus
generating NPL-Ms in vivo. These NPL-Ms effectively migrated
to tumor sites and inhibited tumor growth and metastasis in a
mouse tumor model (108). Circulating monocytes/macrophages
January 2022 | Volume 11 | Article 786913
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efficiently phagocytose damaged red blood cells (RBCs) via the
complement-mediated opsonization effect. Based on that, Feng
et al. designed a cell relay strategy that allowed monocytes in
circulation to preferentially take up NPs. They first prepared NPs
coated with artificially damaged RBCs that were used as primary
carriers to deliver NPs to macrophages, generating NPL-Ms
in vivo, which delivered NPs to tumors in a targeted manner,
leading ultimately to enhanced anticancer activity in a rat tumor
model (109).

In some cases, internalized nanomaterials may negatively affect
macrophage function, or the encapsulated drugs in NPs are
prematurely dissociated, which may reduce the efficacy of drug
delivery or cause systemic toxicity (30).A plausible alternative is the
so-called piggybacking method, i.e., binding NPs on cell surface,
which has been tested with various cell types, including
macrophages (38). Through various techniques that can be
largely classified into two categories, noncovalent and covalent,
NPs can be attached on cell surfaces without being internalized by
the macrophage carrier, and transported to tumor sites (110–116).
Table 1 briefly describes the categories, principles, andmechanisms
of major NP delivery methods with live macrophages, and readers
are directed tomore detailed reviews on this subject (112, 123, 134).
Table 1 also includes the methods of loading NPs in macrophage-
derived cell membranes or extracellular vesicles, which will be
discussed in the following section.

NPL-M Tumor Site Migration
In a study by Li et al., RAW264.7 macrophages loaded with
fluorescent NPs were injected intravenously into normal nude
mice, and these NPL-Ms were quickly distributed into the liver
and intestine 1-2 h after injection; however, they were almost
undetectable after 24 h, indicating fast clearance of the NPL-Ms.
In contrast, in nude mice bearing subcutaneous xenograft
tumors, the NPL-Ms infiltrated into tumor tissues shortly after
injection and resided there for more than 48 h. These findings
indicated that NPL-Ms directly migrated toward tumors and had
Frontiers in Oncology | www.frontiersin.org 5
a relatively long half-life in the tumor microenvironment (39).
Hypoxia often occurs in tumors and drives the migration of
monocytes/macrophages toward tumor sites. This feature
renders macrophages a unique type of cell carrier to deliver
NPs to hypoxic tumor areas. Choi et al. demonstrated that NPL-
Ms carrying gold NPs could migrate toward hypoxic tumor
spheres in vitro (98). An et al. loaded macrophages with anionic
gold nanorods (AuNRs) for hypoxia-triggered photoacoustic
(PA) imaging and photothermal therapy (PTT). The results
indicated that NPL-Ms directionally migrated to hypoxic
tumor sites and provoked significant antitumor effects (135).

Traditional cancer treatments, such as radiotherapy and
chemotherapy, also affect the migration of macrophages to
tumors. Evans et al. prepared NPL-Ms loaded with hypoxia-
activated prodrug NPs and demonstrated that NPL-Ms
accumulated in the hypoxic regions of mouse breast tumors.
Moreover, the accumulation and anticancer activities of NPL-Ms
were more significant when combined with chemotherapy (136).
Miller et al. found that radiotherapy increased the intratumoral
concentration of NPs in a mouse breast cancer model, which is
related to the radiotherapy-induced increase in TAM infiltration.
They found that a large number of TAMs accumulated around
microvessels after radiotherapy, altered vascular permeability,
and elicited dynamic bursts of NP extravasation. Depleting
macrophages greatly diminished the effect of radiotherapy on
the enrichment of NPs in tumor tissues (122). In vivo PET
imaging can be performed using macrophages loaded with NPs
containing (64)Cu. Based on that, Kim et al. demonstrated that
chemotherapy or radiotherapy significantly increased the
number of TAMs, thereby increasing the intratumoral NP
concentration in mouse tumors (137).

Inducing M1 polarization may enhance the tumor homing
activity of macrophages. Peng et al. found that M1 macrophages
loaded with DOX-NPs effectively crossed the blood brain barrier
(BBB) and exerted a strong inhibitory effect on a mouse glioma
model (118). Li et al. prepared macrophages loaded with magnetic
TABLE 1 | NP loading in macrophage-based drug delivery.

Strategies Categories Method Descriptions and Mechanisms REFs

Cell
Encapsulation

In vitro • Coincubation: cells uptake NPs through phagocytosis or other endocytosis mechanisms.
• Electroporation: electroporation generates small pores on cell membrane for NPs to entry into cells.

(39, 40,
117–119)

In vivo • Functionalized NPs, NPs tethered on damaged red blood cell (RBC) membranes, or NPs cloaked in apoptotic bodies
are engulfed by macrophages to form NP-loaded macrophages in vivo.

(108, 109,
120–122)

Surface
Binding

Covalent
coupling

• Modified NPs are coupled to functional groups (i.e., thiol, amine) on cells through various mechanisms, such as
maleimide-thiol conjugation and disulfide bond formation.

• - Complicated procedure, high binding strength, possibly impaired cell integrity

(114, 123,
124)

Noncovalent
binding

• Nonspecific adsorption: NPs are attached to outer cell membranes via hydrophobic or electrostatic binding.
• Ligation-mediated binding: NPs modified with ligands or antibodies bind corresponding molecules on the cell surface.
• - Simple procedure, low binding strength, high cell integrity

(110, 111,
113, 115,

116)
Membrane
Coating

– The procedure may involve the following steps: (95, 125–
128)• Cell culture: such as tumor cells, RBCs, and immune cells;

• Isolating the cell membrane by hypotonic treatment;
• Coating NPs with the cell membrane by various methods, such as coincubation, extrusion, and sonication.
• - NPs can be camouflaged in homogenous membranes from one cell type or heterogeneous fused membranes from

two different cell types.
EV Loading – • Extracellular vesicles (EVs) include exosomes and microvesicles derived from various cell types.

• - The procedure is similar to that of membrane coating but is usually more sophisticated due to the complicated EV
isolation procedure. EV-loaded NPs may have an increased ability to pass biological barriers due to their smaller size.

(129–133)
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NPs. These NPL-Ms exhibited M1 polarization and had
significantly enhanced tumor homing and anticancer activities in
a mouse breast cancer model. In addition, NPL-Ms improved the
tumor immune microenvironment, inhibited local M2
macrophages, and enhanced the antitumor immune response (138).

NPL-M Drug Release
There are relatively few studies on how NPL-Ms release NPs after
reaching tumor tissues. In the piggybacking method (38),
membrane-binding NPs are delivered to tumors with the help
of macrophages in a targeted manner, and the subsequent release
of the drug depends mainly on the design of the NP itself. In
terms of NPL-Ms, regardless of whether they are formed in vitro
or in situ, the mechanism of drug release and how the process is
controlled remain elusive. Li et al. loaded macrophages with
fluorescence-labeled PTX-NPs and then cocultured the
macrophages with tumor cells in vitro. After 4 h, a fluorescent
signal was detected in tumor cells that gradually increased and
peaked at 12 h, during which time the signal in macrophages
gradually decreased, indicating that the NPs were transferred
from macrophages to tumor cells (39). Cells mainly ingest
foreign substances through endocytosis, and ultimately, the
ingested substances are either degraded or released from cells
[please refer to the detailed reviews (139–141)]. Macrophages
mainly engulf NPs through phagocytosis and pinocytosis. NPs
are not rapidly degraded during intracellular trafficking in
macrophages, so the potential adverse effects of the free drug
are diminished. In addition, macrophages slowly release ingested
NPs, which reduces the consumption of NPs before the
macrophages reach tumors. For example, by comparing
macrophages loaded with free PTX or PTX-NPs, Li et al.
found that 26% of PTX-NPs vs. greater than 50% of free PTX
were released before the macrophages reached the tumors (39).

NPL-Ms can transfer NPs or free drugs to tumor cells through
other means. For example, tumor cells can interact with and
exchange information with other cells through the microtubule
network (142, 143). Guo et al. found that M1 macrophages loaded
with DOX (DOX-M1) enteredmouse tumors and exported DOX to
tumor cells through tunneling nanotubes, leading to pronounced
tumor cell killing (144). In another study, LPS was anchored to the
cell membrane of macrophages loaded with DOX. These
macrophages migrated to mouse tumors and rapidly killed tumor
cells by transferring DOX to tumor cells through a microtubule
network. In addition, cell membrane-anchored LPS induced the
differentiation of local TAMs toM1macrophages and promoted the
antitumor immune response (145).

The process of NP release by macrophages is affected by many
factors, including the physicochemical properties of NPs, the
funct iona l s ta tus of macrophages , and the tumor
microenvironment. For example, Oh et al. reported that gold NPs
with a high-aspect ratio exit macrophages more rapidly but tend to
remain in tumor cells longer than those with a low aspect ratio (146).
Ikehara et al. found that a mild temperature increase promoted the
release of NPs by macrophages (147). In addition, macrophages
showed higher drug release efficiency for polymeric or negatively
charged copolymerNPs than for liposomalNPsor positively charged
copolymer NPs (121, 148, 149). Interestingly, Soma et al. found that
Frontiers in Oncology | www.frontiersin.org 6
IFN-g stimulation significantly promoted the release of NP-DOX by
macrophages (150). During inflammation, activated macrophages
release a large amount of cytokines and bioactive substances;
therefore, activating macrophages may promote the release of NPs.

Limitations and Challenges
The concept of using macrophages as drug carriers is not new and
has been studied for many years. However, it has not been applied
in clinical practice. Table 2 summarizes some recent preclinical
studies using live macrophages for NP drug delivery. In the future,
in-depth studies are needed to achieve a better understanding of
the complex interaction among NPs, macrophages, and tumor
cells. An ideal cell-mediated NP delivery system would have the
following five characteristics: 1) an abundant source of cells into
which NPs can be loaded efficiently; 2) no significant impairment
of cellular function after NP loading; 3) directional migration
toward tumors; 4) efficient release of NPs at tumor sites; and 5)
effective uptake of the released NPs by tumor cells. Natural
evolution has endowed macrophages with powerful phagocytic,
migratory and secretory functions. With the advantages provided
by nanotechnology, macrophages can be developed as prominent
NP drug carriers. However, there are still many limitations and
challenges. First, the sources of autologous macrophages are
limited. It is currently impossible to obtain a large number of
macrophages through in vitro expansion of autologous monocytes
derived from patients, while the use of allogeneic macrophages
carries a risk of rejection or graft-versus-host reaction. Second,
loading NPs into macrophages or anchoring NPs on the surface of
macrophages has complex effects on cell function, which remain
not fully understood. Third, the local immunosuppressive
microenvironment of tumors is closely related to tumor
progression; however, there is currently much that is unknown
regarding how NPL-Ms regulate the tumor immune
microenvironment as well as T cell immune responses. Finally,
although the pathways of NP internalization by tumor cells has
been extensively studied, our knowledge about the cellular uptake
of NPs with various properties by macrophages remains very
limited (30, 153). How NP loading affects the function of
macrophages in terms of phagocytosis, migration, and immune
stimulation must be comprehensively evaluated in future studies.
Moreover, although previous studies have shed some light on the
possible pathways governing the intracellular trafficking of NPs in
macrophages and their release at tumor sites (153, 154), which is
depicted in Figure 2, precise mechanisms remain largely elusive
and await more detailed investigations.
EMERGING CONCEPTS AND NOVEL
STRATEGIES IN MACROPHAGE
ENGINEERING

In recent years, new strategies have emerged in the field of
macrophage engineering. For example, macrophage membranes
and macrophage extracellular vesicles (MEVs) have been
successfully utilized for NP loading; these approaches not only
retain some characteristics of macrophages but also greatly expand
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the compatibility and loading capacity of NPs (Figure 3). Another
research hotspot involves targeting macrophages with NPs, thereby
enhancing the phagocytic function of macrophages and promoting
the differentiation of macrophages toward the M1 type. In addition,
the success of CAR-T technology has inspired studies of
macrophage engineering with CARs for cancer immunotherapy.

Macrophage Membrane-Coated NPs
(MMC-NPs) and Macrophage Extracellular
Vesicle-Coated NPs (MEVC-NPs)
In preparing MMC-NPs, the structure of the macrophage cell
membrane is disrupted by physical or ultrasonic methods, and
Frontiers in Oncology | www.frontiersin.org 7
then, the cellular contents are removed. After coincubation with
NPs, the cell membrane spontaneously closes to form MMC-NPs
(155). MMC-NPs have several important advantages. First, the use
of the cell membrane eliminates the potential adverse effects of NP
loading on the function of macrophages. In addition, it does not
cause immune rejection if the autologous cell membrane is used
and thus significantly prolongs the half-life of NPs in circulation.
Moreover, many macrophage membrane proteins are retained on
the surface of MMC-NPs, which may facilitate tumor homing
(156). Xuan et al. prepared a macrophage membrane-coated gold
nanoshell (AuNS). These MMC-NPs accumulated in tumor sites
through the interaction between macrophage membrane
TABLE 2 | Macrophage-mediated NP drug delivery in some cancer studies.

NPs Agents Macrophage Information NP Modification Mechanisms and Features Cancer Models REFs

zSOC
NPs;
NLCs

PTX; DOX • Raw 264.7 cells – • Targeted NP drug delivery Breast cancer, SUB (39)

rGO NPs DOX • Raw 264.7 cells PEG-BPEI (PB)
coating

• Enhanced NP loading by PB
• NIR-triggered DOX release
• Combined PTT and CT effects

Prostate cancer,
SUB

(102)

NGs; PPy
NPs

DOX • Raw 264.7 cells Hyaluronic acid (HA)
coating

• Enhanced NP loading by HA
• NIR-triggered DOX release
• Combined PTT and CT effects

Breast cancer, SUB (119)

AuNSs – • Raw 264.7 cells Surface anionic
charging

• Enhanced NP loading
• PA imaging and PPT effects

Breast cancer, SUB (40)

SNPs DOX • Raw 264.7 cells
• M1 polarization upon NP loading

– • Effective NP uptake, tumor site homing, and
slow drug release

• Drug release in exosomes

Glioblastoma, SUB (151)

LNPs Sorafenib • Raw 264.7 cells
• M1 polarization by LPS treatment

– • Enhanced NP tumor site homing
• Enhanced targeted drug therapy
• Enhanced immune responses

liver cancer, SUB (24)

AuNSs – • Raw 264.7 cells
• LPS-treated or -untreated(M1 or
M0 type macrophages)

– • Enhanced NP loading, tumor site homing, and
PTT effect by M1 macrophage polarization

Head and neck
cancer, SUB,
Xenograft

(117)

PLGA NPs DOX • Bone marrow-derived
macrophage
• M1 polarization by LPS and IFN-g
treatment

– • Effective NP uptake, tumor site homing,
and slow drug release

• Crossing the BBB to brain tumors

Glioblastoma,
orthotopic

(118)

ZnPc NPs Oxaliplatin
prodrug

• Bone marrow-derived
macrophages
• M1 polarization upon NP loading

– • Drug release in low-pH sites
• Combined PDT and CT effects
• Enhanced immune responses

Breast cancer, SUB;
Lung metastasis

(41)

Liposomes DOX • Primary peritoneal macrophages – • Targeted NP drug delivery Lung cancer, SUB,
Xenograft

(93)

PSMA
NPs

Mertansine • Bone marrow-derived Ly6chigh

inflammatory monocytes
Legumain-sensitive
peptide coating

• On-demand drug release by macrophages at l
ung metastasis

Lung metastasis of
breast cancer

(88)

CPNs – • Bone marrow-derived monocytes
• Human monocytes THP-1 cells

– • Crossing the BBB to brain tumors
• PDT effects

Glioblastoma,
orthotopic

(96)

Liposomes – • Human peripheral blood
monocytes
• Human peritoneal macrophages

Oligomannose coating • Effective NP loading
• Accumulation of the NPL-Ms in peritoneal
micrometastatic sites

Gastric cancer
metastatic model

(152)

SWNTs – • Circulating Ly-6Chigh monocytes
• Cell encapsulation in vivo

RGD peptide coating • NP ligand functionalization
• NPL-Ms generation in vivo in a selective
macrophage subtype

Glioblastoma, SUB (120)

PLGA NPs Vincristine • Circulating monocytes
• Cell encapsulation in vivo

Binding on damaged
RBC membranes

• Enhanced NP drug delivery by a cell relay
strategy

Breast cancer, SUB
in Rat

(109)

AuNRs – • Raw 264.7 cells (in vitro
encapsulation)
• Circulating Ly-6Chigh monocytes
(in vivo encapsulation)

CpG coating;
Cloaking in apoptotic
bodies

• Immune stimulation by CpG
• PTT effects

Breast cancer, SUB (108)
January 2022 |
 Volume 11 | Article 7
AuNRs, gold nanorods; AuNS, gold nanoshells; BBB, blood–brain barrier; CPNs, conjugated polymer nanoparticles; CT, chemotherapy effects; DOX, doxorubicin; LNPs, lipid
nanoparticles; NGs, nanogels; NLCs, nanostructured lipid carriers; OMLs, oligomannose-coated liposomes; PA, photoacoustic; PDT, photodynamic therapy; PLGA, polylactic-co-glycolic
acid; PSMA, poly (styrene-co-maleic anhydride); PTT, photothermal therapy; PTX, paclitaxel; rGO, reduced graphene oxide; SNPs, silica-based nanoparticles; SOC, N-Succinyl-N’-octyl
chitosan; SUB, subcutaneous tumor model; SWNTs, single-walled carbon nanotubes; ZnPc, photosensitizer zinc phthalocyanine.
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molecules and adhesionmolecules on the vascular endothelial cells
of tumor tissue, leading to significant antitumor effects in a mouse
breast cancer model. Compared with NPs coated with erythrocyte
membranes, MMC-NPs were more effectively enriched in tumor
tissues. In addition, due to the membrane fusion effects, the uptake
ofMMC-NPs by tumor cells was significantly improved compared
to that of free NPs (127). Zhang et al. prepared MMC-NPs loaded
with pH-sensitive PTX-NPs. Upon reaching the tumor tissue,
these MMC-NPs released PTX-NPs in response to the weakly
acidic environment in the tumor stroma; after internalization by
the tumor cells, the PTX was quickly dissociated from the PTX-
NPs in the highly acidic environment of lysosomes inside the
tumor cells and exerted significant anticancer effects in a mouse
breast cancer model (125).
Frontiers in Oncology | www.frontiersin.org 8
Extracellular vesicles (EVs) are cell-derived and membrane-
coating particles carrying cell-specific DNA, RNA, and proteins.
They are usually divided into three categories based on their size
and origin: exosomes (30-150 nm), microvesicles (MVs, 50 nm-1
µm), and apoptotic bodies (50 nm-5 µm) (157). EVs can be
efficiently internalized by other cells, mediating the exchange of
biological substances between cells and playing important roles
in tumor progression (158–160). The potential application of
macrophage-derived exosomes and MVs in cancer therapy has
attracted great attention recently because of their excellent
biocompatibility and high NP-loading capacities (161, 162).
Kim et al. found that free PTX coated with M1 macrophage-
derived exosomes (PTX-M1-exos) had strong anticancer effects
in a mouse model of pulmonary tumor metastases (133). They
FIGURE 2 | The principles of macrophage-based NP drug delivery. Live macrophage carriers are mainly from peripheral monocytes, bone marrow-derived
macrophages, or macrophage cell lines. M1-type macrophage differentiation can be induced, and NPs can be functionalized. After administration, the NPL-Ms
migrate to tumors, enhancing drug delivery and anticancer immune responses. The efficiency of this strategy depends on controlled drug release by NPL-Ms and
effective drug uptake by neighboring tumor cells. Through exocytosis, NPs recycled from early phagosomes or matured phagolysosomes or NPs that escape from
phagosomes can be released through the exocytosis mechanism. Tumor cells uptake NPs through various endocytosis pathways, such as the clathrin-mediated,
caveolae-mediated, and clathrin/caveolae-independent pathways. NPs functionalized by surface ligands can be recognized by corresponding receptors on tumor
cells and effectively internalized by endocytosis. Consequently, the internalized NPs are sorted into early endosomes, late endosomes, and eventually endolysosomes
where NPs can be triggered to release free drugs. Free drugs released from NPs in the intracellular space can enter into tumor cells by passive diffusion.
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demonstrated that PTX-M1-exos were more effectively
internalized by tumor cells than NPs-PTX, as indicated by the
nearly complete colocalization of PTX-M1-exos with cancer cells
4 h after intranasal administration (133).

The communication between tumor cells and macrophages
via exosomes is believed to play an important role in tumor
development (163, 164). Interestingly, tumor cells efficiently take
up EVs derived from macrophages (129, 131, 133, 165), although
the underlying mechanism is not very clear. It was reported that
the acidic tumor microenvironment may promote membrane
fusion between exosomes and tumor cells (166). In addition,
macrophage-derived exosomes may carry certain cell membrane
proteins capable of specifically binding to tumor cells, thus
promoting membrane fusion and exosome internalization (167,
168). Moreover, after entering tumor cells, exosomes may alter
intracellular transport pathways to prevent their rapid release
from tumor cells (169), thus allowing more drugs to enter the
cytoplasm and nucleus and exert a more significant therapeutic
effect (132).

In addition to improving drug delivery, macrophage-derived
EVs also regulate antitumor immune responses. For example,
Choo et al. found that exosome-mimetic nanovesicles (M1NVs)
derived from M1 macrophages were enriched in tumor tissue
after intravenous infusion, which induced the differentiation of
TAMs from M2 to M1 macrophages and thus enhanced the
effect of anti-PD-1 immunotherapy in tumor-bearing mice (170).
Wei et al. found that macrophage-derived microparticles could
be preferentially taken up by TAMs in tumor tissues, thereby
exerting immunomodulatory effects in tumor-bearing mice
(171). Cheng et al. reported that after subcutaneous injection,
M1 macrophage-derived exosomes could be taken up by both
macrophages and dendritic cells in lymph nodes, where they
secreted large amounts of Th1-type cytokines and enhanced
Frontiers in Oncology | www.frontiersin.org 9
antitumor immune responses in a melanoma mouse model
(172). In summary, using macrophage membranes or
macrophage-derived EVs as carriers can improve drug loading
and partially solve the shortage of cell sources. These novel drug
carriers can not only target tumor sites but also activate
antitumor immune responses and therefore hold great promise
in cancer therapy (173–175).

Targeting TAMs via Nanotechnology for
Improved Anticancer Activity
As described earlier, reprogramming TAMs from the M2 to M1
differentiation status may be an effective cancer treatment
strategy (176, 177). To this end, nanotechnology is very useful.
A variety of NP designs were reported to be capable of targeting
TAMs specifically and inducing M1 differentiation, leading to
potent anticancer activities in preclinical models. For example,
given that mannose specifically binds to the CD206 receptor on
the surface of M2 macrophages, Zhao et al. prepared mannose-
encapsulated NPs containing polyinosinic-polycytidylic acid
(poly IC) that are capable of inducing M1 differentiation. NPs
are preferentially taken up by M2 macrophages and induce M1
polarization, thereby leading to pronounced antitumor effects
(178). Qiang et al. prepared M2-targeting NPs (M2NPs) by
coating the NPs with an M2 macrophage-binding peptide and
loaded them with small interfering RNA (siRNA) targeting
colony-stimulating factor-1 receptor (CSF-1R), which plays a
critical role in M2 differentiation. M2NPs effectively targeted
M2-type TAMs and induced M1 differentiation, thereby
inhibiting the growth of tumors in tumor-bearing mice (179).

In addition, multifunctional NPs can be generated for better
treatment outcomes. Zhang et al. constructed NPs containing
mesoporous Prussian blue (MPB) with a surface modified by
low-molecular-weight hyaluronic acid. After tail vein injection,
FIGURE 3 | Application of nanotechnology in the engineering of macrophages. (Top) After infusion, NPL-Ms actively migrate to tumor tissue and release NPs locally,
resulting in enhanced antitumor effects. (Middle) Macrophage membrane-coated NPs (MMC-NPs) have a prolonged half-life in circulation and a strong affinity at the
tumor site for vascular endothelial cells that facilitate their tumor site homing and accumulation. (Bottom) Macrophage-derived extracellular vesicle-coated NPs
(MEVC-NPs) can infiltrate tumor sites, where they are taken up by tumor cells, inducing significant cell death.
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the NPs selectively accumulated in M2 TAMs in tumors, leading
to reprogramming fromM2 to M1 macrophages. In addition, the
NPs generated oxygen through the catalytic decomposition of
endogenous hydrogen peroxide (H2O2) and thus corrected
hypoxia in the tumor microenvironment, acting as in situ O2
generators (180). Han et al . loaded NPs with CpG
oligodeoxynucleotides (CpG-ODN), baicalin, which has
immunomodulatory functions, and the human melanoma
antigen Hgp10025–33. The NPs were further coated with an
RBC membrane carrying galactose that facilitated the targeted
delivery of the NPs to TAM by binding galactose-type lectin
(Mgl) on the TAM cell surface (181). The results demonstrated
that these multifunctional NPs promoted M1 differentiation and
enhanced the antigen-specific immune response, thereby
exerting a significant antitumor effect in melanoma tumor-
bearing mice (181).

CD47 on the tumor cell surface binds to SIRPa on the surface
of macrophages, which activates the Src homology region 2
(SH2) domain phosphatases SHP1 and SHP2 and thereby
transmits a “don’t eat me” signal to macrophages. Ramesh
et al. prepared NPs containing two types of inhibitors: a CSF1-
R inhibitor capable of promoting M1 reprogramming and an
SHP2 inhibitor that blocks CD47-SIRPa signal transduction and
thus enhances phagocytosis. In addition, they coated NPs with
anti-CD206 to improve the efficacy of M2-type TAM targeting.
The results demonstrated that these multifunctional NPs exerted
a significant antitumor effect, mainly through modifying TAMs
in breast cancer and melanoma mouse models (182). In addition,
the CRISPR/Cas9 gene editing system can also be delivered to
macrophages using NPs. Lee et al. used gold NPs to carry the
Cas9 protein and sgRNAs targeting the PTEN gene. These NPs
Frontiers in Oncology | www.frontiersin.org 10
were mainly phagocytosed by macrophages residing in the liver
and spleen after tail vein injection, leading to a gene-editing
efficiency of greater than 8% in macrophages (183).
Nanotechnology can also be used to transport mRNA or
siRNA to a specific cell population in a targeted manner (184,
185). For example, NPs carrying PTEN mRNA were effectively
delivered to PTENnull cancer cells, and restoration of PTEN
expression induced immunogenic death of cancer cells and thus
induced potent antitumor immune responses in melanoma
tumor-bearing mice (186). In summary, by combining
nanotechnology and a variety of approaches, TAMs can be
modified in a targeted manner, and their anticancer activities
can be promoted.

Equipping Macrophages With CARs via
Genetic Manipulation
The concept of CARs was first tested in T cells, and the
application of CAR-T cells in the treatment of blood cancers
was successful (187, 188). As shown in Figure 4, T cell CARs are
mainly composed of an extracellular domain of a single-chain
variable fragment (Scfv) that specifically recognizes target
molecules, a transmembrane (TM) domain, and an
intracellular domain responsible for signal transduction. This
design confers T cell tumor cell-specific cytotoxicity in an MHC-
independent manner. However, to date, CAR-T therapy has have
a limited effect in solid tumors (187, 189), and researchers have
begun to ask whether CAR-modified macrophages (CAR-Ms)
could be useful in cancer therapy. It is known that the “eat me”
signal molecules on tumor cells, such as lipid phosphatidylserine
(PS), are recognized by corresponding scavenger receptors on
macrophages, resulting in the activation of phagocytosis (190,
FIGURE 4 | Structure and function of CAR-T cells and CAR-Ms. (Left) The structure of first-generation T cell CARs mainly includes an ScFV extracellular domain that
recognizes tumor antigens, a TM domain, and an intracellular domain that contains ITAM and is responsible for signal transduction (usually derived from the
intracellular domain of CD3z). The structure of second-generation T cell CARs includes an additional intracellular signal transduction domain from costimulatory
molecules (CMs), such as CD28 and 4-1BB. The structure of third-generation T cell CARs includes two or more CM domains, which further enhance T cell
activation. The structure of fourth-generation CARs includes a nuclear factor of activated T cells (NFAT)-responsive gene expression cassette, which drives the
expression of an immunoregulatory gene, such as IL-12. Once CAR-T cells are activated, NFAT translocates to the nucleus and activates the expression of IL-12,
thereby promoting anticancer activity. (Right) Currently, the structure of macrophage CARs is based on that of first-generation T cell CARs. The intracellular domain
of CD3z, FcRg or Megf10 is used for signal transduction. In addition, CAR-Ms are preferentially fixed at the M1 differentiation status, with enhanced phagocytic and
antigen presenting activities.
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191). In addition, Fcg receptors (FcgRs) on macrophages mediate
antibody-dependent cellular phagocytosis (ADCP) by binding to
the Fc segment of the IgG antibody (190, 191). The basic
structures of these abovementioned phagocytic receptors all
include an extracellular domain, a TM domain, and an
intracellular domain, similar to those of CAR molecules.
Ligation of the extracellular domains of these receptors induces
phosphorylation of tyrosine in the immunoreceptor tyrosine-
based activation motif (ITAM) of the intracellular domain of
these receptors, leading to cytoskeletal and membrane
remodeling events that promote the ingestion of tumor cells by
macrophages (192).

A series of recent studies have demonstrated that the
antitumor activity of macrophages can be enhanced by
modifying phagocytic receptors with CAR technology (193–
196). Morrissey et al. prepared mouse CAR-Ms by lentiviral
transduction. The extracellular domain of the CAR recognized
CD19, and the TM domain was derived from CD8 (194). They
found that the intracellular domains from either Megf10 or FcRg
molecules were able to mediate the specific phagocytosis of
CD19-expressing Raji B cells by the CAR-Ms. Interestingly,
replacement of the intracellular domain with that of CD3z
(which contained three ITAMs and had high homology with
FcRg) achieved a similar effect (194). Klichinsky et al. prepared
CAR-Ms with human peripheral blood monocytes. The CAR
molecules had an extracellular domain that recognized human
epidermal growth factor receptor 2 (HER2) and an intracellular
signal domain from CD3z (193). The CAR-Ms were able to
specifically recognize and phagocytose HER2+ tumor cells, and a
single-dose infusion of the CAR-Ms significantly inhibited the
growth of HER2+ xenograft tumors. Importantly, after infusion,
the CAR-Ms accumulated in liver and tumor tissues and
survived in vivo for at least 2 months (193). In the preparation
of CAR-Ms, delivering CAR genes into macrophages is
technically challenging. The authors demonstrated that a
replication-incompetent chimeric adenoviral vector (Ad5f435)
not only efficiently transferred the CAR genes into macrophages
but also induced M1 differentiation. Such CAR-Ms activated
CD4+ Th1 cells and, more importantly, CD8+ cytotoxic T cells
through cross-presentation, thereby promoting a strong
antitumor effect (193). Zhang et al. prepared CAR-Ms to target
the extracellular matrix rather than tumor cells, with the aim of
enhancing immune infiltration into solid tumors (195). The TM
and intracellular domains of the CAR molecules were all derived
from CD147, which drives the expression of matrix
metalloproteinases (MMPs) in macrophages. The CAR-Ms
were detected in tumor tissues 24 h after tail vein injection,
and their numbers peaked at 3 d, during which time the collagen
content in the tumor stroma was significantly decreased due to
the increased activity of MMPs. Further analysis revealed that the
anticancer effect of the CAR-Ms in tumor-bearing mice was
associated with increased CD3+ T cell infiltration (195).

CAR-M technology holds great potential for the treatment of
solid tumors. However, at present, this field is still in its infancy,
and there are many challenges. For example, most solid tumors
lack suitable tumor-specific antigens for CAR design.
Frontiers in Oncology | www.frontiersin.org 11
In addition, the impact of different TM domains and
intracellular domains on the function of CAR-Ms remains
unclear. In the clinical application of CAR-T cells, cytokine
release syndrome (CRS) and immune effector cell-associated
neurotoxicity syndrome (ICANS) are the two most serious side
effects, both of which may be related to excessive inflammatory
cytokines derived from CAR-T cells (197). A recent study
utilized the intracellular domain of the MERTK kinase to
develop CAR-Ms. These CAR-Ms effectively eliminated SARS-
CoV-2 virus in vitro by enhanced phagocytosis without
upregulation of proinflammatory cytokine expression (198).
Such results indicate that it is possible to optimize the design
of CAR-Ms to reduce their potential side effects. In the context of
cancer therapy, inducing M1 differentiation may be preferred, as
it can improve the phagocytic activity of CAR-Ms; however, such
manipulation may have unpredictable side effects and needs to
be carefully evaluated using preclinical models.
CONCLUSION AND PERSPECTIVE

Macrophages are extremely versatile and possess a variety of
antitumor properties. They can kill tumor cells directly by
phagocytosis or indirectly by activating other immune cells.
However, in the tumor microenvironment, their antitumor
activities are often inhibited (192). With the rapid development
of nanotechnology and transgenic technology, engineering
macrophages has become an important research direction in
cancer therapy (199). Numerous studies have demonstrated that
engineered macrophages can actively migrate to tumor tissues
and kill tumor cells effectively. However, they can also migrate to
normal tissues and organs after infusion. Considering the
relatively long lifespan of these cells, their migration,
distribution, and potential toxicity to normal tissues needs to
be closely monitored in vivo, and novel techniques such as
macrophage imaging might be useful in this regard (193, 200).
It is of great significance to investigate how to better control the
migration of engineered macrophages to reduce their
accumulation in normal tissues. Studies have shown that
chemotherapy, radiotherapy, and immunotherapy (such as
STING agonist treatment) can all stimulate inflammation to a
certain extent, thereby transforming cold tumors into hot tumors
(201–203). Such transformations could improve the directional
migration of engineered macrophages to tumor sites, thus
enhancing their therapeutic effects while reducing potential off-
target or on-target toxicities.

Notably, when NPs or macrophage membrane-coated NPs
are used to deliver genetic materials into macrophages, including
DNA, mRNA, noncoding RNA, and the CRISPR system, the
efficacy of genetic modification seems to be greatly improved (25,
204–206). However, at present, our understanding of the
interactions between these gene carriers and macrophages, in
terms of phagocytosis, transport, and release, is very limited, and
further investigation is needed. In addition, after engineered
macrophages enter tumors, their activities may be antagonized
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by local TAMs that are usually immunosuppressive; therefore,
conducting in-depth studies is important to determine whether
the pre-existing TAMs will significantly impact the function of
engineered macrophages, or vice versa. In this regard, methods
for local TAM depletion can be used in sequential combination
with engineered macrophages (207, 208), i.e., disruption of the
immunosuppressive microenvironment dominated by depleting
TAMs followed by activation of antitumor immune responses by
supplying engineered macrophages.

Reprogramming macrophages from M2 to M1 polarization
can be achieved through various means, such as by using IL-12,
CD40 agonists, or CSF-1R inhibitors (209–211). In addition,
“don’t eat me” molecules, such as CD47 and MHC-I, on tumor
cells inhibit the phagocytic function of macrophages by binding
SIRPa or LILRB1, respectively, on macrophages (64, 212).
Therefore, interference with these “don’t eat me” molecules
may further enhance phagocytosis by engineered macrophages.
These methods could further promote the anticancer activities of
engineered macrophages. Finally, if needed, methods of TAM
depletion in vivo can serve as a safeguard to remove engineered
macrophages that have serious side effects.
Frontiers in Oncology | www.frontiersin.org 12
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