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Polyethylene terephthalate (PET) is globally the largest produced aromatic polyester with

an annual production exceeding 50 million metric tons. PET can be mechanically and

chemically recycled; however, the extra costs in chemical recycling are not justified

when converting PET back to the original polymer, which leads to less than 30%

of PET produced annually to be recycled. Hence, waste PET massively contributes

to plastic pollution and damaging the terrestrial and aquatic ecosystems. The global

energy and environmental concerns with PET highlight a clear need for technologies

in PET “upcycling,” the creation of higher-value products from reclaimed PET. Several

microbes that degrade PET and corresponding PET hydrolase enzymes have been

successfully identified. The characterization and engineering of these enzymes to

selectively depolymerize PET into original monomers such as terephthalic acid and

ethylene glycol have been successful. Synthetic microbiology and metabolic engineering

approaches enable the development of efficient microbial cell factories to convert PET-

derived monomers into value-added products. In this mini-review, we present the recent

progress of engineering microbes to produce higher-value chemical building blocks from

waste PET using a wholly biological and a hybrid chemocatalytic–biological strategy.

We also highlight the potent metabolic pathways to bio-upcycle PET into high-value

biotransformed molecules. The new synthetic microbes will help establish the circular

materials economy, alleviate the adverse energy and environmental impacts of PET, and

provide market incentives for PET reclamation.

Keywords: synthetic microbes, polyethylene terephthalate, PET degradation, metabolic engineering, bio-

upcycling

INTRODUCTION

Plastic, a synthetic polymer, plays a vital role in modern life due to its versatility, advantageous
material properties, and low production cost. It has been estimated that about 5–13 million
tons of plastic is ended up in the ocean annually, and 5 trillion plastic particles are
estimated to float in Earth’s oceans, which injures and kills marine life (Eriksen et al.,
2014; Law et al., 2020). Although plastic is less prone to biodegradability, it can be
partially fragmented to microplastic (5 mm to 1 µm) particularly by ultraviolet radiation,
and microplastics have invaded not only terrestrial and marine ecosystem, but atmospheric
ecosystems as well (Eriksen et al., 2014; de Sá et al., 2018; Allen et al., 2019). Microplastics
enters the food chain, spreads toxins, and poses a potential threat to human health
(Wang et al., 2018). The systematic presence of synthetic micro polymers is threatening
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to create a global-scale environmental crisis (Thompson et al.,
2009; Jambeck et al., 2015; Geyer et al., 2017).

Polyethylene terephthalate (PET) is a thermoplastic polyester
of terephthalic acid (TPA) and ethylene glycol (EG) monomers
(Kim and Lee, 2012). The wide applicability of PET in various
industries such as in packaging, textiles, electrical and electronics,
and automotive industry is related to its properties such as high
mechanical strength, light weight, electrical insulating properties,
chemical inertness, and gas and moisture barrier properties
(Webb et al., 2013). Global PET fiber and resin production
was estimated to be around 77 million tons in 2015 (Fiber
Economics Bureau, 2015; Plastic Insight, 2016). Mismanagement
of PET waste contributes to the plastic pollution and demanding
techno-economically feasible end-of-life or circular economy
options for PET, including recycling post-consumer PET back
to the original material (Hamid et al., 2018; Meys et al.,
2020). Mechanical conversion of PET to the same use often
results in PET polymer with poorer mechanical and structural
properties, and thus, lower value by 33% (Awaja and Pavel,
2005). PET can be chemically recycled via full breakdown to
monomers and repolymerized back to PET; however, chemical-
based recycling costs of PET to remake the same polymer is not
economically feasible (Rahimi and García, 2017; Vollmer et al.,
2020). However, It has been predicted that recycled PET over
virgin PET has remarkable energy and environmental impact
on reducing greenhouse gas (GHG) emissions by 1.5 CO2-eq-
ton/recycle PET and energy input over virgin PET by>20MJ/ton
(Rorrer et al., 2019).

The novel discovery of PET depolymerizing enzymes has
transformed the field to develop a techno-economically feasible
bio-based PET recycling process (Wei and Zimmermann, 2017;
Tournier et al., 2020; Zimmermann, 2020). Researchers have
uncovered novel PET hydrolases from the microorganism
in plastic ecosystems (Plastisphere) and investigated them
to establish bio-based PET recycling approaches (Mueller,
2006; Kawai et al., 2020). The CARBOIS, a green chemistry
company, developed industrially applicable enzyme-based
recycling technology to remake PET bottles with similar
material properties only using recycled PET monomers
(Tournier et al., 2020). Comprehensive review articles have
been published on bio-based PET recycling techniques (Wei
and Zimmermann, 2017; Blank et al., 2020; Ru et al., 2020;
Wei et al., 2020; Kawai, 2021). With the advances in synthetic
microbiology, the development of sustainable microbial-based
“PET upcycling” toward a green route of the circular economy

becomes attractive. Upcycling is achieved by adding value to
the PET waste by providing a path for utilizing PET-derived
compounds to manufacture high-value chemicals and materials
(Kenny et al., 2008; Rorrer et al., 2019; Blank et al., 2020; Sohn
et al., 2020). Microbial cell factories have been tailored to the
deconstruction of PET in concert with the chemical processes
(i.e., hybrid biochemical process). PET-derived monomers can
be biotransformed into high-value platform chemicals and
biomaterials, including bioplastic PET alternatives. It enables
the creation of a circular material economy for PET (Sohn et al.,
2020; Tiso et al., 2020). Hence, this mini-review highlights the
current progress on microbial-based PET upcycling.

SELECTIVE DEGRADATION OF PET BY
MICROBIAL ENZYMES

The conventional culture-dependent methods, cutting-edge
multi-omics-based systems biology approaches, and molecular
biology techniques enable researchers to identify novel PET-
hydrolyzing enzymes from the plastisphere to cleave ester bonds
of PET (Supplementary Table 1). Also, computational and
machine learning approaches enable the researcher to discover
novel potent PET enzymes frommetagenomics databases (Danso
et al., 2018; Furukawa et al., 2019; Subramanian et al., 2019).
These enzymes belong to esterase, cutinase, and lipase families,
and may evolve in a PET-rich environment (Roager and
Sonnenschein, 2019; Alam et al., 2020; Maurya et al., 2020).
The discovery of the bacterium Ideonella sakaiensis harboring
hydrolyzing enzymes PETase and MHETase has revolutionized
the field. These enzymes can completely degrade the synthetic
polymer PET to its monomers TPA and EG at ambient
temperature (Yoshida et al., 2016; Carr et al., 2020). Employing
biological catalysis for commercial PET depolymerization is
challenging due to the limited accessibility of polymer’s high
crystalline ester linkages. Hence, researchers engineer the PET-
hydrolyzing enzymes to enhance the activity by in-depth
structure/activity relationships studies (Supplementary Table 2).
For instance, (1) narrowing the binding cleft of PETase,
an α/β-hydrolase fold enzyme via mutation of two active-
site residues to conserved amino acids in cutinases (i.e.,
S238F/W159H), enhanced the crystalline PET degradation to
convert PET to mono-(2-hydroxyethyl) terephthalate (MHET),
and (2) the second enzyme MHETase, a specific lid-domain-
containing esterase, hydrolyzes MHET to TPA and EG, but
not bis-(2-hydroxyethyl) terephthalate (BHET) natively (Austin
et al., 2018; Knott et al., 2020). Palm and coworkers successfully
demonstrated structure-guided alterations of MHETase to active
BHET by introducing three mutations to the lid domain of the
MHETase (R411A/S419G/F424N) (Palm et al., 2019).

Researchers developed PET hydrolyzing enzymes acting near
or above the glass transition temperature, Tg of PET (67–
81◦C) maximizes the PET polyester chain mobility and ester
bond hydrolyzing reaction. To increase the thermal stability
of TfCut2, binding sites of Ca2+ and Mg2+ are identified as
potential targets for engineering (Then et al., 2015). Introduction
of a disulfide bridge to substitute TfCut2 Ca-binding site
increased thermal stability and activity against PET (Then et al.,
2016). Thermostability of leaf-branch compost cutinase (LCC)
is improved to 94.5◦C by replacing the divalent metal site
with a disulfide bridge (D238C/S283C). The loss of enzyme
activity is restored by introducing additional mutation of residue
in contact with the PET substrates (F243I) (Tournier et al.,
2020). The engineered enzymes enable industrially relevant PET
recycling to manufacture PET bottles with similar material
properties using recovered TPA. Indeed, they achieved a 90%
conversion of pre-treated post-consumer PET in less than 10 h,
with a mean productivity of 16.7 g TPA L−1 h−1 with a
yield of 27.9 g TPA g enzyme−1, and demonstrate the green
route of the circular economy. In concert with computation
studies, protein engineering shows the potential to develop
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efficient PET-hydrolyzing enzymes with improved crystalline
PET activity, expanded substrate specificity, alleviated product
inhibitions, and thermostability (Cui et al., 2021).

A dual enzyme system consisting of a polyester hydrolase,
TfCut2 or LCC, and a carboxylesterase TfCa from Thermobifida
fusca KW3 has been tested to overcome the inhibition of MHET
on PET degradation (Barth et al., 2016). With the addition
of TfCa, the total products reported an increase of 91% with
TfCut2 and 104% increase with LCC. The results indicated the
successful use of TfCa as a secondary biocatalyst to improve
PET degradation by increased hydrolysis of MHET. Similarly,
the synergistic effect on PETase and MHETase enhances the
PET degradation activity, and a higher MHETase load further
improved the degradation rate. Furthermore, MHETase and
PETase’s chimeric enzymes (MHETase C terminus connected
to PETase via flexible glycine-serine linkers) outperformed the
degradation rate of unlinked PETase and MHETase (Knott
et al., 2020). Pichia pastoris has shown potential as a better
expression host for PET-hydrolyzing enzymes such as LCC
and Thc_Cut1 (Gamerith et al., 2017; Shirke et al., 2018). The
engineered thermophilic Clostridium thermocellum expressing
the thermophilic PET hydrolase LCC enables the selective
degradation of PET at 60◦C and outperformed whole-cell-
based PET biodegradation systems that employ mesophilic
bacteria or microalgae. A recent study reported that expression
of BhrPETase in Bacillus subtilis showed higher activity on
amorphous PET compared to LCC and PETase, and this
is the most thermostable PET hydrolase reported to date
(Xi et al., 2021).

The selection of an appropriate host strain is necessary to
obtain the active enzymes, and codon optimization of genes
is vital to produce accurately folded soluble protein (Angov,
2011). It has been shown that TfCut2 expressed in B. subtilis
is more efficient and thermostable than when expressed in
Escherichia coli, and the enzymes can be used to depolymerize
post-consumer PET food packaging effectively (Wei et al., 2019).
Additionally, B. subtilis successfully employs LCC and IsPETase,
methylotrophic yeast, P. pastoris for LCC, and cutinase from
Thermobifida cellulosilytica (Gamerith et al., 2017; Shirke et al.,
2018; Xi et al., 2021). Notably, for the commercial production
of PET-hydrolyzing enzymes, the strains that allow secretory
high-level expression should be used to avoid additional costly
purification steps (Su et al., 2013). Since enzyme expression
and purification add extra cost to the process, researchers
developed the whole-cell microbial catalysts to degrade the PET
by heterologous expression of PET-hydrolyzing enzymes (Samak
et al., 2020). A promising strategy to overcome the problem
of PET waste in marine environments where an engineered
photosynthetic marine microalgae Phaeodactylum tricornutum
with the ability to produce and secrete an improved PETase
into the culture medium has been developed (Moog et al.,
2019). Seo and coworkers successfully fused the PETase with E.
coli SRP-dependent signal peptides to enable the secretion of
PETase via a sec-dependent secretion system and demonstrated
the PET degradation activity by engineered E. coli (Seo et al.,
2019). Expressing PETase on yeast’s cell surface shows new
insights into developing whole-cell eukaryotic systems for

efficient degradation of highly crystalline PET (Chen et al.,
2020). The cell surface display of bacterial PETase on P. pastoris
showed a 36-fold turnover rate compared to purified PETase,
showing a promising approach toward whole-cell biocatalysts
for efficient biodegradation of PET. In sum, biorecycling
enables the researcher to obtain the original monomers of
PET to upcycle into value-added chemicals and materials via
synthetic biocatalysts.

METABOLIC ROUTES TO UPCYCLE
PET-DERIVED SUBSTRATES

Production of industrial chemicals, both natural and non-natural,
using renewable biomass feedstock via synthetic microbes has
been well-established (Chubukov et al., 2016; Cravens et al.,
2019; Lee et al., 2019). In the same vein, microbes can be
engineered to valorize plastic feedstock, including the PET-
derived TPA and EG. Developing advanced and efficient
engineered microorganisms to convert and upcycle plastic
waste, including PET, is an exciting opportunity for synthetic
microbiologists and metabolic engineers. Hence, it is vital to
identify the major metabolic and catabolic routes of EG and
TPA to develop the microbial chassis for PET upcycling. Both
C2 and aromatic metabolic and catabolic pathways are key
targets to develop PET upcycle strategies (Kenny et al., 2008).
Several microbes capable of EGmetabolism has been studied, and
among them, Pseudomonas is an extensively studied organism.
The EG metabolic pathway of Pseudomonas putida KT2440
was mapped via comprehensive omics-based systems biology
approaches, adaptive laboratory evolution (ALE), and metabolic
engineering approaches (Blank et al., 2008; Mückschel et al.,
2012; Wehrmann et al., 2017; Franden et al., 2018). Researchers
further engineered Pseudomonas putida KT2440 for efficient
utilization of EG by expression of the entire gcl operon and
glycolate oxidase (glcDEF) operon to overcome the problem
of toxic intermediates, glycolaldehyde and glyoxal or knocking
out the regulator glcR (Franden et al., 2018; Li et al., 2019).
Unlike EG, TPA does not freely diffuse via the microbial cell
membrane and require a specific TPA transporters. Several TPA
transporters and metabolic pathways have been identified and
characterized, including the microbes that natively degrade and
catabolize PET (Hara et al., 2007; Yoshida et al., 2016; Salvador de
Lara et al., 2019; Pardo et al., 2020). Generally, TPA is converted
to protocatechuate (PCA) via 1,6-dihydroxycyclohexa-2,4-diene-
dicarboxylate (DCD). TphA1A2A3, which is a dioxygenase,
catalyzes the conversion of TPA to DCD, and dehydrogenase
TphB catalyzes the conversion of DCD to PCA (Frazee et al.,
1993; Wang et al., 1995; Maruyama et al., 2004; Kasai et al.,
2009; Salvador de Lara et al., 2019). Tph genes in the
analysis of databases have revealed similar genetic organization
in few organisms belonging to genus Comamonas, Ideonella,
Ramlibacter, Pseudomonas, and Rhodococcus (Choi et al., 2005;
Sasoh et al., 2006; Salvador de Lara et al., 2019; Ru et al.,
2020). Since we can map the major metabolic and catabolic
routes of EG and TPA, we present the overview of potential
systematic metabolic engineering routes to efficiently convert
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FIGURE 1 | Overview of hybrid biochemical upcycling of PET. The potential bacterial biofunneling pathways of selectively degraded PET products, TPA, and EG into

various economically valuable compounds and materials are highlighted. Examples of high-value biotransformed chemicals and chemocatalytic upgrading of primary

chemicals to performance advanced material are presented (highlighted with blue background). Detail of all the chemicals and enzymes can be found in

Supplementary Tables 3 and 4.

PET-derived TPA and EG into high-value chemicals, enabling
PET upcycling (Figure 1).

ENGINEERING WHOLE-CELL
BIOCATALYSTS TO UPCYCLE PLASTIC

A decade ago, the PET-derived TPA upcycling (obtained
from pyrolysis fractionation) into biodegradable plastic
polyhydroxyalkanoate (PHA) by P. putida (GO16), P. putida
(GO19), and Pseudomonas frederiksbergensis (GO23) has been
successfully demonstrated (Kenny et al., 2008). Synthetic
microbe-based biological or integrated biological and chemical
reactions could be used to produce high-value building blocks,
monomers, and fine chemicals obtained by recycled TPA, and
EG can then be supplied to the chemical industry. Several
models and non-model microbial systems have been developed
to upcycle the PET using advanced synthetic microbiology
tools in recent years. For instance, EG can be converted to
medium chain length polyhydroxyalkanoates (mcl-PHA)
using the engineered P. putida KT2440, PHAs widely used in
many applications, including biomedicine and biodegradable
plastic alternative (Franden et al., 2018; Rodriguez-Contreras,
2019). Furthermore, chemical catalytic upgrading could be
adopted to convert the PHA into valuable fully deoxygenated
hydrocarbon jet (C8–C16)- or diesel (C8–C21)-grade fuels
(Linger et al., 2014). Of note, the PHA production of P. putida

KT2440 could be enhanced by additional strain engineering
strategy such as knocking out PHA depolymerase gene phaZ
and β-oxidation genes fadBA1 and fadBA2 and overexpressing
phaG, alkK, phaC1, and phaC2 to increase carbon flux into
mcl-PHA biosynthesis (Salvachúa et al., 2020). A recent study
demonstrated that the hybrid, enzymatic hydrolysis and
microbial bioconversion process enables the simultaneous
funneling of the PET-derived EG and TPA into PHA and
hydroxyalkanoyloxy-alkanoate (HAA), respectively. The
evolved strain of Pseudomonas sp. GO16 can use both EG
and TPA that were used as a biocatalyst and engineered
to produce extracellular HAA. The obtained HAA can be
converted into a novel biodegradable biopolymer poly(amide
urethane) via a chemical catalytic process (Tiso et al., 2020).
Kang and coworkers designed a chemo-microbial hybrid
process to produce of 2-pyrone-4,6-dicarboxylic acid (PDC),
a promising bioplastic monomer from PET-derived TPA
(Kang et al., 2020). Engineered E. coli consortia were used
to produce PDC. One strain was developed by expressing
tphAabc and tphB genes from Comamonas sp. E6 to convert
TPA into protocatechuic acid (PCA) via 3,4-dihydroxy-
cyclohexa-1,5-diene-1,4-dicarboxylic acid (DCD), and the
second strain was designed to convert PCA into PDC via
4-carboxy-2-hydroxymuconate semialdehyde by expressing
using ligABC genes from Sphingobium sp. SYK-6. Another
study on upcycling PET degradation monomers describes
directing TPA toward the production of high-value aromatics
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PCA, gallic acid (GA), pyrogallol (PG), catechol (CA), muconic
acid (MA), vanillic acid (VA), and EG toward glycolic acid
(GLA) (Kim et al., 2019). They engineered E. coli strains
to harbor relevant metabolic pathways to funnel TPA into
the desired product using single or combined reactions of
hydroxylation, decarboxylation, oxidative ring cleavage, and
methylation. For instance, the above-discussed Comamonas
sp. E6 genes were expressed to enable TPA conversion to
PCA, and expression of PobA from P. putida KT2440 enables
hydroxylation of PCA to GA. EG was converted to GLA
by EG-fermenting Gluconobacter oxydans. Notably, they
implemented a tandem reaction approach to improve the
production using a double bio-catalytic system. For example, the
strain expressing TphAabc and TphB from Comamonas sp. E6
was used to convert TPA into PCA, and the strain expressing
O-methyltransferase, HsOMTHis, from Homo sapiens was used
to convert PCA into VA.

Recently, Rorrer and coworkers demonstrated PET
upcycling by incorporating renewably sourced, bio-derived
compounds (e.g., muconic acid and acrylic acid) with partially
deconstructed PET (i.e., BHET) to manufacture fiberglass-
reinforced plastics (Rorrer et al., 2019). P. putida KT2440 was
engendered to produce innovative chemicals from aromatic
catabolism and enables the production of high-performance
novel polymers and materials (Johnson et al., 2019). The
resulting materials exhibit improved properties relative to the
petroleum-based standard (Rorrer et al., 2017; Johnson et al.,
2019). For example, as shown in Figure 1, those chemicals
could be produced using PET-derived TPA and EG via
synthetic microbes.

For instance, β-ketoadipic acid can be obtained from TPA by
knocking out the pcaIJ in the engineered TPA catabolizing strain
(e.g., tpiABC, tpaAabc, and tph). β-ketoadipic acid can be reacted
with hexamethyl diamine (HMDA) to produce a polyamide
analogous to nylon 6,6. The polymer showed increased melting
temperature and crystallinity and reduced water uptake relative
to petroleum-based nylon 6,6 (Sudarsan et al., 2016). It is also
possible to funnel EG into 3-hydroxypropionic, and it can be
catalytically converted into a high-value acrylic, acrylonitrile,
to produce performance advanced polymers and materials
(Matsakas et al., 2018). The proposed hybrid biochemical
upcycle concept (Figure 1) will enable the end-of-life approach
to the PET waste. We anticipated economic incentive from
the proposed pathway to produce advanced chemical building
blocks. It will remarkably lower the GHG and the energy
usage for the production of monomers relative to the fossil-
fuel-based production: e.g., upcycling PET into fiberglass-
reinforced materials reduces GHG by 40% and energy by 57%
(Rorrer et al., 2019).

CONCLUSION AND PERSPECTIVES

Notably, the titer, yield, and rate (TYR) of monomers’
bioproduction from PET-derived substrates (Figure 1) need
to be improved via metabolic engineering and process design
approaches to enable commercial production. Development of

in silico computational and machine learning programs to assist
the design–build–test–learn cycle (high throughput screening
of enzymes and design metabolic pathways) enables rational
engineering of commercially applicable superior microbial
biocatalyst to upcycle PET. ALE enables the strain to optimize
further the engineered genome and fine-tuning of the desired
metabolic pathway (Kim et al., 2013; Lee et al., 2014; Oh et al.,
2016).We could deploy ALE to improve the PET conversion TYR
of the engineered strain.

The waste PET may carry toxic compounds such as emerging
contaminants (ECs) and poly organic pollutants (POPs); thus,
the process requires a priori detoxification steps. For instance,
we could use efficient chemical-based metal-organic frameworks
or enzyme-based laccase or peroxidase to detoxify the PET-
associated ECs and POPs (Pi et al., 2018; Mishra et al., 2019;
Morsi et al., 2020). Indeed, laccase can be expressed on PET
upcycling microbes to enable in situ detoxification (Chen et al.,
2016). Given that most of the substrates, intermediates, and
targeted products are toxic to the host microbes, engineering
multiple toxicity tolerance mechanisms will be necessary. For
instance, overcoming the aldehyde tolerance and acid tolerance
during EG metabolism could be achieved by alleviating the
metabolic bottlenecks and engineering the protein quality
control machineries (Franden et al., 2018; Jayakody et al., 2018;
Guan and Liu, 2020).

One exciting area of study is adapting the architecture of
cellulosomes to develop a multi-enzyme complex capable of
efficiently degrading PET. The advanced synthetic biology
techniques enable the formulation of large cellulosomes
and facilitate superior activity toward the recalcitrant
cellulose (Anandharaj et al., 2020). The same concept
could be adopted to tailor microbial cell factories to the
degradation of high-crystalline PET via developing PETsome
(Supplementary Figure 1). It is vital to discover the component
that would act as a PET binding domain, analogous to
the cellulose-binding domain (Ribitsch et al., 2013; Weber
et al., 2019). An efficient cell surface expressing system for
bacteria has recently been developed (Chen et al., 2019;
Dvořák et al., 2020). Together, those approaches can be
implemented to design a consolidated bioprocessing system,
a microbial system that can efficiently degrade and upcycle
PET into advanced chemicals simultaneously. It will be
beneficial to overcome techno-economic challenges such as
end-product toxicity on degradation enzymes and the overall
operating costs.

In summary, PET upcycling via synthetic microbial biocatalyst
or hybrid biochemical approaches has shown great promise
to sustainable large-scale solutions for PET waste management
in terms of end-of-life to PET. It is essential to perform
a comprehensive life cycle and techno-economic analysis to
identify the upcycle process’ industrial and environmental
feasibility using the engineered biocatalyst. We envision that
innovative synthetic microbiology and metabolic engineering
approaches may enable the microbial biocatalyst to reach the
commercial scale from laboratory bioreactor to upcycle PET,
create a circular material economy, and help protect our
environment from PET waste.
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